1
|
Langlois A, Pinget M, Kessler L, Bouzakri K. Islet Transplantation: Current Limitations and Challenges for Successful Outcomes. Cells 2024; 13:1783. [PMID: 39513890 PMCID: PMC11544954 DOI: 10.3390/cells13211783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Islet transplantation is a promising approach for treating patients with unstable T1DM. However, it is confronted with numerous obstacles throughout the various stages of the transplantation procedure. Significant progress has been made over the last 25 years in understanding the mechanisms behind the loss of functional islet mass and in developing protective strategies. Nevertheless, at present, two to three pancreases are still needed to treat a single patient, which limits the maximal number of patients who can benefit from islet transplantation. Thus, this publication provides an overview of recent scientific findings on the various issues affecting islet transplantation. Specifically, we will focus on the understanding of the mechanisms involved and the strategies developed to alleviate these problems from the isolation stage to the post-transplantation phase. Finally, we hope that this review will highlight new avenues of action, enabling us to propose pancreatic islet transplantation to a maximum number of patients with T1DM.
Collapse
Affiliation(s)
- Allan Langlois
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| | - Michel Pinget
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| | - Laurence Kessler
- Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, 67200 Strasbourg, France;
- Inserm UMR 1260, Nanomédicine Regenerative, University of Strasbourg, 67085 Strasbourg, France
| | - Karim Bouzakri
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| |
Collapse
|
2
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
3
|
Moyer JC, Chivukula VK, Taheri-Tehrani P, Sandhu S, Blaha C, Fissell WH, Roy S. An arteriovenous mock circulatory loop and accompanying bond graph model for in vitro study of peripheral intravascular bioartificial organs. Artif Organs 2024; 48:336-346. [PMID: 38073602 PMCID: PMC10960694 DOI: 10.1111/aor.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Silicon nanopore membrane-based implantable bioartificial organs are dependent on arteriovenous implantation of a mechanically robust and biocompatible hemofilter. The hemofilter acts as a low-resistance, high-flow network, with blood flow physiology similar to arteriovenous shunts commonly created for hemodialysis access. A mock circulatory loop (MCL) that mimics shunt physiology is an essential tool for refinement and durability testing of arteriovenous implantable bioartificial organs and silicon blood-interfacing membranes. We sought to develop a compact and cost-effective MCL to replicate flow conditions through an arteriovenous shunt and used data from the MCL and swine to inform a bond graph mathematical model of the physical setup. METHODS Flow physiology through bioartificial organ prototypes was obtained in the MCL and during extracorporeal attachment to swine for biologic comparison. The MCL was tested for stability overtime by measuring pressurewave variability over a 48-h period. Data obtained in vitro and extracorporeally informed creation of a bond graph model of the MCL. RESULTS The arteriovenous MCL was a cost-effective, portable system that reproduced flow rates and pressures consistent with a pulsatile arteriovenous shunt as measured in swine. MCL performance was stable over prolonged use, providing a cost-effective simulator for enhanced testing of peripherally implanted bioartificial organ prototypes. The corresponding bond graph model recapitulates MCL and animal physiology, offering a tool for further refinement of the MCL system.
Collapse
Affiliation(s)
- Jarrett C. Moyer
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, San Francisco, CA, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Parsa Taheri-Tehrani
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, San Francisco, CA, USA
| | - Sukhveer Sandhu
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, San Francisco, CA, USA
| | - Charles Blaha
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, San Francisco, CA, USA
| | - William H. Fissell
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Torres E, Wang P, Kantesaria S, Jenkins P, DelaBarre L, Cosmo Pizetta D, Froelich T, Steyn L, Tannús A, Papas KK, Sakellariou D, Garwood M. Development of a compact NMR system to measure pO 2 in a tissue-engineered graft. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107578. [PMID: 37952431 PMCID: PMC10787953 DOI: 10.1016/j.jmr.2023.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Cellular macroencapsulation devices, known as tissue engineered grafts (TEGs), enable the transplantation of allogeneic cells without the need for life-long systemic immunosuppression. Islet containing TEGs offer promise as a potential functional cure for type 1 diabetes. Previous research has indicated sustained functionality of implanted islets at high density in a TEG requires external supplementary oxygen delivery and an effective tool to monitor TEG oxygen levels. A proven oxygen-measurement approach employs a 19F oxygen probe molecule (a perfluorocarbon) implanted alongside therapeutic cells to enable oxygen- and temperature- dependent NMR relaxometry. Although the approach has proved effective, the clinical translation of 19F oxygen relaxometry for TEG monitoring will be limited by the current inaccessibility and high cost of MRI. Here, we report the development of an affordable, compact, and tabletop 19F NMR relaxometry system for monitoring TEG oxygenation. The system uses a 0.5 T Halbach magnet with a bore diameter (19 cm) capable of accommodating the human arm, a potential site of future TEG implantation. 19F NMR relaxometry was performed while controlling the temperature and oxygenation levels of a TEG using a custom-built perfusion setup. Despite the magnet's nonuniform field, a pulse sequence of broadband adiabatic full-passage pulses enabled accurate 19F longitudinal relaxation rate (R1) measurements in times as short as ∼2 min (R1 vs oxygen partial pressure and temperature (R2 > 0.98)). The estimated sensitivity of R1 to oxygen changes at 0.5 T was 1.62-fold larger than the sensitivity previously reported for 16.4 T. We conclude that TEG oxygenation monitoring with a compact, tabletop 19F NMR relaxometry system appears feasible.
Collapse
Affiliation(s)
- Efraín Torres
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Paul Wang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Saurin Kantesaria
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Parker Jenkins
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Lance DelaBarre
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Daniel Cosmo Pizetta
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo - IFSC-USP, São Carlos, Brazil.
| | - Taylor Froelich
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Leah Steyn
- Department of Surgery, The University of Arizona, Tucson, AZ, USA.
| | - Alberto Tannús
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo - IFSC-USP, São Carlos, Brazil.
| | | | | | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Mallegni N, Milazzo M, Cristallini C, Barbani N, Fredi G, Dorigato A, Cinelli P, Danti S. Characterization of Cyclic Olefin Copolymers for Insulin Reservoir in an Artificial Pancreas. J Funct Biomater 2023; 14:jfb14030145. [PMID: 36976069 PMCID: PMC10053537 DOI: 10.3390/jfb14030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies have shown great advancements in developing an implantable artificial pancreas. However, some improvements are still required, including the optimal biomaterials and technologies to produce the implantable insulin reservoir. Here, we discuss the employment of two types of cyclic olefin copolymers (Topas 5013L-10 and Topas 8007S-04) for an insulin reservoir fabrication. After a preliminary thermomechanical analysis, Topas 8007S-04 was selected as the best material to fabricate a 3D-printed insulin reservoir due to its higher strength and lower glass transition temperature (Tg). Fiber deposition modeling was used to manufacture a reservoir-like structure, which was employed to assess the ability of the material to prevent insulin aggregation. Although the surface texture presents a localized roughness, the ultraviolet analysis did not detect any significant insulin aggregation over a timeframe of 14 days. These interesting results make Topas 8007S-04 cyclic olefin copolymer a potential candidate biomaterial for fabricating structural components in an implantable artificial pancreas.
Collapse
Affiliation(s)
- Norma Mallegni
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Correspondence: (M.M.); (S.D.)
| | - Caterina Cristallini
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), Via Giuseppe Moruzzi 1, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), Via Giuseppe Moruzzi 1, 56126 Pisa, Italy
| | - Giulia Fredi
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Dorigato
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
- Institute for Chemical and Physical Processes (IPCF), National Council of Researches (CNR), Via Giuseppe Moruzzi 1, 56126 Pisa, Italy
- Correspondence: (M.M.); (S.D.)
| |
Collapse
|
6
|
Ray P, Chakraborty R, Banik O, Banoth E, Kumar P. Surface Engineering of a Bioartificial Membrane for Its Application in Bioengineering Devices. ACS OMEGA 2023; 8:3606-3629. [PMID: 36743049 PMCID: PMC9893455 DOI: 10.1021/acsomega.2c05983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Membrane technology is playing a crucial role in cutting-edge innovations in the biomedical field. One such innovation is the surface engineering of a membrane for enhanced longevity, efficient separation, and better throughput. Hence, surface engineering is widely used while developing membranes for its use in bioartificial organ development, separation processes, extracorporeal devices, etc. Chemical-based surface modifications are usually performed by functional group/biomolecule grafting, surface moiety modification, and altercation of hydrophilic and hydrophobic properties. Further, creation of micro/nanogrooves, pillars, channel networks, and other topologies is achieved to modify physio-mechanical processes. These surface modifications facilitate improved cellular attachment, directional migration, and communication among the neighboring cells and enhanced diffusional transport of nutrients, gases, and waste across the membrane. These modifications, apart from improving functional efficiency, also help in overcoming fouling issues, biofilm formation, and infection incidences. Multiple strategies are adopted, like lysozyme enzymatic action, topographical modifications, nanomaterial coating, and antibiotic/antibacterial agent doping in the membrane to counter the challenges of biofilm formation, fouling challenges, and microbial invasion. Therefore, in the current review, we have comprehensibly discussed different types of membranes, their fabrication and surface modifications, antifouling/antibacterial strategies, and their applications in bioengineering. Thus, this review would benefit bioengineers and membrane scientists who aim to improve membranes for applications in tissue engineering, bioseparation, extra corporeal membrane devices, wound healing, and others.
Collapse
Affiliation(s)
- Pragyan Ray
- BioDesign
and Medical Devices Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology,
Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Ruchira Chakraborty
- BioDesign
and Medical Devices Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology,
Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Oindrila Banik
- BioDesign
and Medical Devices Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology,
Rourkela, Sector-1, Rourkela 769008, Odisha, India
- Opto-Biomedical
Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Earu Banoth
- Opto-Biomedical
Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Prasoon Kumar
- BioDesign
and Medical Devices Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology,
Rourkela, Sector-1, Rourkela 769008, Odisha, India
| |
Collapse
|
7
|
Ajima K, Tsuda N, Takaki T, Furusako S, Matsumoto S, Shinohara K, Yamashita Y, Amano S, Oyama C, Shimoda M. A porcine islet-encapsulation device that enables long-term discordant xenotransplantation in immunocompetent diabetic mice. CELL REPORTS METHODS 2023; 3:100370. [PMID: 36814843 PMCID: PMC9939365 DOI: 10.1016/j.crmeth.2022.100370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Islet transplantation is an effective treatment for type 1 diabetes (T1D). However, a shortage of donors and the need for immunosuppressants are major issues. The ideal solution is to develop a source of insulin-secreting cells and an immunoprotective method. No bioartificial pancreas (BAP) devices currently meet all of the functions of long-term glycemic control, islet survival, immunoprotection, discordant xenotransplantation feasibility, and biocompatibility. We developed a device in which porcine islets were encapsulated in a highly stable and permeable hydrogel and a biocompatible immunoisolation membrane. Discordant xenotransplantation of the device into diabetic mice improved glycemic control for more than 200 days. Glycemic control was also improved in new diabetic mice "relay-transplanted" with the device after its retrieval. The easily retrieved devices exhibited almost no adhesion or fibrosis and showed sustained insulin secretion even after the two xenotransplantations. This device has the potential to be a useful BAP for T1D.
Collapse
Affiliation(s)
- Kumiko Ajima
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Naoto Tsuda
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Tadashi Takaki
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program (T-CiRA), 2-26-1 Muraoka-higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Shoji Furusako
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 1-7 Yotsuya, Shinjuku-ku, Tokyo 160-8515, Japan
| | - Shigeki Matsumoto
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Koya Shinohara
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yzumi Yamashita
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Sayaka Amano
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masayuki Shimoda
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
8
|
Berney T, Wassmer CH, Lebreton F, Bellofatto K, Fonseca LM, Bignard J, Hanna R, Peloso A, Berishvili E. From islet of Langerhans transplantation to the bioartificial pancreas. Presse Med 2022; 51:104139. [PMID: 36202182 DOI: 10.1016/j.lpm.2022.104139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Type 1 diabetes is a disease resulting from autoimmune destruction of the insulin-producing beta cells in the pancreas. When type 1 diabetes develops into severe secondary complications, in particular end-stage nephropathy, or life-threatening severe hypoglycemia, the best therapeutic approach is pancreas transplantation, or more recently transplantation of the pancreatic islets of Langerhans. Islet transplantation is a cell therapy procedure, that is minimally invasive and has a low morbidity, but does not display the same rate of functional success as the more invasive pancreas transplantation because of suboptimal engraftment and survival. Another issue is that pancreas or islet transplantation (collectively known as beta cell replacement therapy) is limited by the shortage of organ donors and by the need for lifelong immunosuppression to prevent immune rejection and recurrence of autoimmunity. A bioartificial pancreas is a construct made of functional, insulin-producing tissue, embedded in an anti-inflammatory, immunomodulatory microenvironment and encapsulated in a perm-selective membrane allowing glucose sensing and insulin release, but isolating from attacks by cells of the immune system. A successful bioartificial pancreas would address the issues of engraftment, survival and rejection. Inclusion of unlimited sources of insulin-producing cells, such as xenogeneic porcine islets or stem cell-derived beta cells would further solve the problem of organ shortage. This article reviews the current status of clinical islet transplantation, the strategies aiming at developing a bioartificial pancreas, the clinical trials conducted in the field and the perspectives for further progress.
Collapse
Affiliation(s)
- Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland; Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland; Department of Surgery, School of Medicine and Natural Sciences, Ilia State University, Tbilisi, Georgia
| | - Charles H Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Laura Mar Fonseca
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Juliette Bignard
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Reine Hanna
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Andrea Peloso
- Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland; Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.
| |
Collapse
|
9
|
Singh G, Senapati S, Satpathi S, Behera PK, Das B, Nayak B. Establishment of decellularized extracellular matrix scaffold derived from caprine pancreas as a novel alternative template over porcine pancreatic scaffold for prospective biomedical application. FASEB J 2022; 36:e22574. [PMID: 36165227 DOI: 10.1096/fj.202200807r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | | | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
10
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
11
|
Duy Nguyen BT, Nguyen Thi HY, Nguyen Thi BP, Kang DK, Kim JF. The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives. MEMBRANES 2021; 11:239. [PMID: 33800659 PMCID: PMC8065507 DOI: 10.3390/membranes11040239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
The recent outbreak of the COVID-19 pandemic in 2020 reasserted the necessity of artificial lung membrane technology to treat patients with acute lung failure. In addition, the aging world population inevitably leads to higher demand for better artificial organ (AO) devices. Membrane technology is the central component in many of the AO devices including lung, kidney, liver and pancreas. Although AO technology has improved significantly in the past few decades, the quality of life of organ failure patients is still poor and the technology must be improved further. Most of the current AO literature focuses on the treatment and the clinical use of AO, while the research on the membrane development aspect of AO is relatively scarce. One of the speculated reasons is the wide interdisciplinary spectrum of AO technology, ranging from biotechnology to polymer chemistry and process engineering. In this review, in order to facilitate the membrane aspects of the AO research, the roles of membrane technology in the AO devices, along with the current challenges, are summarized. This review shows that there is a clear need for better membranes in terms of biocompatibility, permselectivity, module design, and process configuration.
Collapse
Affiliation(s)
- Bao Tran Duy Nguyen
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Hai Yen Nguyen Thi
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Bich Phuong Nguyen Thi
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Jeong F. Kim
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
- Innovation Center for Chemical Engineering, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
12
|
Han EX, Wang J, Kural M, Jiang B, Leiby KL, Chowdhury N, Tellides G, Kibbey RG, Lawson JH, Niklason LE. Development of a Bioartificial Vascular Pancreas. J Tissue Eng 2021; 12:20417314211027714. [PMID: 34262686 PMCID: PMC8243137 DOI: 10.1177/20417314211027714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO2 of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes.
Collapse
Affiliation(s)
- Edward X Han
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Juan Wang
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Mehmet Kural
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Department of Vascular Surgery, The
First Hospital of China Medical University, Shenyang, China
| | - Katherine L Leiby
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Nazar Chowdhury
- Molecular, Cellular, and Developmental
Biology, Yale University, New Haven, CT, USA
| | - George Tellides
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare
System, West Haven, CT, USA
| | - Richard G Kibbey
- Department of Internal Medicine
(Endocrinology), Yale University, New Haven, CT, USA
- Department of Cellular & Molecular
Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey H Lawson
- Department of Surgery, Duke
University, Durham, NC, USA
- Humacyte Inc., Durham, NC, USA
| | - Laura E Niklason
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
- Humacyte Inc., Durham, NC, USA
| |
Collapse
|
13
|
Menciassi A, Iacovacci V. Implantable biorobotic organs. APL Bioeng 2020; 4:040402. [PMID: 33263096 PMCID: PMC7688341 DOI: 10.1063/5.0032508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022] Open
|
14
|
Berney T, Berishvili E. I've got you under my skin. Nat Metab 2020; 2:993-994. [PMID: 32895575 DOI: 10.1038/s42255-020-0268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland.
- Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland.
- Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
15
|
Skrzypek K, Groot Nibbelink M, Liefers-Visser J, Smink AM, Stoimenou E, Engelse MA, de Koning EJP, Karperien M, de Vos P, van Apeldoorn A, Stamatialis D. A High Cell-Bearing Capacity Multibore Hollow Fiber Device for Macroencapsulation of Islets of Langerhans. Macromol Biosci 2020; 20:e2000021. [PMID: 32567161 DOI: 10.1002/mabi.202000021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/02/2020] [Indexed: 01/03/2023]
Abstract
Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin-producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface-to-volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.
Collapse
Affiliation(s)
- Katarzyna Skrzypek
- Bioartificial Organs, Biomaterials Science and Technology Department, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Milou Groot Nibbelink
- Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Jolanda Liefers-Visser
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Alexandra M Smink
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Eleftheria Stoimenou
- Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Marten A Engelse
- Nephrology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Eelco J P de Koning
- Nephrology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands.,Hubrecht Institute, Utrecht, 3584CT, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Paul de Vos
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Aart van Apeldoorn
- Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Dimitrios Stamatialis
- Bioartificial Organs, Biomaterials Science and Technology Department, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| |
Collapse
|
16
|
White AM, Shamul JG, Xu J, Stewart S, Bromberg JS, He X. Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy. ACS Biomater Sci Eng 2019; 6:2543-2562. [PMID: 33299929 DOI: 10.1021/acsbiomaterials.9b01406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease in which the immune system attacks insulin-producing beta cells of pancreatic islets. Type 1 diabetes can be treated with islet transplantation; however, patients must be administered immunosuppressants to prevent immune rejection of the transplanted islets if they are not autologous or not engineered with immune protection/isolation. To overcome biological barriers of islet transplantation, encapsulation strategies have been developed and robustly investigated. While islet encapsulation can prevent the need for immunosuppressants, these approaches have not shown much success in clinical trials due to a lack of long-term insulin production. Multiple engineering strategies have been used to improve encapsulation and post-transplantation islet survival. In addition, more efficient islet cryopreservation methods have been designed to facilitate the scaling-up of islet transplantation. Other islet sources have been identified including porcine islets and stem cell-derived islet-like aggregates. Overall, islet-laden capsule transplantation has greatly improved over the past 30 years and is moving towards becoming a clinically feasible treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Signore MA, Rescio G, De Pascali C, Iacovacci V, Dario P, Leone A, Quaranta F, Taurino A, Siciliano P, Francioso L. Fabrication and characterization of AlN-based flexible piezoelectric pressure sensor integrated into an implantable artificial pancreas. Sci Rep 2019; 9:17130. [PMID: 31748638 PMCID: PMC6868010 DOI: 10.1038/s41598-019-53713-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/31/2019] [Indexed: 11/09/2022] Open
Abstract
This study reports on the fabrication and characterization of an event detection subsystem composed of a flexible piezoelectric pressure sensor and the electronic interface to be integrated into an implantable artificial pancreas (IAP) for diabetic patients. The developed sensor is made of an AlN layer, sandwiched between two Ti electrodes, sputtered on Kapton substrate, with a preferential orientation along c-axis which guarantees the best piezoelectric response. The IAP is made of an intestinal wall-interfaced refilling module, able to dock an ingestible insulin capsule. A linearly actuated needle punches the duodenum tissue and then the PDMS capsule to transfer the insulin to an implanted reservoir. The device is located at the connection of the needle with the linear actuator to reliably detect the occurred punching of the insulin-filled capsule. Finite Element Analysis (FEA) simulations were performed to evaluate the piezoelectric charge generated for increasing loads in the range of interest, applied on both the sensor full-area and footprint area of the Hamilton needle used for the capsule punching. The sensor-interface circuit was simulated to estimate the output voltage that can be obtained in real operating conditions. The characterization results confirmed a high device sensitivity during the punching, in the low forces (0-4 N) and low actuator speed (2-3 mm/s) ranges of interest, meeting the requirement of the research objective. The choice of a piezoelectric pressure sensor is particularly strategic in the medical field due to the request of self-powered implantable devices which do not need any external power source to output a signal and harvest energy from natural sources around the patient.
Collapse
Affiliation(s)
- M A Signore
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, 73100, Lecce, Italy
| | - G Rescio
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, 73100, Lecce, Italy
| | - C De Pascali
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, 73100, Lecce, Italy
| | - V Iacovacci
- BioRobotics Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56025, Pontedera, Italy
| | - P Dario
- BioRobotics Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56025, Pontedera, Italy
| | - A Leone
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, 73100, Lecce, Italy
| | - F Quaranta
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, 73100, Lecce, Italy
| | - A Taurino
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, 73100, Lecce, Italy
| | - P Siciliano
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, 73100, Lecce, Italy
| | - L Francioso
- CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
18
|
Toda S, Fattah A, Asawa K, Nakamura N, N. Ekdahl K, Nilsson B, Teramura Y. Optimization of Islet Microencapsulation with Thin Polymer Membranes for Long-Term Stability. MICROMACHINES 2019; 10:E755. [PMID: 31698737 PMCID: PMC6915491 DOI: 10.3390/mi10110755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Microencapsulation of islets can protect against immune reactions from the host immune system after transplantation. However, sufficient numbers of islets cannot be transplanted due to the increase of the size and total volume. Therefore, thin and stable polymer membranes are required for the microencapsulation. Here, we undertook the cell microencapsulation using poly(ethylene glycol)-conjugated phospholipid (PEG-lipid) and layer-by-layer membrane of multiple-arm PEG. In order to examine the membrane stability, we used different molecular weights of 4-arm PEG (10k, 20k and 40k)-Mal to examine the influence on the polymer membrane stability. We found that the polymer membrane made of 4-arm PEG(40k)-Mal showed the highest stability on the cell surface. Also, the polymer membrane did not disturb the insulin secretion from beta cells.
Collapse
Affiliation(s)
- Shota Toda
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan; (S.T.); (N.N.)
| | - Artin Fattah
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden; (A.F.); (K.N.E.); (B.N.)
| | - Kenta Asawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Naoko Nakamura
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan; (S.T.); (N.N.)
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden; (A.F.); (K.N.E.); (B.N.)
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden; (A.F.); (K.N.E.); (B.N.)
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden; (A.F.); (K.N.E.); (B.N.)
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| |
Collapse
|
19
|
Triviño-Bolaños DF, Camargo-Amado RJ. Synthesis and characterization of porous structures of rutile TiO 2 /Na 0.8Ti 4O 8/Na 2Ti 6O 13 for biomedical applications. MethodsX 2019; 6:1114-1123. [PMID: 31193424 PMCID: PMC6529763 DOI: 10.1016/j.mex.2019.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/04/2019] [Indexed: 12/03/2022] Open
Abstract
This method involves the use of molding, pressing and sintering techniques applied to different powder mixtures of TiO2 with sodium bicarbonate NaHCO3 (15 wt% and 30 wt% NaHCO3), to obtain porous structures of rutile TiO2/Na0.8Ti4O8/Na2Ti6O13 and Na0.8Ti4O8/Na2Ti6O13 for possible biomedical implant applications. The method validation includes X-ray diffraction patterns (XRD) analysis refined by the Rietveld method using X'Pert HighScore Plus. The surface morphology was observed by using a scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS), and, finally, a Chinese hamster ovary (CHO) cell line was cultured with the porous structures to determine the effect of material composition on the cellular response using a LDH cytotoxicity assay. The method does not require the use of toxic solvents to remove residues. The porous structure formed is composed mainly of crystalline phases Na2Ti6O13/TiO2 reported as biocompatible. It did not need complicated solid-liquid separation processes.
Collapse
Affiliation(s)
| | - Rubén Jesús Camargo-Amado
- Escuela de Ingeniería Química, Universidad del Valle, Ciudad Universitaria Meléndez, A. A. 25360 Cali, Colombia
| |
Collapse
|
20
|
Iacovacci V, Tamadon I, Rocchi M, Dario P, Menciassi A. Toward Dosing Precision and Insulin Stability in an Artificial Pancreas System. J Med Device 2019. [DOI: 10.1115/1.4042459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A fully implantable artificial pancreas (AP) still represents the holy grail for diabetes treatment. The quest for efficient miniaturized implantable insulin pumps, able to accurately regulate the blood glucose profile and to keep insulin stability, is still persistent. This work describes the design and testing of a microinjection system connected to a variable volume insulin reservoir devised to favor insulin stability during storage. The design, the constitutive materials, and the related fabrication techniques were selected to favor insulin stability by avoiding—or at least limiting—hormone aggregation. We compared substrates made of nylon 6 and Teflon, provided with different surface roughness values due to the employed fabrication procedures (i.e., standard machining and spray deposition). Insulin stability was tested in a worst case condition for 14 days, and pumping system reliability and repeatability in dosing were tested over an entire reservoir emptying cycle. We found that nylon 6 guarantees a higher insulin stability than Teflon and that independent of the material used, larger roughness determines a higher amount of insulin aggregates. A dedicated rotary pump featured by a 1-μL delivery resolution was developed and connected through a proper gear mechanism to a variable volume air-tight insulin reservoir. The microinjection system was also able to operate in a reverse mode to enable the refilling of the implanted reservoir. The developed system represents a fundamental building block toward the development of a fully implantable AP and could be advantageously integrated even in different implantable drug delivery apparatus (e.g., for pain management).
Collapse
Affiliation(s)
- Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy e-mail:
| | - Izadyar Tamadon
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy
| | - Matteo Rocchi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, Pontedera (Pisa), 56025, Italy
| |
Collapse
|
21
|
Holzmeister I, Schamel M, Groll J, Gbureck U, Vorndran E. Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials. Acta Biomater 2018; 74:17-35. [PMID: 29698705 DOI: 10.1016/j.actbio.2018.04.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023]
Abstract
Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. STATEMENT OF SIGNIFICANCE The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components.
Collapse
|
22
|
Skrzypek K, Nibbelink MG, Karbaat LP, Karperien M, van Apeldoorn A, Stamatialis D. An important step towards a prevascularized islet macroencapsulation device-effect of micropatterned membranes on development of endothelial cell network. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:91. [PMID: 29938334 PMCID: PMC6018599 DOI: 10.1007/s10856-018-6102-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/05/2018] [Indexed: 05/23/2023]
Abstract
The development of immune protective islet encapsulation devices could allow for islet transplantation in the absence of immunosuppression. However, the immune protective membrane / barrier introduced there could also impose limitations in transport of oxygen and nutrients to the encapsulated cells resulting to limited islet viability. In the last years, it is well understood that achieving prevascularization of the device in vitro could facilitate its connection to the host vasculature after implantation, and therefore could provide sufficient blood supply and oxygenation to the encapsulated islets. However, the microvascular networks created in vitro need to mimic well the highly organized vasculature of the native tissue. In earlier study, we developed a functional macroencapsulation device consisting of two polyethersulfone/polyvinylpyrrolidone (PES/PVP) membranes, where a bottom microwell membrane provides good separation of encapsulated islets and the top flat membrane acts as a lid. In this work, we investigate the possibility of creating early microvascular networks on the lid of this device by combining novel membrane microfabrication with co-culture of human umbilical vein endothelial cell (HUVEC) and fibroblasts. We create thin porous microstructured PES/PVP membranes with solid and intermittent line-patterns and investigate the effect of cell alignment and cell interconnectivity as a first step towards the development of a stable prevascularized layer in vitro. Our results show that, in contrast to non-patterned membranes where HUVECs form unorganized HUVEC branch-like structures, for the micropatterned membranes, we can achieve cell alignment and the co-culture of HUVECs on a monolayer of fibroblasts attached on the membranes with intermittent line-pattern allows for the creation of HUVEC branch-like structures over the membrane surface. This important step towards creating early microvascular networks was achieved without the addition of hydrogels, often used in angiogenesis assays, as gels could block the pores of the membrane and limit the transport properties of the islet encapsulation device.
Collapse
Affiliation(s)
- Katarzyna Skrzypek
- Bioartificial organs, Biomaterials Science and Technology, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Milou Groot Nibbelink
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Lisanne P Karbaat
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Aart van Apeldoorn
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dimitrios Stamatialis
- Bioartificial organs, Biomaterials Science and Technology, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
23
|
Saenz Del Burgo L, Ciriza J, Espona-Noguera A, Illa X, Cabruja E, Orive G, Hernández RM, Villa R, Pedraz JL, Alvarez M. 3D Printed porous polyamide macrocapsule combined with alginate microcapsules for safer cell-based therapies. Sci Rep 2018; 8:8512. [PMID: 29855599 PMCID: PMC5981392 DOI: 10.1038/s41598-018-26869-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Cell microencapsulation is an attractive strategy for cell-based therapies that allows the implantation of genetically engineered cells and the continuous delivery of de novo produced therapeutic products. However, the establishment of a way to retrieve the implanted encapsulated cells in case the treatment needs to be halted or when cells need to be renewed is still a big challenge. The combination of micro and macroencapsulation approaches could provide the requirements to achieve a proper immunoisolation, while maintaining the cells localized into the body. We present the development and characterization of a porous implantable macrocapsule device for the loading of microencapsulated cells. The device was fabricated in polyamide by selective laser sintering (SLS), with controlled porosity defined by the design and the sintering conditions. Two types of microencapsulated cells were tested in order to evaluate the suitability of this device; erythropoietin (EPO) producing C2C12 myoblasts and Vascular Endothelial Growth Factor (VEGF) producing BHK fibroblasts. Results showed that, even if the metabolic activity of these cells decreased over time, the levels of therapeutic protein that were produced and, importantly, released to the media were stable.
Collapse
Affiliation(s)
- Laura Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Xavi Illa
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enric Cabruja
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rosa María Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rosa Villa
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Mar Alvarez
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
24
|
Skrzypek K, Barrera YB, Groth T, Stamatialis D. Endothelial and beta cell composite aggregates for improved function of a bioartificial pancreas encapsulation device. Int J Artif Organs 2018; 41:152-159. [PMID: 29546813 PMCID: PMC6161570 DOI: 10.1177/0391398817752295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Encapsulation of pancreatic islets or beta cells is a promising strategy for treatment of type 1 diabetes by providing an immune isolated environment and allowing for transplantation in a different location than the liver. However, islets used for encapsulation often show lower functionality due to the damaging of islet endothelial cells during the isolation procedure. Factors produced by endothelial cells have great impact on beta cell insulin secretion. Therefore, mutual signaling between endothelial cells and beta cells should be considered for the development of encapsulation systems to achieve high insulin secretion and maintain beta cell viability. Here, we investigate whether co-culture of beta cells with endothelial cells could improve beta cell function within encapsulation devices. MATERIALS AND METHODS Mouse insulinoma MIN6 cells and human umbilical vein endothelial cells were used for creating composite aggregates on agarose microwell platform. The composite aggregates were encapsulated within flat poly(ether sulfone)/polyvinylpyrrolidone device. Their functionality was assessed by glucose-induced insulin secretion test and compared to non-encapsulated free-floating aggregates. RESULTS We created composite aggregates of 80-100 µm in diameter, closely mimicking pancreatic islets. Upon glucose stimulation, their insulin secretion is improved in comparison to aggregates consisting of only MIN6 cells. Moreover, the composite aggregates encapsulated within a device secrete more insulin than aggregates consisting of only MIN6 cells. CONCLUSION Composite aggregates of MIN6 cells with human umbilical vein endothelial cells have improved insulin secretion in comparison to MIN6 aggregates showing that the interaction of beta cell and endothelial cell is crucial for a functional encapsulation system.
Collapse
Affiliation(s)
- Katarzyna Skrzypek
- 1 Bioartificial Organs, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Yazmin Brito Barrera
- 2 Biomedical Materials Group and Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Thomas Groth
- 2 Biomedical Materials Group and Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany.,3 Interdisciplinary Centre of Material Sciences, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Dimitrios Stamatialis
- 1 Bioartificial Organs, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
25
|
Orive G, Emerich D, Khademhosseini A, Matsumoto S, Hernández RM, Pedraz JL, Desai T, Calafiore R, de Vos P. Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes. Trends Biotechnol 2018; 36:445-456. [PMID: 29455936 DOI: 10.1016/j.tibtech.2018.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Encapsulating, or immunoisolating, insulin-secreting cells within implantable, semipermeable membranes is an emerging treatment for type 1 diabetes. This approach can eliminate the need for immunosuppressive drug treatments to prevent transplant rejection and overcome the shortage of donor tissues by utilizing cells derived from allogeneic or xenogeneic sources. Encapsulation device designs are being optimized alongside the development of clinically viable, replenishable, insulin-producing stem cells, for the first time creating the possibility of widespread therapeutic use of this technology. Here, we highlight the status of the most advanced and widely explored implementations of cell encapsulation with an eye toward translating the potential of this technological approach to medical reality.
Collapse
Affiliation(s)
- Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain; Joint first authors and contributed equally to the paper.
| | - Dwaine Emerich
- NsGene,225 Chapman Street, Providence, RI, USA; Joint first authors and contributed equally to the paper
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA. http://twitter.com/@khademh
| | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - R M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Tejal Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, Byers Hall Room 203C, MC 2520, 1700 4th Street, San Francisco, CA, USA
| | - Riccardo Calafiore
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy; Joint first authors and contributed equally to the paper
| | - Paul de Vos
- University of Groningen, Pathology and Medical Biology Section, Immunoendocrinology, Groningen, The Netherlands.
| |
Collapse
|
26
|
Gonzalez-Pujana A, Orive G, Pedraz JL, Santos-Vizcaino E, Hernandez RM. Alginate Microcapsules for Drug Delivery. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Gonzalez-Pujana A, Santos E, Orive G, Pedraz JL, Hernandez RM. Cell microencapsulation technology: Current vision of its therapeutic potential through the administration routes. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Pancreatic islet macroencapsulation using microwell porous membranes. Sci Rep 2017; 7:9186. [PMID: 28835662 PMCID: PMC5569024 DOI: 10.1038/s41598-017-09647-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
Allogeneic islet transplantation into the liver in combination with immune suppressive drug therapy is widely regarded as a potential cure for type 1 diabetes. However, the intrahepatic system is suboptimal as the concentration of drugs and nutrients there is higher compared to pancreas, which negatively affects islet function. Islet encapsulation within semipermeable membranes is a promising strategy that allows for the islet transplantation outside the suboptimal liver portal system and provides environment, where islets can perform their endocrine function. In this study, we develop a macroencapsulation device based on thin microwell membranes. The islets are seeded in separate microwells to avoid aggregation, whereas the membrane porosity is tailored to achieve sufficient transport of nutrients, glucose and insulin. The non-degradable, microwell membranes are composed of poly (ether sulfone)/polyvinylpyrrolidone and manufactured via phase separation micro molding. Our results show that the device prevents aggregation and preserves the islet’s native morphology. Moreover, the encapsulated islets maintain their glucose responsiveness and function after 7 days of culture (stimulation index above 2 for high glucose stimulation), demonstrating the potential of this novel device for islet transplantation.
Collapse
|
29
|
Biomacromolecular-based ionic-covalent hydrogels for cell encapsulation: The atelocollagen − Oxidized polysaccharides couples. Carbohydr Polym 2017; 169:366-375. [DOI: 10.1016/j.carbpol.2017.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
|
30
|
Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem Toxicol 2017; 109:780-796. [PMID: 28705729 DOI: 10.1016/j.fct.2017.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
Nanomedicine is an emerging field that combines knowledge of nanotechnology and material science with pharmaceutical and biomedical sciences, aiming to develop nanodrugs with increased efficacy and safety. Compared to conventional therapeutics, nanodrugs manifest higher stability and circulation time, reduced toxicity and improved targeted delivery. Despite the obvious benefit, the accumulation of imaging agents and nanocarriers in the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Numerous toxicology studies have demonstrated that exposure to nanomaterials (NMs) might pose serious risks to humans. Epigenetic modifications, representing a non-genotoxic mechanism of toxicant-induced health effects, are becoming recognized as playing a potential causative role in the aetiology of many diseases including cancer. This review i) provides an overview of recent advances in medical applications of NMs and ii) summarizes current evidence on their possible epigenetic toxicity. To discern potential health risks of NMs, since current data are mostly based upon in vitro and animal models, a better understanding of functional relationships between NM exposure, epigenetic deregulation and phenotype is required.
Collapse
Affiliation(s)
- Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Maria Dusinska
- Health Effects Laboratory MILK, NILU- Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
31
|
Cell based therapeutics in type 1 diabetes mellitus. Int J Pharm 2017; 521:346-356. [DOI: 10.1016/j.ijpharm.2017.02.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
32
|
Einstein SA, Weegman BP, Firpo MT, Papas KK, Garwood M. Development and Validation of Noninvasive Magnetic Resonance Relaxometry for the In Vivo Assessment of Tissue-Engineered Graft Oxygenation. Tissue Eng Part C Methods 2016; 22:1009-1017. [PMID: 27758135 PMCID: PMC5116663 DOI: 10.1089/ten.tec.2016.0106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/26/2016] [Indexed: 11/12/2022] Open
Abstract
Techniques to monitor the oxygen partial pressure (pO2) within implanted tissue-engineered grafts (TEGs) are critically necessary for TEG development, but current methods are invasive and inaccurate. In this study, we developed an accurate and noninvasive technique to monitor TEG pO2 utilizing proton (1H) or fluorine (19F) magnetic resonance spectroscopy (MRS) relaxometry. The value of the spin-lattice relaxation rate constant (R1) of some biocompatible compounds is sensitive to dissolved oxygen (and temperature), while insensitive to other external factors. Through this physical mechanism, MRS can measure the pO2 of implanted TEGs. We evaluated six potential MRS pO2 probes and measured their oxygen and temperature sensitivities and their intrinsic R1 values at 16.4 T. Acellular TEGs were constructed by emulsifying porcine plasma with perfluoro-15-crown-5-ether, injecting the emulsion into a macroencapsulation device, and cross-linking the plasma with a thrombin solution. A multiparametric calibration equation containing R1, pO2, and temperature was empirically generated from MRS data and validated with fiber optic (FO) probes in vitro. TEGs were then implanted in a dorsal subcutaneous pocket in a murine model and evaluated with MRS up to 29 days postimplantation. R1 measurements from the TEGs were converted to pO2 values using the established calibration equation and these in vivo pO2 measurements were simultaneously validated with FO probes. Additionally, MRS was used to detect increased pO2 within implanted TEGs that received supplemental oxygen delivery. Finally, based on a comparison of our MRS data with previously reported data, ultra-high-field (16.4 T) is shown to have an advantage for measuring hypoxia with 19F MRS. Results from this study show MRS relaxometry to be a precise, accurate, and noninvasive technique to monitor TEG pO2 in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel A. Einstein
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Bradley P. Weegman
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Meri T. Firpo
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | | | - Michael Garwood
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
33
|
Renner S, Dobenecker B, Blutke A, Zöls S, Wanke R, Ritzmann M, Wolf E. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 2016; 86:406-21. [PMID: 27180329 DOI: 10.1016/j.theriogenology.2016.04.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Abstract
The prevalence of diabetes mellitus, which currently affects 387 million people worldwide, is permanently rising in both adults and adolescents. Despite numerous treatment options, diabetes mellitus is a progressive disease with severe comorbidities, such as nephropathy, neuropathy, and retinopathy, as well as cardiovascular disease. Therefore, animal models predictive of the efficacy and safety of novel compounds in humans are of great value to address the unmet need for improved therapeutics. Although rodent models provide important mechanistic insights, their predictive value for therapeutic outcomes in humans is limited. In recent years, the pig has gained importance for biomedical research because of its close similarity to human anatomy, physiology, size, and, in contrast to non-human primates, better ethical acceptance. In this review, anatomic, biochemical, physiological, and morphologic aspects relevant to diabetes research will be compared between different animal species, that is, mouse, rat, rabbit, pig, and non-human primates. The value of the pig as a model organism for diabetes research will be highlighted, and (dis)advantages of the currently available approaches for the generation of pig models exhibiting characteristics of metabolic syndrome or type 2 diabetes mellitus will be discussed.
Collapse
Affiliation(s)
- Simone Renner
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Britta Dobenecker
- Chair of Animal Nutrition and Dietetics, Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Susanne Zöls
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|