1
|
Chen Y, Chen M, Liu Y, Li Q, Xue Y, Liu L, Liang R, Xiong Y, Zhao J, Chen J, Lin W, Wang J, Pan YF, Stohl W, Zheng SG. BAFF promotes follicular helper T cell development and germinal center formation through BR3 signal. JCI Insight 2024; 9:e183400. [PMID: 39325665 DOI: 10.1172/jci.insight.183400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
T follicular helper (Tfh) cells represent an important subset of CD4+ T cells that is crucial to the maturation and differentiation of B cells and the production of high-affinity antibodies. Because B cell activating-factor (BAFF), a vital B cell survival factor, is also crucial to B cell maturation and differentiation, we assessed the effects of BAFF on Tfh cell development and function. We demonstrated that deficiency of BAFF, but not of APRIL, markedly inhibited Tfh cell development, germinal center (GC) formation, and antigen-specific antibody production. The promoting effect of BAFF on Tfh cell development was dependent on expression of BR3 on T cells, and its promoting effect on GC formation was dependent on expression of BR3 on both T cells and B cells. BAFF directly promoted expression of the Tfh cell-characteristic genes via NF-κB signaling. This effect did need BR3 expression. Thus, BAFF not only has direct effects on B cells, but it also has direct effects on Tfh cell differentiation via engagement of BR3, which collectively promoted GC formation and production of high-affinity antibodies. This dual effect of BAFF on B cells and Tfh cells may help explain the clinical utility of BAFF antagonists in the management of certain autoimmune diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Rheumatology, Department of Internal Medicine, and
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- Clinical Research Center, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Qiang Li
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Youqiu Xue
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rongzhen Liang
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiding Xiong
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhao
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingrong Chen
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Lin
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Julie Wang
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Feng Pan
- Division of Rheumatology, Department of Internal Medicine, and
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Song Guo Zheng
- Department of Rheumatology & Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang X, Yuan W, Yang C, Wang Z, Zhang J, Xu D, Sun X, Sun W. Emerging role of gut microbiota in autoimmune diseases. Front Immunol 2024; 15:1365554. [PMID: 38765017 PMCID: PMC11099291 DOI: 10.3389/fimmu.2024.1365554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Zhangxue Wang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xicai Sun
- Department of Hospital Office, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Wenchang Sun
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Chen J, Shi X, Deng Y, Dang J, Liu Y, Zhao J, Liang R, Zeng D, Wu W, Xiong Y, Yuan J, Chen Y, Wang J, Lin W, Chen X, Huang W, Olsen N, Pan Y, Fu Q, Zheng SG. miRNA-148a-containing GMSC-derived EVs modulate Treg/Th17 balance via IKKB/NF-κB pathway and treat a rheumatoid arthritis model. JCI Insight 2024; 9:e177841. [PMID: 38652539 PMCID: PMC11141912 DOI: 10.1172/jci.insight.177841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics - including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues - position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Jingrong Chen
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Shi
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Deng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junlong Dang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zhao
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Yiding Xiong
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yuan
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Lin
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfang Chen
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, The Penn State University Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Yunfeng Pan
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Peng X, Li H, Zhu L, Zhao S, Li Z, Li S, DongtingWu, Chen J, Zheng S, Su W. Single-cell sequencing of the retina shows that LDHA regulates pathogenesis of autoimmune uveitis. J Autoimmun 2024; 143:103160. [PMID: 38160538 DOI: 10.1016/j.jaut.2023.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Autoimmune uveitis (AU) is a severe disorder causing poor vision and blindness. However, the cellular dynamics and pathogenic mechanisms underlying retinal injury in uveitis remain unclear. In this study, single-cell RNA sequencing of the retina and cervical draining lymph nodes in experimental autoimmune uveitis mice was conducted to identify the cellular spatiotemporal dynamics and upregulation of the glycolysis-related gene LDHA. Suppression of LDHA can rescue the imbalance of T effector (Teff) cells/T regulator (Treg) cells under inflammation via downregulation of the glycolysis-PI3K signaling circuit and inhibition of the migration of CXCR4+ Teff cells towards retinal tissue. Furthermore, LDHA and CXCR4 are upregulated in the peripheral blood mononuclear cells of Vogt-Koyanagi-Harada patients. The LDHA inhibitor suppresses CD4+ T cell proliferation in humans. Therefore, our data indicate that the autoimmune environment of uveitis regulates Teff cell accumulation in the retina via glycolysis-associated LDHA. Modulation of this target may provide a novel therapeutic strategy for treating AU.
Collapse
Affiliation(s)
- Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Si Li
- Sun Yat-sen University, Guangzhou 510060, China
| | - DongtingWu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | | | - Songguo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Jiaotong University School of Medicine, 201600, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
5
|
Xiang S, Chen J, Deng M, Wang Z, Li X, Lin D, Zhou J. Celastrol ameliorates experimental autoimmune uveitis through STAT3 targeting and gut microenvironment reprofiling. Int Immunopharmacol 2024; 127:111339. [PMID: 38064813 DOI: 10.1016/j.intimp.2023.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Extensive research has revealed the favorable effects of celastrol (CEL) against various diseases, but the role of CEL in autoimmune uveitis remains unexplored. METHODS We first assessed the prophylactical and therapeutical effects of CEL on autoimmune uveitis via rat experimental autoimmune uveitis model. After network pharmacology, functional enrichment and molecular docking analyses, we predicted the potential target of CEL and validated its effect on EAU by clinical and histopathological scores, Evans blue staining, immunofluorescence assay and western blotting. Then we evaluated the role of CEL in the gut environment by 16S rRNA sequencing and untargeted metabolomic analysis. RESULTS We confirmed that CEL treatment suppressed the pathological TH17 response, inhibited the migration of inflammatory cells, and preserved the integrity of BRB via targeting STAT3-IL17 pathway. Furthermore, CEL was found to reduce the relative abundance of opportunistic pathogenic bacteria including Clostridium_sensu_stricto_1, Parasutterella and GCA-900066575, and enrich the relative abundance of beneficial Oscillospirales and Ruminococcus_torques_group in EAU rats by fecal 16S rRNA sequencing. Meanwhile, CEL treatment reshaped the gut metabolites in the EAU rats by increasing the relative concentrations of cholic acid, progesterone and guggulsterone, and decreasing the relative levels of isoproterenol, creatinine and phenylacetylglutamine. CONCLUSIONS CEL exerts its ameliorative effects on the experimental autoimmune uveitis through the dual mechanisms of targeting STAT3 and reprofiling the gut microenvironment.
Collapse
Affiliation(s)
- Shengjin Xiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinrun Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengyun Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zixiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dan Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jianhong Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Wei Y, Li T, Zhao D, Sun T, Ma C, Zhang L, Lv S, Li J, Tan J, Li W. Sodium butyrate ameliorates sepsis-associated lung injury by enhancing gut and lung barrier function in combination with modulation of CD4 +Foxp3 + regulatory T cells. Eur J Pharmacol 2024; 963:176219. [PMID: 38040079 DOI: 10.1016/j.ejphar.2023.176219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Sepsis-associated lung injury often coexists with intestinal dysfunction. Butyrate, an essential gut microbiota metabolite, participates in gut-lung crosstalk and has immunoregulatory effects. This study aims to investigate the effect and mechanism of sodium butyrate (NaB) on lung injury. Sepsis-associated lung injury was established in mice by cecal ligation and puncture (CLP). Mice in treatment groups received NaB gavage after surgery. The survival rate, the oxygenation index and the lung wet-to-dry weight (W/D) ratio were calculated respectively. Pulmonary and intestinal histologic changes were observed. The total protein concentration in bronchoalveolar lavage fluid (BALF) was measured, and inflammatory factors in serum and BALF were examined. Diamine oxidase (DAO), lipopolysaccharide (LPS), and surfactant-associated protein D (SP-D) levels in serum and amphiregulin in lung tissue were assessed. Intercellular junction protein expression in the lung and intestinal tissues were examined. Changes in immune cells were analyzed. NaB treatment improved the survival rate, the oxygenation index and the histologic changes. NaB decreased the W/D ratio, total protein concentration, and the levels of proinflammatory cytokines, as well as SP-D, DAO and LPS, while increased the levels of anti-inflammatory cytokines and amphiregulin. The intercellular junction protein expression were improved by NaB. Furthermore, the CD4+/CD8+ T-cell ratio and the proportion of CD4+Foxp3+ regulatory T cells (Tregs) were increased by NaB. Our data suggested that NaB gavage effectively improved the survival rate and mitigated lung injury in CLP mice. The possible mechanism was that NaB augmented CD4+Foxp3+ Tregs and enhanced the barrier function of the gut and the lung.
Collapse
Affiliation(s)
- Yuting Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China
| | - Tingting Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, PR China
| | - Dengming Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China
| | - Tian Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China
| | - Can Ma
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China
| | - Lijuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China
| | - Shihua Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China
| | - Jingbo Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China
| | - Jing Tan
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China
| | - Wenzhi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, Heilongjiang, PR China.
| |
Collapse
|
7
|
Li N, Han X, Ruan M, Huang F, Yang L, Xu T, Wang H, Wu H, Shi S, Wang Y, Wu X, Wang S. Prebiotic inulin controls Th17 cells mediated central nervous system autoimmunity through modulating the gut microbiota and short chain fatty acids. Gut Microbes 2024; 16:2402547. [PMID: 39287045 PMCID: PMC11409507 DOI: 10.1080/19490976.2024.2402547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination occurring in the central nervous system (CNS). Inulin is a common prebiotic that can improve metabolic disorders by modulating the gut microbiota. However, its capacity to affect CNS autoimmunity is poorly recognized. Experimental autoimmune encephalomyelitis (EAE) is a classical mouse model of MS. Herein, we found that oral administration of inulin ameliorated the severity EAE in mice, accompanied by reductions in inflammatory cell infiltration and demyelination in the CNS. These reductions were associated with decreased proportion and numbers of Th17 cells in brain and spleen. Consistent with the findings, the serum concentrations of IL-17, IL-6, and TNF-α were reduced in inulin treated EAE mice. Moreover, the proliferation of auto-reactive lymphocytes, against MOG35-55 antigen, was attenuated ex vivo. Mechanistically, inulin treatment altered the composition of gut microbiota. It increased Lactobacillus and Dubosiella whereas decreased g_Prevotellaceae_NK3B31_group at the genus level, alongside with elevated concentration of butyric acid in fecal content and serum. In vitro, butyrate, but not inulin, could inhibit the activation of MOG35-55 stimulated lymphocytes. Furthermore, fecal microbiota transplantation assay confirmed that fecal contents of inulin-treated normal mice had an ameliorative effect on EAE mice. In contrast, antibiotic cocktail (ABX) treatment diminished the therapeutic effect of inulin in EAE mice as well as the reduction of Th17 cells, while supplementation with Lactobacillus reuteri restored the amelioration effect. These results confirmed that the attenuation of inulin on Th17 cells and inflammatory demyelination in EAE mice was dependent on its modulation on gut microbiota and metabolites. Our findings provide a potential therapeutic regimen for prebiotic inulin supplementation in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyan Han
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianhao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Moleón J, González-Correa C, Miñano S, Robles-Vera I, de la Visitación N, Barranco AM, Gómez-Guzmán M, Sánchez M, Riesco P, Guerra-Hernández E, Toral M, Romero M, Duarte J. Protective effect of microbiota-derived short chain fatty acids on vascular dysfunction in mice with systemic lupus erythematosus induced by toll like receptor 7 activation. Pharmacol Res 2023; 198:106997. [PMID: 37972724 DOI: 10.1016/j.phrs.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Our objective was to investigate whether short-chain fatty acids (SCFAs), specifically acetate and butyrate, could prevent vascular dysfunction and elevated blood pressure (BP) in mice with systemic lupus erythematosus (SLE) induced by TLR7 activation using imiquimod (IMQ). Treatment with both SCFAs and dietary fibers rich in resistant starch (RS) or inulin-type fructans (ITF) effectively prevented the development of hypertension and cardiac hypertrophy. Additionally, these treatments improved aortic relaxation induced by acetylcholine and mitigated vascular oxidative stress. Acetate and butyrate treatments also contributed to the maintenance of colonic integrity, reduced endotoxemia, and decreased the proportion of helper T (Th)17 cells in mesenteric lymph nodes (MLNs), blood, and aorta in TLR7-induced SLE mice. The observed changes in MLNs were correlated with increased levels of GPR43 mRNA in mice treated with acetate and increased GPR41 levels along with decreased histone deacetylase (HDAC)- 3 levels in mice treated with butyrate. Notably, the effects attributed to acetate, but not butyrate, were nullified when co-administered with the GPR43 antagonist GLPG-0974. T cell priming and differentiation into Th17 cells in MLNs, as well as increased Th17 cell infiltration, were linked to aortic endothelial dysfunction and hypertension subsequent to the transfer of faecal microbiota from IMQ-treated mice to germ-free (GF) mice. These effects were counteracted in GF mice through treatment with either acetate or butyrate. To conclude, these findings underscore the potential of SCFA consumption in averting hypertension by restoring balance to the interplay between the gut, immune system, and vascular wall in SLE induced by TLR7 activation.
Collapse
Affiliation(s)
- Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Pedro Riesco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | | | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
9
|
Feng R, Liu C, Cui Z, Liu Z, Zhang Y. Sphingosine 1-phosphate combining with S1PR4 promotes regulatory T cell differentiation related to FAO through Nrf2/PPARα. Scand J Immunol 2023; 98:e13322. [PMID: 39007959 DOI: 10.1111/sji.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 07/16/2024]
Abstract
Metabolism and metabolic processes have long been considered to shape the tumour immunosuppressive microenvironment. Recent research has demonstrated that T regulatory cells (Tregs) display high rates of fatty acid oxidation (FAO) and a relatively low rate of glycolysis. Sphingosine 1-phosphate (S1P), which is a G protein signalling activator involved in immune regulation and FAO modulation, has been implicated in Treg differentiation. However, the precise relation between Treg differentiation and S1P remains unclear. In this study, we isolated naïve CD4+ T cells from the spleens of 6-8-week-old BALB/c mice using magnetic bead sorting, which was used in our study for Treg differentiation. S1P stimulation was performed during Treg differentiation. We examined the oxygen consumption and palmitic acid metabolism of the differentiated Tregs and evaluated the expression levels of various proteins, including Nrf2, CPT1A, Glut1, ACC1 and PPARα, through Western blotting. Our results demonstrate that S1P promotes Treg differentiation and enhances FAO, and that the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and peroxisome proliferator-activated receptor α (PPARα) is upregulated. Furthermore, Nrf2 or PPARα knockdown dampened the Treg differentiation and FAO that were promoted by S1P, confirming that S1P can bind with S1PR4 to promote Treg differentiation through the Nrf2/PPARα signalling pathway, which may be related to FAO facilitation.
Collapse
Affiliation(s)
- Rui Feng
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Chuang Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zilin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
10
|
Moleón J, González-Correa C, Robles-Vera I, Miñano S, de la Visitación N, Barranco AM, Martín-Morales N, O’Valle F, Mayo-Martínez L, García A, Toral M, Jiménez R, Romero M, Duarte J. Targeting the gut microbiota with dietary fibers: a novel approach to prevent the development cardiovascular complications linked to systemic lupus erythematosus in a preclinical study. Gut Microbes 2023; 15:2247053. [PMID: 37615336 PMCID: PMC10453983 DOI: 10.1080/19490976.2023.2247053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
This study is to investigate whether dietary fiber intake prevents vascular and renal damage in a genetic mouse model of systemic lupus erythematosus (SLE), and the contribution of gut microbiota in the protective effects. Female NZBWF1 (SLE) mice were treated with resistant-starch (RS) or inulin-type fructans (ITF). In addition, inoculation of fecal microbiota from these experimental groups to recipient normotensive female C57Bl/6J germ-free (GF) mice was performed. Both fiber treatments, especially RS, prevented the development of hypertension, renal injury, improved the aortic relaxation induced by acetylcholine, and the vascular oxidative stress. RS and ITF treatments increased the proportion of acetate- and butyrate-producing bacteria, respectively, improved colonic inflammation and integrity, endotoxemia, and decreased helper T (Th)17 proportion in mesenteric lymph nodes (MLNs), blood, and aorta in SLE mice. However, disease activity (splenomegaly and anti-ds-DNA) was unaffected by both fibers. T cell priming and Th17 differentiation in MLNs and increased Th17 infiltration was linked to aortic endothelial dysfunction and hypertension after inoculation of fecal microbiota from SLE mice to GF mice, without changes in proteinuria and autoimmunity. All these effects were lower in GF mice after fecal inoculation from fiber-treated SLE mice. In conclusion, these findings support that fiber consumption prevented the development of hypertension by rebalancing of dysfunctional gut-immune system-vascular wall axis in SLE.
Collapse
Affiliation(s)
- Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, Instituto de Biopatología y Medicina Regenerativa (IBIMER) University of Granada, Granada, Spain
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, Instituto de Biopatología y Medicina Regenerativa (IBIMER) University of Granada, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laura Mayo-Martínez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla del Monte, San Pablo, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla del Monte, San Pablo, Spain
| | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
11
|
Sun J, Chen J, Xie Q, Sun M, Zhang W, Wang H, Liu N, Wang Q, Wang M. Sodium butyrate alleviates R97-116 peptide-induced myasthenia gravis in mice by improving the gut microbiota and modulating immune response. J Inflamm (Lond) 2023; 20:37. [PMID: 37924056 PMCID: PMC10625296 DOI: 10.1186/s12950-023-00363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Fermented butyrate exhibits an anti-inflammatory response to maintain immune homeostasis within the gut. However, the effect and underlying mechanism of butyrate on myasthenia gravis (MG) remain unclear. The changes in the gut microbiota and fecal contents of SCFAs in MG patients were examined. R97-116 peptide was used to induce the experimental autoimmune myasthenia gravis (EAMG) mice and sodium butyrate (NaB) was gavaged to the EAMG mice. Gut microbiota, the frequency of Th1, Th17, Treg, Tfh, and B cells, the levels of IFN-γ, IL-17 A, IL-10, IL-21, and anti-R97-116 IgG, RNA-seq of total B cells in the spleen were explored by metagenomics, flow cytometry, ELISA, and transcriptomics. A significant reduction in SCFA-producing bacteria including Butyricimonas synergistica and functional modules including butyrate synthesis/production II was observed in MG patients and fecal SCFAs detection confirmed the increase. The EAMG mice were successfully constructed and NaB supplementation has changed the composition and function of the gut microbiota. The numbers of Th1, Th17, Tfh, and B cells were significantly increased while that of Treg cells was obviously decreased in EAMG mice compared with controls. Interestingly, NaB treatment has reduced the amounts of Th17, Tfh, and B cells but increased that of Treg cells. Accordingly, the levels of IL-17 A, IL-21, and IgG were increased while IL-10 was decreased in EAMG mice. However, NaB treatment reduced IL-17 A and IL-21 but increased that of IL-10. RNA-seq of B cells has revealed 4577 deferentially expressed genes (DEGs), in which 1218 DEGs were up-regulated while 3359 DEGs were down-regulated in NaB-treated EAMG mice. GO enrichment and KEGG pathway analysis unveiled that the function of these DEGs was mainly focused on immunoglobulin production, mitochondrial respiratory chain complex, ribosome, oxidative phosphorylation, and CNS diseases including amyotrophic lateral sclerosis. We have found that butyrate was significantly reduced in MG patients and NaB gavage could evidently improve MG symptoms in EAMG mice by changing the gut microbiota, regulating the immune response, and altering the gene expression and function of B cells, suggesting NaB might be a potential immunomodulatory supplement for MG drugs.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Juanjuan Chen
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qinfang Xie
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenjing Zhang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
12
|
Zhao Y, Sun H, Chen Y, Niu Q, Dong Y, Li M, Yuan Y, Yang X, Sun Q. Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization. mBio 2023; 14:e0198723. [PMID: 37754570 PMCID: PMC10653920 DOI: 10.1128/mbio.01987-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) continues to carry a high burden in terms of mortality. With the roles of gut microbiota in mediating lung diseases being gradually uncovered, the details of the molecular mechanism of the "gut-lung axis" mediated by beneficial microorganisms and small-molecule metabolites have gradually attracted the attention of researchers. However, further studies are still necessary to determine the efficacy of microbial-based interventions. Our findings indicate that sodium butyrate (NaB) alleviates MRSA-induced pulmonary inflammation by improving gut-lung microbiota and promoting M2 polarization of alveolar macrophages. Therefore, the preventive administration of NaB might be explored as an effective strategy to control MRSA pneumonia.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiwei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiting Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ye Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
He L, Yan X, Wen S, Zhong Z, Hou Z, Liu F, Mi H. Paris polyphylla extract attenuates colitis in mice by regulating PPAR-γ mediated Treg/Th17 balance. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116621. [PMID: 37164256 DOI: 10.1016/j.jep.2023.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris polyphylla Sm. (P.P), is a widely-used traditional Chinese medicine (TCM) in the treatment of wound, throat sores and snakebites. Furthermore, P.P was recorded as an anti-inflammatory drug by the Chinese Pharmacopoeia. AIM OF THE STUDY We sought to decipher the anti-inflammatory effect of P.P on ulcerative colitis (UC); specifically, to explore whether P.P attenuates colitis by restoring the regulatory T cells (Tregs) and T helper 17 (Th17) cells balance and its mechanism. MATERIAL AND METHODS We treated experimental colitis mice with extracts of Paris polyphylla (EPP). The percentage of Tregs and Th17 cells were measured using flow cytometry, and their secreted cytokines levels were evaluated employing ELISA. The expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in colon tissues was detected using immunofluorescence. Furthermore, GW9662, a PPAR-γ antagonist, was used to validate the mechanism of EPP in restoring the Treg/Th17 balance. RESULTS The EPP effectively alleviated the clinical symptoms and inflammatory cytokine levels in mice with colitis. EPP treatment also restored the impaired Treg/Th17 balance in mice. Furthermore, EPP treatment promoted PPAR-γ expression and reduced HIF-1α and p-STAT3 expression in colon tissues, whereas PPAR-γ inhibition blocked the effects of EPP in mice models. CONCLUSION Our study indicates that EPP exhibit excellent anti-inflammatory properties via restoring PPAR-γ/STAT3/HIF-1α axis-mediated Treg/Th17 balance in colitis mice. Hence, P. polyphylla is a promising medicinal plant-based alternative for managing colitis that requires further clinical validation.
Collapse
Affiliation(s)
- Long He
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xingrui Yan
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuting Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhuotai Zhong
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China.
| | - Zhengkun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Hong Mi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
15
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Pant A, Dasgupta D, Tripathi A, Pyaram K. Beyond Antioxidation: Keap1-Nrf2 in the Development and Effector Functions of Adaptive Immune Cells. Immunohorizons 2023; 7:288-298. [PMID: 37099275 PMCID: PMC10579846 DOI: 10.4049/immunohorizons.2200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Ubiquitously expressed in mammalian cells, the Kelch-like ECH-associated protein 1 (Keap1)-NF erythroid 2-related factor 2 (Nrf2) complex forms the evolutionarily conserved antioxidation system to tackle oxidative stress caused by reactive oxygen species. Reactive oxygen species, generated as byproducts of cellular metabolism, were identified as essential second messengers for T cell signaling, activation, and effector responses. Apart from its traditional role as an antioxidant, a growing body of evidence indicates that Nrf2, tightly regulated by Keap1, modulates immune responses and regulates cellular metabolism. Newer functions of Keap1 and Nrf2 in immune cell activation and function, as well as their role in inflammatory diseases such as sepsis, inflammatory bowel disease, and multiple sclerosis, are emerging. In this review, we highlight recent findings about the influence of Keap1 and Nrf2 in the development and effector functions of adaptive immune cells, that is, T cells and B cells, and discuss the knowledge gaps in our understanding. We also summarize the research potential and targetability of Nrf2 for treating immune pathologies.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Debolina Dasgupta
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Aprajita Tripathi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Kalyani Pyaram
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
17
|
Prednisone acetate modulates Th1/Th2 and Th17/Treg cell homeostasis in experimental autoimmune uveitis via orchestrating the Notch signaling pathway. Int Immunopharmacol 2023; 116:109809. [PMID: 36753985 DOI: 10.1016/j.intimp.2023.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Uveitis is an immune eye disease that can seriously impair vision. Glucocorticoids (GCS) have been extensively used to treat uveitis, though the mechanisms have not been fully elucidated. In this study, we investigated the regulatory effects of prednisone acetate (PA) on the Th1/Th2 and Th17/Treg balance in experimental autoimmune uveitis (EAU) through modulating the Notch signaling pathway. Briefly, Lewis rats were randomly divided into the normal control (NC), EAU, and EAU + PA groups. Rats in EAU and EAU + PA groups were induced EAU, while those in the EAU + PA group were treated with PA. Clinical and histopathological scores were employed to assess the progression of EAU. The expression levels of Notch signaling-related molecules (Notch1, Notch2, Dll3, Dll4, and Rbpj) and Th-associated cytokines (IFN-γ, IL-4, IL-10, and IL-17) were assessed via quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). In addition, the frequencies of Th1, Th2, Th17 and Treg cells were detected by flow cytometry. These experimental results indicated that activation of the Notch signaling pathway occurred in EAU rats and resulted in a severe imbalance of the Th17/Treg and Th1/Th2 ratios. PA treatment significantly alleviated ocular inflammation, inhibited activation of the Notch signaling pathway, and declined Th1, and Th17 cell differentiation, thereby restoring the Th1/Th2 and Th17/Treg balance. Collectively, PA can positively enhance the systemic immune response and improve the intraocular microenvironmental homeostasis by inhibiting activation of the Notch signaling pathway and by restoring Th1/Th2 and Th17/Treg balance, thus achieving the goal of treating uveitis.
Collapse
|
18
|
Xiang P, Zhang Y, Qu X, Chen Y, Xu Y, Li X, Wei X, Hu X, Zhong R, Liu C, Zhu F. Xiehuo Xiaoying decoction inhibits Tfh cell expansion and promotes Tfr cell amplification to ameliorate Graves' disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115826. [PMID: 36228893 DOI: 10.1016/j.jep.2022.115826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiehuo Xiaoying decoction (XHXY) has shown great potential in the treatment of GD, but its mechanism remains obscure. Increase of follicular helper T (Tfh) cells and reduction of follicular regulatory T (Tfr) cells contribute to a high thyrotropin receptor antibodies (TRAb) level and possible Graves' disease (GD). Oxidative stress (OS) disrupts T helper cell differentiation and aggravates autoimmunity. AIM OF THE STUDY This study aimed to investigate whether XHXY decoction can ameliorate autoimmunity in GD via inhibiting OS and regulating Tfh and Tfr cells. MATERIALS AND METHODS The main XHXY bioactive compounds were identified using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. GD was induced in the mice through three intramuscular injections of adenovirus expressing the TSH receptor. Then, the mice received oral gavage of XHXY (17 g/kg·d) and 34 g/kg·d) for 4 weeks. OS indicators were assessed. Flow cytometry was used to confirm the proportion of Tfh and Tfr cells in the lymph nodes and spleens of the mice. Cytokine expression levels were determined using enzyme-linked immunosorbent assay. Factors including interleukin-21, B-cell lymphoma-6, and forkhead box P3 (Foxp3) were detected using quantitative polymerase chain reaction. The mRNA and protein expression levels of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid-2-related factor 2 (Nrf2), and haem oxygenase 1 (HO-1) were detected using quantitative polymerase chain reaction and Western blotting, respectively. RESULTS Twelve main ingredients of XHXY were identified. XHXY relieved GD by lowering thyroxine (p < 0.01) and TRAb levels (p < 0.01). XHXY ameliorated OS by decreasing the levels of NADPH oxidase 2 (p < 0.05), 4-hydroxynonenal (p < 0.01), and 8-oxo-2'-deoxyguanosine (p < 0.001). It inhibited Tfh cell expansion (p < 0.05), as well as the production of cytokine interleukin -21 (p < 0.01), interleukin -4 (p < 0.01) and transcription factor B-cell lymphoma 6 (p < 0.05). XHXY also induced Tfr cell amplification (p < 0.05), increased the production of interleukin -10 (p < 0.05) and transforming growth factor β (p < 0.05) and the mRNA levels of Foxp3 (p < 0.05). Finally, the Tfh/Tfr ratio returned to normal. In addition, XHXY activated Nrf2 and HO-1 expression, but inhibited Keap1 activation. CONCLUSIONS XHXY relieves autoimmunity in GD via inhibiting Tfh cell amplification and Tfr cell reduction, a mechanism which probably involves the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Pingping Xiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yunnan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyang Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yu Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yijiao Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xingjia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiao Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xin Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ronglin Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Chao Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
19
|
Song J, Guo D, Tian Q, Wu Q, Zhang X, Bi H. Stress Suppresses Systemic Th17/Treg Imbalance in Rats with Experimental Autoimmune Uveitis. Ocul Immunol Inflamm 2022; 30:1890-1900. [PMID: 34468261 DOI: 10.1080/09273948.2021.1970778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To explore the effect of chronic unpredictable mild stress (CUMS) on the immune response involved in rats with experimental autoimmune uveitis (EAU). METHODS Lewis rats were randomly divided into control, EAU, CUMS, and EAU+CUMS groups and received relevant treatments. On days 7, 11, 14, 21 and 28, frequencies of Th17 and Treg cells and the related cytokines were analyzed. RESULTS The intraocular inflammation of EAU rats peaked between days 11 and 13, while the severity of inflammation of the rats in EAU+CUMS group fluctuated between 11 and 15 days. Both frequencies of Th17, Treg cells and the related cytokines exhibited a significant difference between the two groups on days 11 and 14. CONCLUSION CUMS may protect against the possible harmful effects of immune disorder in rats with EAU through suppressing the immune disorder of T lymphocyte and the related cytokine responses.
Collapse
Affiliation(s)
- Jike Song
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Qingmei Tian
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Qiuxin Wu
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xiuyan Zhang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China.,Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| |
Collapse
|
20
|
Zhou B, Te Ba, Wang L, Gao Y, He Q, Yan Z, Wang H, Shen G. Combination of sodium butyrate and probiotics ameliorates severe burn-induced intestinal injury by inhibiting oxidative stress and inflammatory response. Burns 2022; 48:1213-1220. [PMID: 34903409 DOI: 10.1016/j.burns.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Burns are a common traumatic injuries with considerable morbidity and mortality rates. Post-burn intestinal injuries are closely related to oxidative stress and inflammatory response. The aim of the current study was to investigate the combined effect of sodium butyrate (NaB) and probiotics (PROB) on severe burn-induced oxidative stress and inflammatory response and the underlying mechanism of action. Sprague-Dawley rats with severe burns were treated with NaB with or without PROB. Pathomorphology of skin and small intestine tissue was observed using hematoxylin and eosin staining and severe burn-induced apoptosis in small intestine tissue was examined via terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The release of factors related to inflammation was quantified using ELISA kits and qRT-PCR and levels of oxidative stress markers were evaluated using biochemical assays. Furthermore, mitochondrial morphological changes in small intestinal epithelial cells were observed using transmission electron microscopy. In addition, the underlying mechanism associated with the combined effect of NaB and PROB on severe burn-induced oxidative stress and inflammatory response was investigated using western blotting. The combination of NaB and PROB exerted protective effects against severe burn-induced intestinal barrier injury by reducing the levels of diamine oxidase and intestinal fatty acid binding protein. Combined NaB and PROB treatment inhibited severe burn-induced oxidative stress by increasing superoxide dismutase levels and decreasing those of malondialdehyde and myeloperoxidase levels. Severe burn-induced inflammation was suppressed by combined NaB and PROB administration, as demonstrated by the decreased mRNA expression of tumor necrosis factor-α, interleukin-6, interleukin-1β, and high mobility group box-1 in the small intestine. In addition, this study showed that combined NaB and PROB administration increased nuclear factor-erythroid 2-related factor 2 (Nrf2) protein expression and decreased the phosphorylation of nuclear factor (NF)-κB and extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, our findings indicate that combined NaB and PROB treatment may inhibit severe burn-induced inflammation and oxidative stress in the small intestine by regulating HMGB1/NF-κB and ERK1/2/Nrf2 signaling, thereby providing a new therapeutic strategy for intestinal injury induced by severe burn.
Collapse
Affiliation(s)
- Biao Zhou
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Te Ba
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Lingfeng Wang
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Yixuan Gao
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Qiaoling He
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Zengqiang Yan
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Hongyu Wang
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Guoliang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
21
|
Ogawa T, Ishitsuka Y. The Role of KEAP1-NRF2 System in Atopic Dermatitis and Psoriasis. Antioxidants (Basel) 2022; 11:antiox11071397. [PMID: 35883888 PMCID: PMC9312147 DOI: 10.3390/antiox11071397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The Kelch-like erythroid cell-derived protein with cap‘n’collar homology-associated protein 1 (KEAP1)-nuclear factor erythroid-2-related factor 2 (NRF2) system, a thiol-based sensor-effector apparatus, exerts antioxidative and anti-inflammatory effects and maintains skin homeostasis. Thus, NRF2 activation appears to be a promising treatment option for various skin diseases. However, NRF2-mediated defense responses may deteriorate skin inflammation in a context-dependent manner. Atopic dermatitis (AD) and psoriasis are two common chronic inflammatory skin diseases caused by a defective skin barrier, dysregulated immune responses, genetic predispositions, and environmental factors. This review focuses on the role of the KEAP1-NRF2 system in the pathophysiology of AD and psoriasis and the therapeutic approaches that utilize this system.
Collapse
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
- Correspondence: ; Tel.: +81-29-853-3128; Fax: +81-29-853-3217
| | - Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
- Department of Dermatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
22
|
He C, Gao M, Zhang X, Lei P, Yang H, Qing Y, Zhang L. The Protective Effect of Sulforaphane on Dextran Sulfate Sodium-Induced Colitis Depends on Gut Microbial and Nrf2-Related Mechanism. Front Nutr 2022; 9:893344. [PMID: 35832050 PMCID: PMC9271993 DOI: 10.3389/fnut.2022.893344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables such as broccoli and brussels sprouts, has a variety of biological functions. This study was undertaken to assess the potential efficacy of SFN in ameliorating dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and to elucidate the underlying mechanisms. UC was induced in mice with administration of 2% DSS in drinking water for 7 days. Male C57BL/6 mice were treated with Mesalazine (50 and 100 mg/kg body weight) and various doses of SFN (2.5, 5, 10, and 20 mg/kg body weight). In DSS colitis mice, the hallmarks of disease observed as shortened colon lengths, increased disease activity index (DAI) scores and pathological damage, higher proinflammatory cytokines and decreased expression of tight junction proteins, were alleviated by SFN treatment. SFN also partially restored the perturbed gut microbiota composition and increased production of volatile fatty acids (especially caproic acid) induced by DSS administration. The heatmap correlation analysis indicated that Lactobacillus johnsonii, Bacteroides acidifaciens, unclassified Rikenellaceae RC9, and unclassified Bacteroides were significantly correlated with disease severity. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Signal Transducer and Activator of Transcription 3 (STAT3), and Phase II enzyme UDP-glucuronosyltransferase (UGT) were involved in the protective effect of SFN against DSS-induced colitis. This study's findings suggest that SFN may serve as a therapeutic agent protecting against UC.
Collapse
Affiliation(s)
- Canxia He
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Mingfei Gao
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaohong Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Peng Lei
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Haitao Yang
- Department of Pathology, Mingzhou Hospital of Zhejiang University, Ningbo, China
| | - Yanping Qing
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Yanping Qing
| | - Lina Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
- *Correspondence: Lina Zhang
| |
Collapse
|
23
|
Rodríguez-Fernández CA, Iglesias MB, de Domingo B, Conde-Pérez K, Vallejo JA, Rodríguez-Martínez L, González-Barcia M, Llorenç V, Mondelo-Garcia C, Poza M, Fernández-Ferreiro A. Microbiome in Immune-Mediated Uveitis. Int J Mol Sci 2022; 23:ijms23137020. [PMID: 35806031 PMCID: PMC9266430 DOI: 10.3390/ijms23137020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decades, personalized medicine has been increasing its presence in different fields of medicine, including ophthalmology. A new factor that can help us direct medicine towards the challenge of personalized treatments is the microbiome. The gut microbiome plays an important role in controlling immune response, and dysbiosis has been associated with immune-mediated diseases such as non-infectious uveitis (NIU). In this review, we gather the published evidence, both in the pre-clinical and clinical studies, that support the possible role of intestinal dysbiosis in the pathogenesis of NIU, as well as the modulation of the gut microbiota as a new possible therapeutic target. We describe the different mechanisms that have been proposed to involve dysbiosis in the causality of NIU, as well as the potential pharmacological tools that could be used to modify the microbiome (dietary supplementation, antibiotics, fecal microbiota transplantation, immunomodulators, or biologic drugs) and, consequently, in the control of the NIU. Furthermore, there is increasing scientific evidence suggesting that the treatment with anti-TNF not only restores the composition of the gut microbiota but also that the study of the composition of the gut microbiome will help predict the response of each patient to anti-TNF treatment.
Collapse
Affiliation(s)
| | - Manuel Busto Iglesias
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Begoña de Domingo
- Ophthalmology Department, University Clinical Hospital of Santiago Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Kelly Conde-Pérez
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Juan A. Vallejo
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Lorena Rodríguez-Martínez
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Victor Llorenç
- Clínic Institute of Ophthalmology (ICOF), Clinic Hospital of Barcelona, 08028 Barcelona, Spain;
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Clínic Hospital of Barcelona, 08036 Barcelona, Spain
| | - Cristina Mondelo-Garcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Margarita Poza
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
- Correspondence: (M.P.); (A.F.-F.)
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: (M.P.); (A.F.-F.)
| |
Collapse
|
24
|
Chen H, Song L, Xu X, Han Z, Peng F, Zhang Q, Liu C, Liang X. The effect of icariin on autoimmune premature ovarian insufficiency via modulation of Nrf2/HO-1/Sirt1 pathway in mice. Reprod Biol 2022; 22:100638. [PMID: 35344846 DOI: 10.1016/j.repbio.2022.100638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 12/21/2022]
Abstract
Primary ovarian insufficiency (POI) is a common gynecological disease. Autoimmunity is a common cause of POI. Icariin (ICA) plays a therapeutic role in many autoimmune diseases. This study aims to investigate the effect of ICA on autoimmune POI mice and its effect on immune regulation. Sixty-three female BALB/c mice were randomized into three groups (control, POI, POI + ICA). POI and POI + ICA group were hypodermically injected with zona pellucida three peptides (pZP3) to induce autoimmune POI. Then the POI + ICA group was gavaged with ICA. A vaginal smear was to observe estrous cycles, hematoxylin-eosin staining was to count follicles. Enzyme-linked immunosorbent analysis determined serum FSH, LH, AMH, and anti-zona pellucida antibody (AZPAb) levels. In addition, flow cytometry detected the expression of Th1 cells and Treg cells, and Western blot was used to detect the expression of Nuclear factor E2 related factor 2(Nrf2), heme oxygenase-1 (HO-1), and Sirtuin-1 (Sirt1) proteins. pZP3 treatment decreased serum AMH levels and increased FSH, LH, and AZPAb levels. Additionally, decreases in the number of healthy follicles at all stages and an increase in the number of atretic follicles. Abnormal ovarian structure and an arrested estrous cycle were also noted. However, ICA rescued POI through up-regulating Nrf2, HO-1, and Sirt1 expressions and up-regulating Treg expressions. ICA treatment improved the structure of the injured ovarian and its function in autoimmune POI mice. The mechanism is achieved by increasing the expression of Nrf2/HO-1/Sirt1 pathway in the ovary and increasing Treg cells' expression.
Collapse
Affiliation(s)
- Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Xiaofang Xu
- Department of Gynecology, Leping Maternal and Child Health Care Hospital, Leping, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Xin Liang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China.
| |
Collapse
|
25
|
Huang J, Li Z, Hu Y, Li Z, Xie Y, Huang H, Chen Q, Chen G, Zhu W, Chen Y, Su W, Chen X, Liang D. Melatonin, an endogenous hormone, modulates Th17 cells via the reactive-oxygen species/TXNIP/HIF-1α axis to alleviate autoimmune uveitis. J Neuroinflammation 2022; 19:124. [PMID: 35624485 PMCID: PMC9145533 DOI: 10.1186/s12974-022-02477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Melatonin, an indoleamine produced by the pineal gland, plays a pivotal role in maintaining circadian rhythm homeostasis. Recently, the strong antioxidant and anti-inflammatory properties of melatonin have attracted attention of researchers. We evaluated the therapeutic efficacy of melatonin in experimental autoimmune uveitis (EAU), which is a representative animal model of human autoimmune uveitis. Methods EAU was induced in mice via immunization with the peptide interphotoreceptor retinoid binding protein 1–20 (IRBP1–20). Melatonin was then administered via intraperitoneal injection to induce protection against EAU. With EAU induction for 14 days, clinical and histopathological scores were graded to evaluate the disease progression. T lymphocytes accumulation and the expression of inflammatory cytokines in the retinas were assessed via flow cytometry and RT-PCR, respectively. T helper 1 (Th1), T helper 17 (Th17), and regulatory T (Treg) cells were detected via flow cytometry for both in vivo and in vitro experiments. Reactive-oxygen species (ROS) from CD4 + T cells was tested via flow cytometry. The expression of thioredoxin-interacting protein (TXNIP) and hypoxia-inducible factor 1 alpha (HIF-1α) proteins were quantified via western blot. Results Melatonin treatment resulted in notable attenuation of ocular inflammation in EAU mice, evidenced by decreasing optic disc edema, few signs of retinal vasculitis, and minimal retinal and choroidal infiltrates. Mechanistic studies revealed that melatonin restricted the proliferation of peripheral Th1 and Th17 cells by suppressing their transcription factors and potentiated Treg cells. In vitro studies corroborated that melatonin restrained the polarization of retina-specific T cells towards Th17 and Th1 cells in addition to enhancing the proportion of Treg cells. Pretreatment of retina-specific T cells with melatonin failed to induce EAU in naïve recipients. Furthermore, the ROS/ TXNIP/ HIF-1α pathway was shown to mediate the therapeutic effect of melatonin in EAU. Conclusions Melatonin regulates autoimmune T cells by restraining effector T cells and facilitating Treg generation, indicating that melatonin could be a hopeful treatment alternative for autoimmune uveitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02477-z.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yuxi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
26
|
Lee AY, Foulsham W. Regulatory T Cells: Therapeutic Opportunities in Uveitis. FRONTIERS IN OPHTHALMOLOGY 2022; 2:901144. [PMID: 38983511 PMCID: PMC11182269 DOI: 10.3389/fopht.2022.901144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 07/11/2024]
Abstract
Regulatory T cells (Tregs) are critical for the maintenance of immune tolerance and the suppression of excessive inflammation. Many inflammatory autoimmune disorders, including autoimmune uveitis, involve the loss of the suppressive capacities of Tregs. Over the past decade, Tregs' therapeutic potential in uveitis has garnered increasing attention. Specific subsets of Tregs, including TIGIT+ and PD-1+ Tregs, have emerged as potent immunosuppressors that may be particularly well-suited to cell-based therapeutics. Studies have elucidated the interaction between Treg development and the gut microbiome as well as various intracellular signaling pathways. Numerous cell-based therapies and therapeutic molecules have been proposed and investigated using the murine experimental autoimmune uveitis (EAU) model. However, certain challenges remain to be addressed. Studies involving the use of Tregs in human patients with uveitis are lacking, and there are concerns regarding Tregs' production and purification for practical use, their plasticity towards inflammatory phenotypes, immunogenicity, and tumorigenicity. Nevertheless, recent research has brought Tregs closer to yielding viable treatment options for uveitis.
Collapse
Affiliation(s)
| | - William Foulsham
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
27
|
Gut-derived butyrate suppresses ocular surface inflammation. Sci Rep 2022; 12:4512. [PMID: 35296712 PMCID: PMC8927112 DOI: 10.1038/s41598-022-08442-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
Dry eye is a common ocular inflammatory disorder characterized by tear film instability and reduced tear production. There is increasing evidence that homeostasis of the ocular surface is impacted by the intestinal microbiome. We are interested in investigating the potential role of microbially produced small molecules in mediating the interaction between the intestinal microbiota and the ocular surface. One such molecule is butyrate, a short-chain fatty acid (SCFA) produced by certain members of the gut microbiota through fermentation of dietary fiber. Here we show that SCFA transporter SLC5A8 is expressed in vivo in murine conjunctival and corneal epithelium. Pre-treatment of in vitro corneal epithelial cultures or bone marrow-derived dendritic cells (BMDCs) with phenylbutyrate (PBA) reduces lipopolysaccharide-induced pro-inflammatory Tnf expression. Corneal epithelial cultures and BMDCs isolated from Slc5a8 knockout mice are unable to respond to PBA pre-treatment, suggesting that SLC5A8 is required for the protective effect of PBA. The treatment of mice undergoing desiccating stress (DS) with oral tributyrin, a prodrug form of butyrate, reduces inflammation at the ocular surface in vivo, and this effect partially requires SLC5A8. Finally, expression analysis on conjunctival tissue isolated from mice subjected to DS with and without tributyrin treatment revealed that treatment downregulated genes involved in Type I interferon signaling. Together these data support our hypothesis that SCFAs produced in the gut participate in the maintenance of ocular surface homeostasis.
Collapse
|
28
|
Schaefer L, Trujillo-Vargas CM, Midani FS, Pflugfelder SC, Britton RA, de Paiva CS. Gut Microbiota From Sjögren syndrome Patients Causes Decreased T Regulatory Cells in the Lymphoid Organs and Desiccation-Induced Corneal Barrier Disruption in Mice. Front Med (Lausanne) 2022; 9:852918. [PMID: 35355610 PMCID: PMC8959809 DOI: 10.3389/fmed.2022.852918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Sjögren syndrome (SS) is an autoimmune inflammatory disorder characterized by secretory dysfunction in the eye and mouth; in the eye, this results in tear film instability, reduced tear production, and corneal barrier disruption. A growing number of studies show that homeostasis of the ocular surface is impacted by the intestinal microbiome, and several 16S sequencing studies have demonstrated dysbiosis of the intestinal microbiota in SS patients. In this study, we utilized metagenomic sequencing to perform a deeper analysis of the intestinal microbiome using stools collected from sex- and age-matched healthy (n = 20), dry eye (n = 4) and SS (n = 7) subjects. The observed Operational Taxonomic Units (OTUs) and Shannon alpha diversity were significantly decreased in SS compared to healthy controls, and there was a significant inverse correlation between observed OTUs and ocular severity score. We also identified specific bacterial strains that are differentially modulated in SS vs. healthy subjects. To investigate if the differential composition of intestinal microbiome would have an impact on the immune and eye phenotype, we performed functional studies using germ-free mice colonized with human intestinal microbiota from SS patients and healthy controls. Flow cytometry analysis demonstrated reduced frequency of CD4+ FOXP3+ cells in ocular draining cervical lymph nodes (CLN) in mice colonized with SS patient intestinal microbiota 4 weeks post-colonization. We also found that offspring of SS-humanized mice also have fewer CD4+FOXP3+ cells in the CLN as well as spleen, demonstrating vertical transmission. SS-humanized mice subjected to desiccating stress exhibited greater corneal barrier disruption as compared to healthy control humanized mice under the same conditions. Taken together, these data support the hypothesis that the intestinal microbiota can modulate ocular surface health, possibly by influencing development of CD4+ FOXP3+ regulatory T cells (Tregs) in the ocular draining lymph nodes.
Collapse
Affiliation(s)
- Laura Schaefer
- Center of Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia M. Trujillo-Vargas
- Center of Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Cullen Eye Institute, Houston, TX, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Firas S. Midani
- Center of Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C. Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Cullen Eye Institute, Houston, TX, United States
| | - Robert A. Britton
- Center of Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Cullen Eye Institute, Houston, TX, United States
| |
Collapse
|
29
|
Zhang H, Xu J, Wu Q, Fang H, Shao X, Ouyang X, He Z, Deng Y, Chen C. Gut Microbiota Mediates the Susceptibility of Mice to Sepsis-Associated Encephalopathy by Butyric Acid. J Inflamm Res 2022; 15:2103-2119. [PMID: 35386224 PMCID: PMC8977350 DOI: 10.2147/jir.s350566] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Neuroinflammation plays an important part in the pathophysiology of sepsis-associated encephalopathy (SAE). Gut microbiota and gut brain axis are considered as important mediators in the development of neurological diseases. The aim of this study was to investigate the role of intestinal microbiota in sepsis-related brain injury and to explore the underlying mechanisms. Methods Mouse model of SAE was established using cecal ligation and puncture (CLP). Based on the mouse mortality and the associated time of death, light SAE (LSAE) and severe SAE (SSAE) were classified. Fecal microbiota transplantation (FMT) was performed to verify the role of intestinal microbiota. Feces of mice in the two groups which collected before operation were sequenced for 16S and targeted short chain fatty acids. Results Intestinal microbiota from SSAE and LSAE mice displayed diverse functions. Interestingly, LSAE mice produced more butyric acid compared with SSAE mice. In the in vivo experiments, sodium butyrate (NaB) reduced the high oxidative stress levels in mice hippocampus and conferred a marked survival superiority to sepsis mice. In addition, NaB prevented the increase in intracellular reactive oxygen species (ROS) generation and inducible nitric-oxide synthase expression in LPS-stimulated primary microglia. The GPR109A/Nrf2/HO-1 signaling pathway was found to be involved in the activation of antioxidant response of primary microglia induced by sodium butyrate. Conclusion Our findings indicate a crucial role of gut microbiota in the susceptibility to SAE. Butyrate, a metabolite of intestinal microbiota, may have a neuroprotective effect in the process of sepsis by GPR109A/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Huidan Zhang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- School of Medicine, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Jing Xu
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People’s Republic of China
| | - Qingrui Wu
- School of Medicine, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Heng Fang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People’s Republic of China
| | - Xin Shao
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Zhimei He
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- School of Medicine, South China University of Technology, Guangzhou, 510006, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People’s Republic of China
- Correspondence: Yiyu Deng; Chunbo Chen, Tel +86-20-83827812 ext. 61526, Fax +86-20-83827712, Email ;
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- School of Medicine, South China University of Technology, Guangzhou, 510006, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People’s Republic of China
| |
Collapse
|
30
|
Tao F, Zhou Y, Wang M, Wang C, Zhu W, Han Z, Sun N, Wang D. Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:95-111. [PMID: 35203060 PMCID: PMC8890943 DOI: 10.4196/kjpp.2022.26.2.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.
Collapse
Affiliation(s)
- Fulin Tao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuanyuan Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Mengwen Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chongyang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wentao Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhili Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Nianxia Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Dianlei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| |
Collapse
|
31
|
Su Y, Zhang F, Wu L, Kuang H, Wang Q, Cheng G. Total withanolides ameliorates imiquimod-induced psoriasis-like skin inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114895. [PMID: 34875348 DOI: 10.1016/j.jep.2021.114895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Datura metel L. has been used as an anesthetic in clinic for more than 1800 years in China, and the main efficacy of D. metel L. flower is relieving asthma and cough, relieving spasm and relieving pain. From 1978 to 1980, Datura metel L. was used as an anesthetic agent and occasionally cured psoriasis patients during anesthesia clinically, and our group confirmed that the effective portion is total withanolides (YWS). Moreover, the new drug "Datura metel L. capsule" composed of YWS has since been approved and used for the treatment of more than 3,000 psoriasis patients, with efficacy and cure rates greater than 90% and 65%. However, the immunological mechanism has not been elucidated. AIM OF THE STUDY Nowadays, although total withanolides from Datura metel L. have a better clinical efficacy in the treatment of psoriasis, there is a lack of overall understanding of the mechanism of their treatment, especially about some immune cells and proteins closely related to psoriasis and their relationship in executive function and biological significance. This study focused on investigating the mechanism of psoriasis treatment by YWS and determined the biochemical processes in the treatment of psoriasis based on Treg/Th17 axis cell-mediated bidirectional immunoregulatory functions, which provides an important scientific basis for understanding the mechanism underlying the treatment of psoriasis by YWS. MATERIALS AND METHODS The effects of YWS on the lesion pathology of IMQ-induced psoriasis mice and the underlying molecular mechanism were assessed directly using HE staining, the PASI score and the animal body mass. We also investigated the effects of YWS on the Treg/Th17 axis and their critical functions in psoriasis pathogenesis via molecular biological methods. Finally, we performed differential proteomics analysis on skin in IMQ-induced psoriasis mice to clarify the effect of YWS by incorporates mass spectrometry-bioinformatics and annotated the functions and pathways associated with the differential proteins through GO enrichment, KEGG pathway analysis and PPI networks analysis, respectively. RESULTS YWS regulated the imbalance of the Treg/Th17 axis. And proteomic analysis showed that YWS up-regulated 46 and down-regulated 37 proteins. According to the bioinformatics analysis, the improvement of Treg/Th17 imbalance may be the key immunological mechanism of YWS in the treatment of psoriasis by up-regulating the butyrate metabolism pathway, down-regulating leukocyte migration, inhibiting the phagocytic function of natural killer cells, suppressing osteoclast differentiation and interfering with chemokine activity, and the critical proteins involved are Lyn, HMGCS2, ABAT, ITGβ2, PRKCβ, MMP9, NCF1, JUNβ, and Hck. CONCLUSION This research clarified that the improvement of the imbalance of the Treg/Th17 axis may be the key immunological mechanism of YWS in the treatment of psoriasis through metabolic pathways and influencing key proteins. The results not only expand the therapeutic targets and approaches for the treatment of psoriasis, which is a challenging and complex disease, but also deepens the understanding of the mechanism of YWS in the treatment of psoriasis and other important conditions to open up a new way of thinking for research on YWS in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yang Su
- School of Pharmacy, Key Laboratory of Medicinal Materials, Chinese Academy of Sciences, Key Laboratory of Basic and Applied Research of Northern Medicine, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fan Zhang
- School of Pharmacy, Key Laboratory of Medicinal Materials, Chinese Academy of Sciences, Key Laboratory of Basic and Applied Research of Northern Medicine, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Lun Wu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Haixue Kuang
- School of Pharmacy, Key Laboratory of Medicinal Materials, Chinese Academy of Sciences, Key Laboratory of Basic and Applied Research of Northern Medicine, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 511400, China
| | - Genhong Cheng
- Faculty of Microbiology and Immunogenetics, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
32
|
Brichová M, Svozílková P, Klímová A, Dušek O, Kverka M, Heissigerová J. MICROBIOME AND UVEITIDES. A REVIEW. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2022; 78:47-52. [PMID: 35105146 DOI: 10.31348/2021/30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microorganisms inhabiting all surfaces of mucous membranes and skin and forming a complex ecosystem with the host is called microbiota. The term microbiome is used for the aggregate genome of microbiota. The microbiota plays important role in the mechanisms of number of physiological and pathological processes, especially of the hosts immune system. The origin and course of autoimmune diseases not only of the digestive tract, but also of the distant organs, including the eye, are significantly influenced by intestinal microbiota. The role of microbiota and its changes (dysbiosis) in the etiopathogenesis of uveitis has so far been studied mainly in experimental models. Reduction of severity of non-infectious intraocular inflammation in germ-free mice or in conventional mice treated with broad-spectrum antibiotics was observed in both the induced experimental autoimmune uveitis model (EAU) and the spontaneous R161H model. Studies have confirmed that autoreactive T cell activation occurs in the intestinal wall in the absence of retinal antigen. Recent experiments focused on the effect of probiotic administration on the composition of intestinal microbiota and on the course of autoimmune uveitis. Our study group demonstrated significant prophylactic effect of the administration of the probiotic Escherichia coli Nissle 1917 on the intensity of inflammation in EAU. To date, only a few studies have been published investigating intestinal dysbiosis in patients with uveitis (e.g., in Behcets disease or Vogt-Koyanagi-Harada syndrome). The results of preclinical studies will be presumably used in clinical practice, mainly in the sense of prophylaxis and therapy, such as change in the lifestyle, diet and especially the therapeutic use of probiotics or the transfer of faecal microbiota.
Collapse
|
33
|
Liu H, Johnston LJ, Wang F, Ma X. Triggers for the Nrf2/ARE Signaling Pathway and Its Nutritional Regulation: Potential Therapeutic Applications of Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms222111411. [PMID: 34768841 PMCID: PMC8583850 DOI: 10.3390/ijms222111411] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC), which affects millions of people worldwide, is characterized by extensive colonic injury involving mucosal and submucosal layers of the colon. Nuclear factor E2-related factor 2 (Nrf2) plays a critical role in cellular protection against oxidant-induced stress. Antioxidant response element (ARE) is the binding site recognized by Nrf2 and leads to the expression of phase II detoxifying enzymes and antioxidant proteins. The Nrf2/ARE system is a key factor for preventing and resolving tissue injury and inflammation in disease conditions such as UC. Researchers have proposed that both Keap1-dependent and Keap1-independent cascades contribute positive effects on activation of the Nrf2/ARE pathway. In this review, we summarize the present knowledge on mechanisms controlling the activation process. We will further review nutritional compounds that can modulate activation of the Nrf2/ARE pathway and may be used as potential therapeutic application of UC. These comprehensive data will help us to better understand the Nrf2/ARE signaling pathway and promote its effective application in response to common diseases induced by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (F.W.)
| | - Lee J. Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA;
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (F.W.)
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (F.W.)
- Correspondence:
| |
Collapse
|
34
|
Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy? IMMUNOMETABOLISM 2021; 3:e210031. [PMID: 34729242 PMCID: PMC7611926 DOI: 10.20900/immunometab20210031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pregnancy is characterised by metabolic changes that occur to support the growth and development of the fetus over the course of gestation. These metabolic changes can be classified into two distinct phases: an initial anabolic phase to prepare an adequate store of substrates and energy which are then broken down and used during a catabolic phase to meet the energetic demands of the mother, placenta and fetus. Dynamic readjustment of immune homeostasis is also a feature of pregnancy and is likely linked to the changes in energy substrate utilisation at this time. As cellular metabolism is increasingly recognised as a key determinant of immune cell phenotype and function, we consider how changes in maternal metabolism might contribute to T cell plasticity during pregnancy.
Collapse
|
35
|
Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 2021; 36:109726. [PMID: 34551302 DOI: 10.1016/j.celrep.2021.109726] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-mediated secondary bile acids (BAs) play an important role in energy balance and host metabolism via G protein-coupled receptors and/or nuclear receptors. Emerging evidence suggests that BAs are important for maintaining innate immune responses via these receptors. However, the effect of BAs on autoimmune uveitis is still unknown. Here, we demonstrate decreased microbiota-related secondary BA concentration in feces and serum of animals with experimental autoimmune uveitis (EAU). Restoration of the gut BAs pool attenuates severity of EAU in association with inhibition of nuclear factor κB (NF-κB)-related pro-inflammatory cytokines in dendritic cells (DCs). TGR5 deficiency partially reverses the inhibitory effect of deoxycholic acid (DCA) on DCs. TGR5 signaling also inhibits NF-κB activation via the cyclic AMP (cAMP)-protein kinase A (PKA) pathway in DCs. Additionally, both DCA and TGR5 agonists inhibit human monocyte-derived DC activation. Taken together, our results suggest that BA metabolism plays an important role in adaptive immune responses and might be a therapeutic target in autoimmune uveitis.
Collapse
|
36
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Li M, Gao X, Liu K, Bao N, Jiang Z. MiR-379-5p aggravates experimental autoimmune uveitis in mice via the regulation of SEMA3A. Autoimmunity 2021; 54:275-283. [PMID: 34060391 DOI: 10.1080/08916934.2021.1931841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Uveitis is a disease resulting in the inflammation of uveal tracts, but the factors resulting in uveitis is still obscure. Previous studies have shown that miR-379-5p was involved in the pathogenesis of several diseases, however, the role and regulatory mechanism of miR-379-5p in uveitis were unclear. In our study, we established experimental autoimmune uveitis (EAU) mouse models to explore the role of miR-379-5p in uveitis. RT-qPCR identified that miR-379-5p level was increased in serum of EAU mice. In mechanism, SEMA3A 3'UTR was proven to be directly targeted by miR-379-5p and SEMA3A expression was negatively regulated by miR-379-5p in CD4+ T cells. Moreover, ELISA analysis revealed that knockdown of miR-379-5p suppressed the production of inflammation cytokines including IL-17, TNF-α and IL-β in vitro. These results were reversed by SEMA3A overexpression. In addition, the reduction of Th17 cells under miR-379-5p inhibitor was neutralised by SEMA3A knockdown in vitro. Furthermore, we demonstrated that knockdown of miR-379-5p significantly reversed the increased clinical scores and inflammatory response resulting from EAU treatment and this effect was further countervailed by SEMA3A silencing. Our study suggested that miR-379-5p aggravated uveitis in EAU mice via the regulation of SEMA3A, which may provide a novel insight for uveitis treatment.
Collapse
Affiliation(s)
- Mohan Li
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiang Gao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Kou Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Bao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
RNA-Seq analysis reveals critical transcriptome changes caused by sodium butyrate in DN mouse models. Biosci Rep 2021; 41:228173. [PMID: 33779731 PMCID: PMC8035627 DOI: 10.1042/bsr20203005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN)—a common complication of diabetes—is the primary cause of end-stage renal disease. Sodium butyrate (NaB) is a short-chain fatty acid (SCFA) that is a metabolic product of intestinal bacterium, and its protective effect on the kidney has been reported in cases of DN. However, its underlying mechanism remains unclear. The aim of the present study was to investigate the effect of NaB on globe transcriptome changes in DN. In our study, 8-week-old male db/db mice suffering from DN were randomly divided into two groups: the DN+NaB group (DN mice treated with NaB, 5 g/kg/day) and the DN group (DN mice treated with saline). Further, normal db/m mice were used as the normal control (NC) group. The blood glucose, body weight, urinary microalbumin and urinary creatinine of mice were measured for all three groups. Whole-transcriptome analysis was performed by RNA sequencing (RNA-Seq) to evaluate the profiling of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs). Bioinformatics analysis was performed to predict the potential NaB-related lncRNAs and genes in DN. The expressions of lncRNAs and mRNAs were tested using the quantitative real-time polymerase chain reactions (qRT-PCRs) in renal tissues and mesangial cells treated with NaB. The results of the present study demonstrated that NaB ameliorated renal dysfunction in DN mice. Moreover, RNA-Seq results identified that some lncRNAs and mRNAs were reversely changed in the DN+NaB group in comparison to those in the DN group. Additionally, the integrated co-expression networks of NaB-related lncRNAs revealed that these lncRNAs interacted with 155 key mRNAs. Furthermore, the co-expression network of inflammation-related lncRNAs and mRNAs demonstrated that those reversed lncRNAs and mRNAs also play essential roles in the inflammatory response. In summary, the present study suggests that NaB ameliorates diabetes-induced renal dysfunction and regulates transcriptome changes in DN.
Collapse
|
39
|
Huang Y, Ding Y, Xu H, Shen C, Chen X, Li C. Effects of sodium butyrate supplementation on inflammation, gut microbiota, and short-chain fatty acids in Helicobacter pylori-infected mice. Helicobacter 2021; 26:e12785. [PMID: 33609322 DOI: 10.1111/hel.12785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Inflammation induced by Helicobacter pylori (H. pylori) infection is the basis for the pathogenesis of H. pylori. Butyric acid, a diet-related microbial-associated metabolite, is connected to inflammation, metabolic syndrome, and other diseases. Several studies have indicated the effects of sodium butyrate (SB) against bacteria; however, the effects of SB on the main virulence factors of H. pylori, H. pylori-induced inflammation, and gut microbiota composition remain unclear. MATERIALS AND METHODS SB was supplemented in H. pylori coculture and administered to mice infected with H. pylori. The effects of SB intake on inflammation, gut microbiota composition, and short-chain fatty acids (SCFAs) in H. pylori-infected mice were assessed. RESULTS The in vitro experiments demonstrated that SB not only inhibited the growth of H. pylori but also decreased the mRNA expression of CagA and VacA. SB intake reduced the production of virulence factors in H. pylori-infected mice, inhibited the IκBα/NF-κB pathway by reducing the expression of Toll-like receptors (TLRs), and reduced the production of TNF-α and IL-8. Further analysis demonstrated that H. pylori infection altered the relative abundance of the intestinal microbial community in mice. The level of SCFAs in the feces of H. pylori-infected mice was changed, although the intake of SB did not obviously change the level of SCFAs. CONCLUSIONS Our study showed that SB may decrease H. pylori-induced inflammation by inhibiting the viability and virulence of H. pylori and may reduce inflammation in association with the gut microbiota in H. pylori-infected mice. This study may provide novel insights into the mechanisms by which SB, a diet-related microbial-associated metabolite, affects H. pylori-induced disease development.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yinhuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiyuan Xu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Shen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changping Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Sumbria D, Berber E, Rouse BT. Supplementing the Diet with Sodium Propionate Suppresses the Severity of Viral Immuno-inflammatory Lesions. J Virol 2021; 95:e02056-20. [PMID: 33208449 PMCID: PMC7851545 DOI: 10.1128/jvi.02056-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
This report evaluates a dietary manipulation approach to suppress the severity of ocular infections caused by herpes simplex virus infection. The virus causes chronic damage to the cornea that results from a T-cell-orchestrated inflammatory reaction to the infection. Lesion severity can be limited if cells with regulatory activity predominate over proinflammatory T cells and nonlymphoid inflammatory cells. In this report, we show that this outcome can be achieved by including the short-chain fatty acid (SCFA) salt sodium propionate (SP) in the drinking water. Animals given the SP supplement developed significantly fewer ocular lesions than those receiving no supplement. Corneas and lymphoid organs contained fewer CD4 Th1 and Th17 T cells, neutrophils, and macrophages than those of controls, but a higher frequency of regulatory T cells (Treg) was present. The inclusion of SP in cultures to induce CD4 T cell subsets in vitro reduced the magnitude of Th1 and Th17 responses but expanded Treg induction. Dietary manipulation was an effective approach to limit the severity of viral immuno-inflammatory lesions and may be worth exploring as a means to reduce the impact of herpetic lesions in humans.IMPORTANCE Herpetic lesions are a significant problem, and they are difficult to control with therapeutics. Our studies show that the severity of herpetic lesions in a mouse model can be diminished by changing the diet to include increased levels of SCFA, which act to inhibit the involvement of inflammatory T cells. We suggest that changing the diet to include higher levels of SCFA might be a useful approach to reducing the impact of recurrent herpetic lesions in humans.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cornea/immunology
- Cornea/virology
- Dietary Supplements
- Fatty Acids, Volatile/administration & dosage
- Herpesvirus 1, Human/immunology
- Keratitis, Herpetic/diet therapy
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/virology
- Macrophages/cytology
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/cytology
- Propionates/administration & dosage
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Regulatory/cytology
- Mice
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
- Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
41
|
Huang Z, Li W, Su W. Tregs in Autoimmune Uveitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:205-227. [PMID: 33523450 DOI: 10.1007/978-981-15-6407-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Uveitis is a chronic disease with relapsing and remitting ocular attack, which requires corticosteroids and systemic immunosuppression to prevent severe vision loss. Classically, uveitis is referred to an autoimmune disease, mediated by pro-inflammatory Th17 cells and immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs). More and more evidence indicates that Tregs are involved in development, resolution, and remission of uveitis. Clinically, many researchers have conducted quantitative and functional analyses of peripheral blood from patients with different subtypes of uveitis, in an attempt to find the changing rules of Tregs. Consistently, using the experimental autoimmune uveitis (EAU) model, researchers have explored the development and resolution mechanism of uveitis in many aspects. In addition, many drug and Tregs therapy investigations have yielded encouraging results. In this chapter, we introduced the current understanding of Tregs, summarized the clinical changes in the number and function of patients with uveitis and the immune mechanism of Tregs involved in EAU model, as well as discussed the progress and shortcomings of Tregs-related drug therapy and Tregs therapy. Although the exact mechanism of Tregs-mediated uveitis protection remains to be elucidated, the strategy of Tregs regulation may provide a specific and meaningful way for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenli Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
42
|
Severity of Experimental Autoimmune Uveitis Is Reduced by Pretreatment with Live Probiotic Escherichia coli Nissle 1917. Cells 2020; 10:cells10010023. [PMID: 33375578 PMCID: PMC7823395 DOI: 10.3390/cells10010023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Non-infectious uveitis is considered an autoimmune disease responsible for a significant burden of blindness in developed countries and recent studies have linked its pathogenesis to dysregulation of the gut microbiota. We tested the immunomodulatory properties of two probiotics, Escherichia coli Nissle 1917 (EcN) and E. coli O83:K24:H31 (EcO), in a model of experimental autoimmune uveitis (EAU). To determine the importance of bacterial viability and treatment timing, mice were orally treated with live or autoclaved bacteria in both preventive and therapeutic schedules. Disease severity was assessed by ophthalmoscopy and histology, immune phenotypes in mesenteric and cervical lymph nodes were analyzed by flow cytometry and the gut immune environment was analyzed by RT-PCR and/or gut tissue culture. EcN, but not EcO, protected against EAU but only as a live organism and only when administered before or at the time of disease induction. Successful prevention of EAU was accompanied by a decrease in IRBP-specific T cell response in the lymph nodes draining the site of immunization as early as 7 days after the immunization and eye-draining cervical lymph nodes when the eye inflammation became apparent. Furthermore, EcN promoted an anti-inflammatory response in Peyer’s patches, increased gut antimicrobial peptide expression and decreased production of inducible nitric oxide synthase in macrophages. In summary, we show here that EcN controls inflammation in EAU and suggest that probiotics may have a role in regulating the gut–eye axis.
Collapse
|
43
|
Gunne S, Heinicke U, Parnham MJ, Laux V, Zacharowski K, von Knethen A. Nrf2-A Molecular Target for Sepsis Patients in Critical Care. Biomolecules 2020; 10:biom10121688. [PMID: 33348637 PMCID: PMC7766194 DOI: 10.3390/biom10121688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (Nrf2) is an established master regulator of the anti-oxidative and detoxifying cellular response. Thus, a role in inflammatory diseases associated with the generation of large amounts of reactive oxygen species (ROS) seems obvious. In line with this, data obtained in cell culture experiments and preclinical settings have shown that Nrf2 is important in regulating target genes that are necessary to ensure cellular redox balance. Additionally, Nrf2 is involved in the induction of phase II drug metabolizing enzymes, which are important both in degrading and converting drugs into active forms, and into putative carcinogens. Therefore, Nrf2 has also been implicated in tumorigenesis. This must be kept in mind when new therapy approaches are planned for the treatment of sepsis. Therefore, this review highlights the function of Nrf2 in sepsis with a special focus on the translation of rodent-based results into sepsis patients in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Sandra Gunne
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
| | - Andreas von Knethen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
- Correspondence: ; Tel.: +49-69-6301-87824
| |
Collapse
|
44
|
Hu D, Tjon EC, Andersson KM, Molica GM, Pham MC, Healy B, Murugaiyan G, Pochet N, Kuchroo VK, Bokarewa MI, Weiner HL. Aberrant expression of USF2 in refractory rheumatoid arthritis and its regulation of proinflammatory cytokines in Th17 cells. Proc Natl Acad Sci U S A 2020; 117:30639-30648. [PMID: 33203678 PMCID: PMC7720234 DOI: 10.1073/pnas.2007935117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IL-17-producing Th17 cells are implicated in the pathogenesis of rheumatoid arthritis (RA) and TNF-α, a proinflammatory cytokine in the rheumatoid joint, facilitates Th17 differentiation. Anti-TNF therapy ameliorates disease in many patients with rheumatoid arthritis (RA). However, a significant proportion of patients do not respond to this therapy. The impact of anti-TNF therapy on Th17 responses in RA is not well understood. We conducted high-throughput gene expression analysis of Th17-enriched CCR6+CXCR3-CD45RA- CD4+ T (CCR6+ T) cells isolated from anti-TNF-treated RA patients classified as responders or nonresponders to therapy. CCR6+ T cells from responders and nonresponders had distinct gene expression profiles. Proinflammatory signaling was elevated in the CCR6+ T cells of nonresponders, and pathogenic Th17 signature genes were up-regulated in these cells. Gene set enrichment analysis on these signature genes identified transcription factor USF2 as their upstream regulator, which was also increased in nonresponders. Importantly, short hairpin RNA targeting USF2 in pathogenic Th17 cells led to reduced expression of proinflammatory cytokines IL-17A, IFN-γ, IL-22, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as transcription factor T-bet. Together, our results revealed inadequate suppression of Th17 responses by anti-TNF in nonresponders, and direct targeting of the USF2-signaling pathway may be a potential therapeutic approach in the anti-TNF refractory RA.
Collapse
Affiliation(s)
- Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Gabriela M Molica
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Minh C Pham
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Brian Healy
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nathalie Pochet
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Gothenburg University, 405 30 Gothenburg, Sweden
| | - Vijay K Kuchroo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Maria I Bokarewa
- Sahlgrenska University Hospital, Gothenburg, 402 33 Sweden
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
45
|
Qiao S, Lian X, Yue M, Zhang Q, Wei Z, Chen L, Xia Y, Dai Y. Regulation of gut microbiota substantially contributes to the induction of intestinal Treg cells and consequent anti-arthritis effect of madecassoside. Int Immunopharmacol 2020; 89:107047. [DOI: 10.1016/j.intimp.2020.107047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
|
46
|
Type 2 inflammation suppression by T-regulatory cells attenuates the eosinophil recruitment in mucosa of chronic sinusitis. Clin Sci (Lond) 2020; 134:123-138. [PMID: 31922185 DOI: 10.1042/cs20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
Abstract
Type 2 inflammation and eosinophilic infiltration are prominent pathologic features of chronic rhinosinusitis with nasal polyps (CRSwNP). The purpose of the present study was to determine the roles of Tregs in controlling type 2 inflammation and inhibiting eosinophilic infiltration in CRSwNP. A total of 134 nasal polyps, 67 ostiomeatal complex from chronic rhinosinusitis (CRS) and 62 normal nasal tissues from controls were collected to study the enumeration and function of Tregs cells and the expressions of cytokine profiles via immunofluorescence staining, flow cytometry, qRT-PCR, ELISA, and/or H&E staining. The effects of Tregs on type2 and type3 inflammations were determined in an eosinophilic chronic sinusitis (ECRS) mice model. It was confirmed that the CRSwNP displayed the features of Th2 and Th17 cells-mediated inflammation, accompanying by an increased level of eosinophilic infiltration and the eosinophil cationic protein (ECP), with a decreased frequency of Treg cells. Furthermore, the percentages of CD4+CD25+CD127lowTreg and CD4+CD25+Foxp3+Treg were only decreased in the polyps of CRSwNP but not in the paired peripheral blood. The CRSwNP possessed the decreased Nrp1+Tregs, Helios+Treg, and low TGF-β and interleukin (IL)-10 expressions in Tregs. The ECRS mice showed similar inflammatory characteristics to CRSwNP patients. The adoptive transfer of CD4+CD25+Foxp3+ Treg cells significantly decreased the inflammatory cytokines, eosinophilic chemotactic factors in the mucosa of the ECRS mice without alteration of the immune balance in the peripheral blood and spleen. In conclusion, CRSwNP showed high type 2 and type3 inflammation and defective Tregs. The induced regulatory T cell (iTreg) may correct the imbalance between immune tolerance and effect via limiting the eosinophil recruitment of mucosa in CRSwNP.
Collapse
|
47
|
NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci 2020; 21:ijms21134777. [PMID: 32640524 PMCID: PMC7369905 DOI: 10.3390/ijms21134777] [Citation(s) in RCA: 767] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
Collapse
|
48
|
Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9410952. [PMID: 32273949 PMCID: PMC7125500 DOI: 10.1155/2020/9410952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular cells from various stresses and preventing ocular diseases.
Collapse
|
49
|
Magrin GL, Di Summa F, Strauss FJ, Panahipour L, Mildner M, Magalhães Benfatti CA, Gruber R. Butyrate Decreases ICAM-1 Expression in Human Oral Squamous Cell Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21051679. [PMID: 32121422 PMCID: PMC7084181 DOI: 10.3390/ijms21051679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Short-chain fatty acids (SCFA) are bacterial metabolites that can be found in periodontal pockets. The expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) within the epithelium pocket is considered to be a key event for the selective transmigration of leucocytes towards the gingival sulcus. However, the impact of SCFA on ICAM-1 expression by oral epithelial cells remains unclear. We therefore exposed the oral squamous carcinoma cell line HSC-2, primary oral epithelial cells and human gingival fibroblasts to SCFA, namely acetate, propionate and butyrate, and stimulated with known inducers of ICAM-1 such as interleukin-1-beta (IL1β) and tumor necrosis factor-alfa (TNFα). We report here that butyrate but not acetate or propionate significantly suppressed the cytokine-induced ICAM-1 expression in HSC-2 epithelial cells and primary epithelial cells. The G-protein coupled receptor-43 (GPR43/ FFAR2) agonist but not the histone deacetylase inhibitor, trichostatin A, mimicked the butyrate effects. Butyrate also attenuated the nuclear translocation of p65 into the nucleus on HSC-2 cells. The decrease of ICAM-1 was independent of Nrf2/HO-1 signaling and phosphorylation of JNK and p38. Nevertheless, butyrate could not reverse an ongoing cytokine-induced ICAM-1 expression in HSC-2 cells. Overall, these observations suggest that butyrate can attenuate cytokine-induced ICAM-1 expression in cells with epithelial origin.
Collapse
Affiliation(s)
- Gabriel Leonardo Magrin
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, School of Dentistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis – SC 88040-900, Brazil;
| | - Francesca Di Summa
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
| | - Franz-Josef Strauss
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Av. Sergio Livingstone 943, Santiago 7500566, Chile
- Clinic of Reconstructive Dentistry, University of Zurich, 8032 Zurich, Switzerland
| | - Layla Panahipour
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria;
| | - Cesar Augusto Magalhães Benfatti
- Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, School of Dentistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis – SC 88040-900, Brazil;
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Department of Periodontology, University Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
50
|
Robles‐Vera I, Toral M, la Visitación N, Sánchez M, Gómez‐Guzmán M, Romero M, Yang T, Izquierdo‐Garcia JL, Jiménez R, Ruiz‐Cabello J, Guerra‐Hernández E, Raizada MK, Pérez‐Vizcaíno F, Duarte J. Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of Short‐Chain Fatty Acids. Mol Nutr Food Res 2020; 64:e1900616. [DOI: 10.1002/mnfr.201900616] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/30/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Iñaki Robles‐Vera
- Department of PharmacologySchool of Pharmacy and Center for Biomedical Research (CIBM)University of Granada 18071 Granada Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation GroupCentro Nacional de Investigaciones Cardiovasculares (CNIC) 28029 Madrid Spain
- CIBERCV Spain
| | - Néstor la Visitación
- Department of PharmacologySchool of Pharmacy and Center for Biomedical Research (CIBM)University of Granada 18071 Granada Spain
| | - Manuel Sánchez
- Department of PharmacologySchool of Pharmacy and Center for Biomedical Research (CIBM)University of Granada 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada 18016 Granada Spain
| | - Manuel Gómez‐Guzmán
- Department of PharmacologySchool of Pharmacy and Center for Biomedical Research (CIBM)University of Granada 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada 18016 Granada Spain
| | - Miguel Romero
- Department of PharmacologySchool of Pharmacy and Center for Biomedical Research (CIBM)University of Granada 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada 18016 Granada Spain
| | - Tao Yang
- Department of Physiology and Functional GenomicsUniversity of Florida Gainesville 32610 FL USA
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life Sciences Toledo Ohio 43606
| | | | - Rosario Jiménez
- Department of PharmacologySchool of Pharmacy and Center for Biomedical Research (CIBM)University of Granada 18071 Granada Spain
- CIBERCV Spain
- Instituto de Investigación Biosanitaria de Granada 18016 Granada Spain
| | | | | | - Mohan K. Raizada
- Department of Physiology and Functional GenomicsUniversity of Florida Gainesville 32610 FL USA
| | - Francisco Pérez‐Vizcaíno
- Departamento de Farmacología y ToxicologíaFacultad de MedicinaUniversidad Complutense de MadridCiber Enfermedades Respiratorias (Ciberes)Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) 28040 Madrid Spain
| | - Juan Duarte
- Department of PharmacologySchool of Pharmacy and Center for Biomedical Research (CIBM)University of Granada 18071 Granada Spain
- CIBERCV Spain
- Instituto de Investigación Biosanitaria de Granada 18016 Granada Spain
| |
Collapse
|