1
|
Pan F, Zhang F, Li MD, Liang Y, Wang WS, Sun K. Disturbance of Fetal Growth by Azithromycin Through Induction of ER Stress in the Placenta. Antioxid Redox Signal 2024. [PMID: 38877798 DOI: 10.1089/ars.2024.0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Aim: Azithromycin (AZM) is widely used to treat mycoplasma infection in pregnancy. However, there is no adequate evaluation of its side effect on the placenta. In this study, using human placental syncytiotrophoblasts and a mouse model, we investigated whether AZM use in pregnancy might adversely affect placental function and pregnancy outcome. Results: Transcriptomic analysis of AZM-treated human placental syncytiotrophoblasts showed increased expression of endoplasmic reticulum (ER) stress-related genes and decreased expression of genes for hormone production and growth factor processing. Verification studies showed that AZM increased the abundance of ER stress mediators (phosphorylated eIF2α, activating transcription factor 4 [ATF4], and C/EBP Homologous Protein [CHOP]) and decreased the abundance of enzymes involved in progesterone and estradiol synthesis (STS, CYP11A1, and CYP19A1) and insulin-like growth factor binding protein (IGFBP) cleavage (PAPPA and ADAM12) in human placental syncytiotrophoblasts. Inhibition of ER stress blocked AZM-induced decreases in the expression of CYP19A1, CYP11A1, PAPPA, and ADAM12, suggesting that the inhibition of AZM on those genes' expression was secondary to AZM-induced ER stress. Further mechanism study showed that increased ATF4 in ER stress might repressively interact with C/EBPα to suppress the expression of those genes, including CEBPA itself. Mouse studies showed that AZM administration decreased fetal weights along with increased ER stress mediators and decreased levels of insulin-like growth factor, estrogen, and progesterone in the maternal blood, which could be alleviated by inhibition of ER stress. Innovation and Conclusion: These findings first support the fact that AZM, often used during pregnancy, may affect fetal growth by inhibiting crucial enzymes for estrogen and progesterone synthesis and disrupting crucial proteases for IGFBP cleavage via inducing ER stress in placental syncytiotrophoblasts.
Collapse
Affiliation(s)
- Fan Pan
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Fan Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Meng-Die Li
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - YaKun Liang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wang-Sheng Wang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Kang Sun
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| |
Collapse
|
2
|
Dai Y, Peng Y, Lu Z, Mao T, Chen K, Lu X, Liu K, Zhou X, Hu W, Wang H. Prenatal prednisone exposure impacts liver development and function in fetal mice and its characteristics. Toxicol Sci 2024; 199:63-80. [PMID: 38439560 DOI: 10.1093/toxsci/kfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Prednisone, a widely used glucocorticoid drug in human and veterinary medicine, has been reported to cause developmental toxicity. However, systematic studies about the effect of prednisone on fetal liver development are still unclear. We investigated the potential effects of maternal exposure to clinically equivalent doses of prednisone during different gestational stages on cell proliferation and apoptosis, cell differentiation, glucose and lipid metabolism, and hematopoiesis in the liver of fetal mice, and explored the potential mechanisms. Results showed that prenatal prednisone exposure (PPE) could suppress cell proliferation, inhibit hepatocyte differentiation, and promote cholangiocyte differentiation in the fetal liver. Meanwhile, PPE could result in the enhancement of glyconeogenesis and bile acid synthesis and the inhibition of fatty acid β-oxidation and hematopoiesis in the fetal liver. Further analysis found that PPE-induced alterations in liver development had obvious stage and sex differences. Overall, the alteration in fetal liver development and function induced by PPE was most pronounced during the whole pregnancy (GD0-18), and the males were relatively more affected than the females. Additionally, fetal hepatic insulin-like growth factor 1 (IGF1) signaling pathway was inhibited by PPE. In conclusion, PPE could impact fetal liver development and multiple functions, and these alterations might be partially related to the inhibition of IGF1 signaling pathway.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| |
Collapse
|
3
|
Liu K, Chen Z, Hu W, He B, Xu D, Guo Y, Wang H. Intrauterine developmental origin, programming mechanism, and prevention strategy of fetal-originated hypercholesterolemia. Obes Rev 2024; 25:e13672. [PMID: 38069529 DOI: 10.1111/obr.13672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 02/28/2024]
Abstract
There is increasing evidence that hypercholesterolemia has an intrauterine developmental origin. However, the pathogenesis of fetal-originated is still lacking in a theoretical system, which makes its clinical early prevention and treatment difficult. It has been found that an adverse environment during pregnancy (e.g., xenobiotic exposure) may lead to changes in fetal blood cholesterol levels through changing maternal cholesterol metabolic function and/or placental cholesterol transport function and may also directly affect the liver cholesterol metabolic function of the offspring in utero and continue after birth. Adverse environmental conditions during pregnancy may also raise maternal glucocorticoid levels and promote the placental glucocorticoid barrier opening, leading to fetal overexposure to maternal glucocorticoids. Intrauterine high-glucocorticoid exposure can alter the liver cholesterol metabolism of offspring, resulting in an increased susceptibility to hypercholesterolemia after birth. Abnormal epigenetic modifications are involved in the intrauterine programming mechanism of fetal-originated hypercholesterolemia. Some interventions targeted at pregnant mothers or offspring in early life have been proposed to effectively prevent and treat the development of fetal-originated hypercholesterolemia. In this paper, the recent research progress on fetal-originated hypercholesterolemia was reviewed, with emphasis on intrauterine maternal glucocorticoid programming mechanisms, in order to provide a theoretical basis for its early clinical warning, prevention, and treatment.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
4
|
Xiao H, He B, Liu H, Chen Y, Xiao D, Wang H. Dexamethasone exposure during pregnancy triggers metabolic syndrome in offspring via epigenetic alteration of IGF1. Cell Commun Signal 2024; 22:62. [PMID: 38263047 PMCID: PMC10807214 DOI: 10.1186/s12964-024-01472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Previous research has reported that prenatal exposure to dexamethasone (PDE) results in organ dysplasia and increased disease susceptibility in offspring. This study aimed to investigate the epigenetic mechanism of metabolic syndrome induced by PDE in offspring. METHODS Pregnant Wistar rats were administered dexamethasone, and their offspring's serum and liver tissues were analyzed. The hepatocyte differentiation model was established to unveil the molecular mechanism. Neonatal cord blood samples were collected to validate the phenomenon and mechanism. RESULTS The findings demonstrated that PDE leads to insulin resistance and typical metabolic syndrome traits in adult offspring rats, which originated from fetal liver dysplasia. Additionally, PDE reduced serum corticosterone level and inhibited hepatic insulin-like growth factor 1 (IGF1) signaling in fetal rats. It further revealed that liver dysplasia and functional impairment induced by PDE persist after birth, driven by the continuous downregulation of serum corticosterone and hepatic IGF1 signaling. Both in vitro and in vivo experiments confirmed that low endogenous corticosterone reduces the histone 3 lysine 9 acetylation (H3K27ac) level of IGF1 and its expression by blocking glucocorticoid receptor α, special protein 1, and P300 into the nucleus, resulting in hepatocyte differentiation inhibition and liver dysplasia. Intriguingly, neonatal cord blood samples validated the link between reduced liver function in neonates induced by PDE and decreased serum cortisol and IGF1 levels. CONCLUSIONS This study demonstrated that low endogenous glucocorticoid level under PDE lead to liver dysplasia by downregulating the H3K27ac level of IGF1 and its expression, ultimately contributing to metabolic syndrome in adult offspring.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Bo He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Di Xiao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
5
|
Lu X, Mao T, Dai Y, Zhu L, Li X, Ao Y, Wang H. Azithromycin exposure during pregnancy disturbs the fetal development and its characteristic of multi-organ toxicity. Life Sci 2023; 329:121985. [PMID: 37516432 DOI: 10.1016/j.lfs.2023.121985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
AIMS Azithromycin is widely used in clinical practice for treating maternal infections during pregnancy. Meanwhile, azithromycin, as an "emerging pollutant", is increasingly polluting the environment due to the rapidly increasing usage (especially after the COVID-19). Previous studies have suggested a possible teratogenic risk of prenatal azithromycin exposure (PAzE), but its effects on fetal multi-organ development are still unclear. This study aimed to explore the potential impacts of PAzE. MATERIALS AND METHODS We focused on pregnancy outcomes, maternal/fetal serum phenotypes, and fetal multiple organ development in mice at different doses (50/200 mg/kg·d) during late pregnancy or at 200 mg/kg·d during different stages (mid-/late-pregnancy) and courses (single-/multi-course). KEY FINDINGS The results showed PAzE increased the rate of the absorbed fetus during mid-pregnancy and increased the intrauterine growth retardation rate (IUGR) during late pregnancy. PAzE caused multiple blood phenotypic changes in maternal and fetal mice, among which the number and degree of changes in fetal blood indicators were more significant. Moreover, PAzE inhibited long bone/cartilage development and adrenal steroid synthesis, promoting hepatic lipid production and ovarian steroid synthesis in varying degrees. The order of severity might be bone/cartilage > liver > gonads > other organs. PAzE-induced multi-organ alterations differed in stages, courses doses and fetal sex. The most apparent changes might be in high-dose, mid-pregnancy, multi-course, and female, while there was no typical rule for a dose-response relationship. SIGNIFICANCE This study confirmed PAzE could cause fetal developmental abnormalities and multi-organ functional alterations, which deepens the comprehensive understanding of azithromycin's fetal developmental toxicity.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaomin Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
6
|
Chen K, Lu X, Xu D, Guo Y, Ao Y, Wang H. Prenatal exposure to corn oil, CMC-Na or DMSO affects physical development and multi-organ functions in fetal mice. Reprod Toxicol 2023; 118:108366. [PMID: 36958465 DOI: 10.1016/j.reprotox.2023.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Corn oil, sodium carboxymethyl cellulose (CMC-Na), and dimethyl sulfoxide (DMSO) are widely used as solvents or suspensions in animal experiments, but the effects of prenatal exposure to them on fetal development have not been reported. In this study, Kunming mice were given a conventional dose of corn oil (9.2g/kg·d), CMC-Na (0.05g/kg·d) or DMSO (0.088g/kg·d) during gestation days 10-18, and the pregnancy outcome, fetal physical development, serum phenotype, and multi-organ function changes were observed. The results showed that corn oil decreased serum triglyceride level in males but increased their serum testosterone and CORT levels, and affected female placenta and female/male multi-organ functions (mainly bone, liver, kidney). CMC-Na increased female/male body lengths and tail lengths, decreased serum glucose and total cholesterol levels in males as well as increased their serum LDL-C/HDL-C ratio and testosterone level, decreased female serum bile acid level, and affected male/female placenta and multi-organ functions (mainly bone, liver, hippocampus). DMSO decreased male body weight and serum glucose level, decreased male/female serum bile acid levels, and affected male/female placenta and multi-organs functions (mainly bone, hippocampus, adrenal gland). In conclusion, prenatal exposure to a conventional dose of corn oil, CMC-Na or DMSO could affect fetal physical development and multi-organ functions, and has the characteristics of "multi-pathway, multi-organ and multi-target". This study provides the experimental basis for the rational selection of solvents or suspensions in pharmacology and toxicology studies. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
7
|
Lu Z, Guo Y, Xu D, Xiao H, Dai Y, Liu K, Chen L, Wang H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm Sin B 2023; 13:460-477. [PMID: 36873163 PMCID: PMC9978644 DOI: 10.1016/j.apsb.2022.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Medication during pregnancy is widespread, but there are few reports on its fetal safety. Recent studies suggest that medication during pregnancy can affect fetal morphological and functional development through multiple pathways, multiple organs, and multiple targets. Its mechanisms involve direct ways such as oxidative stress, epigenetic modification, and metabolic activation, and it may also be indirectly caused by placental dysfunction. Further studies have found that medication during pregnancy may also indirectly lead to multi-organ developmental programming, functional homeostasis changes, and susceptibility to related diseases in offspring by inducing fetal intrauterine exposure to too high or too low levels of maternal-derived glucocorticoids. The organ developmental toxicity and programming alterations caused by medication during pregnancy may also have gender differences and multi-generational genetic effects mediated by abnormal epigenetic modification. Combined with the latest research results of our laboratory, this paper reviews the latest research progress on the developmental toxicity and functional programming alterations of multiple organs in offspring induced by medication during pregnancy, which can provide a theoretical and experimental basis for rational medication during pregnancy and effective prevention and treatment of drug-related multiple fetal-originated diseases.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| |
Collapse
|
8
|
Tang Q, Li S, Fang C, Yu H. Evaluating the reparative effects and the mechanism of action of docosahexaenoic acid on azithromycin-induced lipid metabolism dysfunction. Food Chem Toxicol 2021; 159:112699. [PMID: 34838675 DOI: 10.1016/j.fct.2021.112699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
To explore the reparative effects of DHA on the gut microbiome disturbance and dysfunctional lipid metabolism caused by long-term antibiotic therapy, it was tested on an azithromycin (AZI) mouse antibiotic model. Thirty specific-pathogen-free BALB/c mice (SPF grade, half male and half female) were randomly separated into three groups (n = 10, 5 male and 5 female): control group (CK), azithromycin natural recovery group (AZI) and DHA group (DHA). High-throughput sequencing and bioinformatics methods were used to analyze the gut microbiome. ELASE kits were used to measure blood lipid, lipids in the liver, and bile salt hydrolase (BSH) levels in feces. Gas chromatography and UPLC-MS/MS were employed to detect DHA and bile acids contents in liver, respectively. Real-time polymerase chain reaction (RT-PCR) was used to measure the expression of key enzymes involved in lipid metabolism. Long-term AZI treatment led to dyslipidemia, gut microbiome disturbance and anxious behaviors in the mouse model. DHA was found to significantly improve the dyslipidemia and anxiety-like behaviors induced by AZI. DHA had no effect on the structure of gut microbiome and bile acids contents but increased the content of the metabolic enzyme BSH in gut microbiota and normalized the expression of enzymes involved in lipid metabolism.
Collapse
Affiliation(s)
- Qian Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, China
| | - Shuangqing Li
- Department of General Practice, West China Hospital, Sichuan University, China
| | - Chengjie Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, China
| | - Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, China.
| |
Collapse
|
9
|
Zhao X, Chen H, Zhu Y, Liu Y, Gao L, Wang H, Ao Y. The selection and identification of compound housekeeping genes for quantitative real-time polymerase chain reaction analysis in rat fetal kidney. J Appl Toxicol 2021; 42:360-370. [PMID: 34374451 DOI: 10.1002/jat.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022]
Abstract
During quantitative real-time polymerase chain reaction (RT-qPCR) data analysis, the selection of optimal housekeeping gene is necessary to ensure the accuracy of results. It is noteworthy that housekeeping genes commonly used in adult studies may not be applicable for fetus. However, the stability analysis of housekeeping gene in fetal kidney has not been reported. This study intends to screen the applicable compound housekeeping genes in rat fetal kidney. In this study, eight housekeeping genes used in kidney studies based on literature reports (GAPDH, ACTB, 18S, HPRT, YWHAZ, HMBS, PPIA, and TBP) were selected as the research object. Their expression levels in the rat fetal kidney in physiological condition and the intrauterine growth retardation (IUGR) model induced by prenatal dexamethasone exposure (PDE) (0.2 mg/kg·day from gestation Days 9 to 20) was measured. Furthermore, these eight housekeeping genes were used to conduct relative quantitative analysis of nephrin expression in the fetal kidney in PDE-induced IUGR model, to compare the influence of choosing different housekeeping gene on data analysis of nephrin expression and to verify the reliability of selected compound housekeeping genes. In this study, stable housekeeping genes of fetal kidney tissues in PDE-induced IUGR model were identified: ACTB, GAPDH, TBP, and HMBS for males; ACTB, YWHAZ, and GAPDH for females. Besides, our results suggest that ACTB + GAPDH were the best compound housekeeping genes for normalization analysis in male fetal kidney studies, and ACTB + YWHAZ in females. This study will provide an experimental evidence basis for the selection of housekeeping genes in the RT-qPCR experiment in renal development toxicology-related models.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Haiyun Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yanan Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Lili Gao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|