1
|
Giacinto O, Pelliccia F, Minati A, De Crescenzo F, Garo ML, Chello M, Lusini M. Cosmic Radiations and the Cardiovascular System: A Narrative Review. Cardiol Rev 2024; 32:433-439. [PMID: 36728769 DOI: 10.1097/crd.0000000000000521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In recent times, space flights receive continued interest. Humankind's next two goals are to return to the Moon and, a few years later, to land on the surface of Mars. Although technology will improve enough to enable long voyages, there are still some unresolved questions about the effects of the space environment on human health, including the effects of such long voyages on organs. Specifically, there is no information on the effects of radiation in space on the human cardiovascular system. To better understand the adaptation of the cardiovascular system to radiation exposure, the physical properties of radiation and the cellular and molecular mechanisms underlying tissue changes are essential. To this end, this article aims to provide an overview of the effects of radiation on the cardiovascular system by analyzing the physical properties of radiation and their relationship to cellular and molecular mechanisms and potential changes. Each type of radiation triggers different responses in the cardiovascular system. Radiation plays a relevant role in altering endothelial function and arterial wall stiffness by inducing vascular changes that accelerate atherosclerosis and affect endothelial adhesiveness. Clinical studies have shown that vascular changes due to radiation depend on the delayed manifestations of early radiation damage. To reduce the effects of radiation in space, some pharmacological treatments that seem to be able to counteract oxidative stress during flight are being used. At the same time, new shielding systems that can reduce or eliminate radiation exposure must be developed. Future studies should aim to replicate flights in the deep space environment to study in more detail the harmful effects of radiation on the whole cardiovascular system.
Collapse
Affiliation(s)
- Omar Giacinto
- From the Università Campus Bio-medico di Roma, UOC di Cardiochirurgia, Rome, Italy
| | | | | | | | - Maria Luisa Garo
- From the Università Campus Bio-medico di Roma, UOC di Cardiochirurgia, Rome, Italy
| | - Massimo Chello
- From the Università Campus Bio-medico di Roma, UOC di Cardiochirurgia, Rome, Italy
| | - Mario Lusini
- From the Università Campus Bio-medico di Roma, UOC di Cardiochirurgia, Rome, Italy
| |
Collapse
|
2
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
3
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Mohammadgholi M, Hosseinimehr SJ. Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells. Curr Med Chem 2024; 31:2751-2769. [PMID: 37026495 DOI: 10.2174/0929867330666230407104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.
Collapse
Affiliation(s)
- Mohsen Mohammadgholi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Li WH, Wang F, Song GY, Yu QH, Du RP, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol 2023; 14:1198948. [PMID: 37351512 PMCID: PMC10283042 DOI: 10.3389/fphar.2023.1198948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Since its discovery, poly (ADP-ribose) polymerase 1 (PARP-1) has been extensively studied due to its regulatory role in numerous biologically crucial pathways. PARP inhibitors have opened new therapeutic avenues for cancer patients and have gained approval as standalone treatments for certain types of cancer. With continued advancements in the research of PARP inhibitors, we can fully realize their potential as therapeutic targets for various diseases. Purpose: To assess the current understanding of PARP-1 mechanisms in radioprotection and radiotherapy based on the literature. Methods: We searched the PubMed database and summarized information on PARP inhibitors, the interaction of PARP-1 with DNA, and the relationships between PARP-1 and p53/ROS, NF-κB/DNA-PK, and caspase3/AIF, respectively. Results: The enzyme PARP-1 plays a crucial role in repairing DNA damage and modifying proteins. Cells exposed to radiation can experience DNA damage, such as single-, intra-, or inter-strand damage. This damage, associated with replication fork stagnation, triggers DNA repair mechanisms, including those involving PARP-1. The activity of PARP-1 increases 500-fold on DNA binding. Studies on PARP-1-knockdown mice have shown that the protein regulates the response to radiation. A lack of PARP-1 also increases the organism's sensitivity to radiation injury. PARP-1 has been found positively or negatively regulate the expression of specific genes through its modulation of key transcription factors and other molecules, including NF-κB, p53, Caspase 3, reactive oxygen species (ROS), and apoptosis-inducing factor (AIF). Conclusion: This review provides a comprehensive analysis of the physiological and pathological roles of PARP-1 and examines the impact of PARP-1 inhibitors under conditions of ionizing radiation exposure. The review also emphasizes the challenges and opportunities for developing PARP-1 inhibitors to improve the clinical outcomes of ionizing radiation damage.
Collapse
Affiliation(s)
- Wen-Hao Li
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Rui-Peng Du
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
6
|
Li ZZ, He JY, Wu Q, Liu B, Bu LL. Recent advances in targeting myeloid-derived suppressor cells and their applications to radiotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:233-264. [PMID: 37438019 DOI: 10.1016/bs.ircmb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogenous immature myeloid cells with potent immune suppressive properties that not only constrain anti-tumor immune activation and functions, promote tumor progression, but also contribute to treatment resistance and tumor relapse. Targeting MDSCs may be a promising new cancer treatment method, but there is still a problem of low treatment efficiency. Combined application with radiotherapy may be a potential method to solve this problem. Drug delivery systems (DDSs) provide more efficient targeted drug delivery capability and can reduce the toxicity and side effects of drugs. Recent advance in DDSs targeting development, recruitment, differentiation, and elimination of MDSCs have shown promising effect in reversing immune inhibition and in overcoming radiotherapy resistance. In this review, we systematically summarized DDSs applied to target MDSCs for the first time, and classified and discussed it according to its different mechanisms of action. In addition, this paper also reviewed the biological characteristics of MDSCs and their role in the initiation, progression, and metastasis of cancer. Moreover, this review also summarizes the role of DDSs targeting MDSCs in radiosensitization. Finally, the future development of DDSs targeting MDSCs is also prospected.
Collapse
Affiliation(s)
- Zi-Zhan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jing-Yu He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Zhang H, Zheng J, Fu Y, Ling J, Liu Z, Lin X, Dong X, Sun Y, Tan T, Guo Z, Xie G. Overexpression of POU3F2 promotes radioresistance in triple-negative breast cancer via Akt pathway activation. Breast Cancer Res Treat 2023; 198:437-446. [PMID: 36797433 DOI: 10.1007/s10549-023-06876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE POU3F2 is associated with malignant behaviors and poor prognosis in cancer. However, the function and mechanism of POU3F2 in breast cancer remain to be elucidated. Our study aimed to explore the role of POU3F2 in triple-negative breast cancer and radiotherapy. METHODS POU3F2 expression was examined by RT-PCR and Western blot. The proliferation of cancer cells was measured by MTT assay. Migration of cancer cells was determined by Transwell assay and wound healing assay. To determine which protein interacts with POU3F2, Co-IP was performed. Survival analysis was performed based on the online database GEPIA. DNA damage after radiation was examined by Comet Assay. Radiosensitivity was evaluated with clonogenic survival assays. A tumor xenograft model was established with MDA-MB-231 breast cancer cells in BALB/c nude mice to explore the effect of POU3F2 in vivo. RESULTS We found that the expression of POU3F2 was significantly elevated in breast cancer cells, especially in TNBC, and higher POU3F2 expression was related to poor prognosis of patients with breast cancer. Functional assays revealed that POU3F2 promoted proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells in vitro and in vivo. In addition, the knockdown of POU3F2 decreased the radioresistance of TNBC cells in vitro. Furthermore, POU3F2 could enhance the activation of the Akt pathway by interacting with ARNT2, thereby promoting proliferation and radioresistance in TNBC cells. CONCLUSIONS Our results provide evidence that high expression of POU3F2 promotes radioresistance in triple-negative breast cancer via Akt pathway activation by interacting with ARNT2.
Collapse
Affiliation(s)
- Han Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jieling Zheng
- Department of Radiology, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yiming Fu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ling
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - ZiShen Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaotong Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yao Sun
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Tan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoze Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Sandström K, Ehrsson YT, Sellberg F, Johansson H, Laurell G. Loco-Regional Control and Sustained Difference in Serum Immune Protein Expression in Patients Treated for p16-Positive and p16-Negative Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24043838. [PMID: 36835246 PMCID: PMC9961007 DOI: 10.3390/ijms24043838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The main prognostic factors for patients with head and neck cancer are the tumour site and stage, yet immunological and metabolic factors are certainly important, although knowledge is still limited. Expression of the biomarker p16INK4a (p16) in oropharyngeal cancer tumour tissue is one of the few biomarkers for the diagnosis and prognosis of head and neck cancer. The association between p16 expression in the tumour and the systemic immune response in the blood compartment has not been established. This study aimed to assess whether there is a difference in serum immune protein expression profiles between patients with p16+ and p16- head and squamous cell carcinoma (HNCC). The serum immune protein expression profiles, using the Olink® immunoassay, of 132 patients with p16+ and p16- tumours were compared before treatment and one year after treatment. A significant difference in the serum immune protein expression profile was observed both before and one year after treatment. In the p16- group, a low expression of four proteins: IL12RB1, CD28, CCL3, and GZMA before treatment conferred a higher rate of failure. Based on the sustained difference between serum immune proteins, we hypothesise that the immunological system is still adapted to the tumour p16 status one year after tumour eradication or that a fundamental difference exists in the immunological system between patients with p16+ and p16- tumours.
Collapse
Affiliation(s)
- Karl Sandström
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence:
| | | | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Hemming Johansson
- Department of Oncology-Pathology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
9
|
Karacetin S, Akpolat M, Safi Oz Z, Hamamcioglu AC. Protective effects of L-carnitine on X irradiation-induced uterus injury via antioxidant and anti-inflammatory pathways. Int J Radiat Biol 2023:1-11. [PMID: 36512341 DOI: 10.1080/09553002.2023.2158247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Ionizing radiation causes oxidative stress induced tissue damage as well as a decline in reproduction incidence. The purpose of our study was to evaluate the effects of L-carnitine on radiation-induced uterine injury. MATERIALS AND METHODS Thirty Wistar albino rats were classified into five groups. Physiological saline was administered intraperitoneally to the control group. A single dose of 8.3 Gy whole body X-irradiation was applied to the radiation-1 and radiation-2 groups. These groups were sacrificed on the 6th hour and 4th day, respectively, after irradiation. Radiation-1 + L-carnitine and radiation-2 + L-carnitine groups received a daily dose of 200 mg/kg L-carnitine in addition to the same dose of irradiation. L-carnitine was also applied one day before and four days after irradiation. RESULTS L-carnitine therapy partially blocks the depletion of the deep glands and radiation-induced flattening of the glandular epithelium and endometrial surface. Proinflammatory cytokines such as IL-1β, IL-6 and TNF-α were found to be significantly expressed in the uterus tissue of irradiated mice. In the radiation groups, NFκB and PARP-1 expressions in uterine tissue was significantly increased compared to L-carnitine treated and the control groups. It was observed that the oxidative stress index increased in the radiation groups, but decreased in the L-carnitine applied groups. CONCLUSIONS Our findings showed that L-carnitine has a positive effect on radiation-induced uterine damage. L-carnitine may be a potential safe radio protective agent during radiotherapy for pelvic cancer provided the tumor is not protected from radiation damage to the same extent as the normal tissue is. However, prospective clinical trial studies are necessary to understand its efficacy.
Collapse
Affiliation(s)
- Serkan Karacetin
- Department of Histology and Embryology, Zonguldak Bulent Ecevit University, Institute of Health Sciences, Zonguldak, Turkey
| | - Meryem Akpolat
- Department of Histology and Embryology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak, Turkey
| | - Zehra Safi Oz
- Department of Medical Biology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak, Turkey
| | - Ayse Ceylan Hamamcioglu
- Department of Biochemistry, Zonguldak Bulent Ecevit University, Faculty of Pharmacy, Zonguldak, Turkey
| |
Collapse
|
10
|
Parker JB, Griffin MF, Downer MA, Akras D, Berry CE, Cotterell AC, Gurtner GC, Longaker MT, Wan DC. Chelating the valley of death: Deferoxamine's path from bench to wound clinic. Front Med (Lausanne) 2023; 10:1015711. [PMID: 36873870 PMCID: PMC9975168 DOI: 10.3389/fmed.2023.1015711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
There is undisputable benefit in translating basic science research concretely into clinical practice, and yet, the vast majority of therapies and treatments fail to achieve approval. The rift between basic research and approved treatment continues to grow, and in cases where a drug is granted approval, the average time from initiation of human trials to regulatory marketing authorization spans almost a decade. Albeit with these hurdles, recent research with deferoxamine (DFO) bodes significant promise as a potential treatment for chronic, radiation-induced soft tissue injury. DFO was originally approved by the Food and Drug Administration (FDA) in 1968 for the treatment of iron overload. However, investigators more recently have posited that its angiogenic and antioxidant properties could be beneficial in treating the hypovascular and reactive-oxygen species-rich tissues seen in chronic wounds and radiation-induced fibrosis (RIF). Small animal experiments of various chronic wound and RIF models confirmed that treatment with DFO improved blood flow and collagen ultrastructure. With a well-established safety profile, and now a strong foundation of basic scientific research that supports its potential use in chronic wounds and RIF, we believe that the next steps required for DFO to achieve FDA marketing approval will include large animal studies and, if those prove successful, human clinical trials. Though these milestones remain, the extensive research thus far leaves hope for DFO to bridge the gap between bench and wound clinic in the near future.
Collapse
Affiliation(s)
- Jennifer B Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle F Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Mauricio A Downer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Charlotte E Berry
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Asha C Cotterell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Geoffrey C Gurtner
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Wang NH, Lei Z, Yang HN, Tang Z, Yang MQ, Wang Y, Sui JD, Wu YZ. Radiation-induced PD-L1 expression in tumor and its microenvironment facilitates cancer-immune escape: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1406. [PMID: 36660640 PMCID: PMC9843429 DOI: 10.21037/atm-22-6049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Background and Objective Radiotherapy (RT) is one of the fundamental anti-cancer regimens by means of inducing in situ tumor vaccination and driving a systemic anti-tumor immune response. It can affect the tumor microenvironment (TME) components consisting of blood vessels, immunocytes, fibroblasts, and extracellular matrix (ECM), and might subsequently suppress anti-tumor immunity through expression of molecules such as programmed death ligand-1 (PD-L1). Immune checkpoint inhibitors (ICIs), especially anti-programmed cell death 1 (PD-1)/PD-L1 therapies, have been regarded as effective in the reinvigoration of the immune system and another major cancer treatment. Experimentally, combination of RT and ICIs therapy shows a greater synergistic effect than either therapy alone. Methods We performed a narrative review of the literature in the PubMed database. The research string comprised various combinations of "radiotherapy", "programmed death-ligand 1", "microenvironment", "exosome", "myeloid cell", "tumor cell", "tumor immunity". The database was searched independently by two authors. A third reviewer mediated any discordance of the results of the two screeners. Key Content and Findings RT upregulates PD-L1 expression in tumor cells, tumor-derived exosomes (TEXs), myeloid-derived suppressor cells (MDSCs), and macrophages. The signaling pathways correlated to PD-L1 expression in tumor cells include the DNA damage signaling pathway, epidermal growth factor receptor (EGFR) pathway, interferon gamma (IFN-γ) pathway, cGAS-STING pathway, and JAK/STATs pathway. Conclusions PD-L1 upregulation post-RT is found not only in tumor cells but also in the TME and is one of the mechanisms of tumor evasion. Therefore, further studies are necessary to fully comprehend this biological process. Meanwhile, combination of therapies has been shown to be effective, and novel approaches are to be developed as adjuvant to RT and ICIs therapy.
Collapse
Affiliation(s)
- Nuo-Han Wang
- College of Medicine, Chongqing University, Chongqing, China
| | - Zheng Lei
- College of Medicine, Chongqing University, Chongqing, China
| | - Hao-Nan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Meng-Qi Yang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiang-Dong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
12
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Radiosensitizing Effect of Bromelain Using Tumor Mice Model via Ki-67 and PARP-1 Inhibition. Integr Cancer Ther 2021; 20:15347354211060369. [PMID: 34825602 PMCID: PMC8649096 DOI: 10.1177/15347354211060369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent reports have shown that bromelain (BL), a pineapple extract, acts as an adjuvant therapy in cancer treatment and prevention of carcinogenesis. The present study was designed to investigate the possible mechanisms by which BL could radiosensitize tumor cells in vitro and in a mouse tumor model. BL has shown a significant reduction in the viability of the radioresistant human breast carcinoma (MCF-7) cell line using cell proliferation assay. The in vivo study was designed using the Ehrlich model in female albino mice, treated with BL (6 mg/kg b. wt., intraperitoneal, once daily for 10 days) 1 hour before exposure to a fractionated dose of gamma radiation (5 Gy, 1 Gy for 5 subsequent days). The radiosensitizing effect of BL was evident in terms of a significant reduction in tumor volume, poly ADP ribose polymerase-1 (PARP-1), the proliferation marker Ki-67 and nuclear factor kappa activated B cells (NF-κB) with a significant elevation in the reactive oxygen species (ROS) content and lipid peroxidation (LPO) in tumor cells. The present findings offer a novel insight into the radiosensitizing effect of BL and its potential application in the radiotherapy course.
Collapse
Affiliation(s)
- Mai H Mekkawy
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
13
|
Faramarzi E, Mohammadzadeh M, Sanaie S, Andersen V, Mahdavi R. Effects of conjugated linoleic acid supplementation on serum leptin levels, oxidative stress factors and tumor marker in rectal cancer patients undergoing preoperative chemoradiotherapy. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-200507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND: Inflammation is considered as one of the major factors in chemoradiotherapy toxicity. It has been reported that conjugated linoleic acid (CLA) has anti-inflammatory properties. OBJECTIVE: The aim of this study was to assess the effect of CLA supplementation on serum levels of leptin, interleukin 8 (IL-8), malondialdehyde (MDA), total antioxidant status (TAS), and carcinoembryonic antigen (CEA) in rectal cancer patients treated with chemoradiotherapy. METHODS: In this study, 34 rectal cancer patients were allocated to either the CLA group, who received four 1000 mg capsules (each capsule containing 760 mg CLA; 4 capsules providing 3 g CLA) 3 times/day, or the placebo group, who received 4 placebo capsules 3 times/day, for 6 weeks. RESULTS: The mean serum leptin level insignificantly increased in both groups; however, this elevation was remarkable in the CLA group. CLA supplementation reduced IL-8 by –0.62 pg/mL while placebo supplementation decreased it by –0.44 pg/mL. CEA levels were decreased by CLA supplementation, while its reduction in the placebo group was negligible compared to the CLA group. The elevation of MDA levels after CLA supplementation was about half of the placebo group in the CLA group. CONCLUSION: Since this study was the first to assess the effect of CLA supplementation on a small number of cancer patients, it is suggested further studies are conducted on larger sample size with various doses of CLA to obtain more clear results.
Collapse
Affiliation(s)
- Elnaz Faramarzi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mohammadzadeh
- Department of Radiotherapy, Emam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vibeke Andersen
- Organ Center, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Reza Mahdavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Liu Y, Zheng C, Huang Y, He M, Xu WW, Li B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm (Beijing) 2021; 2:315-340. [PMID: 34766149 PMCID: PMC8554658 DOI: 10.1002/mco2.55] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Surgery is the primary treatment approach for cancer, but the survival rate is very low due to the rapid progression of the disease and presence of local and distant metastasis at diagnosis. Adjuvant chemotherapy and radiotherapy are important components of the multidisciplinary approaches for cancer treatment. However, resistance to radiotherapy and chemotherapy may result in treatment failure or even cancer recurrence. Radioresistance in cancer is often caused by the repair response to radiation-induced DNA damage, cell cycle dysregulation, cancer stem cells (CSCs) resilience, and epithelial-mesenchymal transition (EMT). Understanding the molecular alterations that lead to radioresistance may provide new diagnostic markers and therapeutic targets to improve radiotherapy efficacy. Patients who develop resistance to chemotherapy drugs cannot benefit from the cytotoxicity induced by the prescribed drug and will likely have a poor outcome with these treatments. Chemotherapy often shows a low response rate due to various drug resistance mechanisms. This review focuses on the molecular mechanisms of radioresistance and chemoresistance in cancer and discusses recent developments in therapeutic strategies targeting chemoradiotherapy resistance to improve treatment outcomes.
Collapse
Affiliation(s)
- Ya‐Ping Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| | - Can‐Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| | - Yun‐Na Huang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhouP. R. China
| | - Ming‐Liang He
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhouP. R. China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| |
Collapse
|
15
|
Singh J, Thachil T, Eapen MS, Lim A, Sufyan W, Rawson R, Duncan H, De Ieso P, Sohal SS. Immunohistochemical investigation of cytokine expression levels as biomarkers in transrectal ultrasound-guided needle biopsy specimens of prostate adenocarcinoma. Mol Clin Oncol 2021; 15:191. [PMID: 34405051 DOI: 10.3892/mco.2021.2353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
Cytokines influence the biological behaviour of prostate cancer (PC) and may influence patient outcome and serve as useful prognostic biomarkers. The aim of the present study was to evaluate cytokine expression levels in prostatic needle biopsy specimens and the association with clinicopathological characteristics of patients with PC. A total of 18 patients with PC who underwent transrectal ultrasound (TRUS) guided prostate biopsy were included in the clinical study. These patients were naïve to radiotherapy (RT) or androgen deprivation therapy prior to TRUS biopsy and clinical follow up data was collected. Cytokine expression levels were analysed by using immunohistochemistry and Spearman's correlation test was used to determine the correlation between cytokine expression and clinicopathological characteristics. Expression levels of pro-inflammatory TNF-α and IL-6 decreased as Gleason score (GS) increased; however, a statistically significant difference was not detected. A statically significant correlation was observed between needle biopsy specimen and pre-RT plasma sample expression levels of pro-inflammatory TNF-α and IL-6 (P=0.01 and P=0.05, respectively) and anti-inflammatory TGF-β1 (P=0.05). However, further studies are needed to confirm these results using a larger sample size to confirm the prognostic value of pro-inflammatory TNF-α and IL-6 and anti-inflammatory TGF-β1 in patients with PC.
Collapse
Affiliation(s)
- Jagtar Singh
- College of Health and Human Sciences, Charles Darwin University, Northern Territory 0810, Australia.,Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Thanuja Thachil
- Ballarat Austin Radiation Oncology Centre, Victoria 3350, Australia
| | - Mathew Suji Eapen
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Aijye Lim
- Department of Anatomical Pathology, Royal Darwin Hospital 0810, Australia
| | - Wajiha Sufyan
- Department of Anatomical Pathology, Royal Darwin Hospital 0810, Australia
| | - Robert Rawson
- Department of Anatomical Pathology, Royal Darwin Hospital 0810, Australia
| | - Henry Duncan
- Urology Department, Darwin Private Hospital, Northern Territory 0810, Australia
| | - Paolo De Ieso
- Peter MacCallum Cancer Centre, Victoria 3000, Australia
| | - Sukhwinder Singh Sohal
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| |
Collapse
|
16
|
Galeaz C, Totis C, Bisio A. Radiation Resistance: A Matter of Transcription Factors. Front Oncol 2021; 11:662840. [PMID: 34141616 PMCID: PMC8204019 DOI: 10.3389/fonc.2021.662840] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, radiation therapy is one of the standard therapies for cancer treatment. Since the first applications, the field of radiotherapy has constantly improved, both in imaging technologies and from a dose-painting point of view. Despite this, the mechanisms of resistance are still a great problem to overcome. Therefore, a more detailed understanding of these molecular mechanisms will allow researchers to develop new therapeutic strategies to eradicate cancer effectively. This review focuses on different transcription factors activated in response to radiotherapy and, unfortunately, involved in cancer cells’ survival. In particular, ionizing radiations trigger the activation of the immune modulators STAT3 and NF-κB, which contribute to the development of radiation resistance through the up-regulation of anti-apoptotic genes, the promotion of proliferation, the alteration of the cell cycle, and the induction of genes responsible for the Epithelial to Mesenchymal Transition (EMT). Moreover, the ROS-dependent damaging effects of radiation therapy are hampered by the induction of antioxidant enzymes by NF-κB, NRF2, and HIF-1. This protective process results in a reduced effectiveness of the treatment, whose mechanism of action relies mainly on the generation of free oxygen radicals. Furthermore, the previously mentioned transcription factors are also involved in the maintenance of stemness in Cancer Stem Cells (CSCs), a subset of tumor cells that are intrinsically resistant to anti-cancer therapies. Therefore, combining standard treatments with new therapeutic strategies targeted against these transcription factors may be a promising opportunity to avoid resistance and thus tumor relapse.
Collapse
Affiliation(s)
- Chiara Galeaz
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Cristina Totis
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
17
|
Wu CT, Huang YC, Chen WC, Chen MF. Effect of 1α,25-Dihydroxyvitamin D3 on the Radiation Response in Prostate Cancer: Association With IL-6 Signaling. Front Oncol 2021; 11:619365. [PMID: 34109109 PMCID: PMC8181126 DOI: 10.3389/fonc.2021.619365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy (RT) is the main treatment modality for prostate cancer (PCa). This study investigated the role of IL-6 in biological sequelae following irradiation and highlighted the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on the radiation response of PCa and its relationship with IL-6 signaling. Human and murine PCa cell lines were used to examine the response to irradiation in vitro and in vivo. The relationship of IL-6 expression with clinicopathologic characteristics in 104 PCa patients treated with definite RT was also examined. We also investigated the changes in radiation response after calcitriol supplementation and the relationship between calcitriol and IL-6 signaling by conducting cellular and animal experiments. Based on clinical samples, the positivity of IL-6 staining is a significant predictor of biochemical failure-free survival for PCa patients treated with definite RT. Data from preclinical models showed that inhibition of IL-6 increased the response of PCa to radiation, which was associated with increased oxidative DNA damage, attenuated EMT and MDSC recruitment, and decreased tumor regrowth. Moreover, increased vitamin D3 levels by calcitriol supplementation or induction by UVB-radiation was associated with inhibited IL-6 signaling and increased the response to irradiation observed in animal models. These data demonstrate that IL-6 play a critical role in the radiation response of PCa, which involved tumor cell killing and altering the tumor microenvironment. Directly targeting IL-6 signaling or vitamin D3 supplement with oral or light treatment could be a promising strategy to increase the response of PCa to radiation.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital at KeeLung, KeeLung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Ching Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Wen-Cheng Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Miao-Fen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| |
Collapse
|
18
|
Saga R, Matsuya Y, Takahashi R, Hasegawa K, Date H, Hosokawa Y. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep 2021; 11:8258. [PMID: 33859324 PMCID: PMC8050271 DOI: 10.1038/s41598-021-87850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) is a candidate of radiosensitizers which enables both anti-tumour and anti-metastasis effects in X-ray therapy. The curative effects under such 4-MU administration have been investigated in vitro; however, the radiosensitizing mechanisms remain unclear. Here, we investigated the radiosensitizing effects under 4-MU treatment from cell experiments and model estimations. We generated experimental surviving fractions of human fibrosarcoma cells (HT1080) after 4-MU treatment combined with X-ray irradiation. Meanwhilst, we also modelled the pharmacological effects of 4-MU treatment and theoretically analyzed the synergetic effects between 4-MU treatment and X-ray irradiation. The results show that the enhancement of cell killing by 4-MU treatment is the greatest in the intermediate dose range of around 4 Gy, which can be reproduced by considering intercellular communication (so called non-targeted effects) through the model analysis. As supposed to be the involvement of intercellular communication in radiosensitization, the oxidative stress level associated with reactive oxygen species (ROS), which leads to DNA damage induction, is significantly higher by the combination of 4-MU treatment and irradiation than only by X-ray irradiation, and the radiosensitization by 4-MU can be suppressed by the ROS inhibitors. These findings suggest that the synergetic effects between 4-MU treatment and irradiation are predominantly attributed to intercellular communication and provide more efficient tumour control than conventional X-ray therapy.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.,Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Rei Takahashi
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| |
Collapse
|
19
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:E3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
20
|
Dos Santos CCM, Uggioni MLR, Colonetti T, Colonetti L, Grande AJ, Da Rosa MI. Hyaluronic Acid in Postmenopause Vaginal Atrophy: A Systematic Review. J Sex Med 2020; 18:156-166. [PMID: 33293236 DOI: 10.1016/j.jsxm.2020.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The decline in postmenopausal serum estrogen concentration results in several changes in the vulvovaginal and vesicourethral areas, resulting in the genitourinary syndrome of menopause, including symptoms such as vaginal atrophy. AIM To evaluate the effects of hyaluronic acid in vaginal atrophy. METHODS A search strategy was developed using the following terms: "Hyaluronic Acid vaginal gel," "vaginal estrogens," "Vaginitis, Atrophic," and "Postmenopause." This strategy was used in major databases such as MEDLINE, EMBASE, Scopus, Cochrane library, Web of Science, Virtual Health Library (BVS), Congress Abstracts, and Gray Literature (Google Scholar and British Library) for studies published until June 2020. OUTCOMES A systematic review was carried out to assess the results of atrophic vaginitis/vaginal dryness, dyspareunia, vaginal pH, and cell maturation of the studies found by the search strategy. RESULTS A total of 833 studies were identified, 528 studies were directed for reading titles and abstracts, and 515 were excluded for not meeting the selection criteria. A total of 13 studies were selected for reading the full text. 5 primary studies involving 335 women met the criteria and were included. The studies were published between the years 2011 and 2017. It was not possible to perform meta-analysis owing to the substantial heterogeneity present in the studies. The results presented suggest that treatment with hyaluronic acid, when compared with the use of estrogens, does not present a significant difference in the results obtained for the outcomes: epithelial atrophy, vaginal pH, dyspareunia, and cell maturation. CLINICAL TRANSLATION Hyaluronic acid appears to be an alternative to non-hormonal treatments for the signs of vaginal atrophy and dyspareunia. STRENGTHS & LIMITATIONS The analysis of the studies in this systemic review suggests that hyaluronic acid has efficacy similar to vaginal estrogens for the treatment of the signs of vaginal atrophy and dyspareunia. However, the included studies measured the data in different ways, causing the performance of meta-analysis to be impaired. CONCLUSION The comparisons presented suggest that hyaluronic acid has a profile of efficacy, safety, and tolerability comparable with vaginal estrogens for the treatment of symptoms of vaginal atrophy. It is a possible alternative for women who cannot use hormonal treatment. dos Santos CCM, Uggioni MLR, Colonetti T, et al. Hyaluronic Acid in Postmenopause Vaginal Atrophy: A Systematic Review. J Sex Med 2021;18:156-166.
Collapse
Affiliation(s)
- Carlos Campagnaro M Dos Santos
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Maria Laura R Uggioni
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Tamy Colonetti
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Laura Colonetti
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Antonio José Grande
- Laboratory of Evidence-Based Practice, Universidade Estadual de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria Inês Da Rosa
- Laboratory of Biomedicine Translational, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
21
|
Ma X, Wang R, Yu S, Lu G, Yu Y, Jiang C. Anti-Inflammatory Activity of Oligomeric Proanthocyanidins Via Inhibition of NF-κB and MAPK in LPS-Stimulated MAC-T Cells. J Microbiol Biotechnol 2020; 30:1458-1466. [PMID: 32876071 PMCID: PMC9728330 DOI: 10.4014/jmb.2006.06030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Oligomeric proanthocyanidins (OPCs), classified as condensed tannins, have significant antioxidation, anti-inflammation and anti-cancer effects. This study was performed to investigate the anti-inflammatory effects of OPCs and the mechanism underlying these effects in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cells (MAC-T). Real-time PCR and ELISA assays indicated that OPC treatment at 1, 3 and 5 μg/ml significantly reduced the mRNA and protein, respectively, of oxidant indicators cyclooxygenase-2 (COX-2) (p < 0.05) and inducible nitric oxide synthase (iNOS) (p < 0.01) as well as inflammation cytokines interleukin (IL)-6 (p < 0.01), IL-1β (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.05) in LPS-induced MAC-T cells. Moreover, OPCs downregulated LPSinduced phosphorylation of p65 and inhibitor of nuclear factor kappa B (NF-κB) (IκB) in the NF-κB signaling pathway (p < 0.01), and they inhibited p65 translocation from the cytoplasm to the nucleus as revealed by immunofluorescence test and western blot. Additionally, OPCs decreased phosphorylation of p38, extracellular signal regulated kinase and c-jun NH2-terminal kinase in the MAPK signaling pathway (p < 0.01). In conclusion, the anti-inflammatory and antioxidant activities of OPCs involve NF-κB and MAPK signaling pathways, thus inhibiting expression of pro-inflammatory factors and oxidation indicators. These findings provide novel experimental evidence for the further practical application of OPCs in prevention and treatment of bovine mastitis.
Collapse
Affiliation(s)
- Xiao Ma
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Ruihong Wang
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Shitian Yu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Guicong Lu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Yongxiong Yu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China,Y.X.Yu E-mail:
| | - Caode Jiang
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China,Corresponding authors C.D.Jiang Phone/Fax: +86-023-68251196 E-mail:
| |
Collapse
|
22
|
Farshi Radvar F, Mohammad-Zadeh M, Mahdavi R, Andersen V, Nasirimotlagh B, Faramarzi E, Lotfi Yagin N. Effect of synbiotic supplementation on matrix metalloproteinase enzymes, quality of life and dietary intake and weight changes in rectal cancer patients undergoing neoadjuvant chemoradiotherapy. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2020. [DOI: 10.3233/mnm-200413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND: Probiotic/synbiotic has the important role of in altering intestinal bacteria, reducing inflammation and improvement of intestinal diseases. OBJECTIVE: We aimed to investigate the effect of synbiotic supplementation on matrix metalloproteinase (MMP) enzymes, hs-CRP, quality of life, dietary intake and weight changes in rectal cancer patients undergoing neoadjuvant chemoradiotherapy (CRT). METHODS: In this study, 46 rectal cancer patients were recruited. Patients were allocated to the synbiotic (n = 23) group or placebo groups (n = 23) receiving 2 synbiotic or placebo capsules for six weeks. Anthropometric measurements, quality of life, dietary intakes, and serum levels of MMP-2, MMP-9, and hs-CRP were compared before and after intervention with the use of statistical tests. RESULTS: The mean energy, carbohydrate, and protein intake of patients increased in the synbiotic group, while in the placebo group, post intervention, significant reduction was noticed in these parameters (P < 0.05). Synbiotic supplementation caused improvement in global health status, symptom scale scores and scores of functional scale. At the end of intervention, the elevation in hs-CRP, MMP-2, and MMP-9 levels in the placebo group was approximately two and four times higher than the synbiotic group respectively. CONCLUSION: According to our results, synbiotic supplementation may be helpful in cancer patients undergoing CRT. However, further studies must consider synbiotic as a new complementary treatment.
Collapse
Affiliation(s)
| | - Mohammad Mohammad-Zadeh
- Radiotherapy Department Shahid Madani University hospital Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Centre of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vibeke Andersen
- Organ Center, Hospital of Southern Jutland, 6200 Aabenraa, Denmark
| | - Behnam Nasirimotlagh
- Radiotherapy Department Shahid Madani University Hospital Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Faramarzi
- Liver & Gastrointestinal Diseases Research Centre of Tabriz University of Medical Sciences. Tabriz, Iran
| | - Neda Lotfi Yagin
- Nutrition Research Centre of Tabriz University of Medical Sciences. Tabriz, Iran
| |
Collapse
|
23
|
Liu S, Imani S, Deng Y, Pathak JL, Wen Q, Chen Y, Wu J. Targeting IFN/STAT1 Pathway as a Promising Strategy to Overcome Radioresistance. Onco Targets Ther 2020; 13:6037-6050. [PMID: 32606809 PMCID: PMC7321691 DOI: 10.2147/ott.s256708] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
The interferon (IFN)-mediated activation of the Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling is crucial for cell sensitivity to ionizing radiation. Several preclinical studies have reported that the IFN/STAT1 pathway mediates radioresistance in the tumor microenvironment by shielding the immune responses and activating survival signaling pathways. This review focuses on the oncogenic function of the IFN/STAT1 pathway, emphasizing the major signaling pathway in radiation sensitization. Furthermore, it highlights the possibility of mediatory roles of the IFN/STAT1 pathway as a prognostic therapeutic target in the modulation of resistance to radiotherapy and chemotherapy. MicroRNA involved in the regulation of the IFN/STAT1 pathway is also discussed. A better understanding of radiation-induced IFN/STAT1 signaling will open new opportunities for the development of novel therapeutic strategies, as well as define new approaches to enhance radio-immunotherapy efficacy in the treatment of various types of cancers.
Collapse
Affiliation(s)
- Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, People's Republic of China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
24
|
Singh J, Sohal SS, Ahuja K, Lim A, Duncan H, Thachil T, De Ieso P. Investigation of circulatory cytokines in patients undergoing intensity-modulated radiotherapy (IMRT) for adenocarcinoma of the prostate and association with acute RT-induced toxicity: A prospective clinical study. Cytokine 2020; 131:155108. [PMID: 32330791 DOI: 10.1016/j.cyto.2020.155108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jagtar Singh
- College of Health and Human Sciences, Charles Darwin University, Northern Territory, Australia.
| | | | - Kiran Ahuja
- School of Health Sciences, University of Tasmania, Tasmania, Australia
| | - Aijye Lim
- Department of Anatomical Pathology, Royal Darwin Hospital, Northern Territory, Australia.
| | - Henry Duncan
- Darwin Private Hospital, Royal Darwin Hospital, Northern Territory, Australia.
| | - Thanuja Thachil
- Austin Radiation Oncology Centre, Ballarat, Victoria, Australia.
| | - Paolo De Ieso
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Brinkman JA, Liu Y, Kron SJ. Small-molecule drug repurposing to target DNA damage repair and response pathways. Semin Cancer Biol 2020; 68:230-241. [PMID: 32113999 DOI: 10.1016/j.semcancer.2020.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
For decades genotoxic therapy has been a mainstay in the treatment of cancer, based on the understanding that the deregulated growth and genomic instability that drive malignancy also confer a shared vulnerability. Although chemotherapy and radiation can be curative, only a fraction of patients benefit, while nearly all are subjected to the harmful side-effects. Drug repurposing, defined here as retooling existing drugs and compounds as chemo or radiosensitizers, offers an attractive route to identifying otherwise non-toxic agents that can potentiate the benefits of genotoxic cancer therapy to enhance the therapeutic ratio. This review seeks to highlight recent progress in defining cellular mechanisms of the DNA damage response including damage sensing, chromatin modification, DNA repair, checkpoint signaling, and downstream survival and death pathways, as a framework to determine which drugs and natural products may offer the most potential for repurposing as chemo- and/or radiosensitizers. We point to classical examples and recent progress that have identified drugs that disrupt cellular responses to DNA damage and may offer the greatest clinical potential. The most important next steps may be to initiate prospective clinical trials toward translating these laboratory discoveries to benefit patients.
Collapse
Affiliation(s)
- Jacqueline A Brinkman
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States
| | - Yue Liu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
26
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
27
|
Zhou C, Xiao W, Jiang T, Guo Z, Li M, Chang H, Wu Y, Chen M, Shi M, Xu W, Gao Y. Targeting SGK1 enhances the efficacy of radiotherapy in locally advanced rectal cancer. Biomed Pharmacother 2020; 125:109954. [PMID: 32036218 DOI: 10.1016/j.biopha.2020.109954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy (RT) is a key component of neoadjuvant chemoradiotherapy to treat locally advanced rectal cancer (LARC). However, the therapeutic effect is limited due to radioresistance. Investigating the biomarkers of radioresistance might assist in the development of more effective therapeutic strategies for LARC.In this study, we investigated the different gene expressions in tumor samples from 110 patients using transcriptome analysis and immunohistochemistry (IHC), and identified serum- and glucocorticoid-regulated kinase 1 (SGK1) as a modulator of LARC radioresistance. We evaluated the impact of genetic and pharmacologic inhibition of the gene associated with radioresistance in vitro and in vivo. We found that the expression of SGK1 was upregulated in non-pathological complete response (non-pCR) patients. A high SGK1 expression was associated with radioresistance, whereas the genetic or pharmacologic inhibition of SGK1 expression reduced the radioresistance. We found that activate transcription factor 3 (ATF3) is a regulator of SGK1 in radioresistance.In conclusion, our findings indicate that SGK1 is a key player in LARC radioresistance, and drives radioresistance in an ATF3 dependent manner, which provides insights for future radio-sensitizer design.
Collapse
Affiliation(s)
- Chunlian Zhou
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Xiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ting Jiang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhiwei Guo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Min Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hui Chang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Minshan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mude Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Weiwen Xu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Yuanhong Gao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
28
|
Hasegawa K, Saga R, Takahashi R, Fukui R, Chiba M, Okumura K, Tsuruga E, Hosokawa Y. 4-methylumbelliferone inhibits clonogenic potency by suppressing high molecular weight-hyaluronan in fibrosarcoma cells. Oncol Lett 2020; 19:2801-2808. [PMID: 32218833 PMCID: PMC7068617 DOI: 10.3892/ol.2020.11370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/21/2020] [Indexed: 01/13/2023] Open
Abstract
The inflammatory response is closely associated with cancer cell survival. It has been reported that inflammatory signaling cascades promote tumor survival and exert detrimental effects in normal tissue. Hyaluronans have different cellular functions depending on their molecular weights and high molecular weight-hyaluronan (HMW-HA) exhibits anti-inflammatory effects. A previous study determined that the co-administration of 4-methylumbelliferone (4-MU) and X-ray irradiation enhanced anti-tumor and anti-inflammatory effects in HT1080 human fibrosarcoma cells. However, many mechanisms underlie the effect of hyaluronan molecular weight on cells and the induction of anti-inflammatory effects via 4-MU. The present study aimed to determine the relationship between hyaluronan synthesis inhibition by 4-MU and its anti-inflammatory and radio-sensitizing effect in the context of hyaluronan molecular weight. The hyaluronan concentration following 2 Gy X-ray irradiation and/or 4-MU administration was analyzed via ELISA. Additionally, the mRNA expressions of hyaluronan synthase (HAS) by 4-MU and various inflammatory cytokines and interleukins (IL) following exogenous HMW-HA administration were evaluated via Reverse transcription-quantitative PCR. Invasive potential was assessed by matrigel transwell assays and cell survival following exposure to 4-MU with HMW-HA was determined using a clonogenic potency assay. The results of the present study demonstrated that 4-MU suppressed HMW-HA production by inhibiting HAS2 and HAS3 expression. In addition, the surviving fraction of fibrosarcoma cells were rescued from the cell-killing effect of 4-MU via the exogenous administration of HMW-HA. The mRNA levels of certain inflammatory cytokines, including IL-1α, IL-36γ and IL-37 were elevated following HMW-HA administration. The surviving fraction of cells irradiated with 2 Gy alone did not increase following exogenous HMW-HA administration. The results of the present study indicated that the radio-sensitizing effect of 4-MU and the inhibitory effect on hyaluronan synthesis were not closely associated. It was also revealed that IL-1α, IL-36γ and IL-37 were associated with the cell-killing effect of 4-MU in HT1080 cells.
Collapse
Affiliation(s)
- Kazuki Hasegawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Ryo Saga
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Rei Takahashi
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Roman Fukui
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kazuhiko Okumura
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Health Science University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Eichi Tsuruga
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
29
|
Nguyen AM, Zhou J, Sicairos B, Sonney S, Du Y. Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State. Mol Cell Proteomics 2020; 19:375-389. [PMID: 31879272 PMCID: PMC7000112 DOI: 10.1074/mcp.ra119.001779] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms underlying exceptional radioresistance in pancreatic cancer remain elusive. In the present study, we established a stable radioresistant pancreatic cancer cell line MIA PaCa-2-R by exposing the parental MIA PaCa-2 cells to fractionated ionizing radiation (IR). Systematic proteomics and bioinformatics analysis of protein expression in MIA PaCa-2 and MIA PaCa-2-R cells revealed that several growth factor-/cytokine-mediated pathways, including the OSM/STAT3, PI3K/AKT, and MAPK/ERK pathways, were activated in the radioresistant cells, leading to inhibition of apoptosis and increased epithelial-mesenchymal plasticity. In addition, the radioresistant cells exhibited enhanced capabilities of DNA repair and antioxidant defense compared with the parental cells. We focused functional analysis on one of the most up-regulated proteins in the radioresistant cells, ecto-5'-nucleotidase (CD73), which is a cell surface protein that is overexpressed in different types of cancer. Ectopic overexpression of CD73 in the parental cells resulted in radioresistance and conferred resistance to IR-induced apoptosis. Knockdown of CD73 re-sensitized the radioresistant cells to IR and IR-induced apoptosis. The effect of CD73 on radioresistance and apoptosis is independent of the enzymatic activity of CD73. Further studies demonstrate that CD73 up-regulation promotes Ser-136 phosphorylation of the proapoptotic protein BAD and is required for maintaining the radioresistant cells in a mesenchymal state. Our findings suggest that expression alterations in the IR-selected pancreatic cancer cells result in hyperactivation of the growth factor/cytokine signaling that promotes epithelial-mesenchymal plasticity and enhancement of DNA repair. Our results also suggest that CD73, potentially a novel downstream factor of the enhanced growth factor/cytokine signaling, confers acquired radioresistance by inactivating proapoptotic protein BAD via phosphorylation of BAD at Ser-136 and by maintaining the radioresistant pancreatic cancer cells in a mesenchymal state.
Collapse
Affiliation(s)
- Anna M Nguyen
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Sangeetha Sonney
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas.
| |
Collapse
|
30
|
Astradsson T, Sellberg F, Berglund D, Ehrsson YT, Laurell GFE. Systemic Inflammatory Reaction in Patients With Head and Neck Cancer-An Explorative Study. Front Oncol 2019; 9:1177. [PMID: 31750257 PMCID: PMC6848384 DOI: 10.3389/fonc.2019.01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: To assess the longitudinal pattern of pro-inflammatory cytokines and growth factors in serum up to 1 year following treatment for head and neck cancer. Materials and Methods: Patients with newly diagnosed, curable head and neck cancer were included (n = 30). The most common subsite was oropharynx (n = 13) followed by oral cavity (n = 9). Blood was drawn from all patients at regular intervals (before treatment, 7 weeks after the start of the treatment, and at 3 months and 1 year after termination of treatment) and analyzed for cytokines (Il-1β, Il-2, Il-4, Il-5, Il-6, Il-8, Il-10, GM-CSF, TNF-α, and IFN-γ) and growth factors (G-CSF, FGF-2, EGF, and VEGF). Results: The time point of the peak level of pro-inflammatory cytokines was 7 weeks after start of treatment which corresponded for the majority of patients with termination of radiotherapy or chemoradiotherapy. Patients undergoing chemoradiotherapy exhibited a significant increase of IL-1β, IL-6, and IL-10 at 7 weeks as compared to pre-treatment levels. At 1 year after termination of treatment four patients experienced recurrence of disease while 26 patients were considered disease-free. The patients with recurrence had significantly higher levels of IL-1β, IL-6, IL-8, and IL-10 at 7 weeks after the start of treatment than patients without recurrence. Correlated with T stadium patients with T3-T4 had higher levels of IL-1β and IL-8 than patients with T1-T2 7 weeks after the start of treatment. Conclusions: The observed immune response in this explorative study demonstrates that chemoradiotherapy may induce not only a local treatment effect on the immune system but also effects far outside the irradiated field. The result of the study indicates that analysis of a pro-inflammatory panel of cytokines in serum at 7 weeks after the start of treatment could be of prognostic value in patients with head and neck cancer. Further study of a larger cohort could help identify patients at larger risk for recurrent disease with measurements of pro-inflammatory cytokines under and after treatment.
Collapse
Affiliation(s)
| | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
31
|
Cho E, Park IJ, Yeom SS, Hong SM, Lee JB, Kim YW, Kim MJ, Lim HM, Lim SB, Yu CS, Kim JC. A Multigene Model for Predicting Tumor Responsiveness After Preoperative Chemoradiotherapy for Rectal Cancer. Int J Radiat Oncol Biol Phys 2019; 105:834-842. [PMID: 31419511 DOI: 10.1016/j.ijrobp.2019.07.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Although preoperative chemoradiotherapy (PCRT) is regarded as a standard treatment for locally advanced rectal cancer, there is no reliable biomarker for predicting responsiveness to PCRT. We aimed to develop a biomarker model for predicting response to PCRT. METHODS AND MATERIALS We included 184 patients who received PCRT followed by surgical resection and categorized them as good responders (complete or near-complete regression) or poor responders (all other patients). Candidate gene mRNAs were isolated from formalin-fixed paraffin-embedded tumor specimens and analyzed using the NanoString nCounter gene expression assay. Stepwise logistic regression analysis was used to select genes in discovery and training phases. A quantitative radio-responsiveness prediction model was developed and validated using internal cross-validation groups, and the model's predictive value was assessed based on the area under the receiver operating characteristic curve (AUC). RESULTS By comparing the gene expressions between good and poor responders, we created a multigene mRNA model using FZD9, HRAS, ITGA7, MECOM, MMP3, NKD1, PIK3CD, and PRKCB. This panel showed good ability to predict treatment response (AUC: 0.846 for the whole data set). Internal cross-validation was performed to evaluate the model's predictive stability among 3 cohorts, which provided AUC values of 0.808-0.909. The satisfactory diagnostic performance of the radio-response prediction index persisted regardless of other clinicopathologic features such as clinical T or N stage, interval between radiation and surgery, and pretreatment carcinoembryonic antigen levels (P = .001, 95% CI, 0.686-0.905). CONCLUSIONS We developed a multigene mRNA-based biomarker model that allows prediction of rectal cancer response to PCRT, which may help identify patients who will benefit most from PCRT.
Collapse
Affiliation(s)
- Eunhae Cho
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Ja Park
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Seung-Seop Yeom
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Bok Lee
- Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon Wook Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Mi-Ju Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Hye Min Lim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Seok-Byung Lim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Yu
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Cheon Kim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Singh J, Sohal SS, Lim A, Duncan H, Thachil T, De Ieso P. Cytokines expression levels from tissue, plasma or serum as promising clinical biomarkers in adenocarcinoma of the prostate: a systematic review of recent findings. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:245. [PMID: 31317015 DOI: 10.21037/atm.2019.05.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prostate cancer (PC) is a common cancer (excluding non-melanoma skin cancer) in men in many parts of the world, although incidence and mortality rates vary significantly by population. In current medical practice, prognostic markers for PC include the presenting serum prostate-specific antigen (PSA) level, tumour Gleason score (GS) and clinical tumour stage. However, existing pre-treatment factors cannot be used to predict acute radiotherapy (RT)-induced toxicity. Therefore, new protein biomarkers are required in RT oncology to improve decision-making, treatment and therapy monitoring for PC patients. The aim of this systematic review is to the update potential research to address the difference in cytokine expression and their association with RT-induced toxicity and clinical outcomes. Studies were collected after searching three electronic databases: PubMed, Medline, and Google Scholar. An additional search was carried out through cross-check on a bibliography of selected articles. After the selection process made by two of the authors, 19 articles met the inclusion criteria and were included in the systematic review. Results from previous studies identified elevated levels of cytokines have been reported in several types of cancers and have sometimes correlated with disease progression or prognosis. Elevated levels of cytokine were noticed after immediate exposure to RT and their association with RT-induced acute/late toxicity of PC patients. Moreover, above studies also identified overexpression of cytokines on tumour biopsies and correlation with shortening cancer-specific survival and biochemical recurrence. Thus, altered levels of cytokine might be predictive biomarkers for RT-induced and clinical outcomes of PC patients.
Collapse
Affiliation(s)
- Jagtar Singh
- College of Health and Human Sciences, Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Aijye Lim
- Department of Anatomical Pathology, Royal Darwin Hospital, Tiwi, Northern Territory, Australia
| | - Henry Duncan
- Darwin Private Hospital, Tiwi, Northern Territory, Australia
| | - Thanuja Thachil
- Alan Walker Cancer Care Centre, Royal Darwin Hospital, Tiwi, Northern Territory, Australia
| | - Paolo De Ieso
- Alan Walker Cancer Care Centre, Royal Darwin Hospital, Tiwi, Northern Territory, Australia
| |
Collapse
|
33
|
Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background. Cancers (Basel) 2019; 11:cancers11060743. [PMID: 31142060 PMCID: PMC6627450 DOI: 10.3390/cancers11060743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel–Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.
Collapse
|
34
|
Mechanistic perspective of protective effects of resveratrol against cisplatin-induced ovarian injury in rats: emphasis on anti-inflammatory and anti-apoptotic effects. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1225-1238. [PMID: 31129703 DOI: 10.1007/s00210-019-01662-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic platinum-containing drugs are widely used to treat a variety of cancer types; however, they cause ovarian failure and infertility. The aim of this study is to investigate the molecular mechanism underlying the potential protective effect of resveratrol against cisplatin-induced ovarian damage in a rat model. Female rats were given either cisplatin (6 mg/kg, i.p., once per week for two consecutive weeks) and/or resveratrol (10 mg/kg, orally for 17 days). Follicular development, ovarian function markers, as well as apoptotic and inflammatory markers were assessed 24 h after the last resveratrol dose. Resveratrol ameliorated the marked follicular loss and the significant reduction in anti-Müllerian hormone (AMH) level triggered by cisplatin. Mechanistically, cisplatin elicited a potent inflammatory response in ovarian tissue as evidenced by the elevated expression of tumor necrosis factor, nuclear factor kappa-B, and proinflammatory enzymes. Co-treatment with resveratrol inhibited the elevation in inflammatory mediators induced by cisplatin. Further, cisplatin switched on the apoptotic machinery in ovarian tissues via increasing the expression of both cytochrome c and caspase-3 which was reversed upon resveratrol co-treatment. Resveratrol also counteracts the upregulating poly(ADP-ribose) polymerase expression which could attribute to the inflammatory and apoptotic effects of cisplatin. Resveratrol protects the ovary from cisplatin-induced toxicity through preventing the loss of the AMH-secreting granulosa cells, diminishing PARP-1 expression, and downregulating the inflammatory and apoptotic events implicated in cisplatin toxicity.
Collapse
|
35
|
Chung YH, Yu CF, Chiu SC, Chiu H, Hsu ST, Wu CR, Yang CL, Hong JH, Yen TC, Chen FH. Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation. Eur J Nucl Med Mol Imaging 2019; 46:1733-1744. [PMID: 31127350 DOI: 10.1007/s00259-019-04318-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Imaging probes/biomarkers that are correlated with molecular or microenvironmental alterations in tumors have been used not only in diagnosing cancer but also in assessing the efficacy of cancer treatment. We evaluated the early response of hepatocellular carcinoma (HCC) to radiation treatment using T2-weighted magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). METHODS Orthotopic HCC tumors were established in the right liver lobe of Balb/c mice. Mice were longitudinally scanned using T2-weighted/DW MRI and 18F-FDG PET 1 day before and on days 1, 3, 6, 9 and 13 after irradiation with 15 Gy to the right liver lobe to determine tumor size, apparent diffusion coefficient (ADC) value, and maximum standardized uptake value. Immunohistochemical (IHC) staining was performed to validate the tumor microenvironment. RESULTS Irradiation markedly retarded tumor growth in the orthotopic HCC model and led to increaes in ADC values as early as on day 1 after irradiation. Irradiation also resulted in increases in 18F-FDG uptake on day 1 that were sustained until the end of the observation period. IHC staining revealed a decrease in the number of proliferative cells and a continuous macrophage influx into irradiated tumors, which dramatically altered the tumor microenvironment. Lastly, in vitro coculture of HCC cells and macrophages led to interaction between the cells and enhanced the cellular uptake of 18F-FDG. CONCLUSION ADC values and 18F-FDG uptake measured using DW MRI and 18F-FDG PET serve as potential biomarkers for early assessment of HCC tumor responses to radiation therapy.
Collapse
Affiliation(s)
- Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital Linkou Branch, Taoyuan, 333, Taiwan
| | - Ching-Fang Yu
- Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital Linkou Branch, Taoyuan, 333, Taiwan
| | - Han Chiu
- Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital Linkou Branch, Taoyuan, 333, Taiwan
| | - Shin-Ting Hsu
- Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital Linkou Branch, Taoyuan, 333, Taiwan
| | - Ching-Rong Wu
- Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Chung-Lin Yang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Ji-Hong Hong
- Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Tzu-Chen Yen
- Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital Linkou Branch, Taoyuan, 333, Taiwan. .,Department of Nuclear Medicine, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, 333, Taiwan.
| | - Fang-Hsin Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan. .,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan.
| |
Collapse
|
36
|
Zhu Y, Zhang M, Luo L, Gill MR, De Pace C, Battaglia G, Zhang Q, Zhou H, Wu J, Tian Y, Tian X. NF-κB hijacking theranostic Pt(ll) complex in cancer therapy. Am J Cancer Res 2019; 9:2158-2166. [PMID: 31149035 PMCID: PMC6531303 DOI: 10.7150/thno.30886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Platinum complexes have been used for anti-cancer propose for decades, however, their high side effects resulting from damage to healthy cells cannot be neglected and prevent further clinical utilisation. Here, we designed a cyclometalated platinum (II) complex that can bind the endogenous nuclear factor-κB (NF-κB) protein. Employing detailed colocalization studies in co-culture cell line models, we show that by binding to NF-κB, the platinum (II) complex is capable of upregulated nuclear translocation specifically in cancer but not normal cells, thereby impairing cancer proliferation without disturbing healthy cells. In a murine tumour model, the platinum (II) complex prevents tumour growth to a greater extent than cisplatin and with considerably lower side-effects and kidney damage. Considering its weak damage to normal cells combined with high toxicity to cancer cells, this NF-κB-binding platinum complex is a potential anti-cancer candidate and acts to verify the strategy of hijacking endogenous trans-nuclear proteins to achieve cancer-cell specificity and enhance therapeutic indices.
Collapse
|
37
|
Huang W, Yu J, Jones JW, Carter CL, Jackson IL, Vujaskovic Z, MacVittie TJ, Kane MA. Acute Proteomic Changes in the Lung After WTLI in a Mouse Model: Identification of Potential Initiating Events for Delayed Effects of Acute Radiation Exposure. HEALTH PHYSICS 2019; 116:503-515. [PMID: 30652977 PMCID: PMC6384149 DOI: 10.1097/hp.0000000000000956] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Radiation-induced lung injury is a delayed effect of acute radiation exposure resulting in pulmonary pneumonitis and fibrosis. Molecular mechanisms that lead to radiation-induced lung injury remain incompletely understood. Using a murine model of whole-thorax lung irradiation, C57BL/6J mice were irradiated at 8, 10, 12, and 14 Gy and assayed at day 1, 3, and 6 postexposure and compared to nonirradiated (sham) controls. Tryptic digests of lung tissues were analyzed by liquid chromatography-tandem mass spectrometry on a Waters nanoLC instrument coupled to a Thermo Scientific Q Exactive hybrid quadrupole-orbitrap mass spectrometer. Pathway and gene ontology analysis were performed with Qiagen Ingenuity, Panther GO, and DAVID databases. A number of trends were identified in the proteomic data, including protein changes greater than 10 fold, protein changes that were consistently up regulated or down regulated at all time points and dose levels interrogated, time and dose dependency of protein changes, canonical pathways affected by irradiation, changes in proteins that serve as upstream regulators, and proteins involved in key processes including inflammation, radiation, and retinoic acid signaling. The proteomic profiling conducted here represents an untargeted systems biology approach to identify acute molecular events that could potentially be initiating events for radiation-induced lung injury.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - I. Lauren Jackson
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Zeljko Vujaskovic
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
- Correspondence: Maureen A. Kane, Ph.D., University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room 723, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
38
|
Delia P, Sansotta G, Pontoriero A, Iati G, De Salvo S, Pisana M, Potami A, Lopes S, Messina G, Pergolizzi S. Clinical Evaluation of Low-Molecular-Weight Hyaluronic Acid-Based Treatment on Onset of Acute Side Effects in Women Receiving Adjuvant Radiotherapy after Cervical Surgery: A Randomized Clinical Trial. Oncol Res Treat 2019; 42:217-223. [DOI: 10.1159/000496036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/05/2018] [Indexed: 11/19/2022]
|
39
|
Wiesmann N, Gieringer R, Grus F, Brieger J. Phosphoproteome Profiling Reveals Multifunctional Protein NPM1 as part of the Irradiation Response of Tumor Cells. Transl Oncol 2018; 12:308-319. [PMID: 30453269 PMCID: PMC6240713 DOI: 10.1016/j.tranon.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
To fight resistances to radiotherapy, the understanding of escape mechanisms of tumor cells is crucial. The aim of this study was to identify phosphoproteins that are regulated upon irradiation. The comparative analysis of the phosphoproteome before and after irradiation brought nucleophosmin (NPM1) into focus as a versatile phosphoprotein that has already been associated with tumorigenesis. We could show that knockdown of NPM1 significantly reduces tumor cell survival after irradiation. NPM1 is dephosphorylated stepwise within 1 hour after irradiation at two of its major phosphorylation sites: threonine-199 and threonine-234/237. This dephosphorylation is not the result of a fast cell cycle arrest, and we found a heterogenous intracellular distribution of NPM1 between the nucleoli, the nucleoplasm, and the cytoplasm after irradiation. We hypothesize that the dephosphorylation of NPM1 at threonine-199 and threonine-234/237 is part of the immediate response to irradiation and of importance for tumor cell survival. These findings could make NPM1 an attractive pharmaceutical target to radiosensitize tumor cells and improve the outcome of radiotherapy by inhibiting the pathways that help tumor cells to escape cell death after gamma irradiation.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rita Gieringer
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Juergen Brieger
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
40
|
Sugano H, Shirai Y, Horiuchi T, Saito N, Shimada Y, Eto K, Uwagawa T, Ohashi T, Yanaga K. Nafamostat Mesilate Enhances the Radiosensitivity and Reduces the Radiation-Induced Invasive Ability of Colorectal Cancer Cells. Cancers (Basel) 2018; 10:E386. [PMID: 30336548 PMCID: PMC6210678 DOI: 10.3390/cancers10100386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Neoadjuvant chemoradiotherapy followed by radical surgery is the standard treatment for patients with locally advanced low rectal cancer. However, several studies have reported that ionizing radiation (IR) activates nuclear factor kappa B (NF-κB) that causes radioresistance and induces matrix metalloproteinase (MMP)-2/-9, which promote tumor migration and invasion. Nafamostat mesilate (FUT175), a synthetic serine protease inhibitor, enhances the chemosensitivity to cytotoxic agents in digestive system cancer cells by inhibiting NF-κB activation. Therefore, we evaluated the combined effect of IR and FUT175 on cell proliferation, migration and invasion of colorectal cancer (CRC) cells. IR-induced upregulation of intranuclear NF-κB, FUT175 counteracted this effect. Moreover, the combination treatment suppressed cell viability and induced apoptosis. Similar effects were also observed in xenograft tumors. In addition, FUT175 prevented the migration and invasion of cancer cells caused by IR by downregulating the enzymatic activity of MMP-2/-9. In conclusion, FUT175 enhances the anti-tumor effect of radiotherapy through downregulation of NF-κB and reduces IR-induced tumor invasiveness by directly inhibiting MMP-2/-9 in CRC cells. Therefore, the use of FUT175 during radiotherapy might improve the efficacy of radiotherapy in patients with CRC.
Collapse
Affiliation(s)
- Hiroshi Sugano
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Nobuhiro Saito
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Medical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
41
|
Yin Z, Li C, Wang J, Xue L. Myeloid-derived suppressor cells: Roles in the tumor microenvironment and tumor radiotherapy. Int J Cancer 2018; 144:933-946. [PMID: 29992569 DOI: 10.1002/ijc.31744] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongnan Yin
- Biobank; Peking University Third Hospital; Beijing China
| | - Chunxiao Li
- Department of Radiation Oncology; Peking University Third Hospital; Beijing China
| | - Junjie Wang
- Department of Radiation Oncology; Peking University Third Hospital; Beijing China
| | - Lixiang Xue
- Biobank; Peking University Third Hospital; Beijing China
- Department of Radiation Oncology; Peking University Third Hospital; Beijing China
| |
Collapse
|
42
|
Venkatesulu BP, Mahadevan LS, Aliru ML, Yang X, Bodd MH, Singh PK, Yusuf SW, Abe JI, Krishnan S. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC Basic Transl Sci 2018; 3:563-572. [PMID: 30175280 PMCID: PMC6115704 DOI: 10.1016/j.jacbts.2018.01.014] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/08/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022]
Abstract
In radiation therapy for cancer, the therapeutic ratio represents an optimal balance between tumor control and normal tissue complications. As improvements in the therapeutic arsenal against cancer extend longevity, the importance of late effects of radiation increases, particularly those caused by vascular endothelial injury. Radiation both initiates and accelerates atherosclerosis, leading to vascular events like stroke, coronary artery disease, and peripheral artery disease. Increased levels of proinflammatory cytokines in the blood of long-term survivors of the atomic bomb suggest that radiation evokes a systemic inflammatory state responsible for chronic vascular side effects. In this review, the authors offer an overview of potential mechanisms implicated in radiation-induced vascular injury.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- CD, cluster of differentiation
- EC, endothelial cell
- HUVEC, human umbilical vein endothelial cell
- IGF, insulin-like growth factor
- IGFBP, insulin-like growth factor binding protein
- LDL, low-density lipoprotein
- MAPK, mitogen-activated protein kinase
- NEMO, nuclear factor kappa B essential modulator
- NF-κB, nuclear factor-kappa beta
- ROS, reactive oxygen species
- SEK1, stress-activated protein kinase 1
- TNF, tumor necrosis factor
- XIAP, X-linked inhibitor of apoptosis
- angiogenesis
- apoptosis
- cytokines
- mTOR, mammalian target of rapamycin
- senescence
Collapse
Affiliation(s)
- Bhanu Prasad Venkatesulu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lakshmi Shree Mahadevan
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen L Aliru
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xi Yang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monica Himaani Bodd
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pankaj K Singh
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Syed Wamique Yusuf
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun-Ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
43
|
Tong D, Liu Q, Wang LA, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W, Jiang J. The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev 2018; 37:355-368. [PMID: 30094570 DOI: 10.1007/s10555-018-9752-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Everett AS, Boggs DH, De Los Santos JF. Postmastectomy Radiation Therapy: Are We Ready to Individualize Radiation? Int J Breast Cancer 2018; 2018:1402824. [PMID: 29686906 PMCID: PMC5852902 DOI: 10.1155/2018/1402824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/27/2022] Open
Abstract
Contemporary recommendations for postmastectomy radiation have undergone a shift in thinking away from simple stage based recommendations (one size fits all) to a system that considers both tumor biology and host factors. While surgical staging has traditionally dictated indications for postmastectomy radiation therapy (PMRT), our current understanding of tumor biology, host, immunoprofiles, and tumor microenvironment may direct a more personalized approach to radiation. Understanding the interaction of these variables may permit individualization of adjuvant therapy aimed at appropriate escalation and deescalation, including recommendations for PMRT. This article summarizes the current data regarding tumor and host molecular biomarkers in vitro and in vivo that support the individualization of PMRT and discusses open questions that may alter the future of breast cancer treatment.
Collapse
Affiliation(s)
- Ashlyn S. Everett
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
- Hazelrig Salter Radiation Oncology Center, 1700 6th Ave South, Birmingham, AL 35249, USA
| | - Drexell Hunter Boggs
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
- Hazelrig Salter Radiation Oncology Center, 1700 6th Ave South, Birmingham, AL 35249, USA
| | - Jennifer F. De Los Santos
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
- The Kirklin Clinic at Acton Road, 2145 Bonner Way, Birmingham, AL 35243, USA
| |
Collapse
|
45
|
Li J, Volk A, Zhang J, Cannova J, Dai S, Hao C, Hu C, Sun J, Xu Y, Wei W, Breslin P, Nand S, Chen J, Kini A, Zhu J, Zhang J. Sensitizing leukemia stem cells to NF-κB inhibitor treatment in vivo by inactivation of both TNF and IL-1 signaling. Oncotarget 2018; 8:8420-8435. [PMID: 28039479 PMCID: PMC5352411 DOI: 10.18632/oncotarget.14220] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 01/30/2023] Open
Abstract
We previously reported that autocrine TNF-α (TNF) is responsible for JNK pathway activation in a subset of acute myeloid leukemia (AML) patient samples, providing a survival/proliferation signaling parallel to NF-κB in AML stem cells (LSCs). In this study, we report that most TNF-expressing AML cells (LCs) also express another pro-inflammatory cytokine, IL1β, which acts in a parallel manner. TNF was produced primarily by LSCs and leukemic progenitors (LPs), whereas IL1β was mainly produced by partially differentiated leukemic blasts (LBs). IL1β also stimulates an NF-κB-independent pro-survival and proliferation signal through activation of the JNK pathway. We determined that co-inhibition of signaling stimulated by both TNF and IL1β synergizes with NF-κB inhibition in eliminating LSCs both ex vivo and in vivo. Our studies show that such treatments are most effective in M4/5 subtypes of AML.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Andrew Volk
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Joseph Cannova
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Shaojun Dai
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Caiqin Hao
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Chenglong Hu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Jiewen Sun
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Yan Xu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.,Department of Molecular and Cellular Physiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Sucha Nand
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jianjun Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Ameet Kini
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology, Loyola University Medical Center, Maywood, IL. 60153, USA
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology, Loyola University Medical Center, Maywood, IL. 60153, USA
| |
Collapse
|
46
|
Serum cytokine profiles and metabolic tumor burden in patients with non-small cell lung cancer undergoing palliative thoracic radiation therapy. Adv Radiat Oncol 2018; 3:130-138. [PMID: 29904737 PMCID: PMC6000081 DOI: 10.1016/j.adro.2017.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose Radiation therapy effectively kills cancer cells and elicits local effects in the irradiated tissue. The aim of this study was to investigate the kinetics of cytokines in the serum of patients with lung cancer undergoing radiation therapy and to identify associations with metabolic tumor burden as determined by 2-deoxy-2-fluoro-D-glucose (18F-FDG) positron emission tomography (PET). Methods and materials Forty-five patients with advanced non-small cell lung cancer were included in a phase 2 clinical trial and randomized between fractionated thoracic radiation therapy alone or concurrent with an epidermal growth factor receptor inhibitor. Blood was sampled at 4 different time points: prior to treatment, midtherapy, at the end of therapy, and 6 to 8 weeks after the start of treatment. The serum concentrations of 48 cytokines and 9 matrix metalloproteinases were measured with multiplex immunoassays. A subset of patients was examined by 18F-FDG PET/computed tomography before, during, and after radiation therapy. The maximum standardized uptake values (SUVmax) of the primary lung tumor, whole-body metabolic tumor volume, and total lesion glycolysis were calculated, and correlations between the PET parameters and cytokines were investigated. Results The SUVmax decreased from baseline through midtherapy to posttherapy 18F-FDG PET/computed tomography (P = .018). The serum levels of C-C motif chemokine ligand (CCL) 23, CCL24, C-X3-C motif chemokine ligand 1, and interleukin-8 (C-X-C motif ligand [CXCL]8) were significantly correlated to SUVmax, metabolic tumor volume, and total lesion glycolysis before, during, and after radiation therapy. CXCL2 (P = .030) and CXCL6 (P = .010) decreased after the start of therapy and changed significantly across the sample time points. Serum concentrations of CCL15 (P = .031), CXCL2 (P = .028), and interleukin-6 (P = .007) were positively correlated to the irradiated volume during the second week of treatment. Conclusions Cytokine serum levels vary and correlate with metabolic tumor burden in patients with advanced non-small cell lung cancer undergoing palliative thoracic radiation therapy.
Collapse
|
47
|
Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-Induced Cardiovascular Disease: Mechanisms and Importance of Linear Energy Transfer. Front Cardiovasc Med 2018; 5:5. [PMID: 29445728 PMCID: PMC5797745 DOI: 10.3389/fcvm.2018.00005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) in the form of photons and protons is a well-established treatment for cancer. More recently, heavy charged particles have been used to treat radioresistant and high-risk cancers. Radiation treatment is known to cause cardiovascular disease (CVD) which can occur acutely during treatment or years afterward in the form of accelerated atherosclerosis. Radiation-induced cardiovascular disease (RICVD) can be a limiting factor in treatment as well as a cause of morbidity and mortality in successfully treated patients. Inflammation plays a key role in both acute and chronic RICVD, but the underling pathophysiology is complex, involving DNA damage, reactive oxygen species, and chronic inflammation. While understanding of the molecular mechanisms of RICVD has increased, the growing number of patients receiving RT warrants further research to identify individuals at risk, plans for prevention, and targets for the treatment of RICVD. Research on RICVD is also relevant to the National Aeronautics and Space Administration (NASA) due to the prevalent space radiation environment encountered by astronauts. NASA's current research on RICVD can both contribute to and benefit from concurrent work with cell and animal studies informing radiotoxicities resulting from cancer therapy. This review summarizes the types of radiation currently in clinical use, models of RICVD, current knowledge of the mechanisms by which they cause CVD, and how this knowledge might apply to those exposed to various types of radiation.
Collapse
Affiliation(s)
- Christopher B Sylvester
- Department of Bioengineering, Rice University, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zarana S Patel
- Science and Space Operations, KBRwyle, Houston, TX, United States
| | | |
Collapse
|
48
|
Liu R, Zhao D, Zhang X, Han S, Yang Y, Ma J, Meng D. A20 enhances the radiosensitivity of hepatocellular carcinoma cells to 60Co-γ ionizing radiation. Oncotarget 2017; 8:93103-93116. [PMID: 29190981 PMCID: PMC5696247 DOI: 10.18632/oncotarget.21860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
The radioresistance of hepatocellular carcinoma (HCC) cells is a critical obstacle for effectively applying radiotherapy (RT) in HCC treatment. NF-κB, an important transcription factor, can influence critical cell fate decisions by promoting cell survival or anti-apoptosis in response to cell-stress, e.g. chemotherapies or ionizing radiation (IR). A20, also named as tumor necrosis factor α induced protein 3 (TNFAIP3), is a dominant negative regulator of NF-κB pathway and its functions in HCC are largely unknown. The present work aimed to reveal the role of A20 plays in affecting the radiosensitivity of HCC cells. Higher expression of A20 was detected in hepatic non-tumor cell line or clinical specimens compared with HCC cell lines or clinical specimens. A20 decreased the expression of proteins mediating cellular stress/injury response or epithelial-mesenchymal transition (EMT) process. Overexpression of A20 via adenovirus enhanced the effect of 60Co-γ ionizing radiation (IR) on HCC cells’ injury, e.g. G2/M arrest or DNA double strands break (DSB). Moreover, A20 also enhanced the in vitro or in vivo survival inhibiting of HCC cells induced by IR. These results reveal the roles of A20 in HCC radiosensitization and overexpression of A20 would be a novel strategy for HCC radiotherapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, The People's Republic of China
| | - Dongli Zhao
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, The People's Republic of China
| | - Xiaozhi Zhang
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, The People's Republic of China
| | - Suxia Han
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, The People's Republic of China
| | - Yunyi Yang
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, The People's Republic of China
| | - Jinlu Ma
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, The People's Republic of China
| | - Du Meng
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, The People's Republic of China
| |
Collapse
|
49
|
Begalli F, Bennett J, Capece D, Verzella D, D'Andrea D, Tornatore L, Franzoso G. Unlocking the NF-κB Conundrum: Embracing Complexity to Achieve Specificity. Biomedicines 2017; 5:E50. [PMID: 28829404 PMCID: PMC5618308 DOI: 10.3390/biomedicines5030050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Transcription factors of the nuclear factor κB (NF-κB) family are central coordinating regulators of the host defence responses to stress, injury and infection. Aberrant NF-κB activation also contributes to the pathogenesis of some of the most common current threats to global human health, including chronic inflammatory diseases, autoimmune disorders, diabetes, vascular diseases and the majority of cancers. Accordingly, the NF-κB pathway is widely considered an attractive therapeutic target in a broad range of malignant and non-malignant diseases. Yet, despite the aggressive efforts by the pharmaceutical industry to develop a specific NF-κB inhibitor, none has been clinically approved, due to the dose-limiting toxicities associated with the global suppression of NF-κB. In this review, we summarise the main strategies historically adopted to therapeutically target the NF-κB pathway with an emphasis on oncology, and some of the emerging strategies and newer agents being developed to pharmacologically inhibit this pathway.
Collapse
Affiliation(s)
- Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
50
|
Kulkarni NN, Adase CA, Zhang LJ, Borkowski AW, Li F, Sanford JA, Coleman DJ, Aguilera C, Indra AK, Gallo RL. IL-1 Receptor-Knockout Mice Develop Epidermal Cysts and Show an Altered Innate Immune Response after Exposure to UVB Radiation. J Invest Dermatol 2017; 137:2417-2426. [PMID: 28754339 DOI: 10.1016/j.jid.2017.07.814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
In this study, we observed that mice lacking the IL-1 receptor (IL-1R) (IL1r-/-) or deficient in IL1-β developed multiple epidermal cysts after chronic UVB exposure. Cysts that developed in IL1r-/- mice were characterized by the presence of the hair follicle marker Sox 9, keratins 10 and 14, and normal melanocyte distribution and retinoid X receptor-α expression. The increased incidence of cysts in IL1r-/- mice was associated with less skin inflammation as characterized by decreased recruitment of macrophages, and their skin also maintained epidermal barrier function compared with wild-type mice. Transcriptional analysis of the skin of IL1r-/- mice after UVB exposure showed decreased gene expression of proinflammatory cytokines such as tumor necrosis factor-α and IL-6. In vitro, primary keratinocytes derived from IL1r-/- mice were more resistant to UVB-triggered cell death compared with wild-type cells, and tumor necrosis factor-α release was completely blocked in the absence of IL-1R. These observations illustrate an unexpected yet prominent phenotype associated with the lack of IL-1R signaling in mice and support further investigation into the role of IL-1 ligands in epidermal repair and innate immune response after damaging UVB exposure.
Collapse
Affiliation(s)
- Nikhil N Kulkarni
- Department of Dermatology, University of California, San Diego, California, USA
| | - Christopher A Adase
- Department of Dermatology, University of California, San Diego, California, USA
| | - Ling-Juan Zhang
- Department of Dermatology, University of California, San Diego, California, USA
| | - Andrew W Borkowski
- Department of Dermatology, University of California, San Diego, California, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, California, USA
| | - James A Sanford
- Department of Dermatology, University of California, San Diego, California, USA
| | - Daniel J Coleman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Carlos Aguilera
- Department of Dermatology, University of California, San Diego, California, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA; Linus Pauling Science Center, Oregon State University, Corvallis, Oregon, USA; Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Portland, Oregon, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, California, USA.
| |
Collapse
|