1
|
Baz-Redón N, Antolín M, Clemente M, Campos A, Mogas E, Fernández-Cancio M, Zafon E, García-Arumí E, Soler L, González-Llorens N, Aguilar-Riera C, Camats-Tarruella N, Yeste D. Patients with Thyroid Dyshormonogenesis and DUOX2 Variants: Molecular and Clinical Description and Genotype-Phenotype Correlation. Int J Mol Sci 2024; 25:8473. [PMID: 39126042 PMCID: PMC11313534 DOI: 10.3390/ijms25158473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Thyroid dyshormonogenesis (THD) is a heterogeneous group of genetic diseases caused by the total or partial defect in the synthesis or secretion of thyroid hormones. Genetic variants in DUOX2 can cause partial to total iodination organification defects and clinical heterogeneity, from transient to permanent congenital hypothyroidism. The aim of this study was to undertake a molecular characterization and genotype-phenotype correlation in patients with THD and candidate variants in DUOX2. A total of 31 (19.38%) patients from the Catalan Neonatal Screening Program presented with variants in DUOX2 that could explain their phenotype. Fifteen (48.39%) patients were compound heterozygous, 10 (32.26%) heterozygous, and 4 (12.90%) homozygous. In addition, 8 (26.67%) of these patients presented variants in other genes. A total of 35 variants were described, 10 (28.57%) of these variants have not been previously reported in literature. The most frequent variant in our cohort was c.2895_2898del/p.(Phe966SerfsTer29), classified as pathogenic according to reported functional studies. The final diagnosis of this cohort was permanent THD in 21 patients and transient THD in 10, according to reevaluation and/or need for treatment with levothyroxine. A clear genotype-phenotype correlation could not be identified; therefore, functional studies are necessary to confirm the pathogenicity of the variants.
Collapse
Affiliation(s)
- Noelia Baz-Redón
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.C.); (A.C.); (E.M.); (M.F.-C.); (N.C.-T.); (D.Y.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - María Antolín
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.A.); (E.Z.)
- Medicine Genetics Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - María Clemente
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.C.); (A.C.); (E.M.); (M.F.-C.); (N.C.-T.); (D.Y.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.S.); (N.G.-L.); (C.A.-R.)
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ariadna Campos
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.C.); (A.C.); (E.M.); (M.F.-C.); (N.C.-T.); (D.Y.)
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.S.); (N.G.-L.); (C.A.-R.)
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eduard Mogas
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.C.); (A.C.); (E.M.); (M.F.-C.); (N.C.-T.); (D.Y.)
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.S.); (N.G.-L.); (C.A.-R.)
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mónica Fernández-Cancio
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.C.); (A.C.); (E.M.); (M.F.-C.); (N.C.-T.); (D.Y.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Elisenda Zafon
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.A.); (E.Z.)
- Medicine Genetics Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Elena García-Arumí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Clinical and Molecular Genetics and Rare Disease, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.A.); (E.Z.)
- Medicine Genetics Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Laura Soler
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.S.); (N.G.-L.); (C.A.-R.)
| | - Núria González-Llorens
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.S.); (N.G.-L.); (C.A.-R.)
| | - Cristina Aguilar-Riera
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.S.); (N.G.-L.); (C.A.-R.)
| | - Núria Camats-Tarruella
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.C.); (A.C.); (E.M.); (M.F.-C.); (N.C.-T.); (D.Y.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Diego Yeste
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (M.C.); (A.C.); (E.M.); (M.F.-C.); (N.C.-T.); (D.Y.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.S.); (N.G.-L.); (C.A.-R.)
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Uehara E, Abe K, Tanase-Nakao K, Muroya K, Hattori A, Matsubara K, Fukami M, Narumi S. Molecular and Clinical Features of Congenital Hypothyroidism Due to Multiple DUOX2 Variants. Thyroid 2024; 34:827-836. [PMID: 38757580 DOI: 10.1089/thy.2024.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Background: DUOX2 is one of the major causative genes of congenital hypothyroidism (CH). Still, the mutation spectrum and clinical outcomes of biallelic DUOX2 variants are not fully understood. This study aimed to elucidate the molecular features and long-term clinical manifestations of CH caused by multiple pathogenic DUOX2 variants. Methods: A total of 255 patients with CH were screened for rare variants of 11 known causative genes. DUOX2 variants were classified according to their protein structure and residual activity. In vitro assays were performed for several variants of unknown functions. Clinical analyses were conducted for patients with multiple pathogenic variants of DUOX2 but not of other genes. Results: We identified 24 pathogenic variants of DUOX2, together with two benign variants and seven variants of uncertain significance, in 63 patients. The pathogenic variants included three missense substitutions and one frameshift variant that have not yet been linked to CH. Twenty-one patients carried multiple pathogenic DUOX2 variants without any other pathogenic gene variants. Three of the 21 patients harbored homozygous variants. Family analysis, long-read amplicon sequencing, and haplotype phasing confirmed compound heterozygosity of the DUOX2 variants in 14 patients, whereas the allelic positions of the variants in the remaining four patients could not be determined. Of the 21 patients, 19 were treated with levothyroxine; their ages at drug withdrawal ranged from 9 months to 21.4 years. Three patients required retreatment after drug-free intervals of 6 months, 8 months, and 10 years. There were no differences in clinical severity among patients with DUOX2 amorphic/amorphic, amorphic/hypomorphic, and hypomorphic/hypomorphic variants. Conclusions: These results broaden the mutational spectrum of DUOX2. Furthermore, our data imply that patients with multiple pathogenic DUOX2 variants typically exhibit transient CH without significant genotype-phenotype correlations. Most importantly, this study demonstrated for the first time that these patients are at risk of developing recurrent hypothyroidism after a long drug-free interval.
Collapse
Affiliation(s)
- Erika Uehara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Kiyomi Abe
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Kanako Tanase-Nakao
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Gentilini D, Muzza M, de Filippis T, Vigone MC, Weber G, Calzari L, Cassio A, Di Frenna M, Bartolucci M, Grassi ES, Carbone E, Olivieri A, Persani L. Stochastic epigenetic mutations as possible explanation for phenotypical discordance among twins with congenital hypothyroidism. J Endocrinol Invest 2023; 46:393-404. [PMID: 36071330 PMCID: PMC9859866 DOI: 10.1007/s40618-022-01915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE The elevated frequency of discordance for congenital hypothyroidism (CH) phenotype between monozygotic twins suggests the involvement of non-mendelian mechanisms. The aim of the study was to investigate the role of epigenetics in CH pathogenesis. METHODS A genome-wide DNA methylation analysis was performed on the peripheral blood of 23 twin pairs (10 monozygotic and 13 dizygotic), 4 concordant and 19 discordant pairs for CH at birth. RESULTS Differential methylation analysis did not show significant differences in methylation levels between CH cases and controls, but a different methylation status of several genes may explain the CH discordance of a monozygotic twin couple carrying a monoallelic nonsense mutation of DUOX2. In addition, the median number of hypo-methylated Stochastic Epigenetic Mutations (SEMs) resulted significantly increased in cases compared to controls. The prioritization analysis for CH performed on the genes epimutated exclusively in the cases identified SLC26A4, FOXI1, NKX2-5 and TSHB as the genes with the highest score. The analysis of significantly SEMs-enriched regions led to the identification of two genes (FAM50B and MEG8) that resulted epigenetically dysregulated in cases. CONCLUSION Epigenetic modifications may potentially account for CH pathogenesis and explain discordance among monozygotic twins.
Collapse
Affiliation(s)
- D Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - M Muzza
- Laboratory of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - T de Filippis
- Laboratory of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - M C Vigone
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - G Weber
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - L Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095, Milan, Italy
| | - A Cassio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - M Di Frenna
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - M Bartolucci
- Department of Maternal and Child Sciences and Urology, University "La Sapienza", Rome, Italy
| | - E S Grassi
- Department of Medical Biotechnology and Experimental Medicine, University of Milan, 20122, Milan, Italy
| | - E Carbone
- Laboratory of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - A Olivieri
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - L Persani
- Laboratory of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149, Milan, Italy.
- Department of Medical Biotechnology and Experimental Medicine, University of Milan, 20122, Milan, Italy.
| |
Collapse
|
4
|
Shi B, Ye Y. Case report: A reciprocal translocation-free and pathogenic DUOX2 mutation-free embryo selected by complicated preimplantation genetic testing resulted in a healthy live birth. Front Genet 2023; 14:1066199. [PMID: 36873947 PMCID: PMC9982009 DOI: 10.3389/fgene.2023.1066199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Preimplantation genetic testing (PGT) is an effective approach to improve clinical outcomes and prevent transmission of genetic imbalances by selecting embryos free of disease-causing genes and chromosome abnormalities. In this study, PGT was performed for a challenging case in which a couple simultaneously carried a maternal subchromosomal reciprocal translocation (RecT) revealed by fluorescence in situ hybridization involving the chromosome X (ChrX) and heterozygous mutations in dual oxidase 2 (DUOX2). Carriers of RecT are at increased risk for infertility, recurrent miscarriages, or having affected children due to the unbalanced gametes produced. DUOX2 mutation results in congenital hypothyroidism. Pedigree haplotypes for DUOX2 was constructed after the mutations were verified by Sanger sequencing. Since male carriers of X-autosome translocations may exhibit infertility or other abnormalities, pedigree haplotype for chromosomal translocation was also constructed to identify embryo with RecT. Three blastocysts were obtained by in vitro fertilization and underwent trophectoderm biopsy, whole genomic amplification, and next-generation sequencing (NGS). A blastocyst lacking copy number variants and RecT but carrying the paternal gene mutation in DUOX2, c.2654G>T (p.R885L) was used for embryo transfer, resulting in a healthy female infant whose genetic properties were confirmed by amniocentesis. Cases containing RecT and single gene disorder are rare. And the situation is more complicated when the subchromosomal RecT involving ChrX cannot be identified with routine karyotype analysis. This case report contributes significantly to the literature and the results have shown that the NGS-based PGT strategy may be broadly useful for complex pedigrees.
Collapse
Affiliation(s)
- Biwei Shi
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Rose SR, Wassner AJ, Wintergerst KA, Yayah-Jones NH, Hopkin RJ, Chuang J, Smith JR, Abell K, LaFranchi SH, Wintergerst KA, Yayah Jones NH, Hopkin RJ, Chuang J, Smith JR, Abell K, LaFranchi SH, Wintergerst KA, Bethin KE, Brodsky JL, Jelley DH, Marshall BA, Mastrandrea LD, Lynch JL, Laskosz L, Burke LW, Geleske TA, Holm IA, Introne WJ, Jones K, Lyons MJ, Monteil DC, Pritchard AB, Smith Trapane PL, Vergano SA, Weaver K, Alexander AA, Cunniff C, Null ME, Parisi MA, Ralson SJ, Scott J, Spire P. Congenital Hypothyroidism: Screening and Management. Pediatrics 2023; 151:190308. [PMID: 36827521 DOI: 10.1542/peds.2022-060420] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Untreated congenital hypothyroidism (CH) leads to intellectual disabilities. Prompt diagnosis by newborn screening (NBS) leading to early and adequate treatment results in grossly normal neurocognitive outcomes in adulthood. However, NBS for hypothyroidism is not yet established in all countries globally. Seventy percent of neonates worldwide do not undergo NBS.The initial treatment of CH is levothyroxine, 10 to 15 mcg/kg daily. The goals of treatment are to maintain consistent euthyroidism with normal thyroid-stimulating hormone and free thyroxine in the upper half of the age-specific reference range during the first 3 years of life. Controversy remains regarding detection of thyroid dysfunction and optimal management of special populations, including preterm or low-birth weight infants and infants with transient or mild CH, trisomy 21, or central hypothyroidism.Newborn screening alone is not sufficient to prevent adverse outcomes from CH in a pediatric population. In addition to NBS, the management of CH requires timely confirmation of the diagnosis, accurate interpretation of thyroid function testing, effective treatment, and consistent follow-up. Physicians need to consider hypothyroidism in the face of clinical symptoms, even if NBS thyroid test results are normal. When clinical symptoms and signs of hypothyroidism are present (such as large posterior fontanelle, large tongue, umbilical hernia, prolonged jaundice, constipation, lethargy, and/or hypothermia), measurement of serum thyroid-stimulating hormone and free thyroxine is indicated, regardless of NBS results.
Collapse
Affiliation(s)
| | | | | | - Nana-Hawa Yayah-Jones
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert J Hopkin
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Katherine Abell
- Departments of Pediatrics, Division of Endocrinology & Diabetes, Wendy Novak Diabetes Center, University of Louisville, School of Medicine, Norton Children's Hospital, Louisville, Kentucky.,Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen H LaFranchi
- Department of Pediatrics, Doernbecher Children's Hospital, Oregon Health & Sciences University, Portland, Oregon
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Peters C, Schoenmakers N. MECHANISMS IN ENDOCRINOLOGY: The pathophysiology of transient congenital hypothyroidism. Eur J Endocrinol 2022; 187:R1-R16. [PMID: 35588090 PMCID: PMC9254299 DOI: 10.1530/eje-21-1278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
Transient congenital hypothyroidism (TCH) refers to congenital hypothyroidism which spontaneously resolves in the first few months or years of life. Currently, there is a paucity of reliable markers predicting TCH at diagnosis, and the diagnosis is established following the withdrawal of levothyroxine therapy around 3 years of age. The incidence of TCH is increasing, and it is a major contributor to the overall increase in the incidence of CH in recent studies. Both genetic factors, in particular mutations affecting DUOX2 and DUOXA2, and environmental factors, for example, iodine deficiency and excess, anti- TSHR antibodies and exposure to antithyroid or iodine-rich medications, may cause TCH. Resolution of TCH in childhood may reflect both normal thyroid physiology (decreased thyroid hormone biosynthesis requirements after the neonatal period) and clearance or cessation of environmental precipitants. The relative contributions and interactions of genetic and environmental factors to TCH, and the extent to which TCH may be prevented, require evaluation in future population-based studies.
Collapse
Affiliation(s)
- Catherine Peters
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Nadia Schoenmakers
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Correspondence should be addressed to N Schoenmakers;
| |
Collapse
|
7
|
Петеркова ВА, Безлепкина ОБ, Ширяева ТЮ, Вадина ТА, Нагаева ЕВ, Чикулаева ОА, Шредер ЕВ, Конюхова МБ, Макрецкая НА, Шестопалова ЕА, Митькина ВБ. [Clinical guideline of «congenital hypothyroidism»]. PROBLEMY ENDOKRINOLOGII 2022; 68:90-103. [PMID: 35488760 PMCID: PMC9764271 DOI: 10.14341/probl12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023]
Abstract
Congenital hypothyroidism is an important issue of pediatric endocrinology at which timely diagnosis and treatment can prevent the development of severe cases of the disease. The developed clinical guidelines are a working tool for a practicing physician. The target audience is pediatric endocrinologists and pediatricians. They briefly and logically set out the main definition of the disease, epidemiology, classification, methods of diagnosis and treatment, based on the principles of -evidence-based medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - М. Б. Конюхова
- Московский центр неонатального скрининга Морозовской детской городской клинической больницы
| | | | | | - В. Б. Митькина
- Московский центр неонатального скрининга Морозовской детской городской клинической больницы
| |
Collapse
|
8
|
Benabdelkamel H, Rafiullah M, Masood A, Alsaif A, Musambil M, Alfadda AA. Proteomic profiling of thyroid tissue in patients with obesity and benign diffuse goiter. Front Endocrinol (Lausanne) 2022; 13:923465. [PMID: 35966064 PMCID: PMC9365950 DOI: 10.3389/fendo.2022.923465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Goiter is a term to describe the enlargement of the thyroid gland. The pathophysiology and molecular changes behind development of diffuse benign goiter remains unclear. The present study targeted to identify and describe the alterations in the thyroid tissue proteome from patients (obese euthyroid) with benign diffuse goiter (BDG) using proteomics approach. Thyroid tissue samples, from 7 age and sex matched, patients with BDG and 7 controls were obtained at the time of surgery. An untargeted proteomic analysis of the thyroid tissue was performed out utilizing two-dimensional difference (2D-DIGE) in gel electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for identification of the proteins. Progenesis software was used to identify changes in expression of tissue proteins and found statistically significant differences in abundance in a total of 90 proteins, 46 up and 44 down (1.5-fold change, ANOVA, p ≤ 0.05) in BDG compared to the control group. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) identified dysregulation of signalling pathways linked to ERK1/2, Glutathione peroxidase and NADPH oxidase associated to organismal injury and abnormalities, endocrine system disorders and cancer. The thyroid tissue proteome in patients with BDG revealed a significant decrease in thyroglobulin along with dysregulation of glycolysis and an increase in prooxidant peroxidase enzymes. Dysregulation of metabolic pathways related to glycolysis, redox proteins, and the proteins associated with maintaining the cytoskeletal structure of the thyrocytes was also identified.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Rafiullah
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alsaif
- Division of Endocrine and Breast Surgery, Department of Surgery, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Assim A. Alfadda,
| |
Collapse
|
9
|
Sun F, Zhang RJ, Cheng F, Fang Y, Yang RM, Ye XP, Han B, Zhao SX, Dong M, Song HD. Correlation of DUOX2 residual enzymatic activity with phenotype in congenital hypothyroidism caused by biallelic DUOX2 defects. Clin Genet 2021; 100:713-721. [PMID: 34564849 DOI: 10.1111/cge.14065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
DUOX2 is the most frequently mutated gene in patients with congenital hypothyroidism (CH) in China. However, no reliable genotype-phenotype relationship has been found in patients with DUOX2 mutations. In this study, DUOX2 mutations were screened in 266 CH patients, and the enzymatic activity of 89 DUOX2 variants was determined in vitro. Furthermore, the DUOX2 residual activity in 76 CH patients caused by DUOX2 biallelic mutations was calculated. The thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels were found to be higher and lower in patients with DUOX2 residual activity ≤22%, respectively, compared to patients with residual enzymatic activity >22%. Moreover, we interpreted the pathogenicity of DUOX2 variants by applying the ACMG classification criteria with or without PS3/BS3 evidence. The results indicated that residual DUOX2 enzymatic activity was closely related to the clinical phenotypes of CH patients caused by DUOX2 biallelic mutations. These findings suggest that the residual enzymatic activity of 22% may be a cutoff value for estimating the severity of hypothyroidism in CH patients with biallelic DUOX2 mutations. Well-established functional studies are useful and necessary to evaluate the pathogenicity of DUOX2 variants, improving the accuracy and scope of genetic consultations.
Collapse
Affiliation(s)
- Feng Sun
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Children's Hospital, Fujian Provincial Maternity and Children's Hospital, Fuzhou, China
| | - Ya Fang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Meng Yang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Rios JJ, Denton K, Russell J, Kozlitina J, Ferreira CR, Lewanda AF, Mayfield JE, Moresco E, Ludwig S, Tang M, Li X, Lyon S, Khanshour A, Paria N, Khalid A, Li Y, Xie X, Feng JQ, Xu Q, Lu Y, Hammer RE, Wise CA, Beutler B. Germline Saturation Mutagenesis Induces Skeletal Phenotypes in Mice. J Bone Miner Res 2021; 36:1548-1565. [PMID: 33905568 PMCID: PMC8862308 DOI: 10.1002/jbmr.4323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Jamie Russell
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy F Lewanda
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Eva Moresco
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Lyon
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anas Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Yang Li
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Xudong Xie
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Jian Q Feng
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Qian Xu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Yongbo Lu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Robert E Hammer
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Wang F, Xiaole L, Ma R, Zhao D, Liu S. Dual Oxidase System Genes Defects in Children With Congenital Hypothyroidism. Endocrinology 2021; 162:6149935. [PMID: 33631011 DOI: 10.1210/endocr/bqab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE The objectives of this study were to analyze the distribution of dual oxidase (DUOX) system genes (containing DUOX2, DUOX1, DUOXA2, and DUOXA1) variants in children with congenital hypothyroidism (CH) and their phenotypes. METHODS Target region sequencing technology was performed on DUOX system genes among 606 CH subjects covering all the exon and intron regions. Detailed clinical data were collected for statistical analysis. RESULTS A total of 95 suspected pathogenic variants were detected in the DUOX system genes, showing a 39.11% rate in variant carrying (237/606). DUOX2 had the highest rate in this study. There were statistical differences in maximum adjusted dose and current dose of levothyroxine between the DUOX system genes nonmutated group with the mutated group (both Ps < 0.001). The cases in the DUOX system genes mutated group were more likely to develop into transient CH (χ 2 = 23.155, P < 0.001) and more likely to manifested as goiter or gland-in-situ (χ 2 = 66.139, P < 0.001). In addition, there was no significant difference in clinical characteristics between DUOX system genes monoallelic and non-monoallelic. Although 20% of the variants affected the functional domain regions (EF hand, flavin adenine dinucleotide and nicotinamide adenine dinucleotide binding sites), there was no significant effect on the phenotype severity whether the variation is located in the functional domain regions. CONCLUSIONS Our results showed the high variation rate of DUOX2 in the DUOX system genes among Chinese CH patients. The complex genotype-phenotype relationship of DUOX system genes broadened the understanding of CH phenotype spectrum.
Collapse
Affiliation(s)
- Fengqi Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xiaole
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixin Ma
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dehua Zhao
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiguo Liu
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Citterio CE, Rivolta CM, Targovnik HM. Structure and genetic variants of thyroglobulin: Pathophysiological implications. Mol Cell Endocrinol 2021; 528:111227. [PMID: 33689781 DOI: 10.1016/j.mce.2021.111227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared. Although TG deficiency is thought to be of autosomal recessive inheritance, the introduction of massive sequencing platforms led to the identification of a variety of monoallelic TG variants (combined with mutations in other thyroid gene products) opening new questions regarding the possibility of oligogenic inheritance of the disease. In this review we discuss remarkable advances in the understanding of the TG architecture and the pathophysiology of CH associated with TG defects, providing new insights for the management of congenital disorders as well as counseling benefits for families with a history of TG abnormalities. Moreover, we summarize relevant aspects of TH synthesis within TG and offer an updated analysis of animal and cellular models of TG deficiency for pathophysiological studies of thyroid dyshormonogenesis while highlighting perspectives for new investigations. All in all, even though there has been sustained progress in understanding the role of TG in thyroid pathophysiology during the past 50 years, functional characterization of TG variants remains an important area of study for future advancement in the field.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
13
|
Pio MG, Molina MF, Siffo S, Chiesa A, Rivolta CM, Targovnik HM. A novel mutation in intron 11 donor splice site, responsible of a rare genotype in thyroglobulin gene by altering the pre-mRNA splincing process. Cell expression and bioinformatic analysis. Mol Cell Endocrinol 2021; 522:111124. [PMID: 33321114 DOI: 10.1016/j.mce.2020.111124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023]
Abstract
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene have been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. The purpose of the present study was to identify and characterize new variants in the TG gene. We report an Argentine patient with congenital hypothyroidism, enlarged thyroid gland and low levels of serum TG. Sequencing of DNA, expression of chimeric minigenes as well as bioinformatics analysis were performed. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a c.3001+5G > A, whereas the paternal mutation consists of p.Arg296*. Minigen analysis of the variant c.3001+5A performed in HeLa, CV1 and Hek293T cell lines, showed a total lack of transcript expression. So, in order to validate that the loss of expression was caused by such variation, site-directed mutagenesis was performed on the mutated clone, which previously had a pSPL3 vector change, to give rise to a wild-type clone c.3001+5G, endorsing that the mutation c.3001+5G > A is the cause of the total lack of expression. In conclusion, we demonstrate that the c.3001+5G > A mutation causes a rare genotype, altering the splicing of the pre-mRNA. This work contributes to elucidating the molecular bases of TG defects associated with congenital hypothyroidism and expands our knowledge in relation to the pathologic roles of the position 5 in the donor splice site.
Collapse
Affiliation(s)
- Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Maricel F Molina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Sofia Siffo
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Cirello V, Colombo C, Karapanou O, Pogliaghi G, Persani L, Fugazzola L. Clinical and Genetic Features of a Large Monocentric Series of Familial Non-Medullary Thyroid Cancers. Front Endocrinol (Lausanne) 2021; 11:589340. [PMID: 33488516 PMCID: PMC7817808 DOI: 10.3389/fendo.2020.589340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Several low penetration susceptibility risk loci or genes have been proposed in recent years with a possible causative role for familial non-medullary thyroid cancer (FNMTC), though the results are still not conclusive or reliable. Among all the candidates, here fully reviewed, a new extremely rare germline variant c.3607A>G (p.Y1203H) of the DUOX2 gene, has been recently reported to co-segregate with the affected members of one non-syndromic FNMTC family. We aimed to validate this finding in our series of 33 unrelated FNMTC Italian families, previously found to be negative for two susceptibility germline variants in the HABP2 and MAP2K5 genes. Unfortunately, the DUOX2 p.Y1203H variant was not found in either the 74 affected or the 12 not affected family members of our series. We obtained interesting data by comparing the clinico-pathological data of the affected members of our kindreds with a large consecutive series of sporadic cases, followed at our site. We found that familial tumors had a statistically significant more aggressive presentation at diagnosis, though not resulting in a worst outcome. In conclusion, we report genetic and clinical data in a large series of FNMTC kindreds. Our families are negative for variants reported as likely causative, namely those lying in the HABP2, MAP2K5 and DUOX2 genes. The extensive review of the current knowledge on the genetic risk factors for non-syndromic FNMTCs underlies how the management of these tumors remains mainly clinical. Despite the more aggressive presentation of familial cases, an appropriate treatment leads to an outcome similar to that observed for sporadic cases.
Collapse
Affiliation(s)
- Valentina Cirello
- Department of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Carla Colombo
- Department of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Olga Karapanou
- Department of Endocrinology, 401 Military Hospital, Athens, Greece
| | - Gabriele Pogliaghi
- Department of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Cirello V. Familial non-medullary thyroid carcinoma: clinico-pathological features, current knowledge and novelty regarding genetic risk factors. Minerva Endocrinol (Torino) 2020; 46:5-20. [PMID: 33045820 DOI: 10.23736/s2724-6507.20.03338-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Familial non-medullary thyroid cancer (FNMTC) constitutes 3-9% of all thyroid cancers and occurs in two or more first-degree relatives in the absence of predisposing environmental factors. Out of all FNMTC cases, only 5% are represented by syndromic forms (Gardner's Syndrome, familial adenomatous polyposis, Cowden's Syndrome, Carney complex 1, Werner's Syndrome and DICER1 syndrome), in which thyroid cancer occurs as a minor component and the genetic alterations are well-known. The non-syndromic forms represent the majority of all FNMTCs (95%), and the thyroid cancer is the predominant feature. Several low penetration susceptibility risk loci or genes (i.e. TTF1, FOXE1, SRGAP1, SRRM2, HABP2, MAP2K5, and DUOX2), here fully reviewed, have been proposed in recent years with a possible causative role, though the results are still not conclusive or reliable. FNMTC is indistinguishable from sporadic non-medullary thyroid cancer (sNMTC), which means that FNMTC cannot be diagnosed until at least one of the patient's first-degree relatives is affected by tumor. Some studies reported that the non-syndromic FNMTC is more aggressive than the sNMTC, being characterized by a younger age of onset and a higher rate of multifocal and bilateral tumors, extrathyroidal extension, lymph node metastasis, and recurrence. On the contrary, other studies did not find clinical differences between non-syndromic FNMTCs and sporadic cases. Here, I reported an extensive review on genetic and clinico-pathological features of the FNMTC, with particular attention on novel genetic risk factors for non-syndromic forms.
Collapse
Affiliation(s)
- Valentina Cirello
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy -
| |
Collapse
|
16
|
Zdraveska N, Kocova M, Nicholas AK, Anastasovska V, Schoenmakers N. Genetics of Gland- in-situ or Hypoplastic Congenital Hypothyroidism in Macedonia. Front Endocrinol (Lausanne) 2020; 11:413. [PMID: 32765423 PMCID: PMC7381236 DOI: 10.3389/fendo.2020.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Neonatal screening in Macedonia detects congenital hypothyroidism (CH) with an incidence of 1 in 1,585, and more than 50% of cases exhibit a normally located gland-in-situ (GIS). Monogenic mutations causing dyshormonogenesis may underlie GIS CH; additionally, a small proportion of thyroid hypoplasia has a monogenic cause, such as TSHR and PAX8 defects. The genetic architecture of Macedonian CH cases has not previously been studied. We recruited screening-detected, non-syndromic GIS CH or thyroid hypoplasia cases (n = 40) exhibiting a spectrum of biochemical thyroid dysfunction ranging from severe permanent to mild transient CH and including 11 familial cases. Cases were born at term, with birth weight >3,000 g, and thyroid morphologies included goiter (n = 11), thyroid hypoplasia (n = 6), and apparently normal-sized thyroid. A comprehensive, phenotype-driven, Sanger sequencing approach was used to identify genetic mutations underlying CH, by sequentially screening known dyshormonogenesis-associated genes and TSHR in GIS cases and TSHR and PAX8 in cases with thyroid hypoplasia. Potentially pathogenic variants were identified in 14 cases, of which four were definitively causative; we also detected digenic variants in three cases. Seventeen variants (nine novel) were identified in TPO (n = 4), TG (n = 3), TSHR (n = 4), DUOX2 (n = 4), and PAX8 (n = 2). No mutations were detected in DUOXA2, NIS, IYD, and SLC26A7. The relatively low mutation frequency suggests that factors other than recognized monogenic causes (oligogenic variants, environmental factors, or novel genes) may contribute to GIS CH in this region. Future non-hypothesis-driven, next-generation sequencing studies are required to confirm these findings.
Collapse
Affiliation(s)
| | - Mirjana Kocova
- Medical Faculty, University Children's Hospital, Skopje, Macedonia
| | - Adeline K. Nicholas
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | | | - Nadia Schoenmakers
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Bruellman RJ, Watanabe Y, Ebrhim RS, Creech MK, Abdullah MA, Dumitrescu AM, Refetoff S, Weiss RE. Increased Prevalence of TG and TPO Mutations in Sudanese Children With Congenital Hypothyroidism. J Clin Endocrinol Metab 2020; 105:5684913. [PMID: 31867598 PMCID: PMC7093074 DOI: 10.1210/clinem/dgz297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Congenital hypothyroidism (CH) is due to dyshormonogenesis in 10% to 15% of subjects worldwide but accounts for 60% of CH cases in the Sudan. OBJECTIVE To investigate the molecular basis of CH in Sudanese families. DESIGN Clinical phenotype reporting and serum thyroid hormone measurements. Deoxyribonucelic acid extraction for whole-exome sequencing and Sanger sequencing. SETTING University research center. PATIENTS Twenty-six Sudanese families with CH. INTERVENTION Clinical evaluation, thyroid function tests, genetic sequencing, and analysis. Our samples and information regarding samples from the literature were used to compare TG (thyroglobulin) and TPO (thyroid peroxidase) mutation rates in the Sudanese population with all populations. RESULTS Mutations were found in dual-oxidase 1 (DUOX1), dual-oxidase 2 (DUOX2), iodotyrosine deiodinase (IYD), solute-carrier (SLC) 26A4, SLC26A7, SLC5A5, TG, and TPO genes. The molecular basis of the CH in 7 families remains unknown. TG mutations were significantly higher on average in the Sudanese population compared with the average number of TG mutations in other populations (P < 0.05). CONCLUSIONS All described mutations occur in domains important for protein structure and function, predicting the CH phenotype. Genotype prediction based on phenotype includes low or undetectable thyroglobulin levels for TG gene mutations and markedly higher thyroglobulin levels for TPO mutations. The reasons for higher incidence of TG gene mutations include gene length and possible positive genetic selection due to endemic iodine deficiency.
Collapse
Affiliation(s)
- Ryan J Bruellman
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Yui Watanabe
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Reham S Ebrhim
- Department of Paediatrics and Child Health, Faculty of Medicine, University of Almughtaribeen, Khartoum, Sudan
| | - Matthew K Creech
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Mohamed A Abdullah
- Department of Paediatrics and Child Health, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Alexandra M Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, Illinois
- Committee on Molecular Medicine and Nutrition, The University of Chicago, Chicago, Illinois
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
- Committee on Genetics, The University of Chicago, Chicago, Illinois
| | - Roy E Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Correspondence and Reprint Requests: Roy E. Weiss, MD, PhD, University of Miami Miller School of Medicine, 1120 NW 14th Street, Room 310F, Miami, Florida 33136. E-mail:
| |
Collapse
|
18
|
Investigation of Potential Genetic Biomarkers and Molecular Mechanism of Ulcerative Colitis Utilizing Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4921387. [PMID: 32190668 PMCID: PMC7073481 DOI: 10.1155/2020/4921387] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Objectives To reveal the molecular mechanisms of ulcerative colitis (UC) and provide potential biomarkers for UC gene therapy. Methods We downloaded the GSE87473 microarray dataset from the Gene Expression Omnibus (GEO) and identified the differentially expressed genes (DEGs) between UC samples and normal samples. Then, a module partition analysis was performed based on a weighted gene coexpression network analysis (WGCNA), followed by pathway and functional enrichment analyses. Furthermore, we investigated the hub genes. At last, data validation was performed to ensure the reliability of the hub genes. Results Between the UC group and normal group, 988 DEGs were investigated. The DEGs were clustered into 5 modules using WGCNA. These DEGs were mainly enriched in functions such as the immune response, the inflammatory response, and chemotaxis, and they were mainly enriched in KEGG pathways such as the cytokine-cytokine receptor interaction, chemokine signaling pathway, and complement and coagulation cascades. The hub genes, including dual oxidase maturation factor 2 (DUOXA2), serum amyloid A (SAA) 1 and SAA2, TNFAIP3-interacting protein 3 (TNIP3), C-X-C motif chemokine (CXCL1), solute carrier family 6 member 14 (SLC6A14), and complement decay-accelerating factor (CD antigen CD55), were revealed as potential tissue biomarkers for UC diagnosis or treatment. Conclusions This study provides supportive evidence that DUOXA2, A-SAA, TNIP3, CXCL1, SLC6A14, and CD55 might be used as potential biomarkers for tissue biopsy of UC, especially SLC6A14 and DUOXA2, which may be new targets for UC gene therapy. Moreover, the DUOX2/DUOXA2 and CXCL1/CXCR2 pathways might play an important role in the progression of UC through the chemokine signaling pathway and inflammatory response.
Collapse
|
19
|
Targovnik HM, Scheps KG, Rivolta CM. Defects in protein folding in congenital hypothyroidism. Mol Cell Endocrinol 2020; 501:110638. [PMID: 31751626 DOI: 10.1016/j.mce.2019.110638] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the most common preventable causes of both cognitive and motor deficits. CH is a heterogeneous group of thyroid disorders in which inadequate production of thyroid hormone occurs due to defects in proteins involved in the gland organogenesis (dysembryogenesis) or in multiple steps of thyroid hormone biosynthesis (dyshormonogenesis). Dysembryogenesis is associated with genes responsible for the development or growth of thyroid cells: such as NKX2-1, FOXE1, PAX8, NKX2-5, TSHR, TBX1, CDCA8, HOXD3 and HOXB3 resulting in agenesis, hypoplasia or ectopia of thyroid gland. Nevertheless, the etiology of the dysembryogenesis remains unknown for most cases. In contrast, the majority of patients with dyshormonogenesis has been linked to mutations in the SLC5A5, SLC26A4, SLC26A7, TPO, DUOX1, DUOX2, DUOXA1, DUOXA2, IYD or TG genes, which usually originate goiter. About 800 genetic mutations have been reported to cause CH in patients so far, including missense, nonsense, in-frame deletion and splice-site variations. Many of these mutations are implicated in specific domains, cysteine residues or glycosylation sites, affecting the maturation of nascent proteins that go through the secretory pathway. Consequently, misfolded proteins are permanently entrapped in the endoplasmic reticulum (ER) and are translocated to the cytosol for proteasomal degradation by the ER-associated degradation (ERAD) machinery. Despite of all these remarkable advances in the field of the CH pathogenesis, several points on the development of this disease remain to be elucidated. The continuous study of thyroid gene mutations with the application of new technologies will be useful for the understanding of the intrinsic mechanisms related to CH. In this review we summarize the present status of knowledge on the disorders in the protein folding caused by thyroid genes mutations.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Karen G Scheps
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
20
|
Giusti N, Gillotay P, Trubiroha A, Opitz R, Dumont JE, Costagliola S, De Deken X. Inhibition of the thyroid hormonogenic H 2O 2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol Cell Endocrinol 2020; 500:110635. [PMID: 31678421 DOI: 10.1016/j.mce.2019.110635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/30/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) synthesis requires extracellular hydrogen peroxide generated by the NADPH oxidases, DUOX1 and DUOX2, with maturation factors, DUOXA1 and DUOXA2. In zebrafish, only one duox and one duoxa gene are present. Using a thyroid-specific reporter line, we investigated the role of Duox and Duoxa for TH biosynthesis in zebrafish larvae. Analysis of several zebrafish duox and duoxa mutant models consistently recovered hypothyroid phenotypes with hyperplastic goiter caused by impaired TH synthesis. Mutant larvae developed enlarged thyroids and showed increased expression of the EGFP reporter and thyroid functional markers including wild-type and mutated duox and duoxa transcripts. Treatment of zebrafish larvae with the NADPH oxidase inhibitor VAS2870 phenocopied the thyroid effects observed in duox or duoxa mutants. Additional functional in vitro assays corroborated the pharmacological inhibition of Duox activity by VAS2870. These data support the utility of this new experimental model to characterize endocrine disruptors of the thyroid function.
Collapse
Affiliation(s)
- Nicoletta Giusti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Pierre Gillotay
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Achim Trubiroha
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Present Address: German Federal Institute for Risk Assessment (BfR), Department Chemicals and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Robert Opitz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jacques-Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
21
|
Stoupa A, Al Hage Chehade G, Chaabane R, Kariyawasam D, Szinnai G, Hanein S, Bole-Feysot C, Fourrage C, Nitschke P, Thalassinos C, Pinto G, Mnif M, Baron S, De Kerdanet M, Reynaud R, Barat P, Hachicha M, Belguith N, Polak M, Carré A. High Diagnostic Yield of Targeted Next-Generation Sequencing in a Cohort of Patients With Congenital Hypothyroidism Due to Dyshormonogenesis. Front Endocrinol (Lausanne) 2020; 11:545339. [PMID: 33692749 PMCID: PMC7937947 DOI: 10.3389/fendo.2020.545339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To elucidate the molecular cause in a well-characterized cohort of patients with Congenital Hypothyroidism (CH) and Dyshormonogenesis (DH) by using targeted next-generation sequencing (TNGS). STUDY DESIGN We studied 19 well-characterized patients diagnosed with CH and DH by targeted NGS including genes involved in thyroid hormone production. The pathogenicity of novel mutations was assessed based on in silico prediction tool results, functional studies when possible, variant location in important protein domains, and a review of the recent literature. RESULTS TNGS with variant prioritization and detailed assessment identified likely disease-causing mutations in 10 patients (53%). Monogenic defects most often involved TG, followed by DUOXA2, DUOX2, and NIS and were usually homozygous or compound heterozygous. Our review shows the importance of the detailed phenotypic description of patients and accurate analysis of variants to provide a molecular diagnosis. CONCLUSIONS In a clinically well-characterized cohort, TNGS had a diagnostic yield of 53%, in accordance with previous studies using a similar strategy. TG mutations were the most common genetic defect. TNGS identified gene mutations causing DH, thereby providing a rapid and cost-effective genetic diagnosis in patients with CH due to DH.
Collapse
Affiliation(s)
- Athanasia Stoupa
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- IMAGINE Institute affiliate, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Ghada Al Hage Chehade
- Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Rim Chaabane
- Laboratory of Human Molecular Genetics, Medicine School, University of Sfax, Sfax, Tunisia
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Gabor Szinnai
- Pediatric Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Pediatric Endocrinology, University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Sylvain Hanein
- INSERM U1163, IMAGINE Institute, Translational Genetics, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christine Bole-Feysot
- Genomics Platform, INSERM UMR 1163, Paris Descartes Sorbonne Paris Cite University, Imagine Institute, Paris, France
| | - Cécile Fourrage
- Bioinformatics Platform, Paris Descartes University, IMAGINE Institute, Paris, France
| | - Patrick Nitschke
- Bioinformatics Platform, Paris Descartes University, IMAGINE Institute, Paris, France
| | - Caroline Thalassinos
- Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Graziella Pinto
- Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Mouna Mnif
- Endocrinology Department, CHU Hedi Chaker, Sfax, Tunisia
| | - Sabine Baron
- Pediatrics Department, CHU Nantes, Nantes, France
| | | | | | - Pascal Barat
- CHU de Bordeaux, Pediatric Endocrinology, Bordeaux, France
| | | | - Neila Belguith
- Laboratory of Human Molecular Genetics, Medicine School, University of Sfax, Sfax, Tunisia
- Medical Genetics Department, CHU Hedi Chaker, Sfax, Tunisia
| | - Michel Polak
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- IMAGINE Institute affiliate, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
- Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Necker-Enfants Malades University Hospital, Paris, France
- Centre Régional de Dépistage Néonatal (CRDN) Ile de France, Paris, France
- *Correspondence: Michel Polak, ; Aurore Carré,
| | - Aurore Carré
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- IMAGINE Institute affiliate, Paris, France
- *Correspondence: Michel Polak, ; Aurore Carré,
| |
Collapse
|
22
|
Wang F, Zang Y, Li M, Liu W, Wang Y, Yu X, Li H, Wang F, Liu S. DUOX2 and DUOXA2 Variants Confer Susceptibility to Thyroid Dysgenesis and Gland- in-situ With Congenital Hypothyroidism. Front Endocrinol (Lausanne) 2020; 11:237. [PMID: 32425884 PMCID: PMC7212429 DOI: 10.3389/fendo.2020.00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Thyroid dysgenesis (TD), which is caused by gland developmental abnormalities, is the most common cause of congenital hypothyroidism (CH). In addition, advances in diagnostic techniques have facilitated the identification of mild CH patients with a gland-in-situ (GIS) with normal thyroid morphology. Therefore, TD and GIS account for the vast majority of CH cases. Methods: Sixteen known genes to be related to CH were sequenced and screened for variations by next-generation sequencing (NGS) in a cohort of 377 CH cases, including 288 TD cases and 89 GIS cases. Results: In our CH cohort, we found that DUOX2 (21.22%) was the most commonly variant pathogenic gene, while DUOXA2 was prominent in TD (18.75%) and DUOX2 was prominent in GIS (34.83%). Both biallelic and triple variants of DUOX2 were found to be most common in children with TD and children with GIS. The most frequent combination was DUOX2 with DUOXA1 among the 61 patients who carried digenic variants. We also found for the first time that biallelic TG, DUOXA2, and DUOXA1 variants participate in the pathogenesis of TD. In addition, the variant p.Y246X in DUOXA2 was the most common variant hotspot, with 58 novel variants identified in our study. Conclusion: We meticulously described the types and characteristics of variants from sixteen known gene in children with TD and GIS in the Chinese population, suggesting that DUOXA2 and DUOX2 variants may confer susceptibility to TD and GIS via polygenic inheritance and multiple factors, which further expands the genotype-phenotype spectrum of CH in China.
Collapse
Affiliation(s)
- Fengqi Wang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yucui Zang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miaomiao Li
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenmiao Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolong Yu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Fang Wang
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shiguo Liu
| |
Collapse
|
23
|
Skonieczna M, Hudy D, Poterala-Hejmo A, Hejmo T, Buldak RJ, Dziedzic A. Effects of Resveratrol, Berberine and Their Combinations on Reactive Oxygen Species, Survival and Apoptosis in Human Squamous Carcinoma (SCC-25) Cells. Anticancer Agents Med Chem 2019; 19:1161-1171. [DOI: 10.2174/1871520619666190405111151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Levels of cellular Reactive Oxygen Species (ROS) influence the oxidized/reduced
states of cellular proteins, and create redox-signaling pathways that can activate transcription factors, kinases,
and phosphatases. ROS levels can be increased radically by external factors, including ionizing and UV radiation or
exposure to chemical compounds. These increased ROS levels can, in turn, lead to oxidative damage of DNA.
Natural plant treatments against cancer can modulate these processes by inducing or decreasing ROS production.
Methods:
Here we report new observations that squamous carcinoma (SCC-25) cells, exposed to 24 hours of
combined resveratrol and berberine treatment, contain increased ROS levels. Using flow cytometry, for drug
activity characteristics, an accumulation of ROS was observed. A combination of different dyes, CellROX
Green (Life Technologies) and DCFH-DA (Sigma), allowed for flow cytometric estimation of levels of cellular
ROS as well as cellular localization.
Results:
Live staining and microscopic observations confirmed the accumulation of ROS in SCC-25 cells following
a combination treatment at concentrations of 10μg/ml. Additionally, the cytotoxicity of the compounds
was significantly improved after their combined application. Additive effects were observed for doses lower
than the calculated IC50 of berberine [IC50=23µg/ml] and resveratrol [IC50=9µg/ml]. Viability (MTS) assays and
analysis of isobolograms revealed a significant impact on cell viability upon combination treatment.
Conclusion:
These results suggest that administration of berberine, in the presence of resveratrol, could be
decreased even to 50% (half the IC50 for berberine) for cancer treatment.
Collapse
Affiliation(s)
- Magdalena Skonieczna
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Dorota Hudy
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Aleksandra Poterala-Hejmo
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Tomasz Hejmo
- Department of Biochemistry, Medical University of Silesia, School of Medicine with the Division of Dentistry, Jordana 19, 41-808 Zabrze, Poland
| | - Rafal J. Buldak
- Department of Biochemistry, Medical University of Silesia, School of Medicine with the Division of Dentistry, Jordana 19, 41-808 Zabrze, Poland
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry and Endodontics, Medical University of Silesia, Pl. Akademicki 17, 41-902 Bytom, Poland
| |
Collapse
|
24
|
The Dual Oxidase Duox2 stabilized with DuoxA2 in an enzymatic complex at the surface of the cell produces extracellular H 2O 2 able to induce DNA damage in an inducible cellular model. Exp Cell Res 2019; 384:111620. [PMID: 31513783 DOI: 10.1016/j.yexcr.2019.111620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022]
Abstract
Thyroid hormone synthesis requires H2O2, produced by two NADPH oxidases, Duox1 and Duox2. To be fully active at the apical pole of the thyrocytes, these enzymes need additional maturation factors DuoxA1 and DuoxA2. The proteins have been shown to be localized at the cell surface, suggesting that they could form a complex with Duox counterparts. We have generated multiple HEK293 Tet-On3G cell lines that express various combinations of DuoxA upon doxycycline induction, in association with a constitutive expression of the Duox enzyme. We compared Duox specific activity, Duox/DuoxA cell surface interactions and the cellular consequences of sustained H2O2 generation. By normalizing H2O2 extracellular production by Duox or DuoxA membrane expression, we have demonstrated that the most active enzymatic complex is Duox2/DuoxA2, compared to Duox1/DuoxA1. A direct cell surface interaction was shown between Duox1/2 and both DuoxA1 and DuoxA2 using the Duolink® technology, Duox1/DuoxA1 and Duox2/DuoxA2 membrane complexes being more stable than the unpaired ones. A significant increase in DNA damage was observed in the nuclei of Duox2/DuoxA2 expressing cells after doxycycline induction and stimulation of Duox catalytic activity. The maturation and activity of Duox2 were drastically impaired when expressed with the glycosylation-defective maturation factor DuoxA2, while the impact of the unglycosylated DuoxA1 mutant on Duox1 membrane expression and activity was rather limited. The present data demonstrate for the first time that H2O2 produced by the Duox2/DuoxA2 cell surface enzymatic complex could provoke potential mutagenic DNA damage in an inducible cellular model, and highlight the importance of the co-expressed partner in the activity and stability of Duox/DuoxA complexes.
Collapse
|
25
|
Dufort G, Larrivée-Vanier S, Eugène D, De Deken X, Seebauer B, Heinimann K, Lévesque S, Gravel S, Szinnai G, Van Vliet G, Deladoëy J. Wide Spectrum of DUOX2 Deficiency: From Life-Threatening Compressive Goiter in Infancy to Lifelong Euthyroidism. Thyroid 2019; 29:1018-1022. [PMID: 31030636 DOI: 10.1089/thy.2018.0461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Six patients are described with bi-allelic DUOX2 variants and widely variable phenotypes. Patient 1 is an infant with a compressive hypothyroid goiter causing respiratory distress, which was promptly alleviated by levothyroxine (LT4). He was a compound heterozygote for DUOX2 variants, including a novel deletion of 540 base pairs. Patients 2 and 3 are siblings with the same compound heterozygous mutations of DUOX2, yet one had overt hypothyroidism at 14 months and the other lifelong euthyroidism. Patient 4 is a compound heterozygote individual and has mild persistent congenital hypothyroidism; his sister (patient 5) only had a borderline thyrotropin elevation at newborn screening, consistent with homozygous DUOX2 variants with a mild impact on enzyme activity. Their euthyroid mother (patient 6) is a compound heterozygote for the same DUOX2 mutations as her son. Targeted exome sequencing did not reveal any relevant modifiers. It is concluded that (i) prompt LT4 replacement in infants with respiratory distress due to a hypothyroid goiter makes surgery unnecessary; and (ii) the clinical expression of DUOX2 deficiency varies widely between individuals and over time, justifying periodic reevaluation of the need for LT4 replacement.
Collapse
Affiliation(s)
- Gabrielle Dufort
- 1Endocrinology Service and Research Center of the Sainte-Justine Hospital and Department of Pediatrics, Université de Montreal, Montreal, Quebec, Canada
| | - Stéphanie Larrivée-Vanier
- 1Endocrinology Service and Research Center of the Sainte-Justine Hospital and Department of Pediatrics, Université de Montreal, Montreal, Quebec, Canada
| | - Dardye Eugène
- 2Centre Hospitalier de l'Université Laval, Department of Pediatrics, Université Laval, Quebec, Canada
| | - Xavier De Deken
- 3Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Britta Seebauer
- 4Institute for Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Karl Heinimann
- 4Institute for Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sébastien Lévesque
- 5Molecular Genetics Laboratory, Department of Pediatrics, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Gravel
- 5Molecular Genetics Laboratory, Department of Pediatrics, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gabor Szinnai
- 6Department of Pediatric Endocrinology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Guy Van Vliet
- 1Endocrinology Service and Research Center of the Sainte-Justine Hospital and Department of Pediatrics, Université de Montreal, Montreal, Quebec, Canada
| | - Johnny Deladoëy
- 1Endocrinology Service and Research Center of the Sainte-Justine Hospital and Department of Pediatrics, Université de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Peters C, Nicholas AK, Schoenmakers E, Lyons G, Langham S, Serra EG, Sebire NJ, Muzza M, Fugazzola L, Schoenmakers N. DUOX2/ DUOXA2 Mutations Frequently Cause Congenital Hypothyroidism that Evades Detection on Newborn Screening in the United Kingdom. Thyroid 2019; 29:790-801. [PMID: 31044655 PMCID: PMC6588112 DOI: 10.1089/thy.2018.0587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: The etiology, course, and most appropriate management of borderline congenital hypothyroidism (CH) are poorly defined, such that the optimal threshold for diagnosis with bloodspot screening thyrotropin (bsTSH) measurement remains controversial. Dual oxidase 2 (DUOX2) mutations may initially cause borderline elevation of bsTSH, which later evolves into significant hypothyroidism on venous blood measurement. It was hypothesized that mutations in both DUOX2 and its accessory protein DUOXA2 may occur frequently, even in patients with borderline bsTSH elevation, such that higher diagnostic thresholds in bsTSH screening may fail to detect such cases, with consequent risk of undiagnosed neonatal hypothyroidism of sufficient magnitude to require thyroxine therapy. This study aimed to investigate the frequency and characteristics of DUOX2 and DUOXA2 mutations in a borderline CH cohort. Methods: A cross-sectional study of patients with borderline CH was undertaken at Great Ormond Street Hospital, a tertiary British pediatric center. DUOX2 was sequenced in 52 patients with a bsTSH of 6-19.9 mIU/L, venous TSH of >25 mIU/L, and eutopic thyroid gland in situ. DUOXA2 was sequenced in DUOX2 mutation-negative cases, and novel DUOXA2 mutations were functionally characterized. Results: A total of 26 (50%) patients harbored likely pathogenic mutations in DUOX2 (n = 20; 38%) or DUOXA2 (n = 6; 12%), including novel gene variants (DUOX2, n = 3; DUOXA2, n = 7). Two recurrent DUOX2 mutations (p.Q570L, p.F966Sfs*29) occurred frequently in population databases (MAF ≥0.01). Despite bsTSH being <10 mIU/L in 46% of DUOX2 and DUOXA2 mutation-positive cases, venous free thyroxine levels in these patients were in the moderate CH range (M = 9.3 pmol/L, range <3.9-15.8 pmol/L), Conclusions: Targeted DUOX2 and DUOXA2 sequencing in a borderline CH cohort has a high diagnostic yield. These findings might argue for a lowering of bsTSH thresholds, but follow-up studies are required to assess whether cases with borderline bsTSH harboring DUOX2/DUOXA2 mutations will benefit from an early diagnosis and subsequent levothyroxine treatment.
Collapse
Affiliation(s)
- Catherine Peters
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Adeline K. Nicholas
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Erik Schoenmakers
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Greta Lyons
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Shirley Langham
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Eva G. Serra
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Neil J. Sebire
- Department of Laboratory Medicine, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Marina Muzza
- Division of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Fugazzola
- Division of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nadia Schoenmakers
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
- Address correspondence to: Nadia Schoenmakers, PhD, University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| |
Collapse
|
27
|
Abstract
In humans, the thyroid hormones T3 and T4 are synthesized in the thyroid gland in a process that crucially involves the iodoglycoprotein thyroglobulin. The overall structure of thyroglobulin is conserved in all vertebrates. Upon thyroglobulin delivery from thyrocytes to the follicular lumen of the thyroid gland via the secretory pathway, multiple tyrosine residues can become iodinated to form mono-iodotyrosine (MIT) and/or di-iodotyrosine (DIT); however, selective tyrosine residues lead to preferential formation of T4 and T3 at distinct sites. T4 formation involves oxidative coupling between two DIT side chains, and de novo T3 formation involves coupling between an MIT donor and a DIT acceptor. Thyroid hormone synthesis is stimulated by TSH activating its receptor (TSHR), which upregulates the activity of many thyroid gene products involved in hormonogenesis. Additionally, TSH regulates post-translational changes in thyroglobulin that selectively enhance its capacity for T3 formation - this process is important in iodide deficiency and in Graves disease. 167 different mutations, many of which are newly discovered, are now known to exist in TG (encoding human thyroglobulin) that can lead to defective thyroid hormone synthesis, resulting in congenital hypothyroidism.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
H 2O 2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel) 2019; 8:antiox8050126. [PMID: 31083324 PMCID: PMC6563055 DOI: 10.3390/antiox8050126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormone synthesis requires adequate hydrogen peroxide (H2O2) production that is utilized as an oxidative agent during the synthesis of thyroxin (T4) and triiodothyronine (T3). Thyroid H2O2 is generated by a member of the family of NADPH oxidase enzymes (NOX-es), termed dual oxidase 2 (DUOX2). NOX/DUOX enzymes produce reactive oxygen species (ROS) as their unique enzymatic activity in a timely and spatially regulated manner and therefore, are important regulators of diverse physiological processes. By contrast, dysfunctional NOX/DUOX-derived ROS production is associated with pathological conditions. Inappropriate DUOX2-generated H2O2 production results in thyroid hypofunction in rodent models. Recent studies also indicate that ROS improperly released by NOX4, another member of the NOX family, are involved in thyroid carcinogenesis. This review focuses on the current knowledge concerning the redox regulation of thyroid hormonogenesis and cancer development with a specific emphasis on the NOX and DUOX enzymes in these processes.
Collapse
|
29
|
Chopra K, Ishibashi S, Amaya E. Zebrafish duox mutations provide a model for human congenital hypothyroidism. Biol Open 2019; 8:bio.037655. [PMID: 30700401 PMCID: PMC6398463 DOI: 10.1242/bio.037655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thyroid dyshormonogenesis is a leading cause of congenital hypothyroidism, a highly prevalent but treatable condition. Thyroid hormone (TH) synthesis is dependent on the formation of reactive oxygen species (ROS). In humans, the primary sources for ROS production during thyroid hormone synthesis are the NADPH oxidases DUOX1 and DUOX2. Indeed, mutations in DUOX1 and DUOX2 have been linked with congenital hypothyroidism. Unlike humans, zebrafish has a single orthologue for DUOX1 and DUOX2. In this study, we investigated the phenotypes associated with two nonsense mutant alleles, sa9892 and sa13017, of the single duox gene in zebrafish. Both alleles gave rise to readily observable phenotypes reminiscent of congenital hypothyroidism, from the larval stages through to adulthood. By using various methods to examine external and internal phenotypes, we discovered a strong correlation between TH synthesis and duox function, beginning from an early larval stage, when T4 levels are already noticeably absent in the mutants. Loss of T4 production resulted in growth retardation, pigmentation defects, ragged fins, thyroid hyperplasia/external goiter and infertility. Remarkably, all of these defects associated with chronic congenital hypothyroidism could be rescued with T4 treatment, even when initiated when the fish had already reached adulthood. Our work suggests that these zebrafish duox mutants may provide a powerful model to understand the aetiology of untreated and treated congenital hypothyroidism even in advanced stages of development. This article has an associated First Person interview with the first author of the paper. Summary: Zebrafish harbouring two loss-of-function alleles of the single duox gene exhibit various adult phenotypes reminiscent of human congenital hypothyroidism.
Collapse
Affiliation(s)
- Kunal Chopra
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Shoko Ishibashi
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
30
|
Korzeniowska A, Donkó ÁP, Morand S, Leto TL. Functional Characterization of DUOX Enzymes in Reconstituted Cell Models. Methods Mol Biol 2019; 1982:173-190. [PMID: 31172473 DOI: 10.1007/978-1-4939-9424-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biosynthesis of active human dual oxidases (DUOX1 and DUOX2) requires maturation factors, a.k.a. DUOX activator proteins (DUOXA1 and DUOXA2), that form covalent complexes with DUOX; both chains together represent the mature catalytic unit that functions as a dedicated hydrogen peroxide-generating enzyme. Genetic defects in DUOX2 or DUOXA2 can result in congenital hypothyroidism, whereas partial defects in DUOX2 activity also have been associated with very early-onset inflammatory bowel disease. Our understanding of the links between DUOX dysfunction and these diseases remains incomplete. An important challenge in developing a better understanding of the pathogenic roles of DUOX defects requires robust and reliable DUOX reconstitution cell models to examine the functional consequences of candidate DUOX missense mutations and polymorphisms. Here, we describe methods for efficient heterologous DUOX/DUOXA co-expression and functional characterization, including detailed assessments of posttranslational processing and subcellular translocation of DUOX that accompanies the maturation of these enzymes into catalytically active NADPH oxidases.
Collapse
Affiliation(s)
- Agnieszka Korzeniowska
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ágnes P Donkó
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stanislas Morand
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,L'Oreal Advanced Research, Aulnay-Sous-Bois, Paris, France
| | - Thomas L Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Abstract
Extracellular hydrogen peroxide is required for thyroperoxidase-mediated thyroid hormone synthesis in the follicular lumen of the thyroid gland. Among the NADPH oxidases, dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially identified as thyroid oxidases, based on their level of expression in the thyroid. Despite their high sequence similarity, the two isoforms present distinct regulations, tissue expression, and catalytic functions. Inactivating mutations in many of the genes involved in thyroid hormone synthesis cause thyroid dyshormonogenesis associated with iodide organification defect. This chapter provides an overview of the genetic alterations in DUOX2 and its maturation factor, DUOXA2, causing inherited severe hypothyroidism that clearly demonstrate the physiological implication of this oxidase in thyroid hormonogenesis. Mutations in the DUOX2 gene have been described in permanent but also in transient forms of congenital hypothyroidism. Moreover, accumulating evidence demonstrates that the high phenotypic variability associated with altered DUOX2 function is not directly related to the number of inactivated DUOX2 alleles, suggesting the existence of other pathophysiological factors. The presence of two DUOX isoforms and their corresponding maturation factors in the same organ could certainly constitute an efficient redundant mechanism to maintain sufficient H2O2 supply for iodide organification. Many of the reported DUOX2 missense variants have not been functionally characterized, their clinical impact in the observed phenotype remaining unresolved, especially in mild transient congenital hypothyroidism. DUOX2 function should be carefully evaluated using an in vitro assay wherein (1) DUOXA2 is co-expressed, (2) H2O2 production is activated, (3) and DUOX2 membrane expression is precisely analyzed.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium.
| | - Françoise Miot
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
| |
Collapse
|
32
|
Peters C, van Trotsenburg ASP, Schoenmakers N. DIAGNOSIS OF ENDOCRINE DISEASE: Congenital hypothyroidism: update and perspectives. Eur J Endocrinol 2018; 179:R297-R317. [PMID: 30324792 DOI: 10.1530/eje-18-0383] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital hypothyroidism (CH) may be primary, due to a defect affecting the thyroid gland itself, or central, due to impaired thyroid-stimulating hormone (TSH)-mediated stimulation of the thyroid gland as a result of hypothalamic or pituitary pathology. Primary CH is the most common neonatal endocrine disorder, traditionally subdivided into thyroid dysgenesis (TD), referring to a spectrum of thyroid developmental abnormalities, and dyshormonogenesis, where a defective molecular pathway for thyroid hormonogenesis results in failure of hormone production by a structurally intact gland. Delayed treatment of neonatal hypothyroidism may result in profound neurodevelopmental delay; therefore, CH is screened for in developed countries to facilitate prompt diagnosis. Central congenital hypothyroidism (CCH) is a rarer entity which may occur in isolation, or (more frequently) in association with additional pituitary hormone deficits. CCH is most commonly defined biochemically by failure of appropriate TSH elevation despite subnormal thyroid hormone levels and will therefore evade diagnosis in primary, TSH-based CH-screening programmes. This review will discuss recent genetic aetiological advances in CH and summarize epidemiological data and clinical diagnostic challenges, focussing on primary CH and isolated CCH.
Collapse
Affiliation(s)
- C Peters
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - A S P van Trotsenburg
- Department of Paediatric Endocrinology, Emma Children’s Hospital Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - N Schoenmakers
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research
Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
33
|
Kwak MJ. Clinical genetics of defects in thyroid hormone synthesis. Ann Pediatr Endocrinol Metab 2018; 23:169-175. [PMID: 30599477 PMCID: PMC6312914 DOI: 10.6065/apem.2018.23.4.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023] Open
Abstract
Thyroid dyshormonogenesis is characterized by impairment in one of the several stages of thyroid hormone synthesis and accounts for 10%-15% of congenital hypothyroidism (CH). Seven genes are known to be associated with thyroid dyshormonogenesis: SLC5A5 (NIS), SCL26A4 (PDS), TG, TPO, DUOX2, DUOXA2, and IYD (DHEAL1). Depending on the underlying mechanism, CH can be permanent or transient. Inheritance is usually autosomal recessive, but there are also cases of autosomal dominant inheritance. In this review, we describe the molecular basis, clinical presentation, and genetic diagnosis of CH due to thyroid dyshormonogenesis, with an emphasis on the benefits of targeted exome sequencing as an updated diagnostic approach.
Collapse
Affiliation(s)
- Min Jung Kwak
- Address for correspondence: Min Jung Kwak, MD, PhD Department of Pediatrics, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, Korea Tel: +82-51-240-7298 Fax: +82-51-248-6205 E-mail:
| |
Collapse
|
34
|
Siffo S, Adrover E, Citterio CE, Miras MB, Balbi VA, Chiesa A, Weill J, Sobrero G, González VG, Papendieck P, Martinez EB, Gonzalez-Sarmiento R, Rivolta CM, Targovnik HM. Molecular analysis of thyroglobulin mutations found in patients with goiter and hypothyroidism. Mol Cell Endocrinol 2018; 473:1-16. [PMID: 29275168 DOI: 10.1016/j.mce.2017.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023]
Abstract
Thyroid dyshormonogenesis due to thyroglobulin (TG) gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Up to now, one hundred seventeen deleterious mutations in the TG gene have been identified and characterized. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report eight patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and image evaluation. Sequencing of DNA, genotyping, as well as bioinformatics analysis were performed. Molecular analyses revealed three novel inactivating TG mutations: c.5560G>T [p.E1835*], c.7084G>C [p.A2343P] and c.7093T>C [p.W2346R], and four previously reported mutations: c.378C>A [p.Y107*], c.886C>T [p.R277*], c.1351C>T [p.R432*] and c.7007G>A [p.R2317Q]. Two patients carried homozygous mutations (p.R277*/p.R277*, p.W2346R/p.W2346R), four were compound heterozygous mutations (p.Y107*/p.R277* (two unrelated patients), p.R432*/p.A2343P, p.Y107*/p.R2317Q) and two siblings from another family had a single p.E1835* mutated allele. Additionally, we include the analysis of 48 patients from 31 unrelated families with TG mutations identified in our present and previous studies. Our observation shows that mutations in both TG alleles were found in 27 families (9 as homozygote and 18 as heterozygote compound), whereas in the remaining four families only one mutated allele was detected. The majority of the detected mutations occur in exons 4, 7, 38 and 40. 28 different mutations were identified, 33 of the 96 TG alleles encoded the change p.R277*. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of the predicted TG misfolding and therefore thyroid hormone formation as a consequence of truncated TG proteins and/or missense mutations located within its ACHE-like domain.
Collapse
Affiliation(s)
- Sofia Siffo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Viviana A Balbi
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Jacques Weill
- Clinique de Pédiatrie, Hôpital Jeanne de Flandre, Centre Hospitalier Regional Universitaire de Lille, Lille, France
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Verónica G González
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Patricia Papendieck
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Elena Bueno Martinez
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Rogelio Gonzalez-Sarmiento
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
35
|
Persani L, Rurale G, de Filippis T, Galazzi E, Muzza M, Fugazzola L. Genetics and management of congenital hypothyroidism. Best Pract Res Clin Endocrinol Metab 2018; 32:387-396. [PMID: 30086865 DOI: 10.1016/j.beem.2018.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several evidences support a relevant genetic origin for Congenital Hypothyroidism (CH), however familial forms are uncommon. CH can be due to morphogenetic or functional defects and several genes have been originally associated either with thyroid dysgenesis or dyshormonogenesis, with a highly variable expressivity and a frequently incomplete penetrance of the genetic defects. The phenotype-driven genetic analyses rarely yielded positive results in more than 10% of cases, thus raising doubts on the genetic origin of CH. However, more recent unsupervised approaches with systematic Next Generation Sequencing (NGS) analysis revealed the existence of hypomorphic alleles of these candidate genes whose combination can explain a significant portion of CH cases. The co-segregation studies of the hypothyroid phenotype with multiple gene variants in pedigrees confirmed the potential oligogenic origin of CH, which finally represents a suitable explanation for the frequent sporadic occurrence of this disease.
Collapse
Affiliation(s)
- Luca Persani
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.
| | - Giuditta Rurale
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Tiziana de Filippis
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy
| | - Elena Galazzi
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Marina Muzza
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, 20122, Milan, Italy
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, 20122, Milan, Italy
| |
Collapse
|
36
|
Louzada RA, Corre R, Ameziane-El-Hassani R, Hecht F, Cazarin J, Buffet C, Carvalho DP, Dupuy C. Conformation of the N-Terminal Ectodomain Elicits Different Effects on DUOX Function: A Potential Impact on Congenital Hypothyroidism Caused by a H 2O 2 Production Defect. Thyroid 2018; 28:1052-1062. [PMID: 29845893 DOI: 10.1089/thy.2017.0596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dual oxidases (DUOX1 and DUOX2) were initially identified as H2O2 sources involved in thyroid hormone synthesis. Congenital hypothyroidism (CH) resulting from inactivating mutations in the DUOX2 gene highlighted that DUOX2 is the major H2O2 provider to thyroperoxidase. The role of DUOX1 in the thyroid remains unknown. A recent study suggests that it could compensate for DUOX2 deficiency in CH. Both DUOX enzymes and their respective maturation factors DUOXA1 and DUOXA2 form a stable complex at the cell surface, which is fundamental for their enzymatic activity. Recently, intra- and intermolecular disulfide bridges were identified that are essential for the structure and the function of the DUOX2-DUOXA2 complex. This study investigated the involvement of cysteine residues conserved in DUOX1 toward the formation of disulfide bridges, which could be important for the function of the DUOX1DUOXA1 complex. METHODS To analyze the role of these cysteine residues in both the targeting and function of dual oxidase, different human DUOX1 mutants were constructed, where the cysteine residues were replaced with glycine. The effect of these mutations on cell surface expression and H2O2-generating activity of the DUOX1-DUOXA1 complex was analyzed. RESULTS Mutations of two cysteine residues (C118 and C1165), involved in the formation of the intramolecular disulfide bridge between the N-terminal ectodomain and one of the extracellular loops, mildly altered the function and the targeting of DUOX1, while this bridge is crucial for DUOX2 function. Unlike DUOXA2, with respect to DUOX2, the stability of the maturation factor DUOXA1 is not dependent on the oxidative folding of DUOX1. Only mutation of C579 induced a strong alteration of both targeting and function of the oxidase by preventing the covalent interaction between DUOX1 and DUOXA1. CONCLUSION An intermolecular disulfide bridge rather than an intramolecular disulfide bridge is important for both the trafficking and H2O2-generating activity of the DUOX1-DUOXA1 complex.
Collapse
Affiliation(s)
- Ruy Andrade Louzada
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Raphael Corre
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| | - Rabii Ameziane-El-Hassani
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 5 Laboratoire de Biologie des Pathologies Humaines "BioPatH," Université Mohammed V , Faculté des Sciences, Rabat, Morocco
| | - Fabio Hecht
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Juliana Cazarin
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Camille Buffet
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| | - Denise P Carvalho
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Corinne Dupuy
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| |
Collapse
|
37
|
Grasberger H, Noureldin M, Kao TD, Adler J, Lee JM, Bishu S, El-Zaatari M, Kao JY, Waljee AK. Increased risk for inflammatory bowel disease in congenital hypothyroidism supports the existence of a shared susceptibility factor. Sci Rep 2018; 8:10158. [PMID: 29977049 PMCID: PMC6033893 DOI: 10.1038/s41598-018-28586-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Loss-of-function mutations in dual oxidase (DUOX) 2 are the most common genetic variants found in congenital hypothyroidism (CH), and similar mutations have been recently reported in few very-early-onset inflammatory bowel disease (IBD) patients without CH. If DUOX2 variants indeed increase susceptibility for IBD, the enrichment of DUOX2 mutation carriers among CH patients should be reflected in higher risk for developing IBD. Using a database containing health insurance claims data for over 230 million patients in the United States, 42,922 subjects with CH were identified based on strict inclusion criteria using diagnostic codes. For subgroup analysis, CH patients with pharmacy records were stratified as transient or permanent CH based on the absence or presence of levothyroxine treatment, respectively. Patients were matched to an equal-sized, age- and gender-matched non-CH group. Compared to controls, CH patients had a 73% higher overall IBD prevalence (0.52% vs 0.30%; P < 0.0001). The CH-associated relative risk was higher for indeterminate or ulcerative colitis than Crohn’s disease. Patients with transient CH had higher odds for IBD (OR 2.39 (95% CI 1.77–3.23) than those with permanent CH (1.69 (95% CI 1.31–2.18). We conclude that patients with CH are at an increased risk of developing IBD. The risk was highest for patients with transient CH, for which partial defects in the DUOX2 system are a particularly common finding.
Collapse
Affiliation(s)
- Helmut Grasberger
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Mohamed Noureldin
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, 48109, USA.,Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan, 48109, USA
| | - Timothy D Kao
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jeremy Adler
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA.,Child Health Evaluation and Research (CHEAR) Center, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Joyce M Lee
- Child Health Evaluation and Research (CHEAR) Center, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Shrinivas Bishu
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Mohamad El-Zaatari
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - John Y Kao
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Akbar K Waljee
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, 48109, USA. .,Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
38
|
Antimicrobial actions of dual oxidases and lactoperoxidase. J Microbiol 2018; 56:373-386. [PMID: 29858825 DOI: 10.1007/s12275-018-7545-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1-5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.
Collapse
|
39
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|