1
|
Dominici FP, Gironacci MM, Narvaez Pardo JA. Therapeutic opportunities in targeting the protective arm of the renin-angiotensin system to improve insulin sensitivity: a mechanistic review. Hypertens Res 2024; 47:3397-3408. [PMID: 39363004 DOI: 10.1038/s41440-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
In recent years, the knowledge of the physiological and pathophysiological roles of the renin-angiotensin system (RAS) in glucose metabolism has advanced significantly. It is now well-established that blockade of the angiotensin AT1 receptor (AT1R) improves insulin sensitivity. Activation of the AT2 receptor (AT2R) and the MAS receptor are significant contributors to this beneficial effect. Elevated availability of angiotensin (Ang) II) for interaction with the AT2R and increased Ang-(1-7) formation during AT1R blockade mediate these effects. The ongoing development of selective AT2R agonists, such as compound 21 and the novel Ang III peptidomimetics, has significantly advanced the exploration of the role of AT2R in metabolism and its potential as a therapeutic target. These agents show promise, particularly when RAS inhibition is contraindicated. Additionally, other RAS peptides, including Ang IV, des-Asp-Ang I, Ang-(1-9), and alamandine, hold therapeutic capability for addressing metabolic disturbances linked to type 2 diabetes. The possibility of AT2R heteromerization with either AT1R or MAS receptor offers an exciting area for future research, particularly concerning therapeutic strategies to improve glycemic control. This review focuses on therapeutic opportunities to improve insulin sensitivity, taking advantage of the protective arm of the RAS.
Collapse
Affiliation(s)
- Fernando P Dominici
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariela M Gironacci
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Narvaez Pardo
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
3
|
Slamkova M, Zorad S, Krskova K. Alternative renin-angiotensin system pathways in adipose tissue and their role in the pathogenesis of obesity. Endocr Regul 2016; 50:229-240. [DOI: 10.1515/enr-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Adipose tissue expresses all the renin-angiotensin system (RAS) components that play an important role in the adipogenesis, lipid and glucose metabolism regulation in an auto/paracrine manner. The classical RAS has been found to be over-activated during the adipose tissue enlargement, thus elevated generation of angiotensin II (Ang II) may contribute to the obesity pathogenesis. The contemporary view on the RAS has become more complex with the discovery of alternative pathways, including angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor, (pro)renin receptor, as well as angiotensin IV(Ang IV)/AT4 receptor. Ang-(1-7) via Mas receptor counteracts with most of the deleterious effects of the Ang II-mediated by AT1 receptor implying its beneficial role in the glucose and lipid metabolism, oxidative stress, inflammation, and insulin resistance. Pro(renin) receptor may play a role (at least partial) in the pathogenesis of the obesity by increasing the local production of Ang II in adipose tissue as well as triggering signal transduction independently of Ang II. In this review, modulation of alternative RAS pathways in adipose tissue during obesity is discussed and the involvement of Ang-(1-7), (pro)renin and AT4 receptors in the regulation of adipose tissue homeostasis and insulin resistance is summarized.
Collapse
Affiliation(s)
- M Slamkova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - S Zorad
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - K Krskova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Sim MK, Lee KO. Author's Reply to Srinivas: "A Single Dose-Escalation Study to Evaluate the Safety and Pharmacokinetics of Orally Administered Des-Aspartate Angiotensin I in Healthy Subjects". Drugs R D 2016; 17:243-244. [PMID: 27905016 PMCID: PMC5318324 DOI: 10.1007/s40268-016-0156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Meng-Kwoon Sim
- Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD 3 Level 4 #04-01, 16 Medical Drive, Singapore, 117600 Singapore
| | - Kok-Onn Lee
- Department of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore, 119228 Singapore
| |
Collapse
|
5
|
Comment on: "A Single Dose-Escalation Study to Evaluate the Safety and Pharmacokinetics of Orally Administered Des-aspartate Angiotensin I in Healthy Subjects". Drugs R D 2016; 17:241-242. [PMID: 27905015 PMCID: PMC5318323 DOI: 10.1007/s40268-016-0155-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
6
|
Van der Poorten O, Knuhtsen A, Sejer Pedersen D, Ballet S, Tourwé D. Side Chain Cyclized Aromatic Amino Acids: Great Tools as Local Constraints in Peptide and Peptidomimetic Design. J Med Chem 2016; 59:10865-10890. [PMID: 27690430 DOI: 10.1021/acs.jmedchem.6b01029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected to the peptide backbone to provide control of χ1- and χ2-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors.
Collapse
Affiliation(s)
- Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Lee KO, Khoo CM, Chowbay B, Chan YH, Sim MK. A Single Dose-Escalation Study to Evaluate the Safety and Pharmacokinetics of Orally Administered Des-Aspartate Angiotensin I in Healthy Subjects. Drugs R D 2016; 16:317-326. [PMID: 27681888 PMCID: PMC5114201 DOI: 10.1007/s40268-016-0143-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Des-aspartate-angiotensin I (DAA-I) is an endogenous angiotensin peptide and a prototype angiotensin receptor agonist (ARA). It acts on the angiotensin AT1 receptor and antagonises the deleterious actions of angiotensin II. DAA-I attenuates animal models of human disease in which angiotensin II has been implicated, such as cardiac hypertrophy, neointima formation, arteriosclerosis, renal failure, post-infarction injuries, diabetes, viral infection, chemical-induced inflammation, heat stroke, cancer, and gamma radiation lethality. DAA-I crosses Caco-2 cells and is effective at sub-nanomolar concentrations. These two properties are responsible for its oral efficacy. A single dose-escalation study was conducted to evaluate the safety, tolerability and pharmacokinetics of orally administered DAA-I in 18 healthy subjects. DAA-I was safe and well tolerated by the subjects, who were administered either 0.08, 0.70 or 1.50 mg/kg of the compound. The heart rate and systolic and diastolic blood pressures determined at each post-dose measurement remained within the clinically acceptable range. Across all cohorts, DAA-I had no substantial effect on blood pressures compared with placebo. Electrocardiographs (ECGs) were normal, and none of the subjects complained of chest discomfort. All clinical laboratory tests obtained before and after DAA-I and placebo treatment were normal. Pharmacokinetic analysis over a 12-h period following DAA-I administration did not show any increase of its level beyond basal concentration. This is in line with studies showing that intravenously administered DAA-I is rapidly metabolized and has a short half-life. We postulate that, during its short systemic sojourn, DAA-I exerts its actions via biased agonism on the angiotensin AT1 receptor. The ClinicalTrial.gov assignment number for this study is NCT02666196.
Collapse
Affiliation(s)
- Ko-Onn Lee
- Department of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore, 119228, Singapore
| | - Chin-Meng Khoo
- Department of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore, 119228, Singapore
| | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
- Clinical Pharmacology Core, Sing Health, Singapore, Singapore
- Office of Clinical Sciences, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Yiong-Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University Health System, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore, 119228, Singapore
| | - Meng-Kwoon Sim
- Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD 3 Level 4 #04-01, 16 Medical Drive, Singapore, 117600, Singapore.
| |
Collapse
|
8
|
Wang Y, Wang J, Zhao Y, Hu S, Shi D, Xue C. Fucoidan from sea cucumber Cucumaria frondosa exhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4. J Biosci Bioeng 2016; 121:36-42. [DOI: 10.1016/j.jbiosc.2015.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 12/24/2022]
|
9
|
Wang H, Sethi G, Loke WK, Sim MK. Des-Aspartate-Angiotensin I Attenuates Mortality of Mice Exposed to Gamma Radiation via a Novel Mechanism of Action. PLoS One 2015; 10:e0138009. [PMID: 26378927 PMCID: PMC4574738 DOI: 10.1371/journal.pone.0138009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
ACE inhibitors and ARBs (angiotensin receptor blockers) have been shown to attenuate radiation injuries in animal models of lethal gamma irradiation. These two classes of drug act by curtailing the actions of angiotensin II-linked inflammatory pathways that are up-regulated during gamma radiation in organ systems such as the brain, lung, kidney, and bone marrow. ACE inhibitors inhibit ACE and attenuate the formation of angiotensin II from angiotensin I; ARBs block the angiotensin AT1 receptor and attenuate the actions of angiotensin II that are elicited through the receptor. DAA-I (des-aspartate-angiotensin I), an orally active angiotensin peptide, also attenuates the deleterious actions of angiotensin II. It acts as an agonist on the angiotensin AT1 receptor and elicits responses that oppose those of angiotensn II. Thus, DAA-I was investigated for its anticipated radioprotection in gamma irradiated mice. DAA-I administered orally at 800 nmole/kg/day for 30 days post exposure (6.4 Gy) attenuated the death of mice during the 30-day period. The attenuation was blocked by losartan (50 nmole/kg/day, i.p.) that was administered sequential to DAA-I administration. This shows that the radioprotection was mediated via the angiotensin AT1 receptor. Furthermore, the radioprotection correlated to an increase in circulating PGE2 of surviving animals, and this suggests that PGE2 is involved in the radioprotection in DAA-I-treated mice. At the hematopoietic level, DAA-I significantly improved two syndromes of myelosuppression (leucopenia and lymphocytopenia), and mice pre-treated with DAA-I prior to gamma irradiation showed significant improvement in the four myelodysplastic syndromes that were investigated, namely leucopenia, lymphocytopenia, monocytopenia and thrombocytopenia. Based on the known ability of PGE2 to attenuate the loss of functional hematopoietic stem and progenitor cells in radiation injury, we hypothesize that PGE2 mediated the action of DAA-I. DAA-I completely attenuated the increase in circulating level of two inflammatory cytokines, TNFα and IL-6, in irradiated mice; and this shows that DAA-I exerted additional anti-inflammatory actions, which could also have contributed to its radioprotection. These findings show that DAA-I acts via a novel mechanism of action on the angiotensin AT1 receptor to specifically release PGE2, which mediates radioprotection in the gamma irradiated mice.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD11, 10 Medical Drive, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD11, 10 Medical Drive, Singapore, Singapore
| | - Weng-Keong Loke
- Agent Diagnostic and Therapeutics Laboratory, Defence & Environmental Research Institute, DSO National Laboratories, 11 Stockport Road, Singapore, Singapore
| | - Meng-Kwoon Sim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD11, 10 Medical Drive, Singapore, Singapore
| |
Collapse
|
10
|
Sim MK. Des-aspartate-angiotensin I, a novel angiotensin AT(1) receptor drug. Eur J Pharmacol 2015; 760:36-41. [PMID: 25891368 DOI: 10.1016/j.ejphar.2015.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 01/13/2023]
Abstract
The review describes DAA-I (des-aspartate-angiotensin-I) as a prototype of a novel class of drugs that acts as agonists on the angiotensin AT1 receptor or ARAs (angiotensin receptor agonists). DAA-I is a component of the renin angiotensin system. Earlier studies showed that it was rapidly metabolized to angiotensin III. However, when administered at doses below the Km of enzymes, DAA-I produces specific actions that antagonize the deleterious actions of angiotensin II. DAA-I exerts protective actions in animal models of eight human pathologies in which angiotensin II is implicated. The pathologies include cardiac hypertrophy, neointima growth and cardiovascular hypertrophy, myocardial-ischemia reperfusion injury, hyperglycemia and insulin resistance, chemical induced inflammation, and exercise-induced skeletal muscle inflammation. Binding of DAA-I to the angiotensin AT1 receptors releases prostaglandins, which could either function as autocrines/paracrines or second messengers and attenuate the deleterious actions of angiotensin II. It is possible that in in vivo DAA-I functions as a physiological antagonist to angiotensin II, and exogenous DAA-I is a novel class of angiotensin receptor drug that could rival the angiotensin receptor blockers.
Collapse
Affiliation(s)
- Meng-Kwoon Sim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore.
| |
Collapse
|
11
|
Tsai YC, Wang HT, Hsu JT, Li YH, Chen CY. Yeast with bacteriocin from ruminal bacteria enhances glucose utilization, reduces ectopic fat accumulation, and alters cecal microbiota in dietary-induced obese mice. Food Funct 2015; 6:2727-35. [PMID: 26147740 DOI: 10.1039/c5fo00367a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study investigated the effect of yeast with bacteriocin (YB) on the homeostasis of lipid and glucose in diet-induced obese (DIO) mice. Seven-week-old C57BL/6 male mice were fed with a Western diet for 24 weeks to induce obesity. These DIO mice were randomly assigned to 2 groups: obese control (WS) and WYB [0.125 μg YB per g body weight (BW)]. YB was administered daily to the WYB mice in the last 4 weeks, while an equal volume of normal saline was administered to the WS mice. RESULTS YB caused a significant reduction in BW, and in plasma levels of total cholesterol and glucose. Less hepatic lipid accumulation and smaller adipocytes were observed in WYB mice. WYB mice had higher lipid catabolism in liver and adipose tissue. Compared with WS mice, WYB mice had higher glycolysis in the liver and muscles. YB suppressed hepatic GLUT5 expression, altered the composition of cecal microbiota, and also caused more efficient carbohydrate utilization for energy expenditure. CONCLUSION YB resulted in body weight loss, promoted lipid catabolism and carbohydrate utilization; it also modulated cecal microbiota, and therefore partially improved the health of obese mice.
Collapse
Affiliation(s)
- Yi-Chen Tsai
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
12
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
13
|
Des-aspartate angiotensin I (DAA-I) reduces endothelial dysfunction in the aorta of the spontaneously hypertensive rat through inhibition of angiotensin II-induced oxidative stress. Vascul Pharmacol 2015; 71:151-8. [PMID: 25869508 DOI: 10.1016/j.vph.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/17/2015] [Accepted: 03/21/2015] [Indexed: 11/23/2022]
Abstract
Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress.
Collapse
|
14
|
Farag E, Maheshwari K, Morgan J, Sakr Esa WA, Doyle DJ. An update of the role of renin angiotensin in cardiovascular homeostasis. Anesth Analg 2015; 120:275-92. [PMID: 25602448 DOI: 10.1213/ane.0000000000000528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The renin angiotensin system (RAS) is thought to be the body's main vasoconstrictor system, with physiological effects mediated via the interaction of angiotensin II with angiotensin I receptors (the "classic" RAS model). However, since the discovery of the heptapeptide angiotensin 1-7 and the development of the concept of the "alternate" RAS system, with its ability to reduce arterial blood pressure, our understanding of this physiologic system has changed dramatically. In this review, we focus on the newly discovered functions of the RAS, particularly the potential clinical significance of these developments, especially in the realm of new pharmacologic interventions for treating cardiovascular disease.
Collapse
Affiliation(s)
- Ehab Farag
- From the Departments of *General Anesthesia and †Outcomes Research, Cleveland Clinic, Cleveland, Ohio; ‡Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio; and §Cleveland Clinic Lerner College of Medicine of Case Western Reserve University/Department of General Anesthesia, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | |
Collapse
|
15
|
Fucosylated Chondroitin Sulfate From Sea Cucumber Improves Glucose Metabolism and Activates Insulin Signaling in the Liver of Insulin-Resistant Mice. J Med Food 2014; 17:749-57. [DOI: 10.1089/jmf.2013.2924] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Eicosapentaenoic acid-enriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway. J Biosci Bioeng 2014; 117:457-63. [DOI: 10.1016/j.jbiosc.2013.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
|
17
|
Nikolaou A, Stijlemans B, Laoui D, Schouppe E, Tran HTT, Tourwé D, Chai SY, Vanderheyden PML, Van Ginderachter JA. Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. J Renin Angiotensin Aldosterone Syst 2014; 15:466-79. [DOI: 10.1177/1470320313507621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Alexandros Nikolaou
- Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Benoit Stijlemans
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Huyen TT Tran
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Vrije Universiteit Brussel, Belgium
| | - Siew Y Chai
- Department of Physiology, Monash University, Australia
| | | | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
18
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
19
|
Des-aspartate-angiotensin I attenuates ICAM-1 formation in hydrogen peroxide-treated L6 skeletal muscle cells and soleus muscle of mice subjected to eccentric exercise. ACTA ACUST UNITED AC 2014; 188:40-5. [DOI: 10.1016/j.regpep.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 11/09/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
|
20
|
HÄRDTNER CARMEN, MÖRKE CAROLINE, WALTHER REINHARD, WOLKE CARMEN, LENDECKEL UWE. High glucose activates the alternative ACE2/Ang-(1-7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β-cells. Int J Mol Med 2013; 32:795-804. [PMID: 23942780 PMCID: PMC3812297 DOI: 10.3892/ijmm.2013.1469] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/22/2013] [Indexed: 01/13/2023] Open
Abstract
The activation of the classical angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 receptor (AT1R) axis of the renin-angiotensin system (RAS) has been associated with islet dysfunction and insulin resistance. Hyperglycaemia, hypertension and obesity, major components of metabolic syndrome, are all associated with increased systemic and tissue levels of Ang II. Whereas it is well established that Ang II, by binding to AT1R, impairs glucose-stimulated insulin secretion and insulin signaling, the contribution of alternative RAS axes to β-cell function remains to be fully elucidated. In this study, using the BRIN-BD11 rat insulinoma cell line, we i) examined the basal expression levels of components of classical and alternative RAS axes and ii) investigated the effects of normal (5.5 mM) and elevated (11, 15, 25 mM) glucose concentrations on their expression and/or enzymatic activity by means of reverse transcription quantitative PCR (RT-qPCR), immunoblot analysis and enzymatic activity assays. The results correlated with the insulin production and release. Essential components of all RAS axes were found to be expressed in the BRIN-BD11 cells. Components of the alternative RAS axes, ACE2, neutral endopeptidase 24.11, Mas receptor (Mas), aminopeptidases A (APA) and N (APN) and insulin-regulated aminopeptidase (IRAP) showed an increased expression/activity in response to high glucose. These alterations were paralleled by the glucose-dependent increase in insulin production and release. By contrast, components of the classical RAS axis, ACE, AT1R and Ang II type 2 receptor (AT2R), remained largely unaffected under these conditions. Glucose induced the activation of the alternative ACE2/Ang-(1-7)/Mas and APN/Ang IV/IRAP RAS axes simultaneously with the stimulation of insulin production/release. Our data suggest the existence of a functional link between the local RAS axis and pancreatic β-cell function; however, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- CARMEN HÄRDTNER
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| | - CAROLINE MÖRKE
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| | - REINHARD WALTHER
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| | - CARMEN WOLKE
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| | - UWE LENDECKEL
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| |
Collapse
|
21
|
Espinosa A, Campos C, Díaz-Vegas A, Galgani JE, Juretic N, Osorio-Fuentealba C, Bucarey JL, Tapia G, Valenzuela R, Contreras-Ferrat A, Llanos P, Jaimovich E. Insulin-dependent H2O2 production is higher in muscle fibers of mice fed with a high-fat diet. Int J Mol Sci 2013; 14:15740-54. [PMID: 23899788 PMCID: PMC3759883 DOI: 10.3390/ijms140815740] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance is defined as a reduced ability of insulin to stimulate glucose utilization. C57BL/6 mice fed with a high-fat diet (HFD) are a model of insulin resistance. In skeletal muscle, hydrogen peroxide (H2O2) produced by NADPH oxidase 2 (NOX2) is involved in signaling pathways triggered by insulin. We evaluated oxidative status in skeletal muscle fibers from insulin-resistant and control mice by determining H2O2 generation (HyPer probe), reduced-to-oxidized glutathione ratio and NOX2 expression. After eight weeks of HFD, insulin-dependent glucose uptake was impaired in skeletal muscle fibers when compared with control muscle fibers. Insulin-resistant mice showed increased insulin-stimulated H2O2 release and decreased reduced-to-oxidized glutathione ratio (GSH/GSSG). In addition, p47phox and gp91phox (NOX2 subunits) mRNA levels were also high (~3-fold in HFD mice compared to controls), while protein levels were 6.8- and 1.6-fold higher, respectively. Using apocynin (NOX2 inhibitor) during the HFD feeding period, the oxidative intracellular environment was diminished and skeletal muscle insulin-dependent glucose uptake restored. Our results indicate that insulin-resistant mice have increased H2O2 release upon insulin stimulation when compared with control animals, which appears to be mediated by an increase in NOX2 expression.
Collapse
Affiliation(s)
- Alejandra Espinosa
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +56-02-297-866-64; Fax: +56-02-297-866-82
| | - Cristian Campos
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
| | - Alexis Díaz-Vegas
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - José E. Galgani
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; E-Mail:
| | - Nevenka Juretic
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - César Osorio-Fuentealba
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - José L. Bucarey
- School of Medicine, University of Valparaíso, Valparaíso 2341369, Chile; E-Mail:
| | - Gladys Tapia
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - Rodrigo Valenzuela
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - Paola Llanos
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| |
Collapse
|
22
|
Nikolaou A, Eynde IVD, Tourwé D, Vauquelin G, Tóth G, Mallareddy JR, Poglitsch M, Van Ginderachter JA, Vanderheyden PM. [3H]IVDE77, a novel radioligand with high affinity and selectivity for the insulin-regulated aminopeptidase. Eur J Pharmacol 2013; 702:93-102. [DOI: 10.1016/j.ejphar.2013.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
23
|
Hu S, Chang Y, Wang J, Xue C, Shi D, Xu H, Wang Y. Fucosylated chondroitin sulfate from Acaudina molpadioides improves hyperglycemia via activation of PKB/GLUT4 signaling in skeletal muscle of insulin resistant mice. Food Funct 2013; 4:1639-46. [DOI: 10.1039/c3fo60247h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
The Angiotensin II Type 2 Receptor in Brain Functions: An Update. Int J Hypertens 2012; 2012:351758. [PMID: 23320146 PMCID: PMC3540774 DOI: 10.1155/2012/351758] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.
Collapse
|
25
|
Kanasaki M, Nagai T, Kitada M, Koya D, Kanasaki K. Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. FIBROGENESIS & TISSUE REPAIR 2011; 4:25. [PMID: 22126210 PMCID: PMC3253677 DOI: 10.1186/1755-1536-4-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP).
Collapse
Affiliation(s)
- Megumi Kanasaki
- Division of Diabetes & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|