1
|
Chen F, Cheng B, Xu X, Yan W, Meng Q, Liu J, Yao R, Dong F, Liu Y. High-intensity interval training stimulates remyelination via the Wnt/β-catenin pathway in cuprizone-induced demyelination mouse model. Neurol Res 2024; 46:996-1007. [PMID: 38979727 DOI: 10.1080/01616412.2024.2376310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES This study aims to investigate the role of high-intensity interval training (HIIT) in promoting myelin sheath recovery during the remyelination phase in cuprizone (CPZ)-induced demyelination mice and elucidate the mechanisms involving the Wnt/β-catenin pathway. METHODS After 5 weeks of a 0.2% CPZ diet to induce demyelination, a 4-week recovery phase with a normal diet was followed by HIIT intervention. Mice body weight was monitored. Morris water maze (MWM) gauged spatial cognition and memory, while the open field test (OFT) assessed anxiety levels. Luxol fast blue (LFB) staining measured demyelination, and immunofluorescence examined myelin basic protein (MBP) and platelet-derived growth factor receptor-alpha (PDGFR-α). Western blotting analyzed protein expression, including MBP, PDGFR-α, glycogen synthase kinase-3β (GSK3β), β-catenin, and p-β-catenin. Real-time PCR detected mRNA expression levels of CGT and CST. RESULTS HIIT promoted remyelination in demyelinating mice, enhancing spatial cognition, memory, and reducing anxiety. LFB staining indicated decreased demyelination in HIIT-treated mice. Immunofluorescence demonstrated increased MBP fluorescence intensity and PDGFR-α+ cell numbers with HIIT. Western blotting revealed HIIT reduced β-catenin levels while increasing p-β-catenin and GSK3β levels. Real-time PCR demonstrated that HIIT promoted the generation of new myelin sheaths. Additionally, the Wnt/β-catenin pathway agonist, SKL2001, decreased MBP expression but increased PDGFR-α expression. DISCUSSION HIIT promotes remyelination by inhibiting the Wnt/β-catenin pathway and is a promising rehabilitation training for demyelinating diseases. It provides a new theoretical basis for clinical rehabilitation and care programs.
Collapse
Affiliation(s)
- Fei Chen
- The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Bing Cheng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xinqi Xu
- The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jinfeng Liu
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yaping Liu
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
3
|
Liver X Receptor Regulation of Glial Cell Functions in the CNS. Biomedicines 2022; 10:biomedicines10092165. [PMID: 36140266 PMCID: PMC9496004 DOI: 10.3390/biomedicines10092165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In this review, we discuss the role of liver X receptors (LXRs) in glial cells (microglia, oligodendrocytes and astrocytes) in the central nervous system (CNS). LXRs are oxysterol-activated nuclear receptors that, in adults, regulate genes involved in cholesterol homeostasis, the modulation of inflammatory responses and glutamate homeostasis. The study of LXR knockout mice has revealed that LXRβ plays a key role in maintaining the health of dopaminergic neurons in the substantia nigra, large motor neurons in the spinal cord and retinal ganglion cells in the eye. In the peripheral nervous system (PNS), LXRβ is responsible for the health of the spiral ganglion neurons (SGNs) in the cochlea. In addition, LXRs are essential for the homeostasis of the cerebrospinal fluid (CSF), and in LXRαβ−/− mice, the lateral ventricles are empty and lined with lipid-laden cells. As LXRαβ−/− mice age, lipid vacuoles accumulate in astrocytes surrounding blood vessels. By seven months of age, motor coordination becomes impaired, and there is a loss of motor neurons in the spinal cord of LXRβ−/− mice. During development, migration of neurons in the cortex and cerebellum is retarded in LXRβ−/− mice. Since LXRs are not expressed in dopaminergic or motor neurons in adult mice, the neuroprotective effects of LXRs appear to come from LXRs in glial cells where they are expressed. However, despite the numerous neurological deficits in LXR−/− rodents, multiple sclerosis has the clear distinction of being the only human neurodegenerative disease in which defective LXR signaling has been identified. In this review, we summarize the regulation and functions of LXRs in glial cells and analyze how targeting LXRs in glial cells might, in the future, be used to treat neurodegenerative diseases and, perhaps, disorders caused by aberrant neuronal migration during development.
Collapse
|
4
|
Song XY, Wu WF, Dai YB, Xu HW, Roman A, Wang L, Warner M, Gustafsson JÅ. Ablation of Liver X receptor β in mice leads to overactive macrophages and death of spiral ganglion neurons. Hear Res 2022; 422:108534. [PMID: 35623301 DOI: 10.1016/j.heares.2022.108534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Age-related hearing loss is the most common type of hearing impairment, and is typically characterized by the loss of spiral ganglion neurons (SGNs). The two Liver X receptors (LXRs) are oxysterol-activated nuclear receptors which in adults, regulate genes involved in cholesterol homeostasis and modulation of macrophage activity. LXRβ plays a key role in maintenance of health of dopaminergic neurons in the substantia nigra, large motor neurons in the spinal cord, and retinal ganglion cells in adult mice. We now report that LXRβ is expressed in the SGNs of the cochlea and that loss of LXRβ leads to age-related cochlea degeneration. We found that in the cochlea of LXRβ-/- mice, there is loss of SGNs, activation of macrophages, demyelination in the spiral ganglion, decrease in glutamine synthetase (GS) expression and increase in glutamate accumulation in the cochlea. Part of the cause of damage to the SGNs might be glutamate toxicity which is known to be very toxic to these cells. Our study provides a so far unreported role of LXRβ in maintenance of SGNs whose loss is a very common cause of hearing impairment.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Wan-Fu Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Yu-Bing Dai
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Andrew Roman
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Li Wang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States; Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Stockholm 14186, Sweden.
| |
Collapse
|
5
|
Vejux A, Ghzaiel I, Nury T, Schneider V, Charrière K, Sghaier R, Zarrouk A, Leoni V, Moreau T, Lizard G. Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol 2021; 210:105870. [PMID: 33684483 DOI: 10.1016/j.jsbmb.2021.105870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects the central nervous system. Dysfunction of the immune system leads to lesions that cause motor, sensory, cognitive, visual and/or sphincter disturbances. In the long term, these disorders can progress towards an irreversible handicap. The diagnosis takes time because there are no specific criteria to diagnose multiple sclerosis. To realize the diagnosis, a combination of clinical, biological, and radiological arguments is therefore required. Hence, there is a need to identify multiple sclerosis biomarkers. Some biomarkers target immunity through the detection of oligoclonal bands, the measurement of the IgG index and cytokines. During the physiopathological process, the blood-brain barrier can be broken, and this event can be identified by measuring metalloproteinase activity and diffusion of gadolinium in the brain by magnetic resonance imaging. Markers of demyelination and of astrocyte and microglial activity may also be of interest as well as markers of neuronal damage and mitochondrial status. The measurement of different lipids in the plasma and cerebrospinal fluid can also provide suitable information. These different lipids include fatty acids, fatty acid peroxidation products, phospholipids as well as oxidized derivatives of cholesterol (oxysterols). Oxysterols could constitute new biomarkers providing information on the form of multiple sclerosis, the outcome of the disease and the answer to treatment.
Collapse
Affiliation(s)
- Anne Vejux
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia
| | - Thomas Nury
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Vincent Schneider
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Karine Charrière
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, 25030, Besançon Cedex, France
| | - Randa Sghaier
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Thibault Moreau
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| |
Collapse
|
6
|
Vilariño-Güell C, Zimprich A, Martinelli-Boneschi F, Herculano B, Wang Z, Matesanz F, Urcelay E, Vandenbroeck K, Leyva L, Gris D, Massaad C, Quandt JA, Traboulsee AL, Encarnacion M, Bernales CQ, Follett J, Yee IM, Criscuoli MG, Deutschländer A, Reinthaler EM, Zrzavy T, Mascia E, Zauli A, Esposito F, Alcina A, Izquierdo G, Espino-Paisán L, Mena J, Antigüedad A, Urbaneja-Romero P, Ortega-Pinazo J, Song W, Sadovnick AD. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet 2019; 15:e1008180. [PMID: 31170158 PMCID: PMC6553700 DOI: 10.1371/journal.pgen.1008180] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients.
Collapse
Affiliation(s)
| | | | - Filippo Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- MS Unit and Department of Neurology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Bruno Herculano
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of the Capital Medical University, Beijing, China
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Elena Urcelay
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Koen Vandenbroeck
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Leyva
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Denis Gris
- Division of Immunology, Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Charbel Massaad
- Toxicology, Pharmacology and Cell Signalisation—UMR-S 1124 Université Paris Descartes, Paris, France
| | - Jacqueline A. Quandt
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony L. Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Cecily Q. Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jordan Follett
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Irene M. Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Maria G. Criscuoli
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Angela Deutschländer
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States of America
| | - Eva M. Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Zauli
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | | | - Laura Espino-Paisán
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Jorge Mena
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Alfredo Antigüedad
- Neurology Department, Hospital Universitario de Cruces, S/N, Baracaldo, Spain
| | - Patricia Urbaneja-Romero
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - A. Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Hichor M, Sundaram VK, Eid SA, Abdel-Rassoul R, Petit PX, Borderie D, Bastin J, Eid AA, Manuel M, Grenier J, Massaad C. Liver X Receptor exerts a protective effect against the oxidative stress in the peripheral nerve. Sci Rep 2018; 8:2524. [PMID: 29410501 PMCID: PMC5802790 DOI: 10.1038/s41598-018-20980-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) modify proteins and lipids leading to deleterious outcomes. Thus, maintaining their homeostatic levels is vital. This study highlights the endogenous role of LXRs (LXRα and β) in the regulation of oxidative stress in peripheral nerves. We report that the genetic ablation of both LXR isoforms in mice (LXRdKO) provokes significant locomotor defects correlated with enhanced anion superoxide production, lipid oxidization and protein carbonylation in the sciatic nerves despite the activation of Nrf2-dependant antioxidant response. Interestingly, the reactive oxygen species scavenger N-acetylcysteine counteracts behavioral, electrophysical, ultrastructural and biochemical alterations in LXRdKO mice. Furthermore, Schwann cells in culture pretreated with LXR agonist, TO901317, exhibit improved defenses against oxidative stress generated by tert-butyl hydroperoxide, implying that LXRs play an important role in maintaining the redox homeostasis in the peripheral nervous system. Thus, LXR activation could be a promising strategy to protect from alteration of peripheral myelin resulting from a disturbance of redox homeostasis in Schwann cell.
Collapse
Affiliation(s)
- Mehdi Hichor
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France
| | - Venkat Krishnan Sundaram
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France
| | - Stéphanie A Eid
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France
| | - Ronza Abdel-Rassoul
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France
| | - Patrice X Petit
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France
| | - Didier Borderie
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France
| | - Jean Bastin
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France
| | - Assaad A Eid
- American University of Beirut, Department of Anatomy, Cell Biology and Physiological Sciences, PO Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon, Beirut, Lebanon
| | - Marin Manuel
- Centre de Neurophysique, Physiologie et Pathologie, Université Paris Descartes, CNRS UMR 8119, Paris, France
| | - Julien Grenier
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France
| | - Charbel Massaad
- Paris Descartes University, INSERM UMR-S 1124, Faculty of Basic and Biomedical Sciences, 45 rue des Saints-Pères, 75270, Paris Cedex 6, France.
| |
Collapse
|
8
|
Wang Z, Sadovnick AD, Traboulsee AL, Ross JP, Bernales CQ, Encarnacion M, Yee IM, de Lemos M, Greenwood T, Lee JD, Wright G, Ross CJ, Zhang S, Song W, Vilariño-Güell C. Nuclear Receptor NR1H3 in Familial Multiple Sclerosis. Neuron 2017; 90:948-54. [PMID: 27253448 DOI: 10.1016/j.neuron.2016.04.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/17/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss and neuronal dysfunction. Despite the aggregation observed in some families, pathogenic mutations have remained elusive. In this study, we describe the identification of NR1H3 p.Arg415Gln in seven MS patients from two multi-incident families presenting severe and progressive disease, with an average age at onset of 34 years. Additionally, association analysis of common variants in NR1H3 identified rs2279238 conferring a 1.35-fold increased risk of developing progressive MS. The p.Arg415Gln position is highly conserved in orthologs and paralogs, and disrupts NR1H3 heterodimerization and transcriptional activation of target genes. Protein expression analysis revealed that mutant NR1H3 (LXRA) alters gene expression profiles, suggesting a disruption in transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Our study indicates that pharmacological activation of LXRA or its targets may lead to effective treatments for the highly debilitating and currently untreatable progressive phase of MS.
Collapse
Affiliation(s)
- Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - A Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anthony L Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jay P Ross
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cecily Q Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Irene M Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Madonna de Lemos
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Talitha Greenwood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joshua D Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Galen Wright
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Si Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Carles Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
9
|
Shackleford GG, Grenier J, Abi Habib W, Massaad C, Meffre D. Liver X Receptors differentially modulate central myelin gene mRNA levels in a region-, age- and isoform-specific manner. J Steroid Biochem Mol Biol 2017; 169:61-68. [PMID: 26940358 DOI: 10.1016/j.jsbmb.2016.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 11/19/2022]
Abstract
Liver X Receptors (LXRs) α and β are nuclear receptors able to bind oxidative forms of cholesterol. They play important roles in the central nervous system (CNS), through their implication in a large variety of physiological and pathological processes among which modulation of cholesterol homeostasis and inflammation. Besides, we recently revealed their crucial role in myelination and remyelination in the cerebellum. Given the pleiotropic effects of such receptors on CNS functioning, we studied here the influence of LXRs on myelin gene mRNA accumulation in the major myelinated regions of the CNS in vivo. We show that both LXR isoforms differentially affect mRNA amount of myelin genes (PLP and MBP) in highly myelinated structures such as spinal cord, corpus callosum, optic nerve and cerebellum. In the adult, LXR activation by the synthetic agonist TO901317 significantly increases myelin gene mRNA amount in the cerebellum but not in the other regions studied. Invalidation of the sole LXRβ isoform leads to decreased PLP and MBP mRNA levels in all the structures except the spinal cord, while the knock out of both isoforms (LXR dKO) decreases myelin gene mRNA amounts in all the regions tested except the corpus callosum. Interestingly, during myelination process (post-natal day 21), both cerebellum and optic nerve display a decrease in myelin gene mRNA levels in LXR dKO mice. Concomitantly, PLP and MBP mRNA accumulation in the spinal cord is increased. Relative expression level of LXR isoforms could account for the differential modulation of myelin gene expression in the CNS. Altogether our results suggest that, within the CNS, each LXR isoform differentially influences myelin gene mRNA levels in a region- and age-dependant manner, participating in the fine regulation of myelin gene expression.
Collapse
Affiliation(s)
| | - Julien Grenier
- Paris Descartes University, INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006 Paris, France
| | - Walid Abi Habib
- Paris Descartes University, INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006 Paris, France
| | - Charbel Massaad
- Paris Descartes University, INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006 Paris, France
| | - Delphine Meffre
- Paris Descartes University, INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006 Paris, France.
| |
Collapse
|
10
|
|
11
|
Courtney R, Landreth GE. LXR Regulation of Brain Cholesterol: From Development to Disease. Trends Endocrinol Metab 2016; 27:404-414. [PMID: 27113081 PMCID: PMC4986614 DOI: 10.1016/j.tem.2016.03.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023]
Abstract
Liver X receptors (LXRs) are master regulators of cholesterol homeostasis and inflammation in the central nervous system (CNS). The brain, which contains a disproportionately large amount of the body's total cholesterol (∼25%), requires a complex and delicately balanced cholesterol metabolism to maintain neuronal function. Dysregulation of cholesterol metabolism has been implicated in numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Due to their cholesterol-sensing and anti-inflammatory activities, LXRs are positioned centrally in the everyday maintenance of CNS function. This review focuses on recent research into the role of LXRs in the CNS during normal development and homeostasis and in disease states.
Collapse
Affiliation(s)
- Rebecca Courtney
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beißbarth T, Wingender E, Gültas M. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Front Genet 2016; 7:42. [PMID: 27092172 PMCID: PMC4820448 DOI: 10.3389/fgene.2016.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell lines, which can be used for development of effective cancer therapy.
Collapse
Affiliation(s)
- Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Jetcy Arackal
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Mehmet Gültas
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
13
|
Sandoval-Hernández A, Contreras MJ, Jaramillo J, Arboleda G. Regulation of Oligodendrocyte Differentiation and Myelination by Nuclear Receptors: Role in Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:287-310. [DOI: 10.1007/978-3-319-40764-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum. Proc Natl Acad Sci U S A 2015; 112:7587-92. [PMID: 26023184 DOI: 10.1073/pnas.1424951112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The identification of new pathways governing myelination provides innovative avenues for remyelination. Liver X receptors (LXRs) α and β are nuclear receptors activated by oxysterols that originated from the oxidation of cholesterol. They are crucial for cholesterol homeostasis, a major lipid constituent of myelin sheaths that are formed by oligodendrocytes. However, the role of LXRs in myelin generation and maintenance is poorly understood. Here, we show that LXRs are involved in myelination and remyelination processes. LXRs and their ligands are present in oligodendrocytes. We found that mice invalidated for LXRs exhibit altered motor coordination and spatial learning, thinner myelin sheaths, and reduced myelin gene expression. Conversely, activation of LXRs by either 25-hydroxycholesterol or synthetic TO901317 stimulates myelin gene expression at the promoter, mRNA, and protein levels, directly implicating LXRα/β in the transcriptional control of myelin gene expression. Interestingly, activation of LXRs also promotes oligodendroglial cell maturation and remyelination after lysolecithin-induced demyelination of organotypic cerebellar slice cultures. Together, our findings represent a conceptual advance in the transcriptional control of myelin gene expression and strongly support a new role of LXRs as positive modulators in central (re)myelination processes.
Collapse
|
15
|
Yang Y, Yang JJ, Tao H, Jin WS. New perspectives on β-catenin control of cell fate and proliferation in colon cancer. Food Chem Toxicol 2014; 74:14-9. [DOI: 10.1016/j.fct.2014.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/12/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
16
|
Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014; 62:1856-77. [DOI: 10.1002/glia.22716] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023]
Affiliation(s)
- V. Haroutunian
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- Department of Neuroscience; The Icahn School of Medicine at Mount Sinai; New York New York
- MIRECC-JJ Peters VA Medical Center; Bronx New York
| | - P. Katsel
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
| | - P. Roussos
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- MIRECC-JJ Peters VA Medical Center; Bronx New York
| | - K. L. Davis
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- Department of Neuroscience; The Icahn School of Medicine at Mount Sinai; New York New York
| | - L. L. Altshuler
- Department of Psychiatry; Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA; Los Angeles California
- The Brain Research Institute, The David Geffen School of Medicine at UCLA; Los Angeles California
- Greater Los Angeles VA Healthcare System; West Los Angeles California
| | - G. Bartzokis
- Department of Psychiatry; Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA; Los Angeles California
- The Brain Research Institute, The David Geffen School of Medicine at UCLA; Los Angeles California
- Greater Los Angeles VA Healthcare System; West Los Angeles California
| |
Collapse
|
17
|
Gondcaille C, Genin EC, Lopez TE, Dias AMM, Geillon F, Andreoletti P, Cherkaoui-Malki M, Nury T, Lizard G, Weinhofer I, Berger J, Kase ET, Trompier D, Savary S. LXR antagonists induce ABCD2 expression. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:259-66. [PMID: 24239766 DOI: 10.1016/j.bbalip.2013.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 02/09/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare neurodegenerative disorder characterized by the accumulation of very-long-chain fatty acids resulting from a beta-oxidation defect. Oxidative stress and inflammation are also key components of the pathogenesis. X-ALD is caused by mutations in the ABCDI gene, which encodes for a peroxisomal half ABC transporter predicted to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their beta-oxidation. Two homologous peroxisomal ABC transporters, ABCD2 and ABCD3 have been proven to compensate for ABCD1 deficiency when overexpressed. Pharmacological induction of these target genes could therefore represent an alternative therapy for X-ALD patients. Since LXR activation was shown to repress ABCD2 expression, we investigated the effects of LXR antagonists in different cell lines. Cells were treated with GSK(17) (a LXR antagonist recently discovered from the GlaxoSmithKline compound collection), 22(S)-hydroxycholesterol (22S-HC, another LXR antagonist) and 22R-HC (an endogenous LXR agonist). We observed up-regulation of ABCD2,ABCD3 and CTNNB1 (the gene encoding for beta-catenin, which was recently demonstrated to induce ABCD2 expression) in human HepG2 hepatoma cells and in X-ALD skin fibroblasts treated with LXR antagonists. Interestingly, induction in X-ALD fibroblasts was concomitant with a decrease in oxidative stress. Rats treated with 22S-HC showed hepatic induction of the 3 genes of interest. In human, we show by multiple tissue expression array that expression of ABCD2 appears to be inversely correlated with NR1H3 (LXRalpha) expression. Altogether, antagonists of LXR that are currently developed in the context of dyslipidemia may find another indication with X-ALD.
Collapse
|
18
|
Meffre D, Grenier J, Bernard S, Courtin F, Dudev T, Shackleford G, Jafarian-Tehrani M, Massaad C. Wnt and lithium: a common destiny in the therapy of nervous system pathologies? Cell Mol Life Sci 2014; 71:1123-48. [PMID: 23749084 PMCID: PMC11113114 DOI: 10.1007/s00018-013-1378-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.
Collapse
Affiliation(s)
- Delphine Meffre
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Julien Grenier
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Sophie Bernard
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Françoise Courtin
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, 11529 Taipei, Taiwan, R.O.C
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | - Charbel Massaad
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| |
Collapse
|
19
|
Trompier D, Gondcaille C, Lizard G, Savary S. Regulation of the adrenoleukodystrophy-related gene (ABCD2): focus on oxysterols and LXR antagonists. Biochem Biophys Res Commun 2014; 446:651-5. [PMID: 24480443 DOI: 10.1016/j.bbrc.2014.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/12/2014] [Indexed: 10/25/2022]
Abstract
The regulation of the ABCD2 gene is recognized as a possible therapeutic target for X-linked adrenoleukodystrophy, a rare neurodegenerative disease caused by mutations in the ABCD1 gene. Up-regulation of ABCD2 expression has indeed been demonstrated to compensate for ABCD1 deficiency, restoring peroxisomal β-oxidation of very-long-chain fatty acids. Besides the known inducers of the ABCD2 gene (phenylbutyrate and histone deacetylase inhibitors, fibrates, dehydroepiandrosterone, thyroid hormone and thyromimetics), this review will focus on LXR antagonists and 22S-hydroxycholesterol, recently described as inducers of ABCD2 expression. Several LXR antagonists have been identified and their possible indication for neurodegenerative disorders will be discussed.
Collapse
Affiliation(s)
- Doriane Trompier
- Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd Gabriel, Dijon F-21000, France
| | - Catherine Gondcaille
- Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd Gabriel, Dijon F-21000, France
| | - Gérard Lizard
- Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd Gabriel, Dijon F-21000, France
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd Gabriel, Dijon F-21000, France.
| |
Collapse
|
20
|
Activation of liver X receptor is protective against ethanol-induced developmental impairment of Bergmann glia and Purkinje neurons in the mouse cerebellum. Mol Neurobiol 2013; 49:176-86. [PMID: 23900741 DOI: 10.1007/s12035-013-8510-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Cerebellar Purkinje cell and granule cell development are coordinated by Bergmann glia, and are particularly sensitive to ethanol (EtOH) exposure. The liver X receptor (LXR) plays important roles in Bergmann glial development. However, the effect of LXR activation on EtOH-mediated impairment of Bergmann glia and subsequently on Purkinje cell dendritogenesis remains undetermined. Therefore, using immunohistochemistry, quantitative real-time PCR and Western blot, we tested the possible protection of LXR agonist T0901317 (T0) on Bergmann glia and Purkinje cell dendritogenesis in mice exposed to ethanol. Results showed that a brief exposure of EtOH on postnatal day (PD 5) significantly decreased the average body weight of mice at PD 6 without alteration in the brain weight. In EtOH-exposed mice, the number of migrating granule cells in the molecular layer was significantly decreased, and this effect was attenuated by pretreatment of T0. EtOH exposure also resulted in the significant reduction of calbindin-labeled Purkinje cells, their maximum dendrite length, and impairment of Purkinje cell dendritogenesis. Furthermore, EtOH induced the activation of microglia in the Purkinje cell layer and impaired the development of Bergmann glia. However, pretreatment of T0 effectively blocked all of these responses. These responses were found to be mediated by the inhibition of upregulated levels of β-catenin and transcription factor LEF1 in the cerebellum. Overall, the results suggest that activating LXRs on postnatal mice exposed to EtOH is protective to Bergmann glia, and thus may play a critical role in preventing EtOH-induced defects during cerebellar development.
Collapse
|