1
|
González-Moyotl N, Huesca-Gómez C, Torres-Paz YE, Fuentevilla-Álvarez G, Romero-Maldonado S, Sámano R, Soto ME, Martínez-Rosas M, Domínguez-López A, Gamboa R. Paediatrics congenital heart disease is associated with plasma miRNAs. Pediatr Res 2024; 96:1220-1227. [PMID: 38755412 DOI: 10.1038/s41390-024-03230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Congenital heart disease (CHD) are the most common malformations from birth. The severity of the different forms of CHD varies extensively from superficial mild lesions with follow-up for decades without any treatment to complex cyanotic malformations requiring urgent surgical intervention. microRNAs have been found to be crucial in cardiac development, giving rise to possible phenotypes in CHD. OBJECTIVES We aimed to evaluate the expression of miRNAs in 86 children with CHD and divided into cyanotic and non-cyanotic heart defects and 110 controls. METHODS The miRNAs expression of miR-21-5p, miR-155-5p, miR-221-3p, miR-26a-5p, and miR-144-3p were analyzed by RT-qPCR. In addition, the expressions of the miRNAs studied were correlated with the clinical characteristics of both the children and the mothers. RESULTS The expression levels of miR-21-5-5p, miR-15-5p5, miR-221-3p, and miR-26-5p significantly differed between CHD and control subjects. Moreover, miR-21-5p levels were higher in patients with cyanotic versus non-cyanotic CHD patients. CONCLUSION The expression levels of miRNAs of pediatric patients with CHD could participating in the development of cardiac malformations. Additionally, the high expression of miR-21-5p in cyanotic CHD children may be related to greater severity of illness relative to non-cyanotic CHD. IMPACT This study adds to knowledge of the association between microRNAs and congenital heart disease in children. The expression levels of miR-21-5-5p, miR-15-5p5, miR-221-3p, and miR-26-5p of pediatric patients with CHD could be involved in the development and phenotype present in pediatric patients. miR-21-5p may help to discriminate between cyanotic and non-cyanotic CHD. In the future, the miRNAs studied could have applications as clinical biomarkers.
Collapse
Affiliation(s)
- Nadia González-Moyotl
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México
- Maestría en Ciencias de la Salud, Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11350, México
| | - Claudia Huesca-Gómez
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México
| | - Yazmín Estela Torres-Paz
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México
| | | | - Silvia Romero-Maldonado
- Instituto Nacional de Perinatología, Coordination of the Human Milk Bank, México City, 11000, México
| | - Reyna Sámano
- Instituto Nacional de Perinatología. Coordination of Nutrition and Bioprogramming, México City, 11000, México
| | - María Elena Soto
- Instituto Nacional de Cardiología Ignacio Chávez. Research Direction, México City, 14380, México
| | - Martín Martínez-Rosas
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México
| | - Aarón Domínguez-López
- Maestría en Ciencias de la Salud, Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11350, México
| | - Ricardo Gamboa
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México.
| |
Collapse
|
2
|
Krause BJ, Paz AA, Garrud TAC, Peñaloza E, Vega-Tapia F, Ford SG, Niu Y, Giussani DA. Epigenetic regulation by hypoxia, N-acetylcysteine and hydrogen sulphide of the fetal vasculature in growth restricted offspring: A study in humans and chicken embryos. J Physiol 2024; 602:3833-3852. [PMID: 38985827 DOI: 10.1113/jp286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Adolfo A Paz
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Tessa A C Garrud
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Fabian Vega-Tapia
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Sage G Ford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Zhang P, Fu G, Xu W, Gong K, Zhao Z, Sun K, Zhang C, Han R, Shao G. Up-regulation of miR-126 via DNA methylation in hypoxia-preconditioned endothelial cells may contribute to hypoxic tolerance of neuronal cells. Mol Biol Rep 2024; 51:808. [PMID: 39002003 DOI: 10.1007/s11033-024-09774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Endothelial cells (ECs) can confer neuroprotection by secreting molecules. This study aimed to investigate whether DNA methylation contributes to the neuroprotective gene expression induced by hypoxia preconditioning (HPC) in ECs and to clarify that the secretion of molecules from HPC ECs may be one of the molecular mechanisms of neuroprotection. METHODS Human microvascular endothelial cell-1 (HMEC-1) was cultured under normal conditions (C), hypoxia(H), and hypoxia preconditioning (HPC), followed by the isolation of culture medium (CM). SY5Y cell incubated with the isolated CM from HMEC-1 was exposed to oxygen-glucose deprivation (OGD). The DNA methyltransferases (DNMTs), global methylation level, miR-126 and its promotor DNA methylation level in HMEC-1 were measured. The cell viability and cell injury in SY5Y were detected. RESULTS HPC decreased DNMTs level and global methylation level as well as increased miR-126 expression in HMEC-1. CM from HPC treated HMEC-1 also relieved SY5Y cell damage, while CM from HMEC-1 which over-expression of miR-126 can reduce injury in SY5Y under OGD condition. CONCLUSIONS These findings indicate EC may secrete molecules, such as miR-126, to execute neuroprotection induced by HPC through regulating the expression of DNMTs.
Collapse
Affiliation(s)
- Pu Zhang
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China
| | - Gang Fu
- Department of Cardiology, the Third People's Hospital of Longgang District, Shenzhen, PR China
| | - Wenqing Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, Department of Neurosurgery, University of California San Francisco, San Francisco, USA
| | - Zhujun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China
| | - Kai Sun
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China.
| | - Ruijuan Han
- Department of Cardiology, the Third People's Hospital of Longgang District, Shenzhen, PR China.
| | - Guo Shao
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China.
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PR China.
- Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third, People's Hospital of Longgang District, Shenzhen University, Shenzhen, PR China.
| |
Collapse
|
4
|
Wu J, Liu T, Xie W, Zhuo Y, Feng Y. Ox-LDL promotes M1-like polarization of macrophages through the miR-21-5p/SKP2/EP300 pathway. J Biochem Mol Toxicol 2024; 38:e23516. [PMID: 37728154 DOI: 10.1002/jbt.23516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/10/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023]
Abstract
Oxidized low-density lipoprotein (ox-LDL) mediated inflammatory damage, which possibly induces atherosclerosis (AS); however, the role of miRNA in this process has rarely been reported. In this paper, we study the ox-LDL-related endothelial cell damage and changes of macrophages. The bioinformatics method was used to analyze the expression changes of miRNA in AS patients, luciferase assay was used to study the interaction of protein and miRNA, and co-IP and ubiquitination experiments were used to analyze protein interaction. Flow cytometry was used to detect the polarization of macrophages. Database analysis showed that the expression of miR-21-5p was upregulated in AS patients. Luciferase assay showed that miR-21-5p can bind to SKP2 and subsequently influence ubiquitination of EP300. Overexpression of EP300 strengthens the HMGB1-induced acetylation and subsequently mediates the dissociation of HMGB1 from SIRT1, and thus HMGB1 could be secreted outside the cell. The HMGB1 released from endothelial cells can promote macrophage M1 polarization. This study shows that ox-LDL activates the SKP2/EP300 pathway through promoting upregulation of miR-21-5p, thereby acetylating and secreting HMGB1 outside the endothelium, subsequently enhancing macrophage polarization to further stabilize the inflammation situation.
Collapse
Affiliation(s)
- Jinlei Wu
- Department of Cardiology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Tingting Liu
- Department of Internal Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Wenjie Xie
- Department of Cardiology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yufeng Zhuo
- Department of Cardiology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanling Feng
- Department of Cardiology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Arenas GA, Valenzuela JG, Peñaloza E, Paz AA, Iturriaga R, Saez CG, Krause BJ. Transcriptional Profiling of Human Endothelial Cells Unveils PIEZO1 and Mechanosensitive Gene Regulation by Prooxidant and Inflammatory Inputs. Antioxidants (Basel) 2023; 12:1874. [PMID: 37891953 PMCID: PMC10604317 DOI: 10.3390/antiox12101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
PIEZO1 is a mechanosensitive cation channel implicated in shear stress-mediated endothelial-dependent vasorelaxation. Since altered shear stress patterns induce a pro-inflammatory endothelial environment, we analyzed transcriptional profiles of human endothelial cells to determine the effect of altered shear stress patterns and subsequent prooxidant and inflammatory conditions on PIEZO1 and mechanosensitive-related genes (MRG). In silico analyses were validated in vitro by assessing PIEZO1 transcript levels in both the umbilical artery (HUAEC) and vein (HUVEC) endothelium. Transcriptional profiling showed that PIEZO1 and some MRG associated with the inflammatory response were upregulated in response to high (15 dyn/cm2) and extremely high shear stress (30 dyn/cm2) in HUVEC. Changes in PIEZO1 and inflammatory MRG were paralleled by p65 but not KLF or YAP1 transcription factors. Similarly, PIEZO1 transcript levels were upregulated by TNF-alpha (TNF-α) in diverse endothelial cell types, and pre-treatment with agents that prevent p65 translocation to the nucleus abolished PIEZO1 induction. ChIP-seq analysis revealed that p65 bonded to the PIEZO1 promoter region, an effect increased by the stimulation with TNF-α. Altogether this data showed that NF-kappa B activation via p65 signaling regulates PIEZO1 expression, providing a new molecular link for prooxidant and inflammatory responses and mechanosensitive pathways in the endothelium.
Collapse
Affiliation(s)
- German A. Arenas
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 2841959, Chile;
| | - Jose G. Valenzuela
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile (C.G.S.)
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| | - Adolfo A. Paz
- Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 7500000, Chile
| | - Rodrigo Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Investigación en Fisiología y Medicina en Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile
| | - Claudia G. Saez
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile (C.G.S.)
| | - Bernardo J. Krause
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| |
Collapse
|
6
|
Shi Q, Li S, Lyu Q, Zhang S, Bai Y, Ma J. Hypoxia Inhibits Cell Cycle Progression and Cell Proliferation in Brain Microvascular Endothelial Cells via the miR-212-3p/MCM2 Axis. Int J Mol Sci 2023; 24:ijms24032788. [PMID: 36769104 PMCID: PMC9917047 DOI: 10.3390/ijms24032788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Hypoxia impairs blood-brain barrier (BBB) structure and function, causing pathophysiological changes in the context of stroke and high-altitude brain edema. Brain microvascular endothelial cells (BMECs) are major structural and functional elements of the BBB, and their exact role in hypoxia remains unknown. Here, we first deciphered the molecular events that occur in BMECs under 24 h hypoxia by whole-transcriptome sequencing assay. We found that hypoxia inhibited BMEC cell cycle progression and proliferation and downregulated minichromosome maintenance complex component 2 (Mcm2) expression. Mcm2 overexpression attenuated the inhibition of cell cycle progression and proliferation caused by hypoxia. Then, we predicted the upstream miRNAs of MCM2 through TargetScan and miRanDa and selected miR-212-3p, whose expression was significantly increased under hypoxia. Moreover, the miR-212-3p inhibitor attenuated the inhibition of cell cycle progression and cell proliferation caused by hypoxia by regulating MCM2. Taken together, these results suggest that the miR-212-3p/MCM2 axis plays an important role in BMECs under hypoxia and provide a potential target for the treatment of BBB disorder-related cerebrovascular disease.
Collapse
|
7
|
Garcia SM, Matheson B, Morales-Loredo JH, Jernigan NL, Kanagy NL, Resta TC, Clark RM, Shekarriz R, Gonzalez Bosc LV. Hydrogen sulfide and miR21 are suitable biomarkers of hypoxic exposure. Am J Physiol Regul Integr Comp Physiol 2022; 323:R900-R909. [PMID: 36250874 PMCID: PMC9678419 DOI: 10.1152/ajpregu.00199.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
Abstract
Hypoxia is the reduction of alveolar partial pressure of oxygen ([Formula: see text]). Military members and people who practice recreational activities from moderate to high altitudes are at risk for hypoxic exposure. Hypoxemia's signs and symptoms vary from asymptomatic to severe responses, such as excessive hypoxic ventilatory responses and residual neurobehavioral impairment. Therefore, it is essential to identify hypoxia-induced biomarkers to indicate people with exposure to hypoxia. Advances have been made in understanding physiological responses to hypoxia, including elevations in circulating levels of endothelin 1 (ET-1) and microRNA 21 (miR-21) and reduction in circulating levels of hydrogen sulfide (H2S). Although the levels of these factors change upon exposure to hypoxia, it is unclear if these changes are sustained on return to normoxia. We hypothesize that hypoxia-induced ET-1 and miR-21 remain elevated, whereas hypoxia-reduction in H2S sustains after returning to normoxic conditions. To test this hypothesis, we exposed male rats to 6 h of 12% O2 and measured circulating levels of ET-1 and miR-21, pre, during, and posthypoxia. We found that ET-1 plasma levels increased in response to hypoxia but returned to normal levels within 30 min after the restoration of normoxia. miR-21 plasma levels and transdermal H2S emissions decreased in response to hypoxia, remaining decreased on return to normoxia, thus following the biomarker criteria. Therefore, this study supports a unique role for plasma miR21 and transdermal H2S as hypoxia biomarkers that could be used to identify individuals after exposure to hypoxia.
Collapse
Affiliation(s)
- Selina M Garcia
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjamin Matheson
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Juan H Morales-Loredo
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nancy L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ross M Clark
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
8
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
9
|
Benincasa G, Coscioni E, Napoli C. Cardiovascular risk factors and molecular routes underlying endothelial dysfunction: Novel opportunities for primary prevention. Biochem Pharmacol 2022; 202:115108. [DOI: 10.1016/j.bcp.2022.115108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/23/2022]
|
10
|
Gonzalez-Candia A, Herrera EA. High Altitude Pregnancies and Vascular Dysfunction: Observations From Latin American Studies. Front Physiol 2021; 12:786038. [PMID: 34950057 PMCID: PMC8688922 DOI: 10.3389/fphys.2021.786038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
An estimated human population of 170 million inhabit at high-altitude (HA, above 2,500 m). The potential pathological effects of HA hypobaric hypoxia during gestation have been the focus of several researchers around the world. The studies based on the Himalayan and Central/South American mountains are particularly interesting as these areas account for nearly 70% of the HA world population. At present, studies in human and animal models revealed important alterations in fetal development and growth at HA. Moreover, vascular responses to chronic hypobaria in the pregnant mother and her fetus may induce marked cardiovascular impairments during pregnancy or in the neonatal period. In addition, recent studies have shown potential long-lasting postnatal effects that may increase cardiovascular risk in individuals gestated under chronic hypobaria. Hence, the maternal and fetal adaptive responses to hypoxia, influenced by HA ancestry, are vital for a better developmental and cardiovascular outcome of the offspring. This mini-review exposes and discusses the main determinants of vascular dysfunction due to developmental hypoxia at HA, such as the Andean Mountains, at the maternal and fetal/neonatal levels. Although significant advances have been made from Latin American studies, this area still needs further investigations to reveal the mechanisms involved in vascular dysfunction, to estimate complications of pregnancy and postnatal life adequately, and most importantly, to determine potential treatments to prevent or treat the pathological effects of being developed under chronic hypobaric hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Transient Hyperglycemia and Hypoxia Induce Memory Effects in AngiomiR Expression Profiles of Feto-Placental Endothelial Cells. Int J Mol Sci 2021; 22:ijms222413378. [PMID: 34948175 PMCID: PMC8705946 DOI: 10.3390/ijms222413378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Gestational diabetes (GDM) and preeclampsia (PE) are associated with fetal hyperglycemia, fetal hypoxia, or both. These adverse conditions may compromise fetal and placental endothelial cells. In fact, GDM and PE affect feto-placental endothelial function and also program endothelial function and cardiovascular disease risk of the offspring in the long-term. MicroRNAs are short, non-coding RNAs that regulate protein translation and fine tune biological processes. A group of microRNAs termed angiomiRs is particularly involved in the regulation of endothelial function. We hypothesized that transient hyperglycemia and hypoxia may alter angiomiR expression in feto-placental endothelial cells (fpEC). Thus, we isolated primary fpEC after normal, uncomplicated pregnancy, and induced hyperglycemia (25 mM) and hypoxia (6.5%) for 72 h, followed by reversal to normal conditions for another 72 h. Current vs. transient effects on angiomiR profiles were analyzed by RT-qPCR and subjected to miRNA pathway analyses using DIANA miRPath, MIENTURNET and miRPathDB. Both current and transient hypoxia affected angiomiR profile stronger than current and transient hyperglycemia. Both stimuli altered more angiomiRs transiently, i.e., followed by 72 h culture at control conditions. Pathway analysis revealed that hypoxia significantly altered the pathway ‘Proteoglycans in cancer’. Transient hypoxia specifically affected miRNAs related to ‘adherens junction’. Our data reveal that hyperglycemia and hypoxia induce memory effects on angiomiR expression in fpEC. Such memory effects may contribute to long-term adaption and maladaption to hyperglycemia and hypoxia.
Collapse
|
12
|
Kornacki J, Gutaj P, Kalantarova A, Sibiak R, Jankowski M, Wender-Ozegowska E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines 2021; 9:1756. [PMID: 34944571 PMCID: PMC8698592 DOI: 10.3390/biomedicines9121756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/29/2022] Open
Abstract
The endothelium, which constitutes the inner layer of blood vessels and lymphatic structures, plays an important role in various physiological functions. Alterations in structure, integrity and function of the endothelial layer during pregnancy have been associated with numerous gestational complications, including clinically significant disorders, such as preeclampsia, fetal growth restriction, and diabetes. While numerous experimental studies have focused on establishing the role of endothelial dysfunction in pathophysiology of these gestational complications, their mechanisms remain unknown. Numerous biomarkers of endothelial dysfunction have been proposed, together with the mechanisms by which they relate to individual gestational complications. However, more studies are required to determine clinically relevant markers specific to a gestational complication of interest, as currently most of them present a significant overlap. Although the independent diagnostic value of such markers remains to be insufficient for implementation in standard clinical practice at the moment, inclusion of certain markers in predictive multifactorial models can improve their prognostic value. The future of the research in this field lies in the fine tuning of the clinical markers to be used, as well as identifying possible therapeutic techniques to prevent or reverse endothelial damage.
Collapse
Affiliation(s)
- Jakub Kornacki
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Anastasia Kalantarova
- Medicine Program, Poznan University of Medical Sciences, 41 Jackowskiego Street, 60-512 Poznan, Poland;
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| |
Collapse
|
13
|
Nuñez-Borque E, Fernandez-Bravo S, Rodriguez Del Rio P, Alwashali EM, Lopez-Dominguez D, Gutierrez-Blazquez MD, Laguna JJ, Tome-Amat J, Gallego-Delgado J, Gomez-Lopez A, Betancor D, Cuesta-Herranz J, Ibañez-Sandin MD, Benito-Martin A, Esteban V. Increased miR-21-3p and miR-487b-3p serum levels during anaphylactic reaction in food allergic children. Pediatr Allergy Immunol 2021; 32:1296-1306. [PMID: 33876465 PMCID: PMC8453890 DOI: 10.1111/pai.13518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Anaphylaxis is the most severe manifestation of allergic disorders. The poor knowledge of its molecular mechanisms often leads to under-diagnosis. MicroRNAs (miRNA) regulate physiologic and pathologic processes, and they have been postulated as promising diagnostic markers. The main objectives of this study were to characterize the human miRNA profile during anaphylaxis and to assess their capacity as diagnostic markers and determine their participation in the molecular mechanisms of this event. METHODS The miRNA serum profiles from the acute and baseline phase of 5 oral food-challenged anaphylactic children (<18 years old) were obtained by next-generation sequencing (NGS). From the panel of statistically significant miRNAs obtained, several candidates were selected and analyzed in 19 anaphylactic children by qPCR. We performed system biology analysis (SBA) on their target genes to identify main functions and canonical pathways. A functional in vitro assay was carried out incubating endothelial cells (ECs) in anaphylactic conditions. RESULTS The NGS identified 389 miRNAs among which 41 were significantly different between acute and baseline samples. The high levels of miR-21-3p (fold change = 2.28, P = .006) and miR-487b-3p (fold change = 1.04, P = .039) observed by NGS in acute serum samples were confirmed in a larger group of 19 patients. The SBA revealed molecular pathways related to the inflammation and immune system regulation. miR-21-3p increased intracellularly and in acute phase serum after EC stimulation. CONCLUSIONS These findings provide, for the first time, some insights into the anaphylactic miRNA serum profile in children and point to miR-21-3p and miR-487b-3p as candidate biomarkers. Furthermore, the SBA revealed a possible implication of these molecules in the underlying molecular mechanisms. Moreover, ECs increased miR-21-3p intracellularly and released it to the environment in response to anaphylaxis.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | - Pablo Rodriguez Del Rio
- Allergy Department, Foundation for Biomedical Research, Niño Jesus University Children's Hospital, Madrid, Spain.,Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain
| | - Ebrahim Mohammed Alwashali
- CAI Genomics and Proteomics, Proteomic Unit, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - David Lopez-Dominguez
- Clinical Biostatistics Unit, Instituto de Investigación Puerta de Hierro (IDIPHIM), Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | | | - Jose Julio Laguna
- Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain.,Allergy Unit, Allergo-Anaesthesia Unit, Faculty of Medicine, Hospital Central de la Cruz Roja, Alfonso X El Sabio University, Madrid, Spain
| | - Jaime Tome-Amat
- Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain.,Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, USA.,Program in Biology, The Graduate Center, The City University of New York, New York, NY, USA
| | | | | | - Javier Cuesta-Herranz
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain.,Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Maria Dolores Ibañez-Sandin
- Allergy Department, Foundation for Biomedical Research, Niño Jesus University Children's Hospital, Madrid, Spain.,Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain
| | | | - Vanesa Esteban
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain.,Faculty of Biomedicine and Medicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
14
|
Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules 2021; 11:biom11070982. [PMID: 34356605 PMCID: PMC8301841 DOI: 10.3390/biom11070982] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The initial stage of CVDs is characterized by endothelial dysfunction, defined as the limited bioavailability of nitric oxide (NO). Thus, any factors that interfere with the synthesis or metabolism of NO in endothelial cells are involved in CVD pathogenesis. It is well established that hypoxia is both the triggering factor as well as the accompanying factor in cardiovascular disease, and diminished tissue oxygen levels have been reported to influence endothelial NO bioavailability. In endothelial cells, NO is produced by endothelial nitric oxide synthase (eNOS) from L-Arg, with tetrahydrobiopterin (BH4) as an essential cofactor. Here, we discuss the mechanisms by which hypoxia affects NO bioavailability, including regulation of eNOS expression and activity. What is particularly important is the fact that hypoxia contributes to the depletion of cofactor BH4 and deficiency of substrate L-Arg, and thus elicits eNOS uncoupling-a state in which the enzyme produces superoxide instead of NO. eNOS uncoupling and the resulting oxidative stress is the major driver of endothelial dysfunction and atherogenesis. Moreover, hypoxia induces impairment in mitochondrial respiration and endothelial cell activation; thus, oxidative stress and inflammation, along with the hypoxic response, contribute to the development of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Laboratory of Trace Elements Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
- Correspondence:
| |
Collapse
|
15
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
16
|
Vega-Tapia F, Peñaloza E, Krause BJ. Specific arterio-venous transcriptomic and ncRNA-RNA interactions in human umbilical endothelial cells: A meta-analysis. iScience 2021; 24:102675. [PMID: 34222842 PMCID: PMC8243012 DOI: 10.1016/j.isci.2021.102675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 01/06/2023] Open
Abstract
Whether arterial-venous differences of primary endothelial cells commonly used for vascular research are preserved in vitro remains under debate. To address this issue, a meta-analysis of Affymetrix transcriptomic data sets from human umbilical artery (HUAECs) and vein (HUVEC) endothelial cells was performed. The meta-analysis showed 2,742 transcripts differentially expressed (false discovery rate <0.05), of which 78% were downregulated in HUVECs. Comparisons with RNA-seq data sets showed high levels of agreement and correlation (p < 0.0001), identifying 84 arterial-venous identity markers. Functional analysis revealed enrichment of key vascular processes in HUAECs/HUVECs, including nitric oxide- (NO) and hypoxia-related genes, as well as differences in miRNA- and ncRNA-mRNA interaction profiles. A proof of concept of these findings in primary cells exposed to hypoxia in vitro and in vivo confirmed the arterial-venous differences in NO-related genes and miRNAs. Altogether, these data defined a cross-platform arterial-venous transcript profile for cultured HUAEC-HUVEC and support a preserved identity involving key vascular pathways post-transcriptionally regulated in vitro. Transcriptional differences among HUAEC and HUVEC are preserved in culture These differences occur even after correcting for experimental conditions The heterogenous regulation affects NO- and hypoxia-related genes Cell-specific ncRNA/mRNA interactions are found
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Avenida Libertador Bernardo O'Higgins 611, Rancagua, Chile
| | - Estefania Peñaloza
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Avenida Libertador Bernardo O'Higgins 611, Rancagua, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Avenida Libertador Bernardo O'Higgins 611, Rancagua, Chile
| |
Collapse
|
17
|
Lee Y, Im E. Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants (Basel) 2021; 10:antiox10030377. [PMID: 33802566 PMCID: PMC8000568 DOI: 10.3390/antiox10030377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.
Collapse
Affiliation(s)
| | - Eunok Im
- Correspondence: ; Tel.: +82-51-510-2812; Fax: +82-51-513-6754
| |
Collapse
|