1
|
Weatherdon L, Stuart K, Cassidy M, de la Gándara AM, Okkenhaug H, Muellener M, Mckenzie G, Cook SJ, Gilley R. Reporter cell lines to screen for inhibitors or regulators of the KRAS-RAF-MEK1/2-ERK1/2 pathway. Biochem J 2024; 481:405-422. [PMID: 38381045 PMCID: PMC11088904 DOI: 10.1042/bcj20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is activated in cancer due to mutations in RAS proteins (especially KRAS), BRAF, CRAF, MEK1 and MEK2. Whilst inhibitors of KRASG12C (lung adenocarcinoma) and BRAF and MEK1/2 (melanoma and colorectal cancer) are clinically approved, acquired resistance remains a problem. Consequently, the search for new inhibitors (especially of RAS proteins), new inhibitor modalities and regulators of this pathway, which may be new drug targets, continues and increasingly involves cell-based screens with small molecules or genetic screens such as RNAi, CRISPR or protein interference. Here we describe cell lines that exhibit doxycycline-dependent expression KRASG12V or BRAFV600E and harbour a stably integrated EGR1:EmGFP reporter gene that can be detected by flow cytometry, high-content microscopy or immunoblotting. KRASG12V or BRAFV600E-driven EmGFP expression is inhibited by MEK1/2 or ERK1/2 inhibitors (MEKi and ERKi). BRAFi inhibit BRAFV600E-driven EmGFP expression but enhance the response to KRASG12V, recapitulating paradoxical activation of wild type RAF proteins. In addition to small molecules, expression of iDab6, encoding a RAS-specific antibody fragment inhibited KRASG12V- but not BRAFV600E-driven EmGFP expression. Finally, substitution of EmGFP for a bacterial nitroreductase gene allowed KRASG12V or BRAFV600E to drive cell death in the presence of a pro-drug, which may allow selection of pathway inhibitors that promote survival. These cell lines should prove useful for cell-based screens to identify new regulators of KRAS- or BRAF-dependent ERK1/2 signalling (drug target discovery) as well as screening or triaging 'hits' from drug discovery screens.
Collapse
Affiliation(s)
- Laura Weatherdon
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Kate Stuart
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Megan Cassidy
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Markus Muellener
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Grahame Mckenzie
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Rebecca Gilley
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
2
|
Rich MH, Sharrock AV, Mulligan TS, Matthews F, Brown AS, Lee-Harwood HR, Williams EM, Copp JN, Little RF, Francis JJB, Horvat CN, Stevenson LJ, Owen JG, Saxena MT, Mumm JS, Ackerley DF. A metagenomic library cloning strategy that promotes high-level expression of captured genes to enable efficient functional screening. Cell Chem Biol 2023; 30:1680-1691.e6. [PMID: 37898120 PMCID: PMC10842177 DOI: 10.1016/j.chembiol.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/17/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.
Collapse
Affiliation(s)
- Michelle H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Hannah R Lee-Harwood
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rory F Little
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jenni J B Francis
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Claire N Horvat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
3
|
Mori A, Hirata Y, Kishida M, Mori Y, Kondo A, Noda S, Tanaka T. p-Nitrobenzoate production from glucose by utilizing p-aminobenzoate N-oxygenase: AurF. Enzyme Microb Technol 2023; 171:110321. [PMID: 37696175 DOI: 10.1016/j.enzmictec.2023.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Nitroaromatic compounds are widely used in industry, but their production is associated with issues such as the hazardousness of the process and low regioselectivity. Here, we successfully demonstrated the production of p-nitrobenzoate (PNBA) from glucose by constructing p-aminobenzoate N-oxygenase AurF-expressing E. coli. We generated this strain, which we named PN-1 by disrupting four genes involved in PNBA degradation: nfsA, nfsB, nemA, and azoR. We then expressed AurF from Streptomyces thioluteus in this strain, which resulted in the production of 945 mg/L PNBA in the presence of 1 g/L p-aminobenzoate. Direct production of PNBA from glucose was achieved by co-expressing the pabA, pabB, and pabC, as well as aurF, resulting in the production of 393 mg/L PNBA from 20 g/L glucose. To improve the PNBA titer, we disrupted genes involved in competing pathways: pheA, tyrA, trpE, pykA, and pykF. The resultant strain PN-4Ap produced 975 mg/L PNBA after 72 h of cultivation. These results highlight the potential of using microorganisms to produce other nitroaromatic compounds.
Collapse
Affiliation(s)
- Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shuhei Noda
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
4
|
Stevenson LJ, Robins KJ, Sharma JK, Williams EM, Sharrock AV, Williamson AK, Arcus VL, Patrick WM, Ackerley DF. Development of a compartmentalised self-replication protocol for selection of superior blunt-end DNA ligases. Enzyme Microb Technol 2022; 163:110153. [DOI: 10.1016/j.enzmictec.2022.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
|
5
|
Use of an optimised enzyme/prodrug combination for Clostridia directed enzyme prodrug therapy induces a significant growth delay in necrotic tumours. Cancer Gene Ther 2022; 29:178-188. [PMID: 33558701 DOI: 10.1038/s41417-021-00296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Necrosis is a typical histological feature of solid tumours that provides a selective environment for growth of the non-pathogenic anaerobic bacterium Clostridium sporogenes. Modest anti-tumour activity as a single agent encouraged the use of C. sporogenes as a vector to express therapeutic genes selectively in tumour tissue, a concept termed Clostridium Directed Enzyme Prodrug Therapy (CDEPT). Here, we examine the ability of a recently identified Neisseria meningitidis type I nitroreductase (NmeNTR) to metabolise the prodrug PR-104A in an in vivo model of CDEPT. Human HCT116 colon cancer cells stably over-expressing NmeNTR demonstrated significant sensitivity to PR-104A, the imaging agent EF5, and several nitro(hetero)cyclic anti-infective compounds. Chemical induction of necrosis in human H1299 xenografts by the vascular disrupting agent vadimezan promoted colonisation by NmeNTR-expressing C. sporogenes, and efficacy studies demonstrated moderate but significant anti-tumour activity of spores when compared to untreated controls. Inclusion of the pre-prodrug PR-104 into the treatment schedule provided significant additional activity, indicating proof-of-principle. Successful preclinical evaluation of a transferable gene that enables metabolism of both PET imaging agents (for vector visualisation) and prodrugs (for conditional enhancement of efficacy) is an important step towards the prospect of CDEPT entering clinical evaluation.
Collapse
|
6
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|
7
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
8
|
Hacıoğlu N, Güngör T, Tokay E, Gülhan ÜG, Çelik A, Ay M, Köçkar F. Prodrugs for Nitroreductase Based Cancer Therapy‐5: Development of Trinitroaniline Prodrugs/Ssap‐NtrB Combinations for Liver Cancer Using Intracellular and Extracellular Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nelin Hacıoğlu
- Department of Molecular Biology and Genetic Faculty of Sciences and Arts Balıkesir University Balıkesir 10145 Turkey
| | - Tuğba Güngör
- Department of Chemistry Faculty of Sciences and Arts Natural Products and Drug Research Laboratory Çanakkale Onsekiz Mart University Çanakkale 17020 Turkey
| | - Esra Tokay
- Department of Molecular Biology and Genetic Faculty of Sciences and Arts Balıkesir University Balıkesir 10145 Turkey
| | - Ünzile Güven Gülhan
- Department of Chemistry Faculty of Science Gebze Technical University Gebze-Kocaeli 41400 Turkey
| | - Ayhan Çelik
- Department of Chemistry Faculty of Science Gebze Technical University Gebze-Kocaeli 41400 Turkey
| | - Mehmet Ay
- Department of Chemistry Faculty of Sciences and Arts Natural Products and Drug Research Laboratory Çanakkale Onsekiz Mart University Çanakkale 17020 Turkey
| | - Feray Köçkar
- Department of Molecular Biology and Genetic Faculty of Sciences and Arts Balıkesir University Balıkesir 10145 Turkey
| |
Collapse
|
9
|
Zhang L, Chen C, Fu J, Lilley B, Berlinicke C, Hansen B, Ding D, Wang G, Wang T, Shou D, Ye Y, Mulligan T, Emmerich K, Saxena MT, Hall KR, Sharrock AV, Brandon C, Park H, Kam TI, Dawson VL, Dawson TM, Shim JS, Hanes J, Ji H, Liu JO, Qian J, Ackerley DF, Rohrer B, Zack DJ, Mumm JS. Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. eLife 2021; 10:e57245. [PMID: 34184634 PMCID: PMC8425951 DOI: 10.7554/elife.57245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused by rod photoreceptor degeneration, necessitating therapeutics promoting rod photoreceptor survival. To address this, we tested compounds for neuroprotective effects in multiple zebrafish and mouse RP models, reasoning drugs effective across species and/or independent of disease mutation may translate better clinically. We first performed a large-scale phenotypic drug screen for compounds promoting rod cell survival in a larval zebrafish model of inducible RP. We tested 2934 compounds, mostly human-approved drugs, across six concentrations, resulting in 113 compounds being identified as hits. Secondary tests of 42 high-priority hits confirmed eleven lead candidates. Leads were then evaluated in a series of mouse RP models in an effort to identify compounds effective across species and RP models, that is, potential pan-disease therapeutics. Nine of 11 leads exhibited neuroprotective effects in mouse primary photoreceptor cultures, and three promoted photoreceptor survival in mouse rd1 retinal explants. Both shared and complementary mechanisms of action were implicated across leads. Shared target tests implicated parp1-dependent cell death in our zebrafish RP model. Complementation tests revealed enhanced and additive/synergistic neuroprotective effects of paired drug combinations in mouse photoreceptor cultures and zebrafish, respectively. These results highlight the value of cross-species/multi-model phenotypic drug discovery and suggest combinatorial drug therapies may provide enhanced therapeutic benefits for RP patients.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Conan Chen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Jie Fu
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Baranda Hansen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Wang
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- School of Chemistry, Xuzhou College of Industrial TechnologyXuzhouChina
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjingChina
| | - Daniel Shou
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ying Ye
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelsi R Hall
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Abigail V Sharrock
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Hyejin Park
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Valina L Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, TaipaMacauChina
| | - Justin Hanes
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Department of Oncology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - David F Ackerley
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
10
|
Sharrock AV, McManaway SP, Rich MH, Mumm JS, Hermans IF, Tercel M, Pruijn FB, Ackerley DF. Engineering the Escherichia coli Nitroreductase NfsA to Create a Flexible Enzyme-Prodrug Activation System. Front Pharmacol 2021; 12:701456. [PMID: 34163368 PMCID: PMC8215503 DOI: 10.3389/fphar.2021.701456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial nitroreductase enzymes that can efficiently convert nitroaromatic prodrugs to a cytotoxic form have numerous applications in targeted cellular ablation. For example, the generation of cytotoxic metabolites that have low bystander potential (i.e., are largely confined to the activating cell) has been exploited for precise ablation of specific cell types in animal and cell-culture models; while enzyme-prodrug combinations that generate high levels of bystander cell killing are useful for anti-cancer strategies such as gene-directed enzyme-prodrug therapy (GDEPT). Despite receiving substantial attention for such applications, the canonical nitroreductase NfsB from Escherichia coli has flaws that limit its utility, in particular a low efficiency of conversion of most prodrugs. Here, we sought to engineer a superior broad-range nitroreductase, E. coli NfsA, for improved activity with three therapeutically-relevant prodrugs: the duocarmycin analogue nitro-CBI-DEI, the dinitrobenzamide aziridine CB1954 and the 5-nitroimidazole metronidazole. The former two prodrugs have applications in GDEPT, while the latter has been employed for targeted ablation experiments and as a precise 'off-switch' in GDEPT models to eliminate nitroreductase-expressing cells. Our lead engineered NfsA (variant 11_78, with the residue substitutions S41Y, L103M, K222E and R225A) generated reduced metabolites of CB1954 and nitro-CBI-DEI that exhibited high bystander efficiencies in both bacterial and 2D HEK-293 cell culture models, while no cell-to-cell transfer was evident for the reduced metronidazole metabolite. We showed that the high bystander efficiency for CB1954 could be attributed to near-exclusive generation of the 2-hydroxylamine reduction product, which has been shown in 3D cell culture to cause significantly greater bystander killing than the 4-hydroxylamine species that is also produced by NfsB. We similarly observed a high bystander effect for nitro-CBI-DEI in HCT-116 tumor spheroids in which only a small proportion of cells were expressing variant 11_78. Collectively, our data identify variant 11_78 as a broadly improved prodrug-activating nitroreductase that offers advantages for both targeted cellular ablation and suicide gene therapy applications.
Collapse
Affiliation(s)
- Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sarah P. McManaway
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Michelle H. Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jeff S. Mumm
- The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ian F. Hermans
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Moana Tercel
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Frederik B. Pruijn
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
11
|
The YfkO Nitroreductase from Bacillus Licheniformis on Gold-Coated Superparamagnetic Nanoparticles: Towards a Novel Directed Enzyme Prodrug Therapy Approach. Pharmaceutics 2021; 13:pharmaceutics13040517. [PMID: 33918536 PMCID: PMC8070144 DOI: 10.3390/pharmaceutics13040517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
The bacterial nitroreductase NfnB has been the focus of a great deal of research for its use in directed enzyme prodrug therapy in combination with the nitroreductase prodrug CB1954 with this combination of enzyme and prodrug even entering clinical trials. Despite some promising results, there are major limitations to this research, such as the fact that the lowest reported Km for this enzyme far exceeds the maximum dosage of CB1954. Due to these limitations, new enzymes are now being investigated for their potential use in directed enzyme prodrug therapy. One such enzyme that has proved promising is the YfkO nitroreductase from Bacillus Licheniformis. Upon investigation, the YfkO nitroreductase was shown to have a much lower Km (below the maximum dosage) than that of NfnB as well as the fact that when reacting with the prodrug it produces a much more favourable ratio of enzymatic products than NfnB, forming more of the desired 4-hydroxylamine derivative of CB1954.
Collapse
|
12
|
The Escherichia coli azoR gene promoter: A new sensing element for microbial biodetection of trace explosives. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Boddu RS, Perumal O, K D. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol Appl Biochem 2020; 68:1518-1530. [PMID: 33156534 DOI: 10.1002/bab.2073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Nitroreductases, enzymes found mostly in bacteria and also in few eukaryotes, use nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor for their activity and metabolize an enormous list of a diverse nitro group-containing compounds. Nitroreductases that are capable of metabolizing nitroaromatic and nitro heterocyclic compounds have drawn great attention in recent years owing to their biotechnological, biomedical, environmental, and human impact. These enzymes attracted medicinal chemists and pharmacologists because of their prodrug selectivity for activation/reduction of nitro compounds that wipe out pathogens/cancer cells, leaving the host/normal cells unharmed. It is applied in diverse fields of study like prodrug activation in treating cancer and leishmaniasis, designing fluorescent probes for hypoxia detection, cell imaging, ablation of specific cell types, biodegradation of nitro-pollutants, and interpretation of mutagenicity of nitro compounds. Keeping in view the immense prospects of these enzymes and a large number of research contributions in this area, the present review encompasses the enzymatic reaction mechanism, their role in antibiotic resistance, hypoxia sensing, cell imaging, cancer therapy, reduction of recalcitrant nitro chemicals, enzyme variants, and their specificity to substrates, reaction products, and their applications.
Collapse
Affiliation(s)
- Ramya Sree Boddu
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Divakar K
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| |
Collapse
|
14
|
Mechanistic Understanding Enables the Rational Design of Salicylanilide Combination Therapies for Gram-Negative Infections. mBio 2020; 11:mBio.02068-20. [PMID: 32934086 PMCID: PMC7492738 DOI: 10.1128/mbio.02068-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is a critical need for more-effective treatments to combat multidrug-resistant Gram-negative infections. Combination therapies are a promising strategy, especially when these enable existing clinical drugs to be repurposed as antibiotics. We examined the mechanisms of action and basis of innate Gram-negative resistance for the anthelmintic drug niclosamide and subsequently exploited this information to demonstrate that niclosamide and analogs kill Gram-negative bacteria when combined with antibiotics that inhibit drug efflux or permeabilize membranes. We confirm the synergistic potential of niclosamide in vitro against a diverse range of recalcitrant Gram-negative clinical isolates and in vivo in a mouse abscess model. We also demonstrate that nitroreductases can confer resistance to niclosamide but show that evolution of these enzymes for enhanced niclosamide resistance confers a collateral sensitivity to other clinical antibiotics. Our results highlight how detailed mechanistic understanding can accelerate the evaluation and implementation of new combination therapies. One avenue to combat multidrug-resistant Gram-negative bacteria is the coadministration of multiple drugs (combination therapy), which can be particularly promising if drugs synergize. The identification of synergistic drug combinations, however, is challenging. Detailed understanding of antibiotic mechanisms can address this issue by facilitating the rational design of improved combination therapies. Here, using diverse biochemical and genetic assays, we examine the molecular mechanisms of niclosamide, a clinically approved salicylanilide compound, and demonstrate its potential for Gram-negative combination therapies. We discovered that Gram-negative bacteria possess two innate resistance mechanisms that reduce their niclosamide susceptibility: a primary mechanism mediated by multidrug efflux pumps and a secondary mechanism of nitroreduction. When efflux was compromised, niclosamide became a potent antibiotic, dissipating the proton motive force (PMF), increasing oxidative stress, and reducing ATP production to cause cell death. These insights guided the identification of diverse compounds that synergized with salicylanilides when coadministered (efflux inhibitors, membrane permeabilizers, and antibiotics that are expelled by PMF-dependent efflux), thus suggesting that salicylanilide compounds may have broad utility in combination therapies. We validate these findings in vivo using a murine abscess model, where we show that niclosamide synergizes with the membrane permeabilizing antibiotic colistin against high-density infections of multidrug-resistant Gram-negative clinical isolates. We further demonstrate that enhanced nitroreductase activity is a potential route to adaptive niclosamide resistance but show that this causes collateral susceptibility to clinical nitro-prodrug antibiotics. Thus, we highlight how mechanistic understanding of mode of action, innate/adaptive resistance, and synergy can rationally guide the discovery, development, and stewardship of novel combination therapies.
Collapse
|
15
|
Directed evolution of the B. subtilis nitroreductase YfkO improves activation of the PET-capable probe SN33623 and CB1954 prodrug. Biotechnol Lett 2020; 43:203-211. [PMID: 32851465 DOI: 10.1007/s10529-020-02992-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To use directed evolution to improve YfkO-mediated reduction of the 5-nitroimidazole PET-capable probe SN33623 without impairing conversion of the anti-cancer prodrug CB1954. RESULTS Two iterations of error-prone PCR, purifying selection, and FACS sorting in a DNA damage quantifying GFP reporter strain were used to identify three YfkO variants able to sensitize E. coli host cells to at least 2.4-fold lower concentrations of SN33623 than the native enzyme. Two of these variants were able to be purified in a functional form, and in vitro assays revealed these were twofold and fourfold improved in kcat/KM with SN33623 over wild type YfkO. Serendipitously, the more-active variant was also nearly fourfold improved in kcat/KM versus wild type YfkO in converting CB1954 to a genotoxic drug. CONCLUSIONS The enhanced activation of the PET imaging probe SN33623 and CB1954 prodrug exhibited by the lead evolved variant of YfkO offers prospects for improved enzyme-prodrug therapy.
Collapse
|
16
|
Mowday AM, Copp JN, Syddall SP, Dubois LJ, Wang J, Lieuwes NG, Biemans R, Ashoorzadeh A, Abbattista MR, Williams EM, Guise CP, Lambin P, Ackerley DF, Smaill JB, Theys J, Patterson AV. E. coli nitroreductase NfsA is a reporter gene for non-invasive PET imaging in cancer gene therapy applications. Theranostics 2020; 10:10548-10562. [PMID: 32929365 PMCID: PMC7482819 DOI: 10.7150/thno.46826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The use of reporter genes to non-invasively image molecular processes inside cells has significant translational potential, particularly in the context of systemically administered gene therapy vectors and adoptively administered cells such as immune or stem cell based therapies. Bacterial nitroreductase enzymes possess ideal properties for reporter gene imaging applications, being of non-human origin and possessing the ability to metabolize a range of clinically relevant nitro(hetero)cyclic substrates. Methods: A library of eleven Escherichia coli nitroreductase candidates were screened for the ability to efficiently metabolize 2-nitroimidazole based positron emission tomography (PET) probes originally developed as radiotracers for hypoxic cell imaging. Several complementary methods were utilized to detect formation of cell-entrapped metabolites, including various in vitro and in vivo models to establish the capacity of the 2-nitroimidazole PET agent EF5 to quantify expression of a nitroreductase candidate. Proof-of-principle PET imaging studies were successfully conducted using 18F-HX4. Results: Recombinant enzyme kinetics, bacterial SOS reporter assays, anti-proliferative assays and flow cytometry approaches collectively identified the major oxygen-insensitive nitroreductase NfsA from E. coli (NfsA_Ec) as the most promising nitroreductase reporter gene. Cells expressing NfsA_Ec were demonstrably labelled with the imaging agent EF5 in a manner that was quantitatively superior to hypoxia, in monolayers (2D), multicellular layers (3D), and in human tumor xenograft models. EF5 retention correlated with NfsA_Ec positive cell density over a range of EF5 concentrations in 3D in vitro models and in xenografts in vivo and was predictive of in vivo anti-tumor activity of the cytotoxic prodrug PR-104. Following PET imaging with 18F-HX4, a significantly higher tumor-to-blood ratio was observed in two xenograft models for NfsA_Ec expressing tumors compared to the parental tumors thereof, providing verification of this reporter gene imaging approach. Conclusion: This study establishes that the bacterial nitroreductase NfsA_Ec can be utilized as an imaging capable reporter gene, with the ability to metabolize and trap 2-nitroimidazole PET imaging agents for non-invasive imaging of gene expression.
Collapse
|
17
|
Abstract
Flavin-dependent enzymes catalyze a wide variety of biological reactions that are important for all types of living organisms. Knowledge gained from studying the chemistry and biological functions of flavins and flavin-dependent enzymes has continuously made significant contributions to the development of the fields of enzymology and metabolism from the 1970s until now. The enzymes have been applied in various applications such as use as biocatalysts in synthetic processes for the chemical and pharmaceutical industries or in the biodetoxification and bioremediation of toxic or unwanted compounds, and as biosensors or biodetection tools for quantifying various agents of interest. Many flavin-dependent enzymes are also prime targets for drug development. Based on their reaction mechanisms, they can be classified into five categories: oxidase, dehydrogenase, monooxygenase, reductase, and redox neutral flavin-dependent enzymes. In this chapter, the general properties of flavin-dependent enzymes and the nature of their chemical reactions are discussed, along with their practical applications.
Collapse
|
18
|
Guo Y, Lee H, Jeong H. Gut microbiota in reductive drug metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:61-93. [PMID: 32475528 DOI: 10.1016/bs.pmbts.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gut bacteria are predominant microorganisms in the gut microbiota and have been recognized to mediate a variety of biotransformations of xenobiotic compounds in the gut. This review is focused on one of the gut bacterial xenobiotic metabolisms, reduction. Xenobiotics undergo different types of reductive metabolisms depending on chemically distinct groups: azo (-NN-), nitro (-NO2), alkene (-CC-), ketone (-CO), N-oxide (-NO), and sulfoxide (-SO). In this review, we have provided select examples of drugs in six chemically distinct groups that are known or suspected to be subjected to the reduction by gut bacteria. For some drugs, responsible enzymes in specific gut bacteria have been identified and characterized, but for many drugs, only circumstantial evidence is available that indicates gut bacteria-mediated reductive metabolism. The physiological roles of even known gut bacterial enzymes have not been well defined.
Collapse
Affiliation(s)
- Yukuang Guo
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Hyunwoo Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
19
|
Protocol for evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative bacterial vector. MethodsX 2020; 7:100797. [PMID: 32021829 PMCID: PMC6995258 DOI: 10.1016/j.mex.2020.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/13/2020] [Indexed: 01/29/2023] Open
Abstract
Bacterial-directed enzyme-prodrug therapy (BDEPT) uses tumour-tropic bacteria armed with a genetically-encoded prodrug-converting enzyme to sensitise tumours to a systemically-administered prodrug. A strong bystander effect (i.e., efficient bacteria-to-tumour transfer of activated prodrug metabolites) is critical to maximise tumour cell killing and avoid bacterial self-sterilisation. To investigate the bystander effect in bacteria we developed a sensitive screen that utilised two Escherichia coli strains grown in co-culture. The first of these was an activator strain that overexpressed the E. coli nitroreductase NfsA, and the second was a nitroreductase null recipient strain bearing an SOS-GFP DNA damage responsive gene construct. In this system, induction of GFP by genotoxic prodrug metabolites can only occur following their transfer from the activator to the recipient cells. This can be monitored both in fluorescence based microtitre plate assays and by flow-cytometry, enabling modelling of the abilities of diverse nitroaromatic prodrug metabolites to exit a Gram negative vector.
Collapse
|
20
|
Tokay E, Güngör T, Hacıoğlu N, Önder FC, Gülhan ÜG, Tok TT, Çelik A, Ay M, Köçkar F. Prodrugs for nitroreductase-based cancer therapy-3: Antitumor activity of the novel dinitroaniline prodrugs/Ssap-NtrB enzyme suicide gene system: Synthesis, in vitro and in silico evaluation in prostate cancer. Eur J Med Chem 2019; 187:111937. [PMID: 31841727 DOI: 10.1016/j.ejmech.2019.111937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/18/2023]
Abstract
Prodrugs for targeted tumor therapies have been extensively studied in recent years due to not only maximising therapeutic effects on tumor cells but also reducing or eliminating serious side effects on healthy cells. This strategy uses prodrugs which are safe for normal cells and form toxic metabolites (drugs) after selective reduction by enzymes in tumor tissues. In this study, prodrug candidates (1-36) containing nitro were designed, synthesized and characterized within the scope of chemical experiments. Drug-likeness properties of prodrug candidates were analyzed using DS 2018 to investigate undesired toxicity effects. In vitro cytotoxic effects of prodrug canditates were performed with MTT assay for human hepatoma cells (Hep3B) and prostate cancer cells (PC3) and human umbilical vein endothelial cells (HUVEC) as healthy control. Non-toxic compounds (3, 5, 7, 10, 12, 15, 17, 19 and 21-23), and also compounds (1, 2, 5, 6, 9, 11, 14, 16, 20 and 24) which had low toxic effects, were selected to examine their suitability as prodrug canditates. The reduction profiles and kinetic studies of prodrug/Ssap-NtrB combinations were performed with biochemical analyses. Then, selected prodrug/Ssap-NtrB combinations were applied to prostate cancer cells to determine toxicity. The results of theoretical, in vitro cytotoxic and biochemical studies suggest 14/Ssap-NtrB, 22/Ssap-NtrB and 24/Ssap-NtrB may be potential prodrug/enzyme combinations for nitroreductase (Ntr)-based prostate cancer therapy.
Collapse
Affiliation(s)
- Esra Tokay
- Department of Molecular Biology and Genetic, Faculty of Sciences and Arts, Balıkesir University, Balıkesir, 10145, Turkey
| | - Tuğba Güngör
- Department of Chemistry, Faculty of Sciences and Arts, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey
| | - Nelin Hacıoğlu
- Department of Molecular Biology and Genetic, Faculty of Sciences and Arts, Balıkesir University, Balıkesir, 10145, Turkey
| | - Ferah Cömert Önder
- Department of Chemistry, Faculty of Sciences and Arts, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey
| | - Ünzile Güven Gülhan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, 41400, Turkey
| | - Tuğba Taşkın Tok
- Department of Chemistry, Faculty of Sciences and Arts, Gaziantep University, Gaziantep, 27310, Turkey
| | - Ayhan Çelik
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, 41400, Turkey
| | - Mehmet Ay
- Department of Chemistry, Faculty of Sciences and Arts, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey.
| | - Feray Köçkar
- Department of Molecular Biology and Genetic, Faculty of Sciences and Arts, Balıkesir University, Balıkesir, 10145, Turkey.
| |
Collapse
|
21
|
Yan Y, Chen J, Galván AE, Garbinski LD, Zhu YG, Rosen BP, Yoshinaga M. Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont Sinorhizobium meliloti. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13648-13656. [PMID: 31682413 DOI: 10.1021/acs.est.9b04026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massive amounts of methyl [e.g., methylarsenate, MAs(V)] and aromatic arsenicals [e.g., roxarsone (4-hydroxy-3-nitrophenylarsonate, Rox(V)] have been utilized as herbicides for weed control and growth promotors for poultry and swine, respectively. The majority of these organoarsenicals degrade into more toxic inorganic species. Here, we demonstrate that the legume symbiont Sinorhizobium meliloti both reduces MAs(V) to MAs(III) and catalyzes sequential two-step reduction of nitro and arsenate groups in Rox(V), producing the highly toxic trivalent amino aromatic derivative 4-hydroxy-3-aminophenylarsenite (HAPA(III)). The existence of this process suggests that S. meliloti possesses the ability to transform pentavalent methyl and aromatic arsenicals into antibiotics to provide a competitive advantage over other microbes, which would be a critical process for the synthetic aromatic arsenicals to function as antimicrobial growth promoters. The activated trivalent aromatic arsenicals are degraded into less-toxic inorganic species by an MAs(III)-demethylating aerobe, suggesting that environmental aromatic arsenicals also undergo a multiple-step degradation pathway, in analogy with the previously reported demethylation pathway of the methylarsenate herbicide. We further show that an FAD-NADPH-dependent nitroreductase encoded by mdaB gene catalyzes nitroreduction of roxarsone both in vivo and in vitro. Our results demonstrate that environmental organoarsenicals trigger competition between members of microbial communities, resulting in gradual degradation of organoarsenicals and contamination by inorganic arsenic.
Collapse
Affiliation(s)
- Yu Yan
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen 361021 , Fujian , China
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , Fujian , China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environ-mental Sciences , Chinese Academy of Sciences , Beijing 100085 , Hebei , China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| |
Collapse
|
22
|
Anderson SD, Hobbs RJ, Gwenin VV, Ball P, Bennie LA, Coulter JA, Gwenin CD. Cell-Penetrating Peptides as a Tool for the Cellular Uptake of a Genetically Modified Nitroreductase for use in Directed Enzyme Prodrug Therapy. J Funct Biomater 2019; 10:E45. [PMID: 31581475 PMCID: PMC6963571 DOI: 10.3390/jfb10040045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
Directed enzyme prodrug therapy (DEPT) involves the delivery of a prodrug-activating enzyme to a solid tumour site, followed by the subsequent activation of an administered prodrug. One of the most studied enzyme-prodrug combinations is the nitroreductase from Escherichia coli (NfnB) with the prodrug CB1954 [5-(aziridin-1-yl)-2,4-dinitro-benzamide]. One of the major issues faced by DEPT is the ability to successfully internalize the enzyme into the target cells. NfnB has previously been genetically modified to contain cysteine residues (NfnB-Cys) which bind to gold nanoparticles for a novel DEPT therapy called magnetic nanoparticle directed enzyme prodrug therapy (MNDEPT). One cellular internalisation method is the use of cell-penetrating peptides (CPPs), which aid cellular internalization of cargo. Here the cell-penetrating peptides: HR9 and Pep-1 were tested for their ability to conjugate with NfnB-Cys. The conjugates were further tested for their potential use in MNDEPT, as well as conjugating with the delivery vector intended for use in MNDEPT and tested for the vectors capability to penetrate into cells.
Collapse
Affiliation(s)
- Simon D Anderson
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG Wales, UK.
| | - Robert J Hobbs
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG Wales, UK.
| | - Vanessa V Gwenin
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG Wales, UK.
| | - Patrick Ball
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG Wales, UK.
| | - Lindsey A Bennie
- School of Pharmacy, Queen's University Belfast, BT7 1NN Belfast, UK.
| | | | - Chris D Gwenin
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG Wales, UK.
| |
Collapse
|
23
|
Williams EM, Rich MH, Mowday AM, Ashoorzadeh A, Copp JN, Guise CP, Anderson RF, Flanagan JU, Smaill JB, Patterson AV, Ackerley DF. Engineering Escherichia coli NfsB To Activate a Hypoxia-Resistant Analogue of the PET Probe EF5 To Enable Non-Invasive Imaging during Enzyme Prodrug Therapy. Biochemistry 2019; 58:3700-3710. [PMID: 31403283 DOI: 10.1021/acs.biochem.9b00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) uses tumor-tropic vectors to deliver prodrug-converting enzymes such as nitroreductases specifically to the tumor environment. The nitroreductase NfsB from Escherichia coli (NfsB_Ec) has been a particular focal point for GDEPT and over the past 25 years has been the subject of several engineering studies seeking to improve catalysis of prodrug substrates. To facilitate clinical development, there is also a need to enable effective non-invasive imaging capabilities. SN33623, a 5-nitroimidazole analogue of 2-nitroimidazole hypoxia probe EF5, has potential for PET imaging exogenously delivered nitroreductases without generating confounding background due to tumor hypoxia. However, we show here that SN33623 is a poor substrate for NfsB_Ec. To address this, we used assay-guided sequence and structure analysis to identify two conserved residues that block SN33623 activation in NfsB_Ec and close homologues. Introduction of the rational substitutions F70A and F108Y into NfsB_Ec conferred high levels of SN33623 activity and enabled specific labeling of E. coli expressing the engineered enzyme. Serendipitously, the F70A and F108Y substitutions also substantially improved activity with the anticancer prodrug CB1954 and the 5-nitroimidazole antibiotic prodrug metronidazole, which is a potential biosafety agent for targeted ablation of nitroreductase-expressing vectors.
Collapse
Affiliation(s)
- Elsie M Williams
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Michelle H Rich
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Alexandra M Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand
| | - Janine N Copp
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Christopher P Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - David F Ackerley
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| |
Collapse
|
24
|
A cofactor consumption screen identifies promising NfsB family nitroreductases for dinitrotoluene remediation. Biotechnol Lett 2019; 41:1155-1162. [DOI: 10.1007/s10529-019-02716-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/01/2019] [Indexed: 11/26/2022]
|
25
|
Megarity CF, Timson DJ. Escherichia coli
Modulator of Drug Activity B (MdaB) Has Different Enzymological Properties to Eukaryote Quinone Oxidoreductases. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clare F. Megarity
- School of Biological SciencesQueen's University Belfast, Medical Biology Centre 97 Lisburn Road UK-Belfast BT9 7BL United Kingdom
| | - David J. Timson
- School of Biological SciencesQueen's University Belfast, Medical Biology Centre 97 Lisburn Road UK-Belfast BT9 7BL United Kingdom
- School of Pharmacy and Biomolecular SciencesThe University of Brighton Huxley Building, Lewes Road UK-Brighton BN2 4GJ United Kingdom
| |
Collapse
|
26
|
Khan N, Bammidi S, Chattopadhyay S, Jayandharan GR. Combination Suicide Gene Delivery with an Adeno-Associated Virus Vector Encoding Inducible Caspase-9 and a Chemical Inducer of Dimerization Is Effective in a Xenotransplantation Model of Hepatocellular Carcinoma. Bioconjug Chem 2019; 30:1754-1762. [PMID: 31181889 DOI: 10.1021/acs.bioconjchem.9b00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current treatment approaches for hepatocellular carcinoma (HCC) have a narrow therapeutic index and alternate modes of treatment are thus required. We have utilized a gene delivery vector containing inducible caspase 9 (iCasp9) gene, which is a synthetic analogue based on the mammalian caspase 9 and fused to a human FK506 binding protein that allows its conditional dimerization to a synthetic, small molecule [chemical inducer of dimerization, AP20187] and results in target cell apoptosis. In our studies, we have tested these synthetic vectors based on an adeno-associated virus platform for their potential anti-tumorigenic effect in human HCC cells in vitro and in a HCC tumor model developed in nude mice. Our data demonstrates that the iCasp9-AP20187 bioconjugate is able to trigger terminal effectors of cellular apoptosis and presents a viable approach for the potential treatment of HCC.
Collapse
Affiliation(s)
- Nusrat Khan
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , Uttar Pradesh 20816 , India
| | - Sridhar Bammidi
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , Uttar Pradesh 20816 , India
| | - Sourav Chattopadhyay
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , Uttar Pradesh 20816 , India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , Uttar Pradesh 20816 , India
| |
Collapse
|
27
|
Güngör T, Önder FC, Tokay E, Gülhan ÜG, Hacıoğlu N, Tok TT, Çelik A, Köçkar F, Ay M. PRODRUGS FOR NITROREDUCTASE BASED CANCER THERAPY- 2: Novel amide/Ntr combinations targeting PC3 cancer cells. Eur J Med Chem 2019; 171:383-400. [DOI: 10.1016/j.ejmech.2019.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
|
28
|
An Intratumor Pharmacokinetic/Pharmacodynamic Model for the Hypoxia-Activated Prodrug Evofosfamide (TH-302): Monotherapy Activity is Not Dependent on a Bystander Effect. Neoplasia 2018; 21:159-171. [PMID: 30591421 PMCID: PMC6314220 DOI: 10.1016/j.neo.2018.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor hypoxia contributes to resistance to anticancer therapies. Hypoxia-activated prodrugs (HAPs) selectively target hypoxic cells and their activity can extend to well-oxygenated areas of tumors via diffusion of active metabolites. This type of bystander effect has been suggested to be responsible for the single agent activity of the clinical-stage HAP evofosfamide (TH-302) but direct evidence is lacking. To dissect the contribution of bystander effects to TH-302 activity, we implemented a Green's function pharmacokinetic (PK) model to simulate the spatial distribution of O2, TH-302 and its cytotoxic metabolites, bromo-isophosphoramide mustard (Br-IPM) and its dichloro derivative isophosphoramide mustard (IPM), in two digitized tumor microvascular networks. The model was parameterized from literature and experimentally, including measurement of diffusion coefficients of TH-302 and its metabolites in multicellular layer cultures. The latter studies demonstrate that Br-IPM and IPM cannot diffuse significantly from the cells in which they are generated, although evidence was obtained for diffusion of the hydroxylamine metabolite of TH-302. The spatially resolved PK model was linked to a pharmacodynamic (PD) model that describes cell killing probability at each point in the tumor microregion as a function of Br-IPM and IPM exposure. The resulting PK/PD model accurately predicted previously reported monotherapy activity of TH-302 in H460 tumors, without invoking a bystander effect, demonstrating that the notable single agent activity of TH-302 in tumors can be accounted for by significant bioreductive activation of TH-302 even in oxic regions, driven by the high plasma concentrations achievable with this well-tolerated prodrug.
Collapse
|
29
|
Lelieveldt LPWM, Kristyanto H, Pruijn GJM, Scherer HU, Toes REM, Bonger KM. Sequential Prodrug Strategy To Target and Eliminate ACPA-Selective Autoreactive B Cells. Mol Pharm 2018; 15:5565-5573. [PMID: 30289723 PMCID: PMC6282105 DOI: 10.1021/acs.molpharmaceut.8b00741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Autoreactive B cells are thought
to play a pivotal role in many
autoimmune diseases. Rheumatoid arthritis (RA) is an autoimmune disease
affecting ∼1% of the Western population and is hallmarked by
the presence of anticitrullinated proteins antibodies (ACPA) produced
by autoreactive B cells. We intend to develop a method to target and
selectively eliminate these autoreactive B cells using a sequential
antigen prodrug targeting strategy. As ACPA-expressing B cells are
thought to play essential roles in RA-disease pathogenesis, we used
this B cell response as a prototype to analyze the feasibility to
generate a construct consisting of a biologically silenced, that is,
blocked, antigen connected to a cytotoxic prodrug. Blocking of the
antigen is considered relevant as it is anticipated that circulating
autoantibodies will otherwise clear the antigen-prodrug before it
can reach the target cell. The antigen-prodrug can only bind to the
autoantigen-specific B cell receptor (BCR) upon enzymatic removal
of the blocking group in close proximity of the B cell surface. BCR
binding ultimately induces antigen-specific cytotoxicity after internalization
of the antigen. We have synthesized a cyclic citrullinated peptide
(CCP) antigen suitable for BCR binding and demonstrated that binding
by ACPA was impaired upon introduction of a carboxy-p-nitrobenzyl (CNBz) blocking group at the side chain of the citrulline
residue. Enzymatic removal of the CNBz moiety by nitroreductase fully
restored citrulline-specific recognition by both ACPA and ACPA-expressing
B cells and showed targeted cell death of CCP-recognizing B cells
only. These results mark an important step toward antigen-specific
B cell targeting in general and more specifically in RA, as successful
blocking and activation of citrullinated antigens forms the basis
for subsequent use of such construct as a prodrug in the context of
autoimmune diseases.
Collapse
Affiliation(s)
- Lianne P W M Lelieveldt
- Department of Biomolecular Chemistry, Institute for Molecules and Materials , Radboud University Nijmegen 6525 AJ , The Netherlands
| | - Hendy Kristyanto
- Department of Rheumatology , Leiden University Medical Center , Leiden , The Netherlands
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials , Radboud University Nijmegen 6525 AJ , The Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology , Leiden University Medical Center , Leiden , The Netherlands
| | - René E M Toes
- Department of Rheumatology , Leiden University Medical Center , Leiden , The Netherlands
| | - Kimberly M Bonger
- Department of Biomolecular Chemistry, Institute for Molecules and Materials , Radboud University Nijmegen 6525 AJ , The Netherlands
| |
Collapse
|
30
|
Ball P, Thompson E, Anderson S, Gwenin V, Gwenin C. Time dependent HPLC analysis of the product ratio of enzymatically reduced prodrug CB1954 by a modified and immobilised nitroreductase. Eur J Pharm Sci 2018; 127:217-224. [PMID: 30414836 DOI: 10.1016/j.ejps.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 02/01/2023]
Abstract
Directed enzyme prodrug therapy is a chemotherapy strategy that utilises prodrug-activating enzymes to activate prodrugs at the tumour location, thus reducing off-target effects. The most commonly investigated enzyme for use with the CB1954 prodrug is the NfnB nitroreductase from E. coli. Literature states that CB1954 is reduced by NfnB at the 2- or 4-position at a 1:1 ratio; deviation from this ratio has been observed in the literature, but not further investigated. The kinetic parameters for the genetically-modified enzymes; NfnB-his, NfnB-cys and AuNP-NfnB-cys were assessed and HPLC analysis was used to determine the hydroxylamine product ratios formed when reacted with CB1954. Time-dependent HPLC studies were carried out to assess how this ratio changes over time. It was shown that the hydroxylamine ratio formed by the reduction of CB1954 by a nitroreductase changes over time and that this change in ratio relates directly to the kinetics of the reaction. Thus, the hydroxylamine ratio measured using HPLC at a given time point was not a true indication of the preference of the nitroreductase enzymes during catalysis. These results question how nitroreductases are evaluated in terms of the hydroxylamine ratio and it is suspected that this phenomenon may also apply to other enzyme/prodrug combinations.
Collapse
Affiliation(s)
- Patrick Ball
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland
| | - Emma Thompson
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland
| | - Simon Anderson
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland
| | - Vanessa Gwenin
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland
| | - Chris Gwenin
- College of Environmental Sciences and Engineering, School of Natural Sciences, Chemistry Bangor University, LL57 2DG, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
31
|
Evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative vector for bacterial-directed enzyme-prodrug therapy. Biochem Pharmacol 2018; 158:192-200. [PMID: 30352235 DOI: 10.1016/j.bcp.2018.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Gene-directed enzyme-prodrug therapy (GDEPT) employs tumour-tropic vectors including viruses and bacteria to deliver a genetically-encoded prodrug-converting enzyme to the tumour environment, thereby sensitising the tumour to the prodrug. Nitroreductases, able to activate a range of promising nitroaromatic prodrugs to genotoxic metabolites, are of great interest for GDEPT. The bystander effect (cell-to-cell transfer of activated prodrug metabolites) has been quantified for some nitroaromatic prodrugs in mixed multilayer human cell cultures, however while these provide a good model for viral DEPT (VDEPT) they do not inform on the ability of these prodrug metabolites to exit bacterial vectors (relevant to bacterial-DEPT (BDEPT)). To investigate this we grew two Escherichia coli strains in co-culture; an activator strain expressing the nitroreductase E. coli NfsA and a recipient strain containing an SOS-GFP DNA damage responsive gene construct. In this system, induction of GFP by reduced prodrug metabolites can only occur following their transfer from the activator to the recipient cells. We used this to investigate five clinically relevant prodrugs: metronidazole, CB1954, nitro-CBI-DEI, and two dinitrobenzamide mustard prodrug analogues, PR-104A and SN27686. Consistent with the bystander efficiencies previously measured in human cell multilayers, reduced metronidazole exhibited little bacterial cell-to-cell transfer, whereas nitro-CBI-DEI was passed very efficiently from activator to recipient cells post-reduction. However, in contrast with observations in human cell multilayers, the nitrogen mustard prodrug metabolites were not effectively passed between the two bacterial strains, whereas reduced CB1954 was transferred efficiently. Using nitroreductase enzymes that exhibit different biases for the 2- versus 4-nitro substituents of CB1954, we further showed that the 2-nitro reduction products exhibit substantially higher levels of bacterial cell-to-cell transfer than the 4-nitro reduction products, consistent with their relative bystander efficiencies in human cell culture. Overall, our data suggest that prodrugs may differ in their suitability for VDEPT versus BDEPT applications and emphasise the importance of evaluating an enzyme-prodrug partnership in an appropriate context for the intended vector.
Collapse
|
32
|
Copp JN, Akiva E, Babbitt PC, Tokuriki N. Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry 2018; 57:4651-4662. [PMID: 30052428 DOI: 10.1021/acs.biochem.8b00473] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapidly expanding number of protein sequences found in public databases can improve our understanding of how protein functions evolve. However, our current knowledge of protein function likely represents a small fraction of the diverse repertoire that exists in nature. Integrative computational methods can facilitate the discovery of new protein functions and enzymatic reactions through the observation and investigation of the complex sequence-structure-function relationships within protein superfamilies. Here, we highlight the use of sequence similarity networks (SSNs) to identify previously unexplored sequence and function space. We exemplify this approach using the nitroreductase (NTR) superfamily. We demonstrate that SSN investigations can provide a rapid and effective means to classify groups of proteins, therefore exposing experimentally unexplored sequences that may exhibit novel functionality. Integration of such approaches with systematic experimental characterization will expand our understanding of the functional diversity of enzymes and their associated physiological roles.
Collapse
Affiliation(s)
- Janine N Copp
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| |
Collapse
|
33
|
Mechanism of Two-/Four-Electron Reduction of Nitroaromatics by Oxygen-Insensitive Nitroreductases: The Role of a Non-Enzymatic Reduction Step. Molecules 2018; 23:molecules23071672. [PMID: 29987261 PMCID: PMC6100041 DOI: 10.3390/molecules23071672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Oxygen-insensitive NAD(P)H:nitroreductases (NR) reduce nitroaromatics (Ar-NO2) into hydroxylamines (Ar-NHOH) through nitroso (Ar-NO) intermediates. Ar-NO may be reduced both enzymatically and directly by reduced nicotinamide adenine dinucleotide or its phosphate NAD(P)H, however, it is unclear which process is predominant in catalysis of NRs. We found that E. coli NR-A (NfsA) oxidizes 2 mol of NADPH per mol of 2,4,6-trinitrotoluene (TNT) and 4 mol of NADPH per mol of tetryl. Addition of ascorbate, which reduces Ar-NO into Ar-NHOH, changes the stoichiometry NADPH/Ar-NO2 into 1:1 (TNT) and 2:1 (tetryl), and decreases the rate of NADPH oxidation. Ascorbate does not interfere with the oxidation of NADPH during reduction of quinones by NfsA. Our analysis of ascorbate inhibition patterns and both enzymatic and non-enzymatic reduction of nitrosobenzene suggests that direct reduction of Ar-NO by NADPH rather than enzymatic reduction is the predominant mechanism during nitroaromatic reduction.
Collapse
|
34
|
Mokhtari M, Jackson MD, Brown AS, Ackerley DF, Ritson NJ, Keyzers RA, Munkacsi AB. Bioactivity-Guided Metabolite Profiling of Feijoa ( Acca sellowiana) Cultivars Identifies 4-Cyclopentene-1,3-dione as a Potent Antifungal Inhibitor of Chitin Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5531-5539. [PMID: 29546758 DOI: 10.1021/acs.jafc.7b06154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pathogenic fungi continue to develop resistance against current antifungal drugs. To explore the potential of agricultural waste products as a source of novel antifungal compounds, we obtained an unbiased GC-MS profile of 151 compounds from 16 commercial and experimental cultivars of feijoa peels. Multivariate analysis correlated 93% of the compound profiles with antifungal bioactivities. Of the 18 compounds that significantly correlated with antifungal activity, 5 had not previously been described from feijoa. Two novel cultivars were the most bioactive, and the compound 4-cyclopentene-1,3-dione, detected in these cultivars, was potently antifungal (IC50 = 1-2 μM) against human-pathogenic Candida species. Haploinsufficiency and fluorescence microscopy analyses determined that the synthesis of chitin, a fungal-cell-wall polysaccharide, was the target of 4-cyclopentene-1,3-dione. This fungal-specific mechanism was consistent with a 22-70-fold reduction in antibacterial activity. Overall, we identified the agricultural waste product of specific cultivars of feijoa peels as a source of potential high-value antifungal compounds.
Collapse
Affiliation(s)
- Mona Mokhtari
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Michael D Jackson
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Alistair S Brown
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - David F Ackerley
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
- Centre for Biodiscovery , Victoria University of Wellington , Wellington 6012 , New Zealand
| | | | - Robert A Keyzers
- Centre for Biodiscovery , Victoria University of Wellington , Wellington 6012 , New Zealand
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
- Centre for Biodiscovery , Victoria University of Wellington , Wellington 6012 , New Zealand
| |
Collapse
|
35
|
Lehouritis P, Hogan G, Tangney M. Designer bacteria as intratumoural enzyme biofactories. Adv Drug Deliv Rev 2017; 118:8-23. [PMID: 28916496 DOI: 10.1016/j.addr.2017.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Bacterial-directed enzyme prodrug therapy (BDEPT) is an emerging form of treatment for cancer. It is a biphasic variant of gene therapy in which a bacterium, armed with an enzyme that can convert an inert prodrug into a cytotoxic compound, induces tumour cell death following tumour-specific prodrug activation. BDEPT combines the innate ability of bacteria to selectively proliferate in tumours, with the capacity of prodrugs to undergo contained, compartmentalised conversion into active metabolites in vivo. Although BDEPT has undergone clinical testing, it has received limited clinical exposure, and has yet to achieve regulatory approval. In this article, we review BDEPT from the system designer's perspective, and provide detailed commentary on how the designer should strategize its development de novo. We report on contemporary advancements in this field which aim to enhance BDEPT in terms of safety and efficacy. Finally, we discuss clinical and regulatory barriers facing BDEPT, and propose promising approaches through which these hurdles may best be tackled.
Collapse
|
36
|
Chalansonnet V, Mercier C, Orenga S, Gilbert C. Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity. BMC Microbiol 2017; 17:126. [PMID: 28545445 PMCID: PMC5445473 DOI: 10.1186/s12866-017-1033-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/15/2017] [Indexed: 01/03/2023] Open
Abstract
Background Nitroreductases, NAD(P)H dependent flavoenzymes, are found in most of bacterial species. Even if Enterococcus faecalis strains seems to present such activity because of their sensitivity to nitrofurans, no enzyme has been described. Nitroreductases were separated of others reductases due to their capacity to reduce nitro compounds. They are further classified based on their preference in cofactor: NADH and/or NADPH. However, recently, azoreductases have been studied for their strong activity on nitro compounds, especially nitro pro-drugs. This result suggests a crossing in azo and nitro reductase activities. For the moment, no nitroreductase was demonstrated to possess azoreductase activity. But due to sequence divergence and activity specificity linked to substrates, activity prediction is not evident and biochemical characterisation remains necessary. Identifying enzymes active on these two classes of compounds: azo and nitro is of interest to consider a common physiological role. Results Four putative nitroreductases, EF0404, EF0648, EF0655 and EF1181 from Enterococcus faecalis V583 were overexpressed as his-tagged recombinant proteins in Escherichia coli and purified following a native or a denaturing/renaturing protocol. EF0648, EF0655 and EF1181 showed nitroreductase activity and their cofactor preferences were in agreement with their protein sequence phylogeny. EF0404 showed both nitroreductase and azoreductase activity. Interestingly, the biochemical characteristics (substrate and cofactor specificity) of EF0404 resembled the properties of the known azoreductase AzoA. But its sequence matched within nitroreductase group, the same as EF0648. Conclusions We here demonstrate nitroreductase activity of the putative reductases identified in the Enterococcus faecalis V583 genome. We identified the first nitroreductase able to reduce directly an azo compound, while its protein sequence is close to others nitroreductases. Consequently, it highlights the difficulty in classifying these enzymes solely on the basis of protein sequence alignment and hereby the necessity to experimentally demonstrate the activity. The results provide additional data to consider a broader functionality of these reductases.
Collapse
Affiliation(s)
- Valérie Chalansonnet
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France. .,CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France. .,INSERM, U1111, Lyon, France. .,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France. .,Université Lyon 1, F-69622, Lyon, France. .,CNRS, UMR5308, Lyon, France.
| | - Claire Mercier
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France.,CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France.,Université Lyon 1, F-69622, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Sylvain Orenga
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France
| | - Christophe Gilbert
- CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France.,Université Lyon 1, F-69622, Lyon, France.,CNRS, UMR5308, Lyon, France
| |
Collapse
|
37
|
Heterologous Overexpression and Biochemical Characterization of a Nitroreductase from Gluconobacter oxydans 621H. Mol Biotechnol 2017; 58:428-40. [PMID: 27138989 DOI: 10.1007/s12033-016-9942-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A NADPH-dependent and FMN-containing nitroreductase (Gox0834) from Gluconobacter oxydans was cloned and heterogeneously expressed in Escherichia coli. The purified enzyme existed as a dimer with an apparent molecular mass of about 31.4 kDa. The enzyme displayed broad substrate specificity and reduced a variety of mononitrated, polynitrated, and polycyclic nitroaromatic compounds to the corresponding amino products. The highest activity was observed for the reduction of CB1954 (5-(1-aziridinyl)-2,4-dinitrobenzamide). The enzyme kinetics analysis showed that Gox0834 had relatively low K m (54 ± 11 μM) but high k cat/K m value (0.020 s(-1)/μM) for CB1954 when compared with known nitroreductases. Nitrobenzene and 2,4,6-trinitrotoluene (TNT) were preferred substrates for this enzyme with specific activity of 11.0 and 8.9 μmol/min/mg, respectively. Gox0834 exhibited a broad temperature optimum of 40-60 °C for the reduction of CB1954 with a pH optimum between 7.5 and 8.5. The purified enzyme was very stable below 37 °C over a broad pH range of 6.0-10.0. These characteristics suggest that the nitroreductase Gox0834 may be a possible candidate for catalyzing prodrug activation, bioremediation, or biocatalytic processes.
Collapse
|
38
|
Copp JN, Mowday AM, Williams EM, Guise CP, Ashoorzadeh A, Sharrock AV, Flanagan JU, Smaill JB, Patterson AV, Ackerley DF. Engineering a Multifunctional Nitroreductase for Improved Activation of Prodrugs and PET Probes for Cancer Gene Therapy. Cell Chem Biol 2017; 24:391-403. [DOI: 10.1016/j.chembiol.2017.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/31/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
|
39
|
Liu P, Li B, Zhan C, Zeng F, Wu S. A two-photon-activated prodrug for therapy and drug release monitoring. J Mater Chem B 2017; 5:7538-7546. [DOI: 10.1039/c7tb01408b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A two-photon-activated prodrug has been developed for drug release monitoring and photo-controllable therapy.
Collapse
Affiliation(s)
- Peilian Liu
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Bowen Li
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Chenyue Zhan
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Fang Zeng
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shuizhu Wu
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
40
|
Valiauga B, Williams EM, Ackerley DF, Čėnas N. Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA): Characterization of kinetics and substrate specificity. Arch Biochem Biophys 2016; 614:14-22. [PMID: 27986535 DOI: 10.1016/j.abb.2016.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
NfsA, a major FMN-associated nitroreductase of E. coli, reduces nitroaromatic compounds via consecutive two-electron transfers. NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy. However, the catalytic mechanism of NfsA is poorly characterized. Here we examined the NADPH-dependent reduction of quinones (n = 16) and nitroaromatic compounds (n = 12) by NfsA. We confirmed a general "ping-pong" reaction scheme, and preliminary rapid reaction studies of the enzyme reduction by NADPH showed that this step is much faster than the steady-state turnover number, i.e., the enzyme turnover is limited by the oxidative half-reaction. The reactivity of nitroaromatic compounds (log kcat/Km) followed a linear dependence on their single-electron reduction potential (E17), indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones was lower than that of nitroaromatics having similar E17 values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones, consistent with observations previously made for the group B nitroreductase of Enterobacter cloacae. We present evidence that the reduction of quinones by NfsA is most consistent with a single-step (H-) hydride transfer mechanism.
Collapse
Affiliation(s)
- Benjaminas Valiauga
- Institute of Biochemistry of Vilnius University, Mokslininkų 12, LT-08662 Vilnius, Lithuania
| | - Elsie M Williams
- Victoria University of Wellington, School of Biological Sciences, Kelburn Parade, New Zealand
| | - David F Ackerley
- Victoria University of Wellington, School of Biological Sciences, Kelburn Parade, New Zealand
| | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Mokslininkų 12, LT-08662 Vilnius, Lithuania.
| |
Collapse
|
41
|
Burke PJ, Wong LC, Jenkins TC, Knox RJ, Meikle IT, Stanforth SP. Studies relating to the synthesis, enzymatic reduction and cytotoxicity of a series of nitroaromatic prodrugs. Bioorg Med Chem Lett 2016; 26:5851-5854. [PMID: 27876476 DOI: 10.1016/j.bmcl.2016.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022]
Abstract
A series of N-nitroarylated-3-chloromethyl-1,2,3,4-tetrahydroisoquinoline derivatives, several of which also possessed a trifluoromethyl substituent, were prepared and assessed as potential nitroaromatic prodrugs. The enzymatic reduction of these compounds and their cytotoxicities were studied. The compounds were cytotoxic, but this is probably not related to their enzymatic reduction.
Collapse
Affiliation(s)
- Philip J Burke
- Morvus Technology Ltd, Llanvetherine Court, Llanvetherine, Abergavenny NP7 8NL, UK
| | - Lai Chun Wong
- Department of Applied Sciences, University of Northumbria, Newcastle-upon-Tyne NE1 8ST, UK
| | - Terence C Jenkins
- Morvus Technology Ltd, Llanvetherine Court, Llanvetherine, Abergavenny NP7 8NL, UK
| | - Richard J Knox
- Morvus Technology Ltd, Llanvetherine Court, Llanvetherine, Abergavenny NP7 8NL, UK
| | - Ian T Meikle
- Department of Applied Sciences, University of Northumbria, Newcastle-upon-Tyne NE1 8ST, UK
| | - Stephen P Stanforth
- Department of Applied Sciences, University of Northumbria, Newcastle-upon-Tyne NE1 8ST, UK.
| |
Collapse
|
42
|
Malekshah OM, Chen X, Nomani A, Sarkar S, Hatefi A. Enzyme/Prodrug Systems for Cancer Gene Therapy. ACTA ACUST UNITED AC 2016; 2:299-308. [PMID: 28042530 DOI: 10.1007/s40495-016-0073-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of enzyme/prodrug system has gained attention because it could help improve the efficacy and safety of conventional cancer chemotherapies. In this approach, cancer cells are first transfected with a gene that can express an enzyme with ability to convert a non-toxic prodrug into its active cytotoxic form. As a result, the activated prodrug could kill the transfected cancer cells. Despite the significant progress of different suicide gene therapy protocols in preclinical studies and early clinical trials, none has reached the clinic due to several shortcomings. These include slow prodrug-drug conversion rate, low transfection/transduction efficiency of the vectors and nonspecific toxicity/immunogenicity related to the delivery systems, plasmid DNA, enzymes and/or prodrugs. This mini review aims at providing an overview of the most widely used enzyme/prodrug systems with emphasis on reporting the results of the recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Obeid M Malekshah
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Xuguang Chen
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Siddik Sarkar
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States
| |
Collapse
|
43
|
A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol 2016; 32:170. [DOI: 10.1007/s11274-016-2117-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
44
|
Çelik A, Yetiş G, Ay M, Güngör T. Modification of existing antibiotics in the form of precursor prodrugs that can be subsequently activated by nitroreductases of the target pathogen. Bioorg Med Chem Lett 2016; 26:4057-60. [DOI: 10.1016/j.bmcl.2016.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|
45
|
Mowday AM, Ashoorzadeh A, Williams EM, Copp JN, Silva S, Bull MR, Abbattista MR, Anderson RF, Flanagan JU, Guise CP, Ackerley DF, Smaill JB, Patterson AV. Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy. Biochem Pharmacol 2016; 116:176-87. [PMID: 27453434 DOI: 10.1016/j.bcp.2016.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022]
Abstract
The clinical stage anti-cancer agent PR-104 has potential utility as a cytotoxic prodrug for exogenous bacterial nitroreductases expressed from replicating vector platforms. However substrate selectivity is compromised due to metabolism by the human one- and two-electron oxidoreductases cytochrome P450 oxidoreductase (POR) and aldo-keto reductase 1C3 (AKR1C3). Using rational drug design we developed a novel mono-nitro analog of PR-104A that is essentially free of this off-target activity in vitro and in vivo. Unlike PR-104A, there was no biologically relevant cytotoxicity in cells engineered to express AKR1C3 or POR, under aerobic or anoxic conditions, respectively. We screened this inert prodrug analog, SN34507, against a type I bacterial nitroreductase library and identified E. coli NfsA as an efficient bioactivator using a DNA damage response assay and recombinant enzyme kinetics. Expression of E. coli NfsA in human colorectal cancer cells led to selective cytotoxicity to SN34507 that was associated with cell cycle arrest and generated a robust 'bystander effect' at tissue-like cell densities when only 3% of cells were NfsA positive. Anti-tumor activity of SN35539, the phosphate pre-prodrug of SN34507, was established in 'mixed' tumors harboring a minority of NfsA-positive cells and demonstrated marked tumor control following heterogeneous suicide gene expression. These experiments demonstrate that off-target metabolism of PR-104 can be avoided and identify the suicide gene/prodrug partnership of E. coli NfsA/SN35539 as a promising combination for development in armed vectors.
Collapse
Affiliation(s)
- Alexandra M Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Shevan Silva
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Matthew R Bull
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Maria R Abbattista
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Christopher P Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
46
|
Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev 2016; 99:113-128. [PMID: 26004498 DOI: 10.1016/j.addr.2015.05.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/19/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
Among various gene therapy methods for cancer, suicide gene therapy attracts a special attention because it allows selective conversion of non-toxic compounds into cytotoxic drugs inside cancer cells. As a result, therapeutic index can be increased significantly by introducing high concentrations of cytotoxic molecules to the tumor environment while minimizing impact on normal tissues. Despite significant success at the preclinical level, no cancer suicide gene therapy protocol has delivered the desirable clinical significance yet. This review gives a critical look at the six main enzyme/prodrug systems that are used in suicide gene therapy of cancer and familiarizes readers with the state-of-the-art research and practices in this field. For each enzyme/prodrug system, the mechanisms of action, protein engineering strategies to enhance enzyme stability/affinity and chemical modification techniques to increase prodrug kinetics and potency are discussed. In each category, major clinical trials that have been performed in the past decade with each enzyme/prodrug system are discussed to highlight the progress to date. Finally, shortcomings are underlined and areas that need improvement in order to produce clinical significance are delineated.
Collapse
|
47
|
Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 2015; 471:131-53. [PMID: 26431849 DOI: 10.1042/bj20150650] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.
Collapse
|
48
|
Lehouritis P, Stanton M, McCarthy FO, Jeavons M, Tangney M. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J Control Release 2015; 222:9-17. [PMID: 26655063 DOI: 10.1016/j.jconrel.2015.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/15/2022]
Abstract
Some chemotherapeutic drugs (prodrugs) require activation by an enzyme for efficacy. We and others have demonstrated the ability of probiotic bacteria to grow specifically within solid tumours following systemic administration, and we hypothesised that the natural enzymatic activity of these tumour-localised bacteria may be suitable for activation of certain such chemotherapeutic drugs. Several wild-type probiotic bacteria; Escherichia coli Nissle, Bifidobacterium breve, Lactococcus lactis and Lactobacillus species, were screened against a panel of popular prodrugs. All strains were capable of activating at least one prodrug. E. coli Nissle 1917 was selected for further studies because of its ability to activate numerous prodrugs and its resistance to prodrug toxicity. HPLC data confirmed biochemical transformation of prodrugs to their toxic counterparts. Further analysis demonstrated that different enzymes can complement prodrug activation, while simultaneous activation of multiple prodrugs (CB1954, 5-FC, AQ4N and Fludarabine phosphate) by E. coli was confirmed, resulting in significant efficacy improvement. Experiments in mice harbouring murine tumours validated in vitro findings, with significant reduction in tumour growth and increase in survival of mice treated with probiotic bacteria and a combination of prodrugs. These findings demonstrate the ability of probiotic bacteria, without the requirement for genetic modification, to enable high-level activation of multiple prodrugs specifically at the site of action.
Collapse
Affiliation(s)
- Panos Lehouritis
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Michael Stanton
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Florence O McCarthy
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Matthieu Jeavons
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cork Cancer Research Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
49
|
Abstract
Clinical studies using Eppendorf needle sensors have invariably documented the resistance of hypoxic human tumors to therapy. These studies first documented the need for individual patient measurement of hypoxia, as hypoxia varied from tumor to tumor. Furthermore, hypoxia in sarcomas and cervical cancer leads to distant metastasis or local or regional spread, respectively. For various reasons, the field has moved away from direct needle sensor oxygen measurements to indirect assays (hypoxia-inducible factor-related changes and bioreductive metabolism) and the latter can be imaged noninvasively. Many of hypoxia's detrimental therapeutic effects are reversible in mice but little treatment improvement in hypoxic human tumors has been seen. The question is why? What factors cause human tumors to be refractory to antihypoxia strategies? We suggest the primary cause to be the complexity of hypoxia formation and its characteristics. Three basic types of hypoxia exist, encompassing various diffusional (distance from perfused vessel), temporal (on or off cycling), and perfusional (blood flow efficiency) limitations. Surprisingly, there is no current information on their relative prevalence in human tumors and even animal models. This is important because different hypoxia subtypes are predicted to require different diagnostic and therapeutic approaches, but the implications of this remain unknown. Even more challenging, no agreement exists for the best way to measure hypoxia. Some results even suggest that hypoxia is unlikely to be targetable therapeutically. In this review, the authors revisit various critical aspects of this field that are sometimes forgotten or misrepresented in the recent literature. As most current noninvasive imaging studies involve PET-isotope-labeled 2-nitroimidazoles, we emphasize key findings made in our studies using 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5) and F-18-labeled EF5. These show the importance of differentiating hypoxia subtypes, optimizing drug pharmacology, ensuring drug and isotope stability, identifying key biochemical and physiological variables in tumors, and suggesting therapeutic strategies that are most likely to succeed.
Collapse
Affiliation(s)
- Cameron J Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.
| | - Sydney M Evans
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
50
|
Bai J, Yang J, Zhou Y, Yang Q. Structural basis of Escherichia coli nitroreductase NfsB triple mutants engineered for improved activity and regioselectivity toward the prodrug CB1954. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|