1
|
Fang F, Guan YN, Zhong MJ, Wen JY, Chen ZW. H 2S protects rat cerebral ischemia-reperfusion injury by inhibiting expression and activation of hippocampal ROCK 2 at the Thr436 and Ser575 sites. Eur J Pharmacol 2024:177079. [PMID: 39486769 DOI: 10.1016/j.ejphar.2024.177079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND H2S is an endogenous gas signal molecule, which protects cerebral ischemia/reperfusion (I/R) injury by phosphorylating rho-associated coiled coil-containing protein kinase 2 (ROCK2) at Tyr722, and inhibiting ROCK2 protein expression and activities. We previously reported that H2S protected rat neurons from hypoxia/reoxygenation injury in vitro through inhibiting phosphorylation of ROCK2 at Thr436 and Ser575, but it is unclear whether these two sites are involved in protection of H2S against cerebral I/R injury. METHOD Rats transfected with wild-type and mutant eukaryotic plasmids of ROCK2 in hippocampus were used to establish I/R model by ligating bilateral common carotid artery. Rat behavioral deficit was detected by water maze assay, and ROCK2, lactate dehydrogenase (LDH), nerve-specific enolase (NSE) and reactive oxygen species (ROS) were determined by ELISA. ROCK2 expressions was examined by western-blot assay, and bcl-2 and Bax mRNAs were examined by RT-qPCR. RESULTS NaHS (4.8mg/kg) significantly inhibited the I/R-increased serum LDH, NSE and ROS in the ROCK2wild-pEGFP-N1-transfected rats, but had no obvious effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats; inhibitions of NaHS on the I/R-increased escape latency and the I/R-decreased percentage of target quadrant distance to total distance were markedly attenuated or abolished in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats compared with those in the ROCK2wild-pEGFP-N1-transfected rats; NaHS obviously inhibited the I/R-increased hippocampal ROCK2 and GFP-ROCK2 proteins, Bax mRNA, and ROCK2 activity, as well as the I/R-decreased hippocampal bcl-2 mRNA in the hippocampus of the ROCK2wild-pEGFP-N1-transfected rats, but had no significant effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats. CONCLUSION H2S protects cerebral I/R injury in rats by inhibiting expression and activation of hippocampal ROCK2 via the Thr436 and Ser575 sites.
Collapse
Affiliation(s)
- Fang Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P. R. China; Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Yi-Ning Guan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Mei-Jing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Ji-Yue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Zhi-Wu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| |
Collapse
|
2
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
3
|
Cheng X, Ren Z, Jia H, Wang G. METTL3 Mediates Microglial Activation and Blood-Brain Barrier Permeability in Cerebral Ischemic Stroke by Regulating NLRP3 Inflammasomes Through m6A Methylation Modification. Neurotox Res 2024; 42:15. [PMID: 38349604 DOI: 10.1007/s12640-024-00687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
Cerebral ischemic stroke (CIS) is the main cause of disability. METTL3 is implicated in CIS, and we explored its specific mechanism. Middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation/reperfusion (OGD/R) HAPI cell model were established and treated with LV-METTL3 or DAA, oe-METTL3, miR-335-3p mimics, or DAA, to assess their effects on MCAO rat neurological and motor function, cerebral infarction area, brain water content, microglial activation, blood-brain barrier (BBB) permeability, and NLRP3 inflammasome activation. METTL3, pri-miR-335-3p, mature miR-335-3p, and miR-335-3p mRNA levels were assessed by RT-qPCR; M1/M2 microglial phenotype proportion and M1/M2 microglia ratio, inflammatory factor levels, and m6A modification were assessed. MCAO rats manifested cerebral ischemia injury. METTL3 was under-expressed in CIS. METTL3 overexpression inhibited microglial activation and M1 polarization and BBB permeability in MCAO rats and inhibited OGD/R-induced microglial activation and reduced M1 polarization. METTL3 regulated miR-335-3p expression and inhibited NLRP3 inflammasome activation. m6A methylation inhibition averted METTL3's effects on NLRP3 activation, thus promoting microglial activation in OGD/R-induced cells and METTL3's effects on BBB permeability in MCAO rats. Briefly, METTL3 regulated miR-335-3p expression through RNA m6A methylation and inhibited NLRP3 inflammasome activation, thus repressing microglial activation, BBB permeability, and protecting against CIS.
Collapse
Affiliation(s)
- Xue Cheng
- Department of Clinical Nutrition, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhetan Ren
- Clinical Medicine, The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, China
| | - Huiyang Jia
- Neurology, Jinzhou Medical University, Jinzhou, 121000, China
| | - Gang Wang
- Department of Tumor Intervention, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, China.
| |
Collapse
|
4
|
Zhang C, Ma Y, Zhao Y, Guo N, Han C, Wu Q, Mu C, Zhang Y, Tan S, Zhang J, Liu X. Systematic review of melatonin in cerebral ischemia-reperfusion injury: critical role and therapeutic opportunities. Front Pharmacol 2024; 15:1356112. [PMID: 38375039 PMCID: PMC10875093 DOI: 10.3389/fphar.2024.1356112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an endogenous hormone, was found to be valid in preventing I/R injury in a variety of organs. However, a systematic review covering all neuroprotective effects of melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a comprehensive overview of the influence of melatonin on cerebral I/R injury by collecting all available literature exploring the latent effect of melatonin on cerebral I/R injury as well as ischemic stroke. In this systematic review, we outline the extensive scientific studies and summarize the beneficial functions of melatonin, including reducing infarct volume, decreasing brain edema, improving neurological functions and attenuating blood-brain barrier breakdown, as well as its key protective mechanisms on almost every aspect of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation, apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial dysfunction. Subsequently, we also review the predictive and therapeutic implications of melatonin on ischemic stroke reported in clinical studies. We hope that our systematic review can provide the most comprehensive introduction of current advancements on melatonin in cerebral I/R injury and new insights into personalized diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shutong Tan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Ma Z, Wu Y, Xu J, Cao H, Du M, Jiang H, Qiu F. Sodium Tanshinone IIA Sulfonate Ameliorates Oxygen-glucose Deprivation/Reoxygenation-induced Neuronal Injury via Protection of Mitochondria and Promotion of Autophagy. Neurochem Res 2023; 48:3378-3390. [PMID: 37436612 DOI: 10.1007/s11064-023-03985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Sodium tanshinone IIA sulfonate (STS) has shown significant clinical therapeutic effects in cerebral ischemic stroke (CIS), but the molecular mechanisms of neuroprotection remain partially known. The purpose of this study was to explore whether STS plays a protective role in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury by regulating microglia autophagy and inflammatory activity. Co-cultured microglia and neurons were subjected to OGD/R injury, an in vitro model of ischemia/reperfusion (I/R) injury with or without STS treatment. Expression of protein phosphatase 2 A (PP2A) and autophagy-associated proteins Beclin 1, autophagy related 5 (ATG5), and p62 in microglia was determined by Western blotting. Autophagic flux in microglia was observed with confocal laser scanning microscopy. Neuronal apoptosis was measured by flow cytometric and TUNEL assays. Neuronal mitochondrial function was determined via assessments of reactive oxygen species generation and mitochondrial membrane potential integrity. STS treatment markedly induced PP2A expression in microglia. Forced overexpression of PP2A increased levels of Beclin 1 and ATG5, decreased the p62 protein level, and induced autophagic flux. Silencing of PP2A or administration of 3-methyladenine inhibited autophagy and decreased the production of anti-inflammatory factors (IL-10, TGF-β and BDNF) and induced the release of proinflammatory cytokines (IL-1β, IL-2 and TNF-α) by STS-treated microglia, thereby inducing mitochondrial dysfunction and apoptosis of STS-treated neurons. STS exerts protection against neuron injury, and the PP2A gene plays a crucial role in improving mitochondrial function and inhibiting neuronal apoptosis by regulating autophagy and inflammation in microglia.
Collapse
Affiliation(s)
- Zhi Ma
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Yue Wu
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China
| | - Juan Xu
- Department of Immunology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hui Cao
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Mingyang Du
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Haibo Jiang
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Feng Qiu
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China.
| |
Collapse
|
6
|
Liu Z, Wang J, Jin X, Gao P, Zhao Y, Yin M, Ma X, Xin Z, Zhao Y, Zhou X, Gao W. 1,8-Cineole Alleviates OGD/R-Induced Oxidative Damage and Restores Mitochondrial Function by Promoting the Nrf2 Pathway. Biol Pharm Bull 2023; 46:1371-1384. [PMID: 37532524 DOI: 10.1248/bpb.b23-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
This study examined the effects of 1,8-cineole on reducing oxidative stress injury and restoring mitochondrial function in oxygen-glucose deprivation and reoxygenation (OGD/R) HT22 cells via the nuclear factor erythrocyte 2 related factor 2 (Nrf2) pathway. The optimal concentration of 1,8-cineole to reduce OGD/R injury was screened via cell morphology, cell survival rate, and lactate dehydrogenase (LDH) leakage rate. Oxidative damage was observed by measuring superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activities, and reactive oxygen species (ROS), glutathione (GSH), protein carbonyl, malondialdehyde (MDA), lipid peroxidation (LPO) content, and 8-hydroxy-2 deoxyguanosine (8-OHDG) expression. Mitochondrial function was observed by mitochondrial membrane potential (MMP) and ATPase activity. Nrf2 pathways were observed by the expression levels of total Nrf2, nucleus Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), the mRNA levels of HO-1 and NQO1. Among different concentrations of 1,8-cineole for promoting HT22 cell proliferation and attenuated OGD/R injury, 10 µmol/L 1,8-cineole was the best. After 1,8-cineole treatment, SOD, GSH-PX, and CAT activities and GSH content increased, while ROS, MDA, LPO, protein carbonyl, and 8-OHDG levels decreased. 1,8-Cineole could restore MMP and increase mitochondrial enzyme activity. It could also increase the total Nrf2, nucleus Nrf2, NQO1, and HO-1, and Nrf2 inhibitor brusatol reduced the effect of 1,8-cineole. Immunofluorescence assay showed that 1,8-cineole could facilitate the transfer of Nrf2 into the nucleus. 1,8-cineole increased the mRNA levels of NQO1 and HO-1. The above results showed that 1,8-cineole could alleviate OGD/R-induced oxidative damage and restores mitochondrial function by activating the Nrf2 signal pathway.
Collapse
Affiliation(s)
- Zhenyi Liu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Jing Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xiaofei Jin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Ping Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Yanmeng Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Meijuan Yin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xian Ma
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Ziyuan Xin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Yuemou Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xiaohong Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| |
Collapse
|
7
|
Mercan M, Sehirli AO, Gultekin C, Chukwunyere U, Sayiner S, Gencosman S, Cetinel S, Abacioglu N. MESNA (2-Mercaptoethanesulfonate) Attenuates Brain, Heart, and Lung Injury Induced by Carotid Ischemia-Reperfusion in Rats. Niger J Clin Pract 2023; 26:941-948. [PMID: 37635578 DOI: 10.4103/njcp.njcp_654_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background Ischemia-reperfusion (I/R) causes organ dysfunction as a result of the increased formation of various reactive oxygen metabolites, infiltration of inflammatory cells, interstitial edema, cellular dysfunction, and tissue death. Aim The study aimed to investigate the cytoprotective effect of 2-mercaptoethanesulfonate (MESNA) against tissue damage in rats exposed to carotid ischemia-reperfusion. Materials and Methods Twenty-four male Wistar albino rats were divided into four groups (n = 6): sham, carotid I/R, I/R + MESNA (75 mg/kg), and I/R + MESNA (150 mg/kg) groups. To induce ischemia in rats, the carotid arteries were ligated with silk sutures for 10 min; the silk suture was then opened, and 1 h reperfusion was done. MESNA (75 and 150 mg/kg) was administered intraperitoneally 30 min before ischemia-reperfusion. Tissue samples from the animals were taken for histological examination, while the serum levels of some biochemical parameters were utilized to evaluate the systemic alterations. ANOVA and Tukey's post hoc tests were applied with a significance level of 5%. Results The ischemia-reperfusion-induced tissue damage as evidenced by increase in serum levels of alanine transaminase, aspartate aminotransferase, alkaline phosphatase, malondialdehyde, lactate dehydrogenase, and matrix metalloproteinases (MMP-1, -2, -8) was significantly (P < 0.05-0.0001) reversed after treatment with MESNA in a dose-dependent manner. Treatment with MESNA (75 and 150 mg/kg), significantly (P < 0.05-0.0001) decreased the I/R-induced increase in serum tumor necrosis factor-alpha (TNF-α) and Interleukin-1-beta (IL-1 β). Conclusion The results of this study suggest that MESNA has a protective effect on tissues by suppressing cellular responses to oxidants and inflammatory mediators associated with carotid ischemia-reperfusion.
Collapse
Affiliation(s)
- M Mercan
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - A O Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - C Gultekin
- Department of Surgery, Faculty of Veterinary, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - U Chukwunyere
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Gencosman
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Cetinel
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, İstanbul, Türkiye
| | - N Abacioglu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| |
Collapse
|
8
|
Simovic MO, Yang Z, Jordan BS, Fraker TL, Cancio TS, Lucas ML, Cancio LC, Li Y. Immunopathological Alterations after Blast Injury and Hemorrhage in a Swine Model of Prolonged Damage Control Resuscitation. Int J Mol Sci 2023; 24:ijms24087494. [PMID: 37108656 PMCID: PMC10139120 DOI: 10.3390/ijms24087494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Trauma-related hemorrhagic shock (HS) remains a leading cause of death among military and civilian trauma patients. We have previously shown that administration of complement and HMGB1 inhibitors attenuate morbidity and mortality 24 h after injury in a rat model of blast injury (BI) and HS. To further validate these results, this study aimed to develop a swine model and evaluate BI+HS-induced pathophysiology. Anesthetized Yucatan minipigs underwent combined BI and volume-controlled hemorrhage. After 30 min of shock, animals received an intravenous bolus of PlasmaLyte A and a continuous PlasmaLyte A infusion. The survival rate was 80% (4/5), and the non-survivor expired 72 min post-BI. Circulating organ-functional biomarkers, inflammatory biomarkers, histopathological evaluation, and CT scans indicated evidence of multiple-organ damage, systemic innate immunological activation, and local tissue inflammation in the injured animals. Interestingly, a rapid and dramatic increase in plasma levels of HMGB1 and C3a and markedly early myocarditis and encephalitis were associated with early death post-BI+HS. This study suggests that this model reflects the immunopathological alterations of polytrauma in humans during shock and prolonged damage control resuscitation. This experimental protocol could be helpful in the assessment of immunological damage control resuscitation approaches during the prolonged care of warfighters.
Collapse
Affiliation(s)
- Milomir O Simovic
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Zhangsheng Yang
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Bryan S Jordan
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Tamara L Fraker
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Tomas S Cancio
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Michael L Lucas
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Yansong Li
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| |
Collapse
|
9
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
10
|
Yin M, Liu Z, Wang J, Gao W. Buyang Huanwu decoction alleviates oxidative injury of cerebral ischemia-reperfusion through PKCε/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115953. [PMID: 36442760 DOI: 10.1016/j.jep.2022.115953] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is a significant risk factor for human health, and Buyang Huanwu Decoction is a classical and famous Chinese formula for treating it, but without clear pharmacological mechanism. AIM OF THE STUDY The aim of this study was to investigate that the molecular mechanism of BYHWD activation of the PKCε/Nrf2 signaling pathway to attenuate cerebral ischemia-reperfusion (I/R) oxidative damage. MATERIALS AND METHODS The MCAO method was used to establish a brain I/R injury model in SD rats, and neurological deficits were evaluated by neurological function score. Neuronal damage was observed by Nissl staining and immunofluorescence detection of MAP2 expression. Oxidative damage was observed by ROS, SOD, GSH-PX, MDA, and 8-OHdG. Changes in mitochondrial membrane potential were detected by using the fluorescent probe JC-1. The Western blot analysis detected protein expression of PKCε, P-PKCε, total Nrf2, nuclear Nrf2, HO-1, and NQO1. RESULTS BYHWD significantly enhanced neural function, reduced neuronal damage, inhibited the production of ROS, decreased MDA and 8-OHdG levels, increased SOD and GSH-PX activity to reduce oxidative damage, and restored mitochondrial membrane potential. BYHWD and Nrf2 activator TBHQ increased total Nrf2, nucleus Nrf2 protein expression, and its downstream HO-1 and NQO1 proteins, and the administration of the Nrf2 inhibitor brusatol reduced the enhancing effect of BYHWD. Meanwhile, BYHWD increased the expression of PKCε and P-PKCε and the administration of the PKCε inhibitor εV1-2 reduced the effect of BYHWD in increasing the expression of PKCε, P-PKCε, nuclear Nrf2, and HO-1, as well as promoting the effect of Nrf2 translocation to the nucleus. CONCLUSION This study marks the first to demonstrate that BYHWD ameliorates oxidative damage and attenuates brain I/R injury by activating the PKCε/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Meijuan Yin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Zhenyi Liu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Jing Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China; Hebei Medical University, Shijiazhuang, 050017, China.
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
11
|
Yang Z, Nunn MA, Le TD, Simovic MO, Edsall PR, Liu B, Barr JL, Lund BJ, Hill-Pryor CD, Pusateri AE, Cancio LC, Li Y. Immunopathology of terminal complement activation and complement C5 blockade creating a pro-survival and organ-protective phenotype in trauma. Br J Pharmacol 2023; 180:422-440. [PMID: 36251578 PMCID: PMC10100417 DOI: 10.1111/bph.15970] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 09/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic haemorrhage (TH) is the leading cause of potentially preventable deaths that occur during the prehospital phase of care. No effective pharmacological therapeutics are available for critical TH patients yet. Here, we identify terminal complement activation (TCA) as a therapeutic target in combat casualties and evaluate the efficacy of a TCA inhibitor (nomacopan) on organ damage and survival in vivo. EXPERIMENTAL APPROACH Complement activation products and cytokines were analysed in plasma from 54 combat casualties. The correlations between activated complement pathway(s) and the clinical outcomes in trauma patients were assessed. Nomacopan was administered to rats subjected to lethal TH (blast injury and haemorrhagic shock). Effects of nomacopan on TH were determined using survival rate, organ damage, physiological parameters, and laboratory profiles. KEY RESULTS Early TCA was associated with systemic inflammatory responses and clinical outcomes in this trauma cohort. Lethal TH in the untreated rats induced early TCA that correlated with the severity of tissue damage and mortality. The addition of nomacopan to a damage-control resuscitation (DCR) protocol significantly inhibited TCA, decreased local and systemic inflammatory responses, improved haemodynamics and metabolism, attenuated tissue and organ damage, and increased survival. CONCLUSION AND IMPLICATIONS Previous findings of our and other groups revealed that early TCA represents a rational therapeutic target for trauma patients. Nomacopan as a pro-survival and organ-protective drug, could emerge as a promising adjunct to DCR that may significantly reduce the morbidity and mortality in severe TH patients while awaiting transport to critical care facilities.
Collapse
Affiliation(s)
- Zhangsheng Yang
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Tuan D Le
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Milomir O Simovic
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| | - Peter R Edsall
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Bin Liu
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Johnny L Barr
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Brian J Lund
- 59th Medical Wing Operational Medicine, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Anthony E Pusateri
- Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Yansong Li
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| |
Collapse
|
12
|
d-allose protects brain microvascular endothelial cells from hypoxic/reoxygenated injury by inhibiting endoplasmic reticulum stress. Neurosci Lett 2023; 793:137000. [PMID: 36473686 DOI: 10.1016/j.neulet.2022.137000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is an acute brain disease with a high mortality rate. Currently, the only effective method is to restore the blood supply. But the inflammation and oxidative stress induced by this approach can damage the integrity of the endothelial system, which hampers the patient's outcome. d-allose has the biological activity to protect against ischemia-reperfusion injury, however, the underlying mechanism remains unclear. Here, brain microvascular endothelial cells (RBMECs) were used as the study material to establish an IR-injury model. Cell viability of RBMECs was suppressed after hypoxia/reoxygenation (H/R) treatment and significantly increased after d-allose supplementation. RNAseq results showed 180 differentially expressed genes (DEGs) between the therapy group (H/R + Dal) and the model group (H/R), of which 151 DEGs were restored to control levels by d-allose. Enrichment analysis revealed that DEGs were mainly involved in protein processing in endoplasmic reticulum. 6 DEGs in the unfolded protein response (UPR) pathway were verified by qRT-PCR. All of them were significantly down-regulated by d-allose, indicating that endoplasmic reticulum stress (ERS) was relieved. In addition, d-allose significantly inhibited the phosphorylation level of eIF2α, a marker of ERS. The downstream molecules of Phosphorylation of eIF2α, Gadd45a and Chac1, which trigger cycle arrest and apoptosis, respectively, were also significantly inhibited by d-allose. Thus, we conclude that d-allose inhibits the UPR pathway, attenuates eIF2α phosphorylation and ERS, restores the cell cycle, inhibits apoptosis, and thus enhances endothelial cell tolerance to H/R injury.
Collapse
|
13
|
Xu B, Wang C, Chen H, Zhang L, Gong L, Zhong L, Yang J. Protective role of MG53 against ischemia/reperfusion injury on multiple organs: A narrative review. Front Physiol 2022; 13:1018971. [PMID: 36479346 PMCID: PMC9720843 DOI: 10.3389/fphys.2022.1018971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common clinical problem after coronary angioplasty, cardiopulmonary resuscitation, and organ transplantation, which can lead to cell damage and death. Mitsugumin 53 (MG53), also known as Trim72, is a conservative member of the TRIM family and is highly expressed in mouse skeletal and cardiac muscle, with minimal amounts in humans. MG53 has been proven to be involved in repairing cell membrane damage. It has a protective effect on I/R injury in multiple oxygen-dependent organs, such as the heart, brain, lung, kidney, and liver. Recombinant human MG53 also plays a unique role in I/R, sepsis, and other aspects, which is expected to provide new ideas for related treatment. This article briefly reviews the pathophysiology of I/R injury and how MG53 mitigates multi-organ I/R injury.
Collapse
Affiliation(s)
- Bowen Xu
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hongping Chen
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
14
|
Yang Z, Simovic MO, Liu B, Burgess MB, Cap AP, DalleLucca JJ, Li Y. Indices of complement activation and coagulation changes in trauma patients. Trauma Surg Acute Care Open 2022; 7:e000927. [PMID: 36117727 PMCID: PMC9476135 DOI: 10.1136/tsaco-2022-000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Early complementopathy and coagulopathy are shown often after trauma. However, the prevalence of any interplay between complement cascade (ComC) and coagulation cascade (CoaC) after trauma remains unclear. This study intended to explore whether complement-coagulation crosstalk exists, which may provide a reliable guide to clinical implications in trauma patients. Methods This single-center cohort study of trauma patients enrolled 100 patients along with 20 healthy volunteers. Blood samples from patients were collected at admission, 45, 90, 135 minutes, and 18 hours after admission. Demographic characteristics were recorded, blood levels of ComC and CoaC factors, and inflammatory cytokines were measured by ELISA, clot-based assays, or luminex multiplex assay, and partial thromboplastin (PT) and partial thromboplastin time (PTT) were assessed using a Behring blood coagulation system. Results Compared with the healthy controls, plasma levels of complement factors (C5b-9 and Bb) and 11 tested inflammatory cytokines increased in moderately and severely injured patients as early as 45 minutes after admission and sustained higher levels up to 18 hours after admission. C5b-9 correlated positively to patients’ hospital stay. In parallel, the consumption of coagulation factors I, II, X, and XIII was shown throughout the first 18 hours after admission in moderately and severely injured patients, whereas PT, PTT, D-dimer, factor VII, and factor VIII values significantly increased from the admission to 135 minutes in moderately and severely injured patients. Along with an inverse correlation between plasma Bb, factors I and II, a positive correlation between C5b-9, Bb, D-dimer, PT, and PTT was evident. Conclusions This study demonstrates trauma-induced early activation of plasma cascades including ComC, CoaC, and fibrinolytic cascade, and their correlation between plasma cascades in severe trauma patients. Our study suggests that the simultaneous modulation of plasma cascades might benefit clinical outcomes for trauma patients. Level of evidence Prospective study, level III.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Milomir O Simovic
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Bin Liu
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Matthew B Burgess
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Andrew P Cap
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | | | - Yansong Li
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.,Trauma Research, UTHSCSA, San Antonio, Texas, USA.,Geneva Foundation, Tacoma, Washington, USA
| |
Collapse
|
15
|
Nielsen EW, Miller Y, Brekke OL, Grond J, Duong A, Fure H, Ludviksen JK, Pettersen K, Reubsaet L, Solberg R, Johansen HT, Mollnes TE. A Novel Porcine Model of Ischemia-Reperfusion Injury After Cross-Clamping the Thoracic Aorta Revealed Substantial Cardiopulmonary, Thromboinflammatory and Biochemical Changes Without Effect of C1-Inhibitor Treatment. Front Immunol 2022; 13:852119. [PMID: 35432333 PMCID: PMC9010742 DOI: 10.3389/fimmu.2022.852119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic injury worsens upon return of blood and innate immunity including the complement system play a central role in ischemia-reperfusion injury (IRI) as in thoracic aortic surgery. Complement component1 inhibitor (C1-INH) has been shown to reduce IRI and is a broad-acting plasma cascade inhibitor. We established a new porcine model of IRI by cross-clamping the thoracic aorta and evaluated the global changes occurring in organ function, systemic inflammatory response and organ damage with or without treatment with C1-INH-concentrate. Twenty-four piglets (8.8-11.1 kg) underwent 45 minutes clamping of the thoracic aorta at the Th8 level. Upfront 12 piglets received human saline and 12 received C1-INH (250 IU/kg) intravenously. Three sham animals received thoracic opening without clamping. Reperfusion lasted 5 hours. We studied ten cardiorespiratory markers, three hematologic markers, eleven inflammatory markers, and twelve organ damage markers over the whole experimental period. Postmortem tissue homogenates from seven organs were examined for inflammatory markers and analysed by two-way repeated-measures ANOVA, area under the curve or unpaired t-tests. By excluding sham and combining treated and untreated animals, the markers reflected a uniform, broad and severe organ dysfunction. The mean and range fold change from before cross-clamp onset to maximum change for the different groups of markers were: cardiorespiratory 1.4 (0.2-3.7), hematologic 1.9 (1.2-2.7), plasma inflammatory 19.5 (1.4-176) and plasma organ damage 2.9 (1.1-8.6). Treatment with C1-INH had only a marginal effect on the IRI-induced changes, reaching statistical significance only for the plasma complement activation product TCC (p=0.0083) and IL-4 (p=0.022) and INF-α (p=0.016) in the colon tissue. In conclusion, the present novel model of porcine global IRI is forceful with regards to central markers and could generally be applicable for pathophysiological studies. C1-INH treatment had no significant effect, but the model allows for future testing of other drugs attenuating IRI globally.
Collapse
Affiliation(s)
- Erik Waage Nielsen
- Department of Anesthesia and Intensive Care Medicine, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Immunology, Faculty of Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Erik Waage Nielsen,
| | - Yoav Miller
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ole-Lars Brekke
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
- Faculty of Health Sciences, Kristian Gerhard (K.G.) Jebsen Thrombosis Research Center (TREC), UiT The Arctic University of Norway, Tromsø, Norway
| | - Joost Grond
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | | | - Hilde Fure
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | | | | | - Leon Reubsaet
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Rigmor Solberg
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
- Faculty of Health Sciences, Kristian Gerhard (K.G.) Jebsen Thrombosis Research Center (TREC), UiT The Arctic University of Norway, Tromsø, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Liang Z, Chen H, Gong X, Shi B, Lin L, Tao F, Wu Q, Fang M, Li H, Lu C, Xu H, Zhao Y, Chen B. Ultrasound-Induced Destruction of Nitric Oxide-Loaded Microbubbles in the Treatment of Thrombus and Ischemia-Reperfusion Injury. Front Pharmacol 2022; 12:745693. [PMID: 35082664 PMCID: PMC8785684 DOI: 10.3389/fphar.2021.745693] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: Early recanalization of large vessels in thromboembolism, such as myocardial infarction and ischemic stroke, is associated with improved clinical outcomes. Nitric oxide (NO), a biological gas signaling molecule, has been proven to protect against ischemia-reperfusion injury (IRI). However, the underlying mechanisms remain to be explored. This study investigated whether NO could mitigate IRI and the role of NO during acoustic cavitation. Methods: In vivo, thrombi in the iliac artery of rats were induced by 5% FeCl3. NO-loaded microbubbles (NO-MBs) and ultrasound (US) were used to treat thrombi. B-mode and Doppler US and histological analyses were utilized to evaluate the thrombolysis effect in rats with thrombi. Immunohistochemistry, immunofluorescence, and western blotting were conducted to investigate the underlying mechanisms of NO during acoustic cavitation. In vitro, hypoxia was used to stimulate cells, and NO-MBs were employed to alleviate oxidative stress and apoptosis. Results: We developed NO-MBs that significantly improve the circulation time of NO in vivo, are visible, and effectively release therapeutic gas under US. US-targeted microbubble destruction (UTMD) and NO-loaded UTMD (NO + UTMD) caused a significant decrease in the thrombus area and an increase in the recanalization rates and blood flow velocities compared to the control and US groups. We discovered that UTMD induced NO generation through activation of endothelial NO synthase (eNOS) in vivo. More importantly, we also observed significantly increased NO content and eNOS expression in the NO + UTMD group compared to the UTMD group. NO + UTMD can mitigate oxidative stress and apoptosis in the hind limb muscle without influencing blood pressure or liver and kidney functions. In vitro, NO-MBs alleviated oxidative stress and apoptosis in cells pretreated with hypoxia. Conclusion: Based on these data, UTMD affects the vascular endothelium by activating eNOS, and NO exerts a protective effect against IRI.
Collapse
Affiliation(s)
- Zenghui Liang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Chen
- The Office of Drug Clinical Trial Institution, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuehao Gong
- Department of Ultrasound, First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, China
| | - Binbin Shi
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Lin
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyi Tao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qilong Wu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingling Fang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cuitao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Helin Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingzheng Zhao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Ultrasound, First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
17
|
Yu Y, Wang M, Chen R, Sun X, Sun G, Sun X. Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury. J Ginseng Res 2021; 45:642-653. [PMID: 34764719 PMCID: PMC8569261 DOI: 10.1016/j.jgr.2019.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17–induced cardioprotection are also explored. Methods Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Datta S, Fitzpatrick AM, Haykal S. Preservation solutions for attenuation of ischemia-reperfusion injury in vascularized composite allotransplantation. SAGE Open Med 2021; 9:20503121211034924. [PMID: 34367640 PMCID: PMC8312154 DOI: 10.1177/20503121211034924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Vascularized composite allotransplantation represents the final level of the reconstructive ladder, offering treatment options for severe tissue loss and functional deficiencies. Vascularized composite allotransplantation is particularly susceptible to ischemia–reperfusion injury and requires preservation techniques when subjected to extended storage times prior to transplantation. While static cold storage functions to reduce ischemic damage and is widely employed in clinical settings, there exists no consensus on the ideal preservation solution for vascularized composite allotransplantation. This review aims to highlight current clinical and experimental advances in preservation solution development and their critical role in attenuating ischemia–reperfusion injury in the context of vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Shaishav Datta
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Aisling M Fitzpatrick
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Götz P, Braumandl A, Kübler M, Kumaraswami K, Ishikawa-Ankerhold H, Lasch M, Deindl E. C3 Deficiency Leads to Increased Angiogenesis and Elevated Pro-Angiogenic Leukocyte Recruitment in Ischemic Muscle Tissue. Int J Mol Sci 2021; 22:5800. [PMID: 34071589 PMCID: PMC8198161 DOI: 10.3390/ijms22115800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
The complement system is a potent inflammatory trigger, activator, and chemoattractant for leukocytes, which play a crucial role in promoting angiogenesis. However, little information is available about the influence of the complement system on angiogenesis in ischemic muscle tissue. To address this topic and analyze the impact of the complement system on angiogenesis, we induced muscle ischemia in complement factor C3 deficient (C3-/-) and wildtype control mice by femoral artery ligation (FAL). At 24 h and 7 days after FAL, we isolated the ischemic gastrocnemius muscles and investigated them by means of (immuno-)histological analyses. C3-/- mice showed elevated ischemic damage 7 days after FAL, as evidenced by H&E staining. In addition, angiogenesis was increased in C3-/- mice, as demonstrated by increased capillary/muscle fiber ratio and increased proliferating endothelial cells (CD31+/BrdU+). Moreover, our results showed that the total number of leukocytes (CD45+) was increased in C3-/- mice, which was based on an increased number of neutrophils (MPO+), neutrophil extracellular trap formation (MPO+/CitH3+), and macrophages (CD68+) displaying a shift toward an anti-inflammatory and pro-angiogenic M2-like polarized phenotype (CD68+/MRC1+). In summary, we show that the deficiency of complement factor C3 increased neutrophil and M2-like polarized macrophage accumulation in ischemic muscle tissue, contributing to angiogenesis.
Collapse
Affiliation(s)
- Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anna Braumandl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Matthias Kübler
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Konda Kumaraswami
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Hellen Ishikawa-Ankerhold
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Department of Internal Medicine I, Faculty of Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Transdermal System Based on Solid Cilostazol Nanoparticles Attenuates Ischemia/Reperfusion-Induced Brain Injury in Mice. NANOMATERIALS 2021; 11:nano11041009. [PMID: 33920878 PMCID: PMC8071240 DOI: 10.3390/nano11041009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022]
Abstract
Cilostazol (CIL) exerted a protective effect by promoting blood-brain barrier integrity as well as improving the status of neurological dysfunctions following cerebral ischemia/reperfusion (I/R) injury. We attempted to design a 0.5% CIL carbopol gel using solid nanoparticles (CIL-Ngel), and then investigated the relationships between energy-dependent endocytosis and the skin penetration of CIL-Ngel in this study. In addition, we evaluated whether the CIL-Ngel attenuated I/R-induced brain injury in a middle cerebral artery occlusion (MCAO)/reperfusion model mouse. The particle size of CIL was decreased using a bead mill, and the CIL particles (14.9 × 1014 particles/0.3 g) in the CIL-Ngel were approximately 50-180 nm. The release of CIL in the CIL-Ngel was higher than that in gel containing CIL powder (CIL-Mgel), and the CIL particles were released from the CIL-Ngel as nanoparticles. In addition, the percutaneous absorption of CIL from the CIL-Ngel was higher in comparison with that from CIL-Mgel, and clathrin-dependent endocytosis and caveolae-dependent endocytosis were related to the enhanced skin penetration of CIL-NPs. In the traditional (oral administration of CIL powder, 3 mg/kg) and transdermal administration (CIL-Ngel, 0.3 g) for 3 days (once a day), the area under the plasma CIL concentration-time curves (AUC) was similar, although the CIL supplied to the blood by the CIL-Ngel was more sustained than that via oral administration of CIL powder. Furthermore, the CIL-Ngel attenuated the ischemic stroke. In conclusion, we designed a gel using solid CIL-NPs, and we showed that the sustained release of CIL by CIL-Ngel provided an effective treatment for ischemic stroke in MCAO/reperfusion model mice. These findings induce the possibilities of developing novel applications of CIL solid nanoparticles.
Collapse
|
21
|
Zhong J, Sun Y, Han Y, Chen X, Li H, Ma Y, Lai Y, Wei G, He X, Li M, Liao W, Liao Y, Cao S, Bin J. Hydrogen sulfide-loaded microbubbles combined with ultrasound mediate thrombolysis and simultaneously mitigate ischemia-reperfusion injury in a rat hindlimb model. J Thromb Haemost 2021; 19:738-752. [PMID: 32979007 PMCID: PMC7986145 DOI: 10.1111/jth.15110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thromboembolism and subsequent ischemia/reperfusion injury (IRI) remain major clinical challenges. OBJECTIVES To investigate whether hydrogen sulfide (H2 S)-loaded microbubbles (hs-Mbs) combined with ultrasound (US) radiation (hs-Mbs+US) dissolve thrombi and simultaneously alleviate tissue IRI through local H2 S release. METHODS hs-Mbs were manufactured and US-triggered H2 S release was recorded. White and red thromboembolisms were established ex vivo and in rats left iliac artery. All subjects randomly received control, US, Mbs+US, or hs-Mbs+US treatment for 30 minutes. RESULTS H2 S was released from hs-Mbs+US both ex vivo and in vivo. Compared with control and US, hs-Mbs+US and Mbs+US showed comparable substantial decreases in thrombotic area, clot mass, and flow velocity increases for both ex vivo macrothrombi. In vivo, hs-Mbs+US and Mbs+US caused similarly increased recanalization rates, blood flow velocities, and hindlimb perfusion for both thrombi compared with the other treatments, with no obvious influence on hemodynamics, respiration, and macrophage vitality. More importantly, hs-Mbs+US substantially alleviated skeletal muscle IRI by reducing reactive oxygen species, cellular apoptosis, and proapoptotic Bax, caspase-3, and caspase-9 and increasing antiapoptotic Bcl-2 compared with other treatments. In vitro, hypoxia/reoxygenation-predisposed skeletal muscle cells and endothelial cells treated with normal saline solution exhibited similar trends, which were largely reversed by an H2 S scavenger or an inhibitor of Akt phosphorylation. CONCLUSION hs-Mbs+US effectively dissolved both white and red macrothrombi and simultaneously alleviated skeletal muscle IRI through the US-triggered, organ-specific release of H2 S. This integrated therapeutic strategy holds promise for treating thromboembolic diseases and subsequent IRI.
Collapse
Affiliation(s)
- Jiayuan Zhong
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of CardiologyLiuzhou People's HospitalLiuzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| | - Yili Sun
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| | - Yuan Han
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| | - Xiaoqiang Chen
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hairui Li
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yusheng Ma
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanxian Lai
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guoquan Wei
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiang He
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mengsha Li
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wangjun Liao
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yulin Liao
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shiping Cao
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| | - Jianping Bin
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhouChina
| |
Collapse
|
22
|
Jian H, Zhang C, Qi Z, Li X, Lou Y, Kang Y, Deng W, Lv Y, Wang C, Wang W, Shang S, Hou M, Zhou H, Feng S. Alteration of mRNA 5-Methylcytosine Modification in Neurons After OGD/R and Potential Roles in Cell Stress Response and Apoptosis. Front Genet 2021; 12:633681. [PMID: 33613646 PMCID: PMC7887326 DOI: 10.3389/fgene.2021.633681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications play an important role in central nervous system disorders. As a widespread posttranscriptional RNA modification, the role of the m5C modification in cerebral ischemia-reperfusion injury (IRI) remains poorly defined. Here, we successfully constructed a neuronal oxygen-glucose deprivation/reoxygenation (OGD/R) model and obtained an overview of the transcriptome-wide m5C profiles using RNA-BS-seq. We discovered that the distribution of neuronal m5C modifications was highly conserved, significantly enriched in CG-rich regions and concentrated in the mRNA translation initiation regions. After OGD/R, modification level of m5C increased, whereas the number of methylated mRNA genes decreased. The amount of overlap of m5C sites with the binding sites of most RNA-binding proteins increased significantly, except for that of the RBM3-binding protein. Moreover, hypermethylated genes in neurons were significantly enriched in pathological processes, and the hub hypermethylated genes RPL8 and RPS9 identified by the protein-protein interaction network were significantly related to cerebral injury. Furthermore, the upregulated transcripts with hypermethylated modification were enriched in the processes involved in response to stress and regulation of apoptosis, and these processes were not identified in hypomethylated transcripts. In final, we verified that OGD/R induced neuronal apoptosis in vitro using TUNEL and western blot assays. Our study identified novel m5C mRNAs associated with ischemia-reperfusion in neurons, providing valuable perspectives for future studies on the role of the RNA methylation in cerebral IRI.
Collapse
Affiliation(s)
- Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Chi Zhang
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - ZhangYang Qi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueying Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Weimin Deng
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaoyu Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Shenghui Shang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D, Xie Z, Zeng J, Xu K, Shen J, Zhou H, Weng Y, Pan J, Zhan R. PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging (Albany NY) 2021; 13:3405-3427. [PMID: 33495405 PMCID: PMC7906217 DOI: 10.18632/aging.202272] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia/reperfusion (IR) after ischemic stroke causes deleterious microglial activation. Protein tyrosine phosphatase 1B (PTP1B) exacerbates neuroinflammation, yet the effect of the inhibition on microglial activation and cerebral IR injury is unknown. A cerebral IR rat model was induced by middle cerebral artery occlusion (MCAO) and reperfusion. The PTP1B inhibitor, sc-222227, was administered intracerebroventricularly. Neurologic deficits, infarct volume, and brain water content were examined. An in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model was established in primary microglia and BV-2 cells. Microglial activation/polarization, endoplasmic reticulum (ER) stress, autophagy, and apoptosis were detected using western blot, immunohistology, ELISA, and real-time PCR. Protein interaction was assessed by a proximity ligation assay. The results showed a significant increase in microglial PTP1B expression after IR injury. Sc-222227 attenuated IR-induced microglial activation, ER stress, and autophagy and promoted M2 polarization. Upon OGD/R, sc-222227 mitigated microglial activation by inhibiting ER stress-dependent autophagy, the effect of which was abolished by PERK activation, and PERK inhibition attenuated microglial activation. The PTP1B-phosphorylated PERK protein interaction was significantly increased after OGD/R, but decreased upon sc-222227 treatment. Finally, sc-222227 mitigated neuronal damage and neurologic deficits after IR injury. Treatment targeting microglial PTP1B might be a potential therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianbo Yu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jiangbiao Gong
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jie Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Di Ye
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dexin Cheng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhikai Xie
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianping Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Kangli Xu
- Emergency Department Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yuxiang Weng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
24
|
Matveev DV, Kuznetsov MR, Matveev AD, Evteev AV, Fedorov EE. [Reperfusion syndrome: state of the art]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:176-183. [PMID: 33332321 DOI: 10.33529/angio2020421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reperfusion syndrome is a complex series of clinical manifestations resulting from restoration of blood flow to previously ischaemic tissues. It is accompanied by damage to cells, tissues and organs at various levels, followed by the development of multiple organ failure. This review deals with the main pathophysiological mechanisms of the development of reperfusion syndrome in lesions of cardiac, cerebral and lower-limb vessels. Oxidative stress is considered to be the most important marker of ischaemia-reperfusion injury irrespective of the type of tissues affected. Presented herein are the data on contemporary possibilities of influencing various stages and components of the development of reperfusion injury by means of drug therapy, demonstrating that due to the importance of oxidative stress as a key link of reperfusion injury, antioxidant therapy should be the main component of prevention and treatment of reperfusion injury.
Collapse
Affiliation(s)
- D V Matveev
- Department of Surgery, Russian Medical Academy of Continuous Professional Education, RF Ministry of Public Health, Moscow, Russia
| | - M R Kuznetsov
- Institute of Cluster Oncology named after L.L. Levshin, I.M. Sechenov First Moscow Medical University, Moscow, Russia
| | - A D Matveev
- Department of Surgery, Russian Medical Academy of Continuous Professional Education, RF Ministry of Public Health, Moscow, Russia
| | - A V Evteev
- Scientific Company "Flamena", Reutov, Moscow Region, Russia
| | - E E Fedorov
- Surgical Department #1, Municipal Clinical Hospital #29 named after N.E. Bauman, Moscow, Russia
| |
Collapse
|
25
|
Cao Y, Pan L, Zhang X, Guo W, Huang D. LncRNA SNHG3 promotes autophagy-induced neuronal cell apoptosis by acting as a ceRNA for miR-485 to up-regulate ATG7 expression. Metab Brain Dis 2020; 35:1361-1369. [PMID: 32860611 DOI: 10.1007/s11011-020-00607-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are bound up with various human diseases. However, their roles in brain ischemia-reperfusion (I/R) injury remain largely unknown. This study aimed to reveal the potential mechanism of LncRNA SNHG3 on autophagy-induced neuronal cell apoptosis in the brain I/R injury. LncRNA SNHG3 and miR-485 or autophagy markers LC3II/I and Beclin-1 expressions were detected by qRT-PCR or Western blot and the apoptosis of N2a cells was analyzed by flow cytometry. Besides, the interactions between LncRNA SNHG3 and miR-485, miR-485 and ATG7 were validated by RNA pull-down and dual-luciferase reporter system assays. After the Oxygen and Glucose Deprivation (OGD) treatment of N2a cells transfected with pcDNA-SNHG3, pcDNA-SNHG3 + miR-485 mimic for 6 h, 1 mM autophagy inhibitor 3-MA was added and reoxygenated for 24 h, the effect of LncRNA SNHG3 on the autophagy-induced neuronal cell apoptosis was measured by Western blot and flow cytometry. LncRNA SNHG3 was highly expressed in the mouse model of transient middle cerebral artery occlusion and cell model of Oxygen and Glucose Deprivation/Reperfusion, while miR-485 was lowly expressed. Furthermore, miR-485 negatively regulated the luciferase activities of LncRNA SNHG3 and ATG7. After the OGD treatment of N2a cells transfected with pcDNA-SNHG3, pcDNA-SNHG3 + miR-485 mimic for 6 h, 1 mM 3-MA was added and reoxygenated for 24 h, the overexpression of LncRNA SNHG3 raised the ratio of LC3-II/LC3-I and Beclin-1 expression and boosted the apoptosis of N2a cells, while these effects were reversed after the transfection of miR-485 mimic. In general, our data expounded that the interference with LncRNA SNHG3 improved brain I/R injury by up-regulating miR-485 and down-regulating ATG7 to restrain autophagy and neuronal cell apoptosis.
Collapse
Affiliation(s)
- Yanbin Cao
- Department of Neurosurgery, Weihai municipal hospital, Weihai, Shandong, China
| | - Lihua Pan
- Department of Neurosurgery, Weihai municipal hospital, Weihai, Shandong, China
| | - Xuejun Zhang
- Department of Neurosurgery, Weihai municipal hospital, Weihai, Shandong, China
| | - Wenbin Guo
- Department of Neurosurgery, Weihai municipal hospital, Weihai, Shandong, China
| | - Dezhang Huang
- Department of Neurosurgery, Qilu Hospital (Qingdao), Cheeloo college of Medicine, Shandong University, No.758 Hefei Road, Qingdao, 266035, Shandong Province, China.
| |
Collapse
|
26
|
Pan Y, Fu M, Chen X, Guo J, Chen B, Tao X. Dietary methionine restriction attenuates renal ischaemia/reperfusion-induced myocardial injury by activating the CSE/H2S/ERS pathway in diabetic mice. J Cell Mol Med 2020; 24:9890-9897. [PMID: 32790060 PMCID: PMC7520309 DOI: 10.1111/jcmm.15578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022] Open
Abstract
Methionine restrictive diet may alleviate ischaemia/reperfusion (I/R)‐induced myocardial injury, but its underlying mechanism remains unclear. HE staining was performed to evaluate the myocardial injury caused by I/R and the effect of methionine‐restricted diet (MRD) in I/R mice. IHC and Western blot were carried out to analyse the expression of CSE, CHOP and active caspase3 in I/R mice and hypoxia/reoxygenation (H/R) cells. TUNEL assay and flow cytometry were used to assess the apoptotic status of I/R mice and H/R cells. MTT was performed to analyse the proliferation of H/R cells. H2S assay was used to evaluate the concentration of H2S in the myocardial tissues and peripheral blood of I/R mice. I/R‐induced mediated myocardial injury and apoptosis were partially reversed by methionine‐restricted diet (MRD) via the down‐regulation of CSE expression and up‐regulation of CHOP and active caspase3 expression. The decreased H2S concentration in myocardial tissues and peripheral blood of I/R mice was increased by MRD. Accordingly, in a cellular model of I/R injury established with H9C2 cells, cell proliferation was inhibited, cell apoptosis was increased, and the expressions of CSE, CHOP and active caspase3 were dysregulated, whereas NaHS treatment alleviated the effect of I/R injury in H9C2 cells in a dose‐dependent manner. This study provided a deep insight into the mechanism underlying the role of MRD in I/R‐induced myocardial injury.
Collapse
Affiliation(s)
- Yuanyuan Pan
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Minghuan Fu
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaohan Chen
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Guo
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Biao Chen
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xuefei Tao
- Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
27
|
Wilbs J, Kong XD, Middendorp SJ, Prince R, Cooke A, Demarest CT, Abdelhafez MM, Roberts K, Umei N, Gonschorek P, Lamers C, Deyle K, Rieben R, Cook KE, Angelillo-Scherrer A, Heinis C. Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs. Nat Commun 2020; 11:3890. [PMID: 32753636 PMCID: PMC7403315 DOI: 10.1038/s41467-020-17648-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Inhibiting thrombosis without generating bleeding risks is a major challenge in medicine. A promising solution may be the inhibition of coagulation factor XII (FXII), because its knock-out or inhibition in animals reduced thrombosis without causing abnormal bleeding. Herein, we have engineered a macrocyclic peptide inhibitor of activated FXII (FXIIa) with sub-nanomolar activity (Ki = 370 ± 40 pM) and a high stability (t1/2 > 5 days in plasma), allowing for the preclinical evaluation of a first synthetic FXIIa inhibitor. This 1899 Da molecule, termed FXII900, efficiently blocks FXIIa in mice, rabbits, and pigs. We found that it reduces ferric-chloride-induced experimental thrombosis in mice and suppresses blood coagulation in an extracorporeal membrane oxygenation (ECMO) setting in rabbits, all without increasing the bleeding risk. This shows that FXIIa activity is controllable in vivo with a synthetic inhibitor, and that the inhibitor FXII900 is a promising candidate for safe thromboprotection in acute medical conditions.
Collapse
Affiliation(s)
- Jonas Wilbs
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xu-Dong Kong
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Simon J Middendorp
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Raja Prince
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, University of Bern, CH-3008, Bern, Switzerland
| | - Alida Cooke
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Caitlin T Demarest
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Mai M Abdelhafez
- Department of Clinical Research, University of Bern, CH-3008, Bern, Switzerland
| | - Kalliope Roberts
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Nao Umei
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Patrick Gonschorek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Christina Lamers
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Kaycie Deyle
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Robert Rieben
- Department of Clinical Research, University of Bern, CH-3008, Bern, Switzerland
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anne Angelillo-Scherrer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, University of Bern, CH-3008, Bern, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
28
|
Lung T, Sakem B, Risch L, Würzner R, Colucci G, Cerny A, Nydegger U. The complement system in liver diseases: Evidence-based approach and therapeutic options. J Transl Autoimmun 2019; 2:100017. [PMID: 32743505 PMCID: PMC7388403 DOI: 10.1016/j.jtauto.2019.100017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Complement is usually seen to largely originate from the liver to accomplish its tasks systemically - its return to the production site has long been underestimated. Recent progress in genomics, therapeutic effects on complement, standardised possibilities in medical laboratory tests and involvement of complosome brings the complement system with its three major functions of opsonization, cytolysis and phagocytosis back to liver biology and pathology. The LOINC™ system features 20 entries for the C3 component of complement to anticipate the application of artificial intelligence data banks algorythms of which are fed with patient-specific data connected to standard lab assays for liver function. These advancements now lead to increased vigilance by clinicians. This reassessment article will further elucidate the distribution of synthesis sites to the three germ layer-derived cell systems and the role complement now known to play in embryogenesis, senescence, allotransplantation and autoimmune disease. This establishes the liver as part of the gastro-intestinal system in connection with nosological entities never thought of, such as the microbiota-liver-brain axis. In neurological disease etiology infectious and autoimmune hepatitis play an important role in the context of causative viz reactive complement activation. The mosaic of autoimmunity, i.e. multiple combinations of the many factors producing varying clinical pictures, leads to the manifold facets of liver autoimmunity.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Lagerstrasse 30, CH-9470, Buchs, Switzerland
| | - Benjamin Sakem
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Reinhard Würzner
- Medical University Innsbruck, Division of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Giuseppe Colucci
- Clinica Luganese Moncucco, Lugano, Via Moncucco, CH-6900, Lugano, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Andreas Cerny
- Epatocentro Ticino, Via Soldino 5, CH-6900, Lugano, Switzerland
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| |
Collapse
|
29
|
Rezaei M, Figueroa B, Orfahli LM, Ordenana C, Brunengraber H, Dasarathy S, Rampazzo A, Bassiri Gharb B. Composite Vascularized Allograft Machine Preservation: State of the Art. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00263-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Liu L, Chen H, Jin J, Tang Z, Yin P, Zhong D, Li G. Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci 2019; 239:117036. [PMID: 31697951 DOI: 10.1016/j.lfs.2019.117036] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
AIMS Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury. Sirtuin3(SIRT3), as one member of the sirtuin family, protects against oxidative stress-related diseases. However, the association between melatonin and SIRT3 in cerebral I/R injury is not well understood. Our experiment was planned to investigate whether melatonin protects against cerebral I/R injury through SIRT3 activation. MAIN METHODS We selected transient middle cerebral artery occlusion (tMCAO) mice as the model of cerebral I/R injury. Male C57/BL6 mice were pre-treated with or without a selective SIRT3 inhibitor and then subjected to tMCAO surgery. Melatonin (20 mg/kg) was given to mice by intraperitoneal injection after ischemia and before reperfusion. Then, we observed the changes in the SIRT3 and downstream relative proteins, infarction volume, neurological score, Nissl, H&E and TUNEL staining, and the expression of apoptosis proteins after tMCAO. KEY FINDINGS Melatonin upregulated the expression of SIRT3 after tMCAO, and alleviated the neurological dysfunction and cell apoptosis through SIRT3 activation. SIGNIFICANCE Our research proved that melatonin promoted SIRT3 expression after tMCAO and alleviated cerebral I/R injury by activating the SIRT3 signaling pathway. This study provides novel therapeutic targets and mechanisms for the treatment of ischemic stroke in the clinic, especially during cerebrovascular reperfusion.
Collapse
Affiliation(s)
- Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Jing Jin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Zhanbin Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Pengqi Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China.
| |
Collapse
|
31
|
Hes1 Knockdown Exacerbates Ischemic Stroke Following tMCAO by Increasing ER Stress-Dependent Apoptosis via the PERK/eIF2α/ATF4/CHOP Signaling Pathway. Neurosci Bull 2019; 36:134-142. [PMID: 31309426 DOI: 10.1007/s12264-019-00411-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Apoptosis induced by endoplasmic reticulum (ER) stress plays a crucial role in mediating brain damage after ischemic stroke. Recently, Hes1 (hairy and enhancer of split 1) has been implicated in the regulation of ER stress, but whether it plays a functional role after ischemic stroke and the underlying mechanism remain unclear. In this study, using a mouse model of ischemic stroke via transient middle cerebral artery occlusion (tMCAO), we found that Hes1 was induced following brain injury, and that siRNA-mediated knockdown of Hes1 increased the cerebral infarction and worsened the neurological outcome, suggesting that Hes1 knockdown exacerbates ischemic stroke. In addition, mechanistically, Hes1 knockdown promoted apoptosis and activated the PERK/eIF2α/ATF4/CHOP signaling pathway after tMCAO. These results suggest that Hes1 knockdown promotes ER stress-induced apoptosis. Furthermore, inhibition of PERK with the specific inhibitor GSK2606414 markedly attenuated the Hes1 knockdown-induced apoptosis and the increased cerebral infarction as well as the worsened neurological outcome following tMCAO, implying that the protection of Hes1 against ischemic stroke is associated with the amelioration of ER stress via modulating the PERK/eIF2α/ATF4/CHOP signaling pathway. Taken together, these results unveil the detrimental role of Hes1 knockdown after ischemic stroke and further relate it to the regulation of ER stress-induced apoptosis, thus highlighting the importance of targeting ER stress in the treatment of ischemic stroke.
Collapse
|
32
|
Li T, Yu SS, Zhou CY, Wang K, Wan YC. MicroRNA-206 inhibition and activation of the AMPK/Nampt signalling pathway enhance sevoflurane post-conditioning-induced amelioration of myocardial ischaemia/reperfusion injury. J Drug Target 2019; 28:80-91. [PMID: 31092059 DOI: 10.1080/1061186x.2019.1616744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Shan-Shan Yu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chang-Yu Zhou
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Ying-Chun Wan
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
33
|
Nan D, Jin H, Deng J, Yu W, Liu R, Sun W, Huang Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress. FASEB J 2019; 33:10152-10164. [PMID: 31184927 DOI: 10.1096/fj.201900326r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress is essential for brain ischemia/reperfusion (I/R) injury. However, whether it contributes to I/R-induced blood-brain barrier (BBB) injury remains unclear. cilostazol exerts protective effects toward I/R-induced BBB injury, with unclear mechanisms. This study explored the potential role of ER stress in I/R-induced endothelial cell damage and determined whether the therapeutic potential of cilostazol, with respect to I/R-induced endothelial cell damage, is related to inhibition of ER stress. We found that exposing brain endothelial cells (bEnd.3) to oxygen-glucose deprivation/reoxygenation (OGD/R) significantly activated ER stress and diminished the barrier function of cell monolayers; treatment with the ER stress inhibitor 4-phenylbutyric acid (4-PBA) or cilostazol prevented OGD/R-induced ER stress and preserved barrier function. Furthermore, OGD/R induced the expression and secretion of matrix metalloproteinase-9 and nuclear translocation of phosphorylated NF-κB. These changes were partially reversed by 4-PBA or cilostazol treatment. In vivo, 4-PBA or cilostazol significantly attenuated I/R-induced ER stress and ameliorated Evans blue leakage and tight junction loss. These results demonstrate that I/R-induced ER stress participates in BBB disruption. Targeting ER stress could be a useful strategy to protect the BBB from ischemic stroke, and cilostazol is a promising therapeutic agent for this process.-Nan, D., Jin, H., Deng, J., Yu, W., Liu, R., Sun, W., Huang, Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
34
|
Intrinsic Effects of Gold Nanoparticles on Oxygen-Glucose Deprivation/Reperfusion Injury in Rat Cortical Neurons. Neurochem Res 2019; 44:1549-1566. [PMID: 31093902 DOI: 10.1007/s11064-019-02776-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/14/2023]
Abstract
This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
Collapse
|
35
|
Yang Z, Aderemi OA, Zhao Q, Edsall PR, Simovic MO, Lund BJ, Espinoza MD, Woodson AM, Li Y, Cancio LC. Early Complement and Fibrinolytic Activation in a Rat Model of Blast-Induced Multi-Organ Damage. Mil Med 2019; 184:282-290. [DOI: 10.1093/milmed/usy412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
Abstract
Objective
Blast injury is associated with multi-organ failure (MOF), causing significant morbidity and mortality in trauma patients. However, the pathogenesis of blast-induced MOF still remains obscure. In this study, we evaluate the pathophysiological changes related to blast-induced MOF in a clinically relevant rat model of blast injury.
Methods
A moderate blast overpressure was applied to induce injury in anesthetized rats. Pathological changes were evaluated by H&E staining. Complement activation, plasminogen, and myeloperoxidase levels were analyzed by complement hemolytic assay (CH50) and/or ELISA in blood samples.
Results
Analysis of lung, brain, and liver tissue at 24 hour after blast overpressure revealed severe injuries. The level of complement components C3 and C1q decreased in parallel with the reduction of CH50 level in injured animals at 1, 3, and 6 hours after blast. Consumption of plasminogen was also detected as early as 1 hour post-injury. Myeloperoxidase levels were elevated within 1 hour of blast injury.
Conclusion
Our data reveal that blast injury triggers the complement and fibrinolytic systems, which likely contribute to blast-induced MOF. Conceivably, therapies that target these systems early may improve clinical outcomes in blast patients.
Collapse
Affiliation(s)
- Zhangsheng Yang
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Olawale A Aderemi
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Qingwei Zhao
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Peter R Edsall
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Milomir O Simovic
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Brian J Lund
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Mark D Espinoza
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Amber M Woodson
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Yansong Li
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| | - Leopoldo C Cancio
- U.S. Army Institute of Surgical Research, 3698 Chambers Pass Road, Joint Base San Antonio, Fort Sam Houston, TX
| |
Collapse
|
36
|
Ghoz N, Elalfy M, Said D, Dua H. Healing of autologous conjunctival grafts in pterygium surgery. Acta Ophthalmol 2018; 96:e979-e988. [PMID: 30156059 DOI: 10.1111/aos.13794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/24/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE To temporally study the healing of conjunctival autografts in consecutive patients following pterygium surgery. METHODS A case-cohort observational study. Thirty-two eyes of 28 patients who underwent pterygium surgery were included. All eyes had pterygium excision with conjunctival autografts. Twenty-seven eyes of 24 patients underwent excision of primary pterygium while five eyes of four patients had surgery for recurrent pterygium. All grafts were attached using fibrin glue. Mitomycin-C 0.04% was used intraoperatively in 25 eyes. All eyes were followed up at 1, 2, 4, 8, 12 weeks and 6 months postoperatively. Photographs were taken at each visit to monitor graft vessels, re-perfusion and healing. Main outcome measures were graft loss; re-perfusion of grafts and appearance and resolution of oedema, transudation and haemorrhage; approximation of graft edges to host bed and changes at donor site. RESULTS No graft tissue was lost. In all eyes, healing of autografts started with graft swelling due to oedema and transudation followed by re-perfusion injury, which manifested as swelling, variable vessels calibre, patchy or diffuse haemorrhage occurring within first week and resolving by fourth postoperative week. Graft vessels anastomose with vessels in surrounding conjunctiva and underlying episclera to re-establish blood circulation. Retraction of graft edges from surrounding conjunctiva was uncommon with rapid epithelialization of exposed (epi)sclera. CONCLUSION Conjunctival autografts in pterygium surgery follow a consistent healing pattern dominated by re-perfusion injury in early postoperative days. This produces dramatic changes in the autograft for which patients should be counselled before surgery. Conjunctival autografts are not at risk of falling off, losing epithelial cover or undergoing necrosis.
Collapse
Affiliation(s)
- Noha Ghoz
- Academic Section of Ophthalmology; Division of Clinical Neuroscience; University of Nottingham; Nottingham UK
- Department of Ophthalmology; Nottingham University Hospitals; NHS Trust; Nottingham UK
| | - Mohamed Elalfy
- Academic Section of Ophthalmology; Division of Clinical Neuroscience; University of Nottingham; Nottingham UK
- Department of Ophthalmology; Nottingham University Hospitals; NHS Trust; Nottingham UK
| | - Dalia Said
- Academic Section of Ophthalmology; Division of Clinical Neuroscience; University of Nottingham; Nottingham UK
- Department of Ophthalmology; Nottingham University Hospitals; NHS Trust; Nottingham UK
| | - Harminder Dua
- Academic Section of Ophthalmology; Division of Clinical Neuroscience; University of Nottingham; Nottingham UK
- Department of Ophthalmology; Nottingham University Hospitals; NHS Trust; Nottingham UK
| |
Collapse
|
37
|
Haugaard SF, Jeppesen AN, Troldborg A, Kirkegaard H, Thiel S, Hvas AM. The complement lectin pathway after cardiac arrest. Scand J Immunol 2018; 88:e12680. [PMID: 29885250 DOI: 10.1111/sji.12680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
Abstract
The lectin pathway (LP) of the complement system may initiate inflammatory reactions when body tissue is altered. We aimed to investigate the levels of the LP proteins in out-of-hospital cardiac arrest patients, and to compare these with healthy individuals. Furthermore, we aimed to clarify whether the duration of targeted temperature management influenced LP protein levels, and we further examined whether LP proteins were associated with 30-day mortality. We included 82 patients resuscitated from out-of-hospital cardiac arrest. The patients were randomly assigned to 24 or 48 hours of targeted temperature management at 33 ± 1°C. Blood samples were obtained 22, 46 and 70 hours after target temperature was reached. Levels of the LP proteins (mannan-binding lectin [MBL], M-ficolin, H-ficolin, collectin liver 1 [CL-L1], MBL-associated serine protease 1 [MASP-1], MASP-2, MASP-3 and MBL-associated protein of 44 kDa [MAp44]) were measured using time-resolved immunofluorometric assays. Data from 82 gender matched healthy individuals were used for comparison. Levels of CL-L1, MASP-1, MASP-2 and MAp44 were significantly higher, whereas M-ficolin levels were significantly lower in cardiac arrest patients compared with healthy individuals. MASP-2, MASP-3 and M-ficolin levels changed significantly when comparing 24 and 48 hours of targeted temperature management. The LP protein levels were not different between 30-day survivors and non-survivors after cardiac arrest. The differences in LP protein levels between patients and healthy individuals may indicate that cardiac arrest patients have an activated LP. Overall, the LP protein levels were not influenced by the duration of targeted temperature management, and the levels were not associated with 30-day mortality.
Collapse
Affiliation(s)
- S F Haugaard
- Department of Clinical Biochemistry, Centre for Hemophilia and Thrombosis, Aarhus University Hospital, Aarhus, Denmark
| | - A N Jeppesen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - A Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - H Kirkegaard
- Research Centre for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - S Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - A-M Hvas
- Department of Clinical Biochemistry, Centre for Hemophilia and Thrombosis, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
38
|
Zhang W, Sun Z, Meng F. Schisandrin B Ameliorates Myocardial Ischemia/Reperfusion Injury Through Attenuation of Endoplasmic Reticulum Stress-Induced Apoptosis. Inflammation 2018; 40:1903-1911. [PMID: 28748322 DOI: 10.1007/s10753-017-0631-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schisandrin B (Sch B), an active composition isolated from the fruit of Schisandra chinensis, has been proved to possess antiinflammatory, antioxidant and anti-endoplasmic reticulum (ER) stress effects in many rodent tissues. However, the exact mechanism of cardioprotective effect of Sch B still needs more study. Here, we detected the effects of Sch B on myocardial ischemia/reperfusion (I/R) injury rats. I/R injury model in this study was established by left anterior descending coronary artery ligation for 40 min followed by 1 h of reperfusion. Male healthy rats were randomly divided into five groups: the sham, I/R, Sch B (20 mg/kg) + I/R, and Sch B (40 mg/kg) + I/R, Sch B (80 mg/kg) + I/R, with 10 rats in each group. We showed that Sch B treatment significantly protected against myocardial I/R injury, as demonstrated by the decrease in the percentage of infarct formation assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining in representative heart tissue slices, comparing with the I/R control group. The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), and total superoxide dismutase (T-SOD) were tested. The ER stress-related proteins such as C/EBP homologous protein (CHOP), activating transcription factor 6 (ATF6), and (PKR)-like ER kinase (PERK) were further measured by western blot, and their messenger RNA levels were measured by real-time PCR. The apoptosis of heart tissue cells was also tested through the expressions of caspase-9, caspase-3, Bcl-2, and Bax proteins. Collectively, these results revealed that Sch B exerts protection role on myocardial I/R injury through decreasing oxidative reaction, suppressing ATF6 and PERK pathway, and attenuating ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Electrocardiogram, Linyi People's Hospital, No. 49 Yizhou Road, Linyi, 276000, Shandong, People's Republic of China
| | - Zhiqing Sun
- Department of Neurology, Linyi People's Hospital, No. 49 Yizhou Road, Linyi, 276000, Shandong, People's Republic of China
| | - Fanhua Meng
- Department of Nerve Electrophysiology Room, Linyi People's Hospital, No. 49 Yizhou Road, Linyi, 276000, Shandong, People's Republic of China.
| |
Collapse
|
39
|
Mokhtari‐Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J Cell Physiol 2018; 234:214-222. [DOI: 10.1002/jcp.26848] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Amin Mokhtari‐Zaer
- Department of Physiology School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Narges Marefati
- Department of Physiology School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
40
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
41
|
Ischemia/reperfusion injury in vascularized tissue allotransplantation: tissue damage and clinical relevance. Curr Opin Organ Transplant 2017; 21:503-9. [PMID: 27495915 DOI: 10.1097/mot.0000000000000343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW Ischemia and reperfusion injury (IRI) in vascularized tissue allotransplantation (VCA) remain largely undefined. Because VCA is comprised of different tissues, the sensitivity towards IRI may not be uniform. We, herein, attempt to address mechanistic aspects of IRI in VCA and provide a summary on potential technologies and targets for amelioration or treatment of IRI in this novel field. RECENT FINDINGS IRI results in a loosened architecture of musculature, hypertrophic, centrally located cell nuclei as well as a high degree of neovascularization. Mitochondria in muscle tissue show a high degree of degeneration after prolonged ischemia whereas the ultrastructure remains normal after short cold ischemia time (CIT). Muscle cell necrosis accompanied by a diffuse inflammatory infiltrate and vasculopathy of small vessels is observed after 30 h of CIT. Nerves revealed a high degree of separation and vacuolization of myelin lamellae because of Wallerian degeneration. Approaches to minimize IRI include use of novel preservation solutions, administration of antioxidative and anti-inflammatory molecules/drugs as well as the implementation of machine perfusion in the setting of VCA. SUMMARY Hand and face transplantations are logistically challenging procedures. Optimal planning and a highly congruent and motivated team are key to keep ischemia times to a minimum. In addition to pharmacological approaches, machine perfusion seems promising to help circumvent logistic problems and expand the donor pool in VCA.
Collapse
|
42
|
Abstract
Complement is a major contributor to inflammation and graft injury. This system is especially important in ischemia-reperfusion injury/delayed graft function as well as in acute and chronic antibody-mediated rejection (AMR). The latter is increasingly recognized as a major cause of late graft loss, for which we have few effective therapies. C1 inhibitor (C1-INH) regulates several pathways which contribute to both acute and chronic graft injuries. However, C1-INH spares the alternative pathway and the membrane attack complex (C5–9) so innate antibacterial defenses remain intact. Plasma-derived C1-INH has been used to treat hereditary angioedema for more than 30 years with excellent safety. Studies with C1-INH in transplant recipients are limited, but have not revealed any unique toxicity or serious adverse events attributed to the protein. Extensive data from animal and ex vivo models suggest that C1-INH ameliorates ischemia-reperfusion injury. Initial clinical studies suggest this effect may allow transplantation of donor organs which are now discarded because the risk of primary graft dysfunction is considered too great. Although the incidence of severe early AMR is declining, accumulating evidence strongly suggests that complement is an important mediator of chronic AMR, a major cause of late graft loss. Thus, C1-INH may also be helpful in preserving function of established grafts. Early clinical studies in transplantation suggest significant beneficial effects of C1-INH with minimal toxicity. Recent results encourage continued investigation of this already-available therapeutic agent.
Collapse
|
43
|
Wu D, Wang J, Wang H, Ji A, Li Y. Protective roles of bioactive peptides during ischemia-reperfusion injury: From bench to bedside. Life Sci 2017; 180:83-92. [PMID: 28527782 DOI: 10.1016/j.lfs.2017.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion (I/R) is a well-known pathological condition which may lead to disability and mortality. I/R injury remains an unresolved and complicated situation in a number of clinical conditions, such as cardiac arrest with successful reanimation, as well as ischemic events in brain and heart. Peptides have many attractive advantages which make them suitable candidate drugs in treating I/R injury, such as low toxicity and immunogenicity, good solubility property, distinct tissue distribution pattern, and favorable pharmacokinetic profile. An increasing number of studies indicate that peptides could protect against I/R injury in many different organs and tissues. Peptides also face several therapeutic challenges that limit their clinical application. In this review, we present the mechanisms of action of peptides in reducing I/R injury, as well as further discuss modification strategies to improve the functional properties of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Jun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Honggang Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
44
|
Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, Shi W, Dong Y, Qu Y. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 2017; 62. [PMID: 28178380 DOI: 10.1111/jpi.12395] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre-ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)-related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre-ischemia melatonin treatment was able to attenuate IR-induced ER stress and autophagy. In addition, with tandem RFP-GFP-LC3 adeno-associated virus, we demonstrated pre-ischemic melatonin significantly alleviated IR-induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR-induced autophagy was significantly blocked by ER stress inhibitor (4-PBA), as well as ER-related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5-dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre-ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress-dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard medical school, Boston, MA, USA
| | - Lei Wang
- Department of Neurosurgery, The 463rd Hospital of PLA, Shenyang, China
| | - Neeta Abraham
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard medical school, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Shi
- Department of Urology surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Jian L, Lu Y, Lu S, Lu C. Chemical Chaperone 4-Phenylbutyric Acid Reduces Cardiac Ischemia/Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress and Oxidative Stress. Med Sci Monit 2016; 22:5218-5227. [PMID: 28036323 PMCID: PMC5221419 DOI: 10.12659/msm.898623] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Cardiovascular diseases are the leading cause of death in many countries and myocardial ischemia-reperfusion (I/R) injury is the cause of many serious heart diseases. Recent reports suggested that endoplasmic reticulum (ER) stress is associated with the progress of ischemia/reperfusion (I/R) injury. In a previous study, we illustrated that 4-phenylbutyric acid (4-PBA) reduces I/R-induced cell death in vitro through inhibiting the ER stress-initiated cell apoptosis. In the present study we investigated whether 4-PBA improves heart function in isolated rat hearts subjected to I/R and elucidated the potential mechanisms involved in 4-PBA-induced cardioprotective effects. Material/Methods The isolated rat hearts were subjected to global ischemia and reperfusion in the absence or presence of 4-PBA. Hemodynamic parameters (LVSP, LVEDP, ±dP/dtmax, and HR) were monitored and histopathological examination was applied. The biomarkers related to oxidative stress were detected by LDH, ROS, MDA, CK, SOD, and GSH-Px kits. A TUNEL apoptosis assay kit was used to detect apoptosis. The expression levels of ER stress and apoptosis proteins were evaluated by Western blotting. Results We found that 4-PBA (5 mM, 10 mM) pretreatment significantly attenuated cardiac dysfunction and depressed oxidative stress induced by I/R. Moreover, I/R activated the ER stress proteins Grp78 and PERK, which are all decreased by 4-PBA. 4-PBA pretreatment also inhibited the expression of CHOP, Caspase-12, and Bax, reduced the phosphorylation of JNK, and enhanced the expression of anti-apoptotic protein Bcl-2. Conclusions We elucidated the significant protective effects of 4-PBA against I/R injuries by inhibition of ER stress, oxidative stress, and their associated apoptosis.
Collapse
Affiliation(s)
- Lian Jian
- Department of Cardiovascular, Tianjin First Central Hospital, tianjin, China (mainland)
| | - Yuan Lu
- Department of Cardiovascular, Tianjin First Central Hospital, tianjin, China (mainland)
| | - Shan Lu
- Department of Radiology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China (mainland)
| | - Chengzhi Lu
- Department of Cardiovascular, Tianjin First Central Hospital, tianjin, China (mainland)
| |
Collapse
|
46
|
Poppelaars F, Seelen MA. Complement-mediated inflammation and injury in brain dead organ donors. Mol Immunol 2016; 84:77-83. [PMID: 27989433 DOI: 10.1016/j.molimm.2016.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023]
Abstract
The importance of the complement system in renal ischemia-reperfusion injury and acute rejection is widely recognized, however its contribution to the pathogenesis of tissue damage in the donor remains underexposed. Brain-dead (BD) organ donors are still the primary source of organs for transplantation. Brain death is characterized by hemodynamic changes, hormonal dysregulation, and immunological activation. Recently, the complement system has been shown to be involved. In BD organ donors, complement is activated systemically and locally and is an important mediator of inflammation and graft injury. Furthermore, complement activation can be used as a clinical marker for the prediction of graft function after transplantation. Experimental models of BD have shown that inhibition of the complement cascade is a successful method to reduce inflammation and injury of donor grafts, thereby improving graft function and survival after transplantation. Consequently, complement-targeted therapeutics in BD organ donors form a new opportunity to improve organ quality for transplantation. Future studies should further elucidate the mechanism responsible for complement activation in BD organ donors.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Marc A Seelen
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
47
|
Nuclear translocation of annexin 1 following oxygen-glucose deprivation-reperfusion induces apoptosis by regulating Bid expression via p53 binding. Cell Death Dis 2016; 7:e2356. [PMID: 27584794 PMCID: PMC5059862 DOI: 10.1038/cddis.2016.259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 11/08/2022]
Abstract
Previous data have suggested that the nuclear translocation of annexin 1 (ANXA1) is involved in neuronal apoptosis after ischemic stroke. As the mechanism and function of ANXA1 nuclear migration remain unclear, it is important to clarify how ANXA1 performs its role as an apoptosis 'regulator' in the nucleus. Here we report that importazole (IPZ), an importin β (Impβ)-specific inhibitor, decreased ANXA1 nuclear accumulation and reduced the rate of neuronal death induced by nuclear ANXA1 migration after oxygen-glucose deprivation-reoxygenation (OGD/R). Notably, ANXA1 interacted with the Bid (BH3-interacting-domain death agonist) promoter directly; however; this interaction could be partially blocked by the p53 inhibitor pifithrin-α (PFT-α). Accordingly, ANXA1 was shown to interact with p53 in the nucleus and this interaction was enhanced following OGD/R. A luciferase reporter assay revealed that ANXA1 was involved in the regulation of p53-mediated transcriptional activation after OGD/R. Consistent with this finding, the nuclear translocation of ANXA1 after OGD/R upregulated the expression of Bid, which was impeded by IPZ, ANXA1 shRNA, or PFT-α. Finally, cell-survival testing demonstrated that silencing ANXA1 could improve the rate of cell survival and decrease the expression of both cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. These data suggested that Impβ-dependent nuclear ANXA1 migration participates in the OGD/R-dependent induction of neuronal apoptosis. ANXA1 interacts with p53 and promotes p53 transcriptional activity, which in turn regulates Bid expression. Silencing ANXA1 decreases the expression of Bid and suppresses caspase-3 pathway activation, thus improving cell survival after OGD/R. This study provides a novel mechanism whereby ANXA1 regulates apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after OGD/R.
Collapse
|
48
|
L L, X W, Z Y. Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. ACTA ACUST UNITED AC 2016; 5. [PMID: 29888120 DOI: 10.4172/2167-0501.1000213] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion injury is a common feature of ischemic stroke, which occurs when blood supply is restored after a period of ischemia. Reperfusion can be achieved either by thrombolysis using thrombolytic reagents such as tissue plasminogen activator (tPA), or through mechanical removal of thrombi. Spontaneous reperfusion also occurs after ischemic stroke. However, despite the beneficial effect of restored oxygen supply by reperfusion, it also causes deleterious effect compared with permanent ischemia. With the recent advancement in endovascular therapy including thrombectomy and thrombus disruption, reperfusion-injury has become an increasingly critical challenge in stroke treatment. It is therefore of extreme importance to understand the mechanisms of ischemia-reperfusion injury in the brain in order to develop effective therapeutics. Accumulating experimental evidence have suggested that the mechanisms of ischemia-reperfusion injury include oxidative stress, leukocyte infiltration, platelet adhesion and aggregation, complement activation, mitochondrial mediated mechanisms, and blood-brain-barrier (BBB) disruption, which altogether ultimately lead to edema or hemorrhagic transformation (HT) in the brain. Potential therapeutic strategies against ischemia-reperfusion injury may be developed targeting these mechanisms. In this review, we briefly discuss the pathophysiology and cellular and molecular mechanisms of cerebral ischemia-reperfusion injury, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Lin L
- Institute of Molecular Pharmacology, Wenzhou Medical University, Wenzhou 325035, PR China.,Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wang X
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Z
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Yu Y, Sun G, Luo Y, Wang M, Chen R, Zhang J, Ai Q, Xing N, Sun X. Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress- related signaling pathways. Sci Rep 2016; 6:21730. [PMID: 26888485 PMCID: PMC4757886 DOI: 10.1038/srep21730] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Recent reports suggested the involvement of oxidative stress- and endoplasmic reticulum stress (ERS)-associated pathways in the progression of ischemia/reperfusion (I/R) injury. Notoginsenoside R1 (NGR1) is a novel saponin isolated from P. notoginseng, which has a history of prevention and treatment of cardiovascular diseases. Objective: We aimed to examine the cardioprotective effects of NGR1 on I/R-induced heart dysfunction ex vivo and in vitro. Methods: H9c2 cadiomyocytes were incubated with NGR1 for 24 h and exposed to hypoxia/reoxygenation. Isolated rat hearts were perfused by NGR1 for 15 min and then subjected to global ischemia/reperfusion. Hemodynamic parameters were monitored as left ventricular systolic pressure (LVSP), heart rate, and maximal rate of increase and decrease of left ventricular pressure (±dP/dt max/min). Results: NGR1 pretreatment prevents cell apoptosis and delays the onset of ERS by decreasing the protein expression levels of ERS-responsive proteins GRP78, P-PERK, ATF6, IRE, and inhibiting the expression of pro-apoptosis proteins CHOP, Caspase-12, and P-JNK. Besides, NGR1 scavenges free radical, and increases the activity of antioxidase. NGR1 inhibits Tunicamycin-induced cell death and cardic dysfunction. Conclusion: We elucidated the significant cardioprotective effects of NGR1 against I/R injuries, and demonstrated the involvement of oxidative stress and ERS in the protective effects of NGR1.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Jingyi Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Qidi Ai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, China
| |
Collapse
|
50
|
Moritz M, Pfeifer S, Balmayor ER, Mittermayr R, Wolbank S, Redl H, van Griensven M. VEGF released from a fibrin biomatrix increases VEGFR-2 expression and improves early outcome after ischaemia-reperfusion injury. J Tissue Eng Regen Med 2016; 11:2153-2163. [PMID: 26777435 DOI: 10.1002/term.2114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 10/26/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022]
Abstract
Skeletal ischaemia-reperfusion (I-R) injury may influence patient outcome after severe vascular trauma or clamping of major vessels. The aim of this study was to observe whether locally applied vascular endothelial growth factor (VEGF) in fibrin could induce the expression of VEGF-receptor-2 (VEGFR-2) and improve the outcome after I-R injury. Transgenic mice expressing VEGFR-2 promoter-controlled luciferase were used for the assessment of VEGFR-2 expression. Ischaemia was induced for 2 h by a tension-controlled tourniquet to the hind limb, followed by 24 h of reperfusion. The animals were locally injected subcutaneously with fibrin sealant containing 20 or 200 ng VEGF; control animals received no treatment or fibrin sealant application. In vivo VEGFR-2 expression was quantified upon administration of luciferin at several observation times. For oedema and inflammation quantification, wet:dry ratio measurements and a myeloperoxidase assay of the muscle tissue were performed. Laser Doppler imaging showed that ischaemia was present and that the blood flow had returned to baseline levels after 24 h of reperfusion. VEGFR-2 expression levels in the fibrin + 200 ng VEGF were significantly higher than in all other groups. Granulocyte infiltration was reduced in both treatment groups, as well as reduced oedema formation. These results showed that VEGF released from fibrin had a positive effect on early I-R outcome in a mouse model, possibly via VEGFR-2. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Martina Moritz
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Trauma Surgery, Campus Innenstadt, Ludwig-Maximilians University, Munich, Germany
| | - Sabine Pfeifer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Germany
| | - Rainer Mittermayr
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Martijn van Griensven
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Germany
| |
Collapse
|