1
|
Yıldırım Akdeniz G, Timuçin AC. Structure based computational RNA design towards MafA transcriptional repressor implicated in multiple myeloma. J Mol Graph Model 2024; 132:108839. [PMID: 39096645 DOI: 10.1016/j.jmgm.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Multiple myeloma is recognized as the second most common hematological cancer. MafA transcriptional repressor is an established mediator of myelomagenesis. While there are multitude of drugs available for targeting various effectors in multiple myeloma, current literature lacks a candidate RNA based MafA modulator. Thus, using the structure of MafA homodimer-consensus target DNA, a computational effort was implemented to design a novel RNA based chemical modulator against MafA. First, available MafA-consensus DNA structure was employed to generate an RNA library. This library was further subjected to global docking to select the most plausible RNA candidates, preferring to bind DNA binding region of MafA. Following global docking, MD-ready complexes that were prepared via local docking program, were subjected to 500 ns of MD simulations. First, each of these MD simulations were analyzed for relative binding free energy through MM-PBSA method, which pointed towards a strong RNA based MafA binder, RNA1. Second, through a detailed MD analysis, RNA1 was shown to prefer binding to a single monomer of the dimeric DNA binding domain of MafA using higher number of hydrophobic interactions compared with positive control MafA-DNA complex. At the final phase, a principal component analyses was conducted, which led us to identify the actual interaction region of RNA1 and MafA monomer. Overall, to our knowledge, this is the first computational study that presents an RNA molecule capable of potentially targeting MafA protein. Furthermore, limitations of our study together with possible future implications of RNA1 in multiple myeloma were also discussed.
Collapse
Affiliation(s)
- Güneş Yıldırım Akdeniz
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Tuzla, İstanbul, Turkey.
| | - Ahmet Can Timuçin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acıbadem Mehmet Ali Aydınlar University, 34752, Ataşehir, İstanbul, Turkey.
| |
Collapse
|
2
|
Avet-Loiseau H, Thiébaut-Millot R, Li X, Ross JA, Hader C. t(11;14) status is stable between diagnosis and relapse and concordant between detection methodologies based on fluorescence in situ hybridization and next-generation sequencing in patients with multiple myeloma. Haematologica 2024; 109:1874-1881. [PMID: 37994080 PMCID: PMC11141641 DOI: 10.3324/haematol.2023.284072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Multiple myeloma (MM) is associated with a wide variety of recurrent genomic alterations. The most common translocation in MM is t(11;14). In this retrospective, single-center, non-interventional study, patients' bone marrow samples were examined at diagnosis and at relapse(s) following treatment with anti-myeloma regimens to determine whether t(11;14) status was stable over time. This stability cohort consisted of 272 patients, of whom 118 were t(11;14)-positive at diagnosis and 154 were negative. All patients in the stability cohort retained the same t(11;14) status at relapse that they had at diagnosis of MM. Sixteen patients who had t(11;14)-positive MM at diagnosis had multiple longitudinal assessments by fluorescence in situ hybridization (FISH) at relapse events and remained t(11;14)-positive across all timepoints. Patients who had t(11;14)-positive disease at diagnosis of monoclonal gammopathy of unknown significance or smoldering MM also retained t(11;14) positivity through MM diagnosis and relapse. The t(11;14) fusion patterns also remained constant for 90% of patients. For detection of t(11;14), results from FISH and next-generation sequencing (NGS) were compared to determine the rate of concordance between these two methods. This concordance cohort contained 130 patients, of whom 66 had t(11;14)-positive disease and 64 were t(11;14)-negative. In this sample set, the concordance between FISH- and NGS-based detection of t(11;14) was 100%. These results strongly suggest that the t(11;14) rearrangement remains stable during the full disease course in patients with MM and can be detected by FISH- and NGS-based methodologies.
Collapse
Affiliation(s)
- Hervé Avet-Loiseau
- Unite de Genomique du Myelome, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse
| | | | | | | | | |
Collapse
|
3
|
Chong PSY, Chooi JY, Lim SLJ, Chung TH, Brunmeir R, Leow ACY, Toh SHM, Balan K, Azaman MIB, Wu Z, Subramaniam N, Vardy LA, Chng WJ. Epigenetic dysregulation of eukaryotic initiation factor 3 subunit E (eIF3E) by lysine methyltransferase REIIBP confers a pro-inflammatory phenotype in t(4;14) myeloma. Haematologica 2024; 109:1893-1908. [PMID: 38124661 PMCID: PMC11141660 DOI: 10.3324/haematol.2023.283467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
REIIBP is a lysine methyltransferase aberrantly expressed through alternative promoter usage of NSD2 locus in t(4;14)-translocated multiple myeloma (MM). Clinically, t(4;14) translocation is an adverse prognostic factor found in approximately 15% of MM patients. The contribution of REIIBP relative to other NSD2 isoforms as a dependency gene in t(4;14)-translocated MM remains to be evaluated. Here, we demonstrated that despite homology with NSD2, REIIBP displayed distinct substrate specificity by preferentially catalyzing H3K4me3 and H3K27me3, with little activity on H3K36me2. Furthermore, REIIBP was regulated through microRNA by EZH2 in a Dicer-dependent manner, exemplifying a role of REIIBP in SET-mediated H3K27me3. Chromatin immunoprecipitation sequencing revealed chromatin remodeling characterized by changes in genome-wide and loci-specific occupancy of these opposing histone marks, allowing a bidirectional regulation of its target genes. Transcriptomics indicated that REIIBP induced a pro-inflammatory gene signature through upregulation of TLR7, which in turn led to B-cell receptor-independent activation of BTK and driving NFkB-mediated production of cytokines such as IL-6. Activation of this pathway is targetable using Ibrutinib and partially mitigated bortezomib resistance in a REIIBP xenograft model. Mechanistically, REIIBP upregulated TLR7 through eIF3E, and this relied on eIF3E RNA-binding function instead of its canonical protein synthesis activity, as demonstrated by direct binding to the 3'UTR of TLR7 mRNA. Altogether, we provided a rationale that co-existence of different NSD2 isoforms induced diversified oncogenic programs that should be considered in the strategies for t(4;14)-targeted therapy.
Collapse
Affiliation(s)
- Phyllis S Y Chong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore
| | - Jing Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | | | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore
| | - Reinhard Brunmeir
- Cancer Science Institute of Singapore, National University of Singapore
| | | | | | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Zhengwei Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Nagavidya Subramaniam
- A*STAR Skin Research Labs and Skin Research Institute of Singapore, A*STAR, Immunos, Singapore
| | - Leah A Vardy
- A*STAR Skin Research Labs and Skin Research Institute of Singapore, A*STAR, Immunos, Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System.
| |
Collapse
|
4
|
Bong IPN, Esa E. Molecular genetic aberrations in the pathogenesis of multiple myeloma. ASIAN BIOMED 2023; 17:152-162. [PMID: 37860676 PMCID: PMC10584387 DOI: 10.2478/abm-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Multiple myeloma (MM) is the second most common form of blood cancer characterized by clonal expansion of malignant plasma cells within the bone marrow. MM is a complex, progressive, and highly heterogeneous malignancy, which occurs via a multistep transformation process involving primary and secondary oncogenic events. Recent advances in molecular techniques have further expanded our understanding of the mutational landscape, clonal composition, and dynamic evolution patterns of MM. The first part of this review describes the key oncogenic events involved in the initiation and progression of MM, together with their prognostic impact. The latter part highlights the most prominent findings concerning genomic aberrations promoted by gene expression profiling (GEP) and next-generation sequencing (NGS) in MM. This review provides a concise understanding of the molecular pathogenesis of the MM genome and the importance of adopting emerging molecular technology in future clinical management of MM.
Collapse
Affiliation(s)
- Ivyna Pau Ni Bong
- Hematology Unit, Cancer Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| | - Ezalia Esa
- Hematology Unit, Cancer Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| |
Collapse
|
5
|
Lim KJC, Wellard C, Talaulikar D, Tan JLC, Loh J, Puvanakumar P, Kuzich JA, Ho M, Murphy M, Zeglinas N, Low MSY, Routledge D, Lim ABM, Gibbs SD, Quach H, Morgan S, Moore E, Ninkovic S. The prognostic impact of t(11;14) in multiple myeloma: A real-world analysis from the Australian Lymphoma Leukaemia Group (ALLG) and the Australian Myeloma and Related Diseases Registry (MRDR). EJHAEM 2023; 4:639-646. [PMID: 37601874 PMCID: PMC10435683 DOI: 10.1002/jha2.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 08/22/2023]
Abstract
The prognostic impact of t(11;14) in multiple myeloma (MM) needs to be better understood to inform future treatment decisions. The Australian Lymphoma Leukaemia Group embarked on a retrospective, observational cohort study using real-world data to interrogate treatment patterns and outcomes in 74 MM patients with t(11;14) [t(11;14)-MM] diagnosed over 10 years. This was compared to 159 and 111 MM patients with high-risk IgH translocations (IgH HR-MM) and hyperdiploidy (Hyperdiploid-MM), respectively, from the Australian Myeloma and Related Diseases Registry. No appreciable differences in age, gender, ISS, LDH levels, 1q21 or del(17p) status, or treatment patterns were observed between groups. Median PFS-1 was not different between groups but both t(11;14)-MM and IgH HR-MM had an inferior PFS-2 vs. Hyperdiploid-MM: median PFS-2 8.2 months, 10.0 months, and 19.8 months (p = 0.002), respectively. The 3-year OS were 69%, 71%, and 82% (p = 0.026), respectively. In the t(11;14)-MM group, gain or amplification of 1q21 at diagnosis predicted for poorer OS (HR 3.46, p = 0.002). Eleven patients had received venetoclax with 45% achieving better than a very good partial response. Results suggest that t(11;14) MM may confer an unfavorable risk profile and that the use of targeted therapies such as venetoclax earlier in the treatment algorithm should be explored.
Collapse
Affiliation(s)
- Kenneth JC Lim
- Department of HaematologySt Vincent's Hospital MelbourneMelbourneAustralia
- Victorian Cancer Cytogenetics ServiceSt. Vincent's Hospital MelbourneMelbourneAustralia
| | - Cameron Wellard
- School of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
| | - Dipti Talaulikar
- Department of HaematologyThe Canberra HospitalCanberraAustralia
- Department of MedicineThe Australian National UniversityCanberraAustralia
| | - Joanne LC Tan
- Department of HaematologyThe Alfred HospitalMelbourneAustralia
| | - Joanna Loh
- Department of HaematologyMonash HealthMelbourneAustralia
| | - Pratheepan Puvanakumar
- Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneAustralia
| | - James A Kuzich
- Department of HaematologyAustin Health and Olivia Newton John Cancer Research InstituteMelbourneAustralia
| | - Michelle Ho
- Department of HaematologyThe Canberra HospitalCanberraAustralia
| | - Matthew Murphy
- Department of HaematologyEastern HealthMelbourneAustralia
| | - Nicole Zeglinas
- Department of HaematologySt Vincent's Hospital MelbourneMelbourneAustralia
| | - Michael SY Low
- Department of HaematologyMonash HealthMelbourneAustralia
| | - David Routledge
- Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneAustralia
- Department of MedicineUniversity of MelbourneMelbourneAustralia
| | - Andrew BM Lim
- Department of HaematologyAustin Health and Olivia Newton John Cancer Research InstituteMelbourneAustralia
| | - Simon D Gibbs
- Department of HaematologyEastern HealthMelbourneAustralia
- Department of HaematologyMonash UniversityMelbourneAustralia
| | - Hang Quach
- Department of HaematologySt Vincent's Hospital MelbourneMelbourneAustralia
- Department of MedicineUniversity of MelbourneMelbourneAustralia
| | - Sue Morgan
- Department of HaematologyThe Alfred HospitalMelbourneAustralia
| | - Elizabeth Moore
- School of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
| | - Slavisa Ninkovic
- Department of HaematologySt Vincent's Hospital MelbourneMelbourneAustralia
- Victorian Cancer Cytogenetics ServiceSt. Vincent's Hospital MelbourneMelbourneAustralia
- Department of MedicineUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
6
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Linked-read whole-genome sequencing resolves common and private structural variants in multiple myeloma. Blood Adv 2022; 6:5009-5023. [PMID: 35675515 PMCID: PMC9631623 DOI: 10.1182/bloodadvances.2021006720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023] Open
Abstract
Linked-read WGS can be performed without DNA purification and allows for resolution of the diverse structural variants found in MM. Linked-read WGS can, as a standalone assay, provide comprehensive genetics in myeloma and other diseases with complex genomes.
Multiple myeloma (MM) is an incurable and aggressive plasma cell malignancy characterized by a complex karyotype with multiple structural variants (SVs) and copy-number variations (CNVs). Linked-read whole-genome sequencing (lrWGS) allows for refined detection and reconstruction of SVs by providing long-range genetic information from standard short-read sequencing. This makes lrWGS an attractive solution for capturing the full genomic complexity of MM. Here we show that high-quality lrWGS data can be generated from low numbers of cells subjected to fluorescence-activated cell sorting (FACS) without DNA purification. Using this protocol, we analyzed MM cells after FACS from 37 patients with MM using lrWGS. We found high concordance between lrWGS and fluorescence in situ hybridization (FISH) for the detection of recurrent translocations and CNVs. Outside of the regions investigated by FISH, we identified >150 additional SVs and CNVs across the cohort. Analysis of the lrWGS data allowed for resolution of the structure of diverse SVs affecting the MYC and t(11;14) loci, causing the duplication of genes and gene regulatory elements. In addition, we identified private SVs causing the dysregulation of genes recurrently involved in translocations with the IGH locus and show that these can alter the molecular classification of MM. Overall, we conclude that lrWGS allows for the detection of aberrations critical for MM prognostics and provides a feasible route for providing comprehensive genetics. Implementing lrWGS could provide more accurate clinical prognostics, facilitate genomic medicine initiatives, and greatly improve the stratification of patients included in clinical trials.
Collapse
|
8
|
Bhardwaj MK, Mishra SK, Sharma S, Salona B, Mohanty SK. Potential Prognostic Significance of Patterns of Deletion (13q) in Plasma Cell Myelomas—Reappraisal of a Perennial Bone of Contention. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1732852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractDeletion 13q is recommended in the initial cytogenetic workup of myeloma patients. The patterns of this abnormality have been shown to have differential prognostic value. The presence of monosomy 13 is associated with a significantly poor progression-free survival, while interstitial deletion 13q is associated with significant improvement in the overall survival. We analyzed the patterns of 13q abnormalities on fluorescent in situ hybridization (FISH) assay results in myeloma patients. Deletion 13q abnormalities were observed in 38% (55 of 138) of the myeloma patients. Ten (18%) and 44 (80%) patients showed interstitial deletion and terminal deletion, respectively. One had a mosaic of both the patterns. Nine of the ten patients with interstitial deletions were males. For terminal deletion 13q, there appeared to be a slight female predilection, with a male to female ratio of 0.83:1. Half of the patients with deletion 13q had coexistent cytogenetic abnormalities. We suggest a baseline FISH for deletion 13q and specification of the type of abnormality (terminal vs. interstitial) in patients with myeloma. Based on our observation in conjunction with the available literature, further studies in a large cohort of patients with survival data are warranted to clearly delineate the role of deletion 13q in myeloma.
Collapse
Affiliation(s)
- Mohit Kumar Bhardwaj
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Sourav Kumar Mishra
- Department of Medical Oncology, Advanced Medical Research Institute, Bhubaneswar, Odisha, India
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Beklashwar Salona
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Sambit Kumar Mohanty
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
A Comprehensive Review of the Genomics of Multiple Myeloma: Evolutionary Trajectories, Gene Expression Profiling, and Emerging Therapeutics. Cells 2021; 10:cells10081961. [PMID: 34440730 PMCID: PMC8391934 DOI: 10.3390/cells10081961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a blood cancer characterized by the accumulation of malignant monoclonal plasma cells in the bone marrow. It develops through a series of premalignant plasma cell dyscrasia stages, most notable of which is the Monoclonal Gammopathy of Undetermined Significance (MGUS). Significant advances have been achieved in uncovering the genomic aberrancies underlying the pathogenesis of MGUS-MM. In this review, we discuss in-depth the genomic evolution of MM and focus on the prognostic implications of the accompanied molecular and cytogenetic aberrations. We also dive into the latest investigatory techniques used for the diagnoses and risk stratification of MM patients.
Collapse
|
10
|
Li C, Wendlandt EB, Darbro B, Xu H, Thomas GS, Tricot G, Chen F, Shaughnessy JD, Zhan F. Genetic Analysis of Multiple Myeloma Identifies Cytogenetic Alterations Implicated in Disease Complexity and Progression. Cancers (Basel) 2021; 13:cancers13030517. [PMID: 33572851 PMCID: PMC7866300 DOI: 10.3390/cancers13030517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease characterized by genomic chaos making it difficult to distinguish driver from passenger mutations. In this study, we integrated data from whole genome gene expression profiling (GEP) microarrays and CytoScan HD high-resolution genomic arrays to integrate GEP with copy number variations (CNV) to more precisely define molecular alterations in MM important for disease initiation, progression and poor clinical outcome. We utilized gene expression arrays from 351 MM samples and CytoScan HD arrays from 97 MM samples to identify eight CNV events that represent possible MM drivers. By integrating GEP and CNV data we divided the MM into eight unique subgroups and demonstrated that patients within one of the eight distinct subgroups exhibited common and unique protein network signatures that can be utilized to identify new therapeutic interventions based on pathway dysregulation. Data also point to the central role of 1q gains and the upregulated expression of ANP32E, DTL, IFI16, UBE2Q1, and UBE2T as potential drivers of MM aggressiveness. The data presented here utilized a novel approach to identify potential driver CNV events in MM, the creation of an improved definition of the molecular basis of MM and the identification of potential new points of therapeutic intervention.
Collapse
Affiliation(s)
- Can Li
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Erik B. Wendlandt
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.B.W.); (G.S.T.)
| | - Benjamin Darbro
- Cytogenetics and Molecular Laboratory, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Hongwei Xu
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Gregory S. Thomas
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.B.W.); (G.S.T.)
| | - Guido Tricot
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Fangping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - John D. Shaughnessy
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
- Correspondence:
| |
Collapse
|
11
|
Wong AHH, Shin EM, Tergaonkar V, Chng WJ. Targeting NF-κB Signaling for Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12082203. [PMID: 32781681 PMCID: PMC7463546 DOI: 10.3390/cancers12082203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy in the world. Even though survival rates have significantly risen over the past years, MM remains incurable, and is also far from reaching the point of being managed as a chronic disease. This paper reviews the evolution of MM therapies, focusing on anti-MM drugs that target the molecular mechanisms of nuclear factor kappa B (NF-κB) signaling. We also provide our perspectives on contemporary research findings and insights for future drug development.
Collapse
Affiliation(s)
- Ada Hang-Heng Wong
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- AW Medical Company Limited, Macau, China
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| | - Eun Myoung Shin
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| |
Collapse
|
12
|
Zhang XY, Rajagopalan D, Chung TH, Hooi L, Toh TB, Tian JS, Rashid MBMA, Sahib NRBM, Gu M, Lim JJ, Wang W, Chng WJ, Jha S, Chow EKH. Frequent upregulation of G9a promotes RelB-dependent proliferation and survival in multiple myeloma. Exp Hematol Oncol 2020; 9:8. [PMID: 32477831 PMCID: PMC7243326 DOI: 10.1186/s40164-020-00164-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Multiple myeloma is an incurable hematological malignancy characterized by a heterogeneous genetic and epigenetic landscape. Although a number of genetic aberrations associated with myeloma pathogenesis, progression and prognosis have been well characterized, the role of many epigenetic aberrations in multiple myeloma remain elusive. G9a, a histone methyltransferase, has been found to promote disease progression, proliferation and metastasis via diverse mechanisms in several cancers. A role for G9a in multiple myeloma, however, has not been previously explored. Methods Expression levels of G9a/EHMT2 of multiple myeloma cell lines and control cells Peripheral Blood Mononuclear Cells (PBMCs) were analyzed. Correlation of G9a expression and overall survival of multiple myeloma patients were analyzed using patient sample database. To further study the function of G9a in multiple myeloma, G9a depleted multiple myeloma cells were built by lentiviral transduction, of which proliferation, colony formation assays as well as tumorigenesis were measured. RNA-seq of G9a depleted multiple myeloma with controls were performed to explore the downstream mechanism of G9a regulation in multiple myeloma. Results G9a is upregulated in a range of multiple myeloma cell lines. G9a expression portends poorer survival outcomes in a cohort of multiple myeloma patients. Depletion of G9a inhibited proliferation and tumorigenesis in multiple myeloma. RelB was significantly downregulated by G9a depletion or small molecule inhibition of G9a/GLP inhibitor UNC0642, inducing transcription of proapoptotic genes Bim and BMF. Rescuing RelB eliminated the inhibition in proliferation and tumorigenesis by G9a depletion. Conclusions In this study, we demonstrated that G9a is upregulated in most multiple myeloma cell lines. Furthermore, G9a loss-of-function analysis provided evidence that G9a contributes to multiple myeloma cell survival and proliferation. This study found that G9a interacts with NF-κB pathway as a key regulator of RelB in multiple myeloma and regulates RelB-dependent multiple myeloma survival. G9a therefore is a promising therapeutic target for multiple myeloma.
Collapse
Affiliation(s)
- Xi Yun Zhang
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,2Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore
| | - Deepa Rajagopalan
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Tae-Hoon Chung
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Lissa Hooi
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Tan Boon Toh
- 3The N.1 Institute for Health (N.1), National University of Singapore, Center for Life Sciences, 28 Medical Drive, Singapore, 117456 Singapore
| | - Johann Shane Tian
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | | | - Noor Rashidha Bte Meera Sahib
- 5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Mengjie Gu
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Jhin Jieh Lim
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Wilson Wang
- 6Department of Orthopaedic Surgery, National University of Singapore, Kent Ridge, Singapore, 119074 Singapore
| | - Wee Joo Chng
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,2Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore.,7National University Cancer Institute, National University Health System, Singapore, 119228 Singapore
| | - Sudhakar Jha
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,8Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| |
Collapse
|
13
|
Mitrović M, Sretenović A, Bila J. The significance of prognostic profiling in the treatment of patients with multiple myeloma. MEDICINSKI PODMLADAK 2020. [DOI: 10.5937/mp71-28137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Multiple myeloma (MM) is a hematological neoplasia characterized by clonal expansion of the most mature B lymphocytes, plasma cells (Plc), in the bone marrow (BM). Due to new treatment modalities, the 5-years survival has improved in the last 15 years, and nowdays ranges from 60-70%. The individual prognostic profile is based on the biological characteristics of the disease, clinical characteristics of patients and therapeutics response characteristics. The biological characteristics of the disease are defined by the clinical stage according to the Durie-Salmon classification and prognostic indices such the international staging system (ISS) and revised ISS (R-ISS). Numerous different mutations of prognostic significance have been discovered applying methods of molecular genetics such as next generation sequencing (NGS). The age and comorbity status of patients are the most important clinical characteristics because they are crucial for therapeutic choice and suitability for treatment with high-dose chemotherapy and autologous stem cell transplantation. The prognostic influence of therapeutic response is very important and the most powerful prognostic factors are achievements of complete remission (CR) and minimal residual disease (MRD) negativity.
Collapse
|
14
|
Westhrin M, Holien T, Zahoor M, Moen SH, Buene G, Størdal B, Hella H, Yuan H, de Bruijn JD, Martens A, Groen RW, Bosch F, Smith U, Sponaas AM, Sundan A, Standal T. Bone Morphogenetic Protein 4 Gene Therapy in Mice Inhibits Myeloma Tumor Growth, But Has a Negative Impact on Bone. JBMR Plus 2019; 4:e10247. [PMID: 31956851 PMCID: PMC6957984 DOI: 10.1002/jbm4.10247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/03/2023] Open
Abstract
Multiple myeloma is characterized by accumulation of malignant plasma cells in the bone marrow. Most patients suffer from an osteolytic bone disease, caused by increased bone degradation and reduced bone formation. Bone morphogenetic protein 4 (BMP4) is important for both pre‐ and postnatal bone formation and induces growth arrest and apoptosis of myeloma cells. BMP4‐treatment of myeloma patients could have the potential to reduce tumor growth and restore bone formation. We therefore explored BMP4 gene therapy in a human‐mouse model of multiple myeloma where humanized bone scaffolds were implanted subcutaneously in RAG2−/− γC−/−mice. Mice were treated with adeno‐associated virus serotype 8 BMP4 vectors (AAV8‐BMP4) to express BMP4 in the liver. When mature BMP4 was detectable in the circulation, myeloma cells were injected into the scaffolds and tumor growth was examined by weekly imaging. Strikingly, the tumor burden was reduced in AAV8‐BMP4 mice compared with the AAV8‐CTRL mice, suggesting that increased circulating BMP4 reduced tumor growth. BMP4‐treatment also prevented bone loss in the scaffolds, most likely due to reduced tumor load. To delineate the effects of BMP4 overexpression on bone per se, without direct influence from cancer cells, we examined the unaffected, non‐myeloma femurs by μCT. Surprisingly, the AAV8‐BMP4 mice had significantly reduced trabecular bone volume, trabecular numbers, as well as significantly increased trabecular separation compared with the AAV8‐CTRL mice. There was no difference in cortical bone parameters between the two groups. Taken together, BMP4 gene therapy inhibited myeloma tumor growth, but also reduced the amount of trabecular bone in mice. Our data suggest that care should be taken when considering using BMP4 as a therapeutic agent. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marita Westhrin
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Department of Hematology St. Olavs Hospital Trondheim Norway
| | - Muhammad Zahoor
- Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Siv Helen Moen
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Glenn Buene
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Berit Størdal
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Huipin Yuan
- Kuros Biosciences BV Bilthoven The Netherlands
| | - Joost D de Bruijn
- Kuros Biosciences BV Bilthoven The Netherlands.,The School of Engineering and Materials Science Queen Mary University of London London UK
| | - Anton Martens
- Department of Hematology Cancer Center Amsterdam, VU University Medical Center Amsterdam The Netherlands
| | - Richard Wj Groen
- Department of Hematology Cancer Center Amsterdam, VU University Medical Center Amsterdam The Netherlands
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology School of Veterinary Medicine, Universitat Autònoma de Barcelona Barcelona Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid Spain
| | - Ulf Smith
- Department of Molecular and Clinical Medicine Sahlgrenska University Hospital Gothenburg Sweden
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway.,Department of Hematology St. Olavs Hospital Trondheim Norway
| |
Collapse
|
15
|
Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol 2019; 26:880-889. [PMID: 31582846 DOI: 10.1038/s41594-019-0298-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
The precise temporal and spatial coordination of histone lysine methylation dynamics across the epigenome regulates virtually all DNA-templated processes. A large number of histone lysine methyltransferase (KMT) enzymes catalyze the various lysine methylation events decorating the core histone proteins. Mutations, genetic translocations and altered gene expression involving these KMTs are frequently observed in cancer, developmental disorders and other pathologies. Therapeutic compounds targeting specific KMTs are currently being tested in the clinic, although overall drug discovery in the field is relatively underdeveloped. Here we review the biochemical and biological activities of histone KMTs and their connections to human diseases, focusing on cancer. We also discuss the scientific and clinical challenges and opportunities in studying KMTs.
Collapse
|
16
|
Zhou J, Chng WJ. Novel mechanism of drug resistance to proteasome inhibitors in multiple myeloma. World J Clin Oncol 2019; 10:303-306. [PMID: 31572666 PMCID: PMC6766463 DOI: 10.5306/wjco.v10.i9.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a cancer caused by uncontrolled proliferation of antibody-secreting plasma cells in bone marrow, which represents the second most common hematological malignancy. MM is a highly heterogeneous disease and can be classified into a spectrum of subgroups based on their molecular and cytogenetic abnormalities. In the past decade, novel therapies, especially, the first-in-class proteasome inhibitor bortezomib, have been revolutionary for the treatment of MM patients. Despite these remarkable achievements, myeloma remains incurable with a high frequency of patients suffering from a relapse, due to drug resistance. Mutation in the proteasome β5-subunit (PSMB5) was found in a bortezomib-resistant cell line generated via long-term coculture with increasing concentrations of bortezomib in 2008, but their actual implication in drug resistance in the clinic has not been reported until recently. A recent study discovered four resistance-inducing PSMB5 mutations from a relapsed MM patient receiving prolonged bortezomib treatment. Analysis of the dynamic clonal evolution revealed that two subclones existed at the onset of disease, while the other two subclones were induced. Protein structural modeling and functional assays demonstrated that all four mutations impaired the binding of bortezomib to the 20S proteasome, conferring different degrees of resistance. The authors further demonstrated two potential approaches to overcome drug resistance by using combination therapy for targeting proteolysis machinery independent of the 20S proteasome.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Hematology-Oncology, National University Cancer Institute, NUHS, Singapore 119228, Singapore
| |
Collapse
|
17
|
Liu H, Wang G, Huang Y, Zhao C, Chen J, Wang X. Identification specific miRNA in t(4;14) multiple myeloma based on miRNA-mRNA expressing profile correlation analysis. J Cell Biochem 2019; 120:2454-2468. [PMID: 30230597 DOI: 10.1002/jcb.27537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a common malignancy belonging to the hematological system. The translocation t(4;14)(p16.3;q32.3) is a critical cytogenetic change of MM, which is presenting a poor prognosis. The specific microRNAs (miRNAs) that are involved in t(4;14) myeloma are still unknown. Thus, the main purpose of this research was to identify specific miRNAs in t(4;14) positive myeloma. METHODS The expression profiles of miRNA and messenger RNA (mRNA) in t(4; 14) positive and negative samples were obtained from the gene expression omnibus data series. The miRNA-mRNA regulatory network was constructed based on two self-defined regulation models. Subsequently, we performed the topology analysis for mining the hub genes, and Pearson's correlation coefficient analysis was used to calculate the relevance of the hub genes and specific miRNAs. RESULTS Thirteen differentially expressed miRNAs and 206 differential mRNAs were extracted between t(4;14) positive group and negative group. The network consisted of 8 miRNAs and 154 mRNAs in 2 reverse regulated models, which showed a total of 485 interactions, including 376 cis-regulated and 109 trans-regulated relationships. The miR-125a-3p, miR-125a-5p, miR-99b-5p, and let-7e were powerful miRNAs correlating with the FGFR3, MAP1B, MYRIP, and CDC42BPA under the relevance analysis in the subnetwork. CONCLUSION In our study, a distinctive correlation analysis of miRNA-mRNA was established to excavate specific miRNAs and hub target mRNAs in patients with t(4;14), but it was only a matter of theoretical principles. The further experimental explorations are needed to confirm valuable diagnostic and therapeutic symbols specific associated with t(4;14) in the future.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ying Huang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Chunmei Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jing Chen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical School of Medicine, Nantong University, Nantong, Jiangsu, China.,Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
18
|
Govindasamy P, Pandurangan P, Tarigopula A, Mani R, R Samuel C. Cytogenetic Abnormalities in Multiple Myeloma Patients at a Tertiary Healthcare Center in India. Asian Pac J Cancer Prev 2019; 20:235-241. [PMID: 30678438 PMCID: PMC6485553 DOI: 10.31557/apjcp.2019.20.1.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Multiple myeloma (MM) is a clinically and genetically heterogeneous plasma cell neoplasm. The prognosis of MM patients is dependent on several factors including the patient’s age, the stage of disease and genetic alterations. This study aimed to determine the frequency of common chromosomal abnormalities and their significance in MM patients referred to a tertiary healthcare center in India. Methods: Fluorescence in situ hybridization on interphase nuclei from bone marrow cells using seven MM-specific probes for recurrent aberrations was performed in a total of 215 newly diagnosed patients. Results: Chromosomal abnormalities were detected in 161 (74.9%) MM patients in this study. The most frequent aberration was trisomy(ies) involving only gain of chromosomes in 48 (22.3%) cases. A translocation involving the IGH gene alone or accompanied by trisomy(ies) or by monosomy 13/13q deletion or by both was registered in 80 (37.2%) patients. Atypical patterns such as a deletion of the IGH variable segment (IGHv) on the derivative chromosome 14 or on the native (normal) chromosome 14, biallelic deletion of IGHv, deletion of the IGH constant segment on the rearranged chromosome14 and extra fusions were noticed in 21 (9.8%) patients with an IGH rearrangement. Monosomy 13/deletion 13q was identified singly or as part of a complex karyotype in 74 patients (34.4%). Clonal heterogeneity and additional abnormalities including TP53 deletion and monosomies of chromosomes 4, 9, 14 and 16 were recorded in 18.6% and 16.3% of patients respectively. Patients with abnormalities exhibited plasmacytosis, reduced hemoglobin value and high level of ß2-microglobulin. Conclusions: A lower median age and a low frequency of IGH translocations particularly t(11;14) and chromosome 13 abnormalities suggest ethnic diversity. Further investigations on genetic alterations including IGH deletions will contribute to improved insights into the biology of myeloma disease, risk stratification and patient management.
Collapse
Affiliation(s)
- Perumal Govindasamy
- Department of Centralised Molecular Diagnostics, Apollo Hospitals, Chennai-6, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Laboratory testing plays an essential role in the diagnosis and management of patients with multiple myeloma. A variety of chemistry and molecular assays are routinely used to monitor patient progress, response to treatment and relapse. Here, we have reviewed current literature and core guidelines on the details of laboratory testing in myeloma-related investigations. This includes the use and value of protein electrophoresis, serum free light chain and cytogenetic testing. Furthermore, we discuss other traditional chemistry assays essential to myeloma investigation, and potential interferences that may arise due to the disease nature of myeloma, that is, the presence of a monoclonal immunoglobulin. Finally, we discuss the importance of communication in protein electrophoresis results, where laboratorians are required to relate clinically relevant myeloma-relevant information to the ordering physician on the background of a complex pattern of serum or urine proteins. Laboratory testing in myeloma-related investigation relies on several traditional chemistry assays. However, we anticipate new tests and technologies to become available in the future with improved analytical sensitivity, as well as improved clinical sensitivity in identifying patients who are at high risk of progression to multiple myeloma.
Collapse
Affiliation(s)
| | - Ronald A Booth
- Division of Biochemistry, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kristin Hauff
- Interior Health Corporate Office, Kelowna, BC, Canada
| | - Philip Berardi
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Division of Anatomical Pathology, The Ottawa Hospital/University of Ottawa, Ottawa, ON, Canada
| | - Alissa Visram
- Division of Haematology, The Ottawa Hospital General Campus, Ottawa, ON, Canada
| |
Collapse
|
20
|
Jovanović KK, Escure G, Demonchy J, Willaume A, Van de Wyngaert Z, Farhat M, Chauvet P, Facon T, Quesnel B, Manier S. Deregulation and Targeting of TP53 Pathway in Multiple Myeloma. Front Oncol 2019; 8:665. [PMID: 30687640 PMCID: PMC6333636 DOI: 10.3389/fonc.2018.00665] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple Myeloma (MM) is an incurable disease characterized by a clonal evolution across the course of the diseases and multiple lines of treatment. Among genomic drivers of the disease, alterations of the tumor suppressor TP53 are associated with poor outcomes. In physiological situation, once activated by oncogenic stress or DNA damage, p53 induces either cell-cycle arrest or apoptosis depending on the cellular context. Its inactivation participates to drug resistance in MM. The frequency of TP53 alterations increases along with the progression of the disease, from 5 at diagnosis to 75% at late relapses. Multiple mechanisms of regulation lead to decreased expression of p53, such as deletion 17p, TP53 mutations, specific microRNAs overexpression, TP53 promoter methylations, and MDM2 overexpression. Several therapeutic approaches aim to target the p53 pathway, either by blocking its interaction with MDM2 or by restoring the function of the altered protein. In this review, we describe the mechanism of deregulation of TP53 in MM, its role in MM progression, and the therapeutic options to interact with the TP53 pathway.
Collapse
Affiliation(s)
| | - Guillaume Escure
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Jordane Demonchy
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | | | | | - Meryem Farhat
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Paul Chauvet
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Thierry Facon
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Bruno Quesnel
- IRCL, INSERM UMR-S1172, University of Lille, Lille, France
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Salomon Manier
- IRCL, INSERM UMR-S1172, University of Lille, Lille, France
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
21
|
Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 2018; 132:1304-1317. [DOI: 10.1182/blood-2018-02-832576] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
Key Points
The integrity of the MM transcriptome is compromised by ADAR1 overexpression, conferring oncogenic events in an editing-dependent manner. NEIL1 is an important ADAR1 editing target, and its recoded protein has a defective functional capacity and gain-of-function properties.
Collapse
|
22
|
Vodicka P, Musak L, Vodickova L, Vodenkova S, Catalano C, Kroupa M, Naccarati A, Polivkova Z, Vymetalkova V, Försti A, Hemminki K. Genetic variation of acquired structural chromosomal aberrations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:13-21. [PMID: 30389156 DOI: 10.1016/j.mrgentox.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic.
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, 03601, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Italian Institute for Genomic Medicine (IIGM), Torino, 10126, Italy
| | - Zdena Polivkova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| |
Collapse
|
23
|
Chen M, Yang Y, Liu Y, Chen C. The Role of Chromosome Deletions in Human Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:135-148. [PMID: 29956295 DOI: 10.1007/978-981-13-0593-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosome deletions are a hallmark of human cancers. These chromosome abnormalities have been observed for over than a century and frequently associated with poor prognosis. However, their functions and potential underlying mechanisms remain elusive until recently. Recent technique breakthroughs, including cancer genomics, high throughput library screening and genome editing, opened a new era in the mechanistic studying of chromosome deletions in human cancer. In this chapter, we will focus on the latest studies on the functions of chromosome deletions in human cancers, especially hematopoietic malignancies and try to persuade the readers that these chromosome alterations could play significant roles in the genesis and drug responses of human cancers.
Collapse
Affiliation(s)
- Mei Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Yi Yang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Yu Liu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Chong Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
24
|
Zhang L, Zhou L, Shi M, Kuang Y, Fang L. Downregulation of miRNA-15a and miRNA-16 promote tumor proliferation in multiple myeloma by increasing CABIN1 expression. Oncol Lett 2017; 15:1287-1296. [PMID: 29399181 DOI: 10.3892/ol.2017.7424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is a malignant disorder characterized by the neoplastic growth of plasma cells in the bone marrow. MicroRNAs (miRNAs/miRs) modulate key regulatory cell pathways via their influence on target genes, and may serve a crucial function in tumorigenesis. Previous studies have indicated that the downregulation of miR-15a and miR-16 contributes to MM pathogenesis. However, the functional mechanisms of miR-15a and miR-16 in MM remain unclear. In the present study, potential target sites for miR-15a and miR-16 were identified on the calcineurin-binding protein 1 (CABIN1) mRNA sequence from analyses of previously published crosslinking, ligation and sequencing of hybrids data. Again-of-function study was also performed, which determined that miR-15a/16 directly targeted CABIN1 mRNA and negatively regulated the expression of CABIN1 at the mRNA and protein level in MM cells. A cell proliferation assay demonstrated that the upregulation of miR-15a and miR-16 inhibited the proliferation of MM cells via targeting CABIN1. miR-15a and miR-16 were significantly decreased in MM specimens, compared with in normal specimens, whereas CABIN1 mRNA levels were significantly higher in MM samples compared with in normal samples. CABIN1 mRNA levels were negatively correlated with miR-15a and miR-16 expression levels in MM tissues, as determined using Pearson's correlation coefficient analysis. The results of the present study indicate that the downregulation of miR-15a and miR-16 promotes tumor proliferation in MM by increasing CABIN1 expression. The present study may aid elucidation of the functions of miR-15a and miR-16 and their function in MM carcinogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lin Zhou
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Meng Shi
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yong Kuang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lei Fang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
25
|
Morito N, Yoh K, Usui T, Oishi H, Ojima M, Fujita A, Koshida R, Shawki HH, Hamada M, Muratani M, Yamagata K, Takahashi S. Transcription factor MafB may play an important role in secondary hyperparathyroidism. Kidney Int 2017; 93:54-68. [PMID: 28964572 DOI: 10.1016/j.kint.2017.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 10/18/2022]
Abstract
The transcription factor MafB is essential for development of the parathyroid glands, the expression of which persists after morphogenesis and in adult parathyroid glands. However, the function of MafB in adult parathyroid tissue is unclear. To investigate this, we induced chronic kidney disease (CKD) in wild-type and MafB heterozygote (MafB+/-) mice by feeding them an adenine-supplemented diet, leading to secondary hyperparathyroidism. The elevated serum creatinine and blood urea nitrogen levels in heterozygous and wild-type mice fed the adenine-supplemented diet were similar. Interestingly, secondary hyperparathyroidism, characterized by serum parathyroid hormone elevation and enlargement of parathyroid glands, was suppressed in MafB+/- mice fed the adenine-supplemented diet compared to similarly fed wild-type littermates. Quantitative RT-PCR and immunohistochemical analyses showed that the increased expression of parathyroid hormone and cyclin D2 in mice with CKD was suppressed in the parathyroid glands of heterozygous CKD mice. A reporter assay indicated that MafB directly regulated parathyroid hormone and cyclin D2 expression. To exclude an effect of a developmental anomaly in MafB+/- mice, we analyzed MafB tamoxifen-induced global knockout mice. Hypocalcemia-stimulated parathyroid hormone secretion was significantly impaired in MafB knockout mice. RNA-sequencing analysis indicated PTH, Gata3 and Gcm2 depletion in the parathyroid glands of MafB knockout mice. Thus, MafB appears to play an important role in secondary hyperparathyroidism by regulation of parathyroid hormone and cyclin D2 expression. Hence, MafB may represent a new therapeutic target in secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Keigyou Yoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Toshiaki Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hisashi Oishi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Comparative and Experimental Medicine (DCEM), Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akiko Fujita
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryusuke Koshida
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hossam H Shawki
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Life Science Center of Tsukuba Advanced Research Alliance (TARA), Faculty of Medicine University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Marchesini M, Ogoti Y, Fiorini E, Aktas Samur A, Nezi L, D'Anca M, Storti P, Samur MK, Ganan-Gomez I, Fulciniti MT, Mistry N, Jiang S, Bao N, Marchica V, Neri A, Bueso-Ramos C, Wu CJ, Zhang L, Liang H, Peng X, Giuliani N, Draetta G, Clise-Dwyer K, Kantarjian H, Munshi N, Orlowski R, Garcia-Manero G, DePinho RA, Colla S. ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell 2017; 32:88-100.e6. [PMID: 28669490 PMCID: PMC5593798 DOI: 10.1016/j.ccell.2017.05.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/20/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.
Collapse
Affiliation(s)
- Matteo Marchesini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yamini Ogoti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elena Fiorini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil Aktas Samur
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Luigi Nezi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marianna D'Anca
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Storti
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Mehmet Kemal Samur
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Teresa Fulciniti
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Nipun Mistry
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naran Bao
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Valentina Marchica
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milano, Milan 20122, Italy
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Cancer Center, Houston, TX 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicola Giuliani
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikhil Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Robert Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. Int J Mol Sci 2016; 17:ijms17122003. [PMID: 27916892 PMCID: PMC5187803 DOI: 10.3390/ijms17122003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
The p53 pathway is inactivated in the majority of human cancers. Although this perturbation frequently occurs through the mutation or deletion of p53 itself, there are other mechanisms that can attenuate the pathway and contribute to tumorigenesis. For example, overexpression of important p53 negative regulators, such as murine double minute 2 (MDM2) or murine double minute 4 (MDM4), epigenetic deregulation, or even alterations in TP53 mRNA splicing. In this work, we will review the different mechanisms of p53 pathway inhibition in cancer with special focus on multiple myeloma (MM), the second most common hematological malignancy, with low incidence of p53 mutations/deletions but growing evidence of indirect p53 pathway deregulation. Translational implications for MM and cancer prognosis and treatment are also reviewed.
Collapse
|
28
|
Maciocia N, Wechalekar A, Yong K. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM): a practical guide to management. Hematol Oncol 2016; 35:432-439. [DOI: 10.1002/hon.2345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/08/2016] [Accepted: 08/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Nicola Maciocia
- Department of Haematology; University College London Hospitals; London UK
| | - Ashutosh Wechalekar
- Department of Haematology; University College London Hospitals; London UK
- National Amyloidosis Centre; University College London; London UK
| | - Kwee Yong
- Department of Haematology, Cancer Institute; University College London; London UK
| |
Collapse
|
29
|
Geraldes C, Gonçalves AC, Cortesão E, Pereira MI, Roque A, Paiva A, Ribeiro L, Nascimento-Costa JM, Sarmento-Ribeiro AB. Aberrant p15, p16, p53, and DAPK Gene Methylation in Myelomagenesis: Clinical and Prognostic Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:713-720.e2. [PMID: 27622827 DOI: 10.1016/j.clml.2016.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant DNA methylation is considered a crucial mechanism in the pathogenesis of monoclonal gammopathies. We aimed to investigate the contribution of hypermethylation of 4 tumor suppressor genes to the multistep process of myelomagenesis. METHODS The methylation status of p15, p16, p53, and DAPK genes was evaluated in bone marrow samples from 94 patients at diagnosis: monoclonal gammopathy of uncertain significance (MGUS) (n = 48), smoldering multiple myeloma (SMM) (n = 8) and symptomatic multiple myeloma (MM) (n = 38), and from 8 healthy controls by methylation-specific polymerase chain reaction analysis. RESULTS Overall, 63% of patients with MM and 39% of patients with MGUS presented at least 1 hypermethylated gene (P < .05). No aberrant methylation was detected in normal bone marrow. The frequency of methylation for individual genes in patients with MGUS, SMM, and MM was p15, 15%, 50%, 21%; p16, 15%, 13%, 32%; p53, 2%, 12,5%, 5%, and DAPK, 19%, 25%, 39%, respectively (P < .05). No correlation was found between aberrant methylation and immunophenotypic markers, cytogenetic features, progression-free survival, and overall survival in patients with MM. CONCLUSIONS The current study supports a relevant role for p15, p16, and DAPK hypermethylation in the genesis of the plasma cell neoplasm. DAPK hypermethylation also might be an important step in the progression from MGUS to MM.
Collapse
Affiliation(s)
- Catarina Geraldes
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| | - Ana Cristina Gonçalves
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology.IBILI (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Emília Cortesão
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Marta Isabel Pereira
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Adriana Roque
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Letícia Ribeiro
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - José Manuel Nascimento-Costa
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Oncology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Oncology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology.IBILI (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
DNA repair of myeloma plasma cells correlates with clinical outcome: the effect of the nonhomologous end-joining inhibitor SCR7. Blood 2016; 128:1214-25. [PMID: 27443291 DOI: 10.1182/blood-2016-01-691618] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/08/2016] [Indexed: 12/26/2022] Open
Abstract
DNA repair activity of malignant cells seems to influence therapeutic outcome and patients' survival. Herein, we investigated the mechanistic basis for the link between DNA repair efficiency and response to antimyeloma therapy. Nucleotide excision repair (NER), interstrand cross-links repair (ICL/R), double-strand breaks repair (DSB/R), and chromatin structure were evaluated in multiple myeloma (MM) cell lines (melphalan-sensitive RPMI8226; melphalan-resistant LR5) and bone marrow plasma cells (BMPCs) from MM patients who responded (n = 17) or did not respond (n = 9) to subsequent melphalan therapy. The effect of DSB/R inhibition was also evaluated. Responders' BMPCs showed slower rates of NER and DSB/R (P <0022), similar rates of ICL/R, and more condensed chromatin structure compared with nonresponders. Moreover, apoptosis rates of BMPCs were inversely correlated with individual DNA repair efficiency and were higher in responders' cells compared with those of nonresponders (P = .0011). Similarly, RPMI8226 cells showed slower rates of NER and DSB/R, comparable rates of ICL/R, more condensed chromatin structure, and higher sensitivity than LR5 cells. Interestingly, cotreatment of BMPCs or cell lines with DSB/R inhibitors significantly reduced the rates of DSB/R and increased melphalan sensitivity of the cells, with the nonhomologous end-joining inhibitor SCR7 showing the strongest effect. Together, responders' BMPCs are characterized by lower efficiencies of NER and DSB/R mechanisms, resulting in higher accumulation of the extremely cytotoxic ICLs and DSBs lesions, which in turn triggers the induction of the apoptotic pathway. Moreover, the enhancement of melphalan cytotoxicity by DSB/R inhibition offers a promising strategy toward improvement of existing antimyeloma regimens.
Collapse
|
31
|
Mlynarcikova M, Balcarkova J, Mickova P, Scudla V, Pika T, Bacovsky J, Minarik J, Janousova E, Jarosova M. Molecular Cytogenetic Analysis of Chromosome 8 Aberrations in Patients With Multiple Myeloma Examined in 2 Different Stages, at Diagnosis and at Progression/Relapse. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:358-65. [PMID: 27052024 DOI: 10.1016/j.clml.2016.02.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The genome of multiple myeloma (MM) clonal plasma cells is characterized by genetic changes of prognostic importance. Disease progression is accompanied by a number of secondary chromosomal aberrations including chromosome 8. We focused on the detection of chromosome 8 aberrations in patients with MM who were examined at 2 different phases: diagnosis and progression/relapse. PATIENTS AND METHODS A total of 62 patients with MM were examined at the time of diagnosis and at relapse/progression. The median age was 64 years (range, 39-78 years); the study included 29 males and 33 females. We analyzed bone marrow samples for detecting aberrations on chromosome 8 by the fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms (FICTION) and fluorescence in situ hybridization methods with specific probes. RESULTS Chromosome 8 aberrations were detected in 24 (38.7%) patients at diagnosis and in 29 (46.8%) patients at progression/relapse. Only 5 (8%) patients developed additional chromosome 8 changes at progression/relapse. The aberrations were heterogeneous, involving numerical and structural changes of the MYC gene. Aberrations of the short arm of chromosome 8, involving the genes TRAIL-R1/-R2, were less frequent (4 of 62 patients, 6.4%). All aberrations of chromosome 8 were accompanied with additional changes and with an advanced clinical phase of the disease. This finding significantly influenced the overall survival of patients. CONCLUSION In the current study, chromosome 8 aberrations were highly heterogeneous, were presented at diagnosis in patients with advanced clinical stage, and were associated with worse overall survival. We have not confirmed the increase of frequency aberration of chromosome 8 in disease progression. The findings demonstrate the importance of fluorescence in situ hybridization examination of chromosome 8 in newly diagnosed patients with MM.
Collapse
Affiliation(s)
| | - Jana Balcarkova
- Department of Hemato-oncology, Palacky University Hospital, Olomouc, Czech Republic
| | - Pavla Mickova
- Department of Hemato-oncology, Palacky University Hospital, Olomouc, Czech Republic
| | - Vlastimil Scudla
- Department of Hemato-oncology, Palacky University Hospital, Olomouc, Czech Republic
| | - Tomas Pika
- Department of Hemato-oncology, Palacky University Hospital, Olomouc, Czech Republic
| | - Jaroslav Bacovsky
- Department of Hemato-oncology, Palacky University Hospital, Olomouc, Czech Republic
| | - Jiri Minarik
- Department of Hemato-oncology, Palacky University Hospital, Olomouc, Czech Republic
| | - Eva Janousova
- Institute of Biostatistics and Analysis, Masaryk University, Brno, Czech Republic
| | - Marie Jarosova
- Department of Hemato-oncology, Palacky University Hospital, Olomouc, Czech Republic.
| |
Collapse
|
32
|
Lub S, Maes K, Menu E, De Bruyne E, Vanderkerken K, Van Valckenborgh E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget 2016; 7:6521-37. [PMID: 26695547 PMCID: PMC4872730 DOI: 10.18632/oncotarget.6658] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM.
Collapse
Affiliation(s)
- Susanne Lub
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
33
|
Feng M, Luo X, Gu C, Li Y, Zhu X, Fei J. Systematic analysis of berberine-induced signaling pathway between miRNA clusters and mRNAs and identification of mir-99a ∼ 125b cluster function by seed-targeting inhibitors in multiple myeloma cells. RNA Biol 2015; 12:82-91. [PMID: 25826415 DOI: 10.1080/15476286.2015.1017219] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Berberine (BBR) is a natural alkaloid derived from a traditional Chinese herbal medicine. However, the exact mechanisms underlying the different effects of berberine on MM cells have not been fully elucidated. METHODS A systematic analysis assay integrated common signaling pathways modulated by the 3 miRNA clusters and mRNAs in MM cells after BBR treatment. The role of the mir-99a ∼ 125b cluster, an important oncomir in MM, was identified by comparing the effects of t-anti-mirs with complete complementary antisense locked nucleic acids (LNAs) against mature mir-125b (anti-mir-125b). RESULTS Three miRNAs clusters (miR-99a ∼ 125b, miR-17 ∼ 92 and miR-106 ∼ 25) were significantly down-regulated in BBR-treated MM cells and are involved in multiple cancer-related signaling pathways. Furthermore, the top 5 differentially regulated genes, RAC1, NFκB1, MYC, JUN and CCND1 might play key roles in the progression of MM. Systematic integration revealed that 3 common signaling pathways (TP53, Erb and MAPK) link the 3 miRNA clusters and the 5 key mRNAs. Meanwhile, both BBR and seed-targeting t-anti-mir-99a ∼ 125b cluster LNAs significantly induced apoptosis, G2-phase cell cycle arrest and colony inhibition. CONCLUSIONS our results suggest that BBR suppresses multiple myeloma cells, partly by down-regulating the 3 miRNA clusters and many mRNAs, possibly through TP53, Erb and MAPK signaling pathways. The mir-99a ∼ 125b cluster might be a novel target for MM treatment. These findings provide new mechanistic insight into the anticancer effects of certain traditional Chinese herbal medicine compounds.
Collapse
Affiliation(s)
- Maoxiao Feng
- a Department of Biochemistry and Molecular Biology; Medical College of Jinan University ; Guangzhou , China
| | | | | | | | | | | |
Collapse
|
34
|
Stella F, Pedrazzini E, Agazzoni M, Ballester O, Slavutsky I. Cytogenetic Alterations in Multiple Myeloma: Prognostic Significance and the Choice of Frontline Therapy. Cancer Invest 2015; 33:496-504. [DOI: 10.3109/07357907.2015.1080833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Vallabhapurapu SD, Noothi SK, Pullum DA, Lawrie CH, Pallapati R, Potluri V, Kuntzen C, Khan S, Plas DR, Orlowski RZ, Chesi M, Kuehl WM, Bergsagel PL, Karin M, Vallabhapurapu S. Transcriptional repression by the HDAC4-RelB-p52 complex regulates multiple myeloma survival and growth. Nat Commun 2015; 6:8428. [PMID: 26455434 DOI: 10.1038/ncomms9428] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/21/2015] [Indexed: 12/12/2022] Open
Abstract
Although transcriptional activation by NF-κB is well appreciated, physiological importance of transcriptional repression by NF-κB in cancer has remained elusive. Here we show that an HDAC4-RelB-p52 complex maintains repressive chromatin around proapoptotic genes Bim and BMF and regulates multiple myeloma (MM) survival and growth. Disruption of RelB-HDAC4 complex by a HDAC4-mimetic polypeptide blocks MM growth. RelB-p52 also represses BMF translation by regulating miR-221 expression. While the NIK-dependent activation of RelB-p52 in MM has been reported, we show that regardless of the activation status of NIK and the oncogenic events that cause plasma cell malignancy, several genetically diverse MM cells including Bortezomib-resistant MM cells are addicted to RelB-p52 for survival. Importantly, RelB is constitutively phosphorylated in MM and ERK1 is a RelB kinase. Phospho-RelB remains largely nuclear and is essential for Bim repression. Thus, ERK1-dependent regulation of nuclear RelB is critical for MM survival and explains the NIK-independent role of RelB in MM.
Collapse
Affiliation(s)
- Subrahmanya D Vallabhapurapu
- The Vontz Center for Molecular Studies, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Sunil K Noothi
- The Vontz Center for Molecular Studies, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Derek A Pullum
- The Vontz Center for Molecular Studies, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Charles H Lawrie
- Department of Oncology, Biodonostia Research Institute, San Sebastián 20014, Spain.,Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Rachel Pallapati
- The Vontz Center for Molecular Studies, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Veena Potluri
- The Vontz Center for Molecular Studies, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Christian Kuntzen
- Department of Medicine, Bridgeport Hospital, 267 Grant Street, Bridgeport, Connecticut 06610, USA
| | - Sohaib Khan
- The Vontz Center for Molecular Studies, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - David R Plas
- The Vontz Center for Molecular Studies, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Marta Chesi
- Department of Hematology/Oncology , Mayo Clinic, 13400 E. Shea Boulevard, Scottsdale, Arizona 85259, USA
| | - W Michael Kuehl
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 6002C, Bethesda, Maryland 20892, USA
| | - P Leif Bergsagel
- Department of Hematology/Oncology , Mayo Clinic, 13400 E. Shea Boulevard, Scottsdale, Arizona 85259, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California, San Diego, California 92093, USA
| | - Sivakumar Vallabhapurapu
- The Vontz Center for Molecular Studies, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
36
|
Zhang K, Xu Z, Sun Z. Identification of the key genes connected with plasma cells of multiple myeloma using expression profiles. Onco Targets Ther 2015; 8:1795-803. [PMID: 26229487 PMCID: PMC4516193 DOI: 10.2147/ott.s80075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective To uncover the potential regulatory mechanisms of the relevant genes that contribute to the prognosis and prevention of multiple myeloma (MM). Methods Microarray data (GSE13591) were downloaded, including five plasma cell samples from normal donors and 133 plasma cell samples from MM patients. Differentially expressed genes (DEGs) were identified by Student’s t-test. Functional enrichment analysis was performed for DEGs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcription factors and tumor-associated genes were also explored by mapping genes in the TRANSFAC, the tumor suppressor gene (TSGene), and tumor-associated gene (TAG) databases. A protein–protein interaction (PPI) network and PPI subnetworks were constructed by Cytoscape software using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results A total of 63 DEGs (42 downregulated, 21 upregulated) were identified. Functional enrichment analysis showed that HLA-DRB1 and VCAM1 might be involved in the positive regulation of immune system processes, and HLA-DRB1 might be related to the intestinal immune network for IgA production pathway. The genes CEBPD, JUND, and ATF3 were identified as transcription factors. The top ten nodal genes in the PPI network were revealed including HLA-DRB1, VCAM1, and TFRC. In addition, genes in the PPI subnetwork, such as HLA-DRB1 and VCAM1, were enriched in the cell adhesion molecules pathway, whereas CD4 and TFRC were both enriched in the hematopoietic cell pathway. Conclusion Several crucial genes correlated to MM were identified, including CD4, HLA-DRB1, TFRC, and VCAM1, which might exert their roles in MM progression via immune-mediated pathways. There might be certain regulatory correlations between HLA-DRB1, CD4, and TFRC.
Collapse
Affiliation(s)
- Kefeng Zhang
- Spinal Surgery, Jining No 1 People's Hospital, Jining, People's Republic of China
| | - Zhongyang Xu
- Spinal Surgery, Jining No 1 People's Hospital, Jining, People's Republic of China
| | - Zhaoyun Sun
- Department of Orthopedics, The People's Hospital of Laiwu City, Laiwu, Shandong Province, People's Republic of China
| |
Collapse
|
37
|
MMSET regulates expression of IRF4 in t(4;14) myeloma and its silencing potentiates the effect of bortezomib. Leukemia 2015. [PMID: 26196464 DOI: 10.1038/leu.2015.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. In t(4;14) MM, the MM SET domain (MMSET) protein is universally overexpressed and has been suggested to have an important tumorigenic role. However, the exact molecular targets underlying MMSET activity are not well understood. Here, we found in t(4;14) MM cells that MMSET knockdown decreases interferon regulatory factor 4 (IRF4) expression, and ectopic MMSET increases IRF4 expression, suggesting that MMSET is an upstream regulator of IRF4. Further analyses indicated an interaction between MMSET and nuclear factor-κB, which both bind to the IRF4 promoter region. A luciferase reporter assay showed that MMSET is an important functional element for the IRF4 promoter. MMSET knockdown induces apoptosis and potentiates the effects of bortezomib in vitro and in vivo. Importantly, we found that bortezomib could reduce expression of MMSET and IRF4. This might partly explain the additive effect of combining MMSET knockdown and bortezomib treatment. These results identify MMSET as a key regulator involved in the regulatory network of transcription factor IRF4, which is critical for MM cell survival, suggesting that the combination of MMSET inhibition and bortezomib is likely to improve patient outcome in MM.
Collapse
|
38
|
Zhang W, Qiao L, Wang X, Senthilkumar R, Wang F, Chen B. Inducing cell cycle arrest and apoptosis by dimercaptosuccinic acid modified Fe3O4 magnetic nanoparticles combined with nontoxic concentration of bortezomib and gambogic acid in RPMI-8226 cells. Int J Nanomedicine 2015; 10:3275-89. [PMID: 25995634 PMCID: PMC4425315 DOI: 10.2147/ijn.s80795] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to determine the potential benefits of combination therapy using dimercaptosuccinic acid modified iron oxide (DMSA-Fe3O4) magnetic nanoparticles (MNPs) combined with nontoxic concentration of bortezomib (BTZ) and gambogic acid (GA) on multiple myeloma (MM) RPMI-8226 cells and possible underlying mechanisms. The effects of BTZ-GA-loaded MNP-Fe3O4 (BTZ-GA/MNPs) on cell proliferation were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,4,-diphenyltetrazolium bromide (MTT) method. Cell cycle and apoptosis were detected using the terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay and flow cytometry (FCM). Furthermore, DMSA-Fe3O4 MNPs were characterized in terms of distribution, apoptotic morphology, and cellular uptake by transmission electron microscopy (TEM) and 4,6-diamidino-2-phenylindole (DAPI) staining. Subsequently, the effect of BTZ-GA/MNPs combination on PI3K/Akt activation and apoptotic-related protein were appraised by Western blotting. MTT assay and hematoxylin and eosin (HE) staining were applied to elevate the functions of BTZ-GA/MNPs combination on the tumor xenograft model and tumor necrosis. The results of this study revealed that the majority of MNPs were quasi-spherical and the MNPs taken up by cells were located in the endosome vesicles of cytoplasm. Nontoxic concentration of BTZ-GA/MNPs increased G2/M phase cell cycle arrest and induced apoptosis in RPMI-8226 cells. Furthermore, the combination of BTZ-GA/MNPs activated phosphorylated Akt levels, Caspase-3, and Bax expression, and down-regulated the PI3K and Bcl-2 levels significantly. Meanwhile, the in vivo tumor xenograft model indicated that the treatment of BTZ-GA/MNPs decreased the tumor growth and volume and induced cell apoptosis and necrosis. These findings suggest that chemotherapeutic agents polymerized MNPs-Fe3O4 with GA could serve as a better alternative for targeted therapeutic approaches to treat multiple myeloma.
Collapse
Affiliation(s)
- Wei Zhang
- Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lixing Qiao
- Department of Pediatrics, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xinchao Wang
- Department of Thyroid and Breast, the Fourth Central Hospital, Tianjin, People's Republic of China
| | | | - Fei Wang
- Medical School, Southeast University, Nanjing, People's Republic of China
| | - Baoan Chen
- Medical School, Southeast University, Nanjing, People's Republic of China ; Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
39
|
Gkotzamanidou M, Sfikakis PP, Kyrtopoulos SA, Bamia C, Dimopoulos MA, Souliotis VL. Chromatin structure, transcriptional activity and DNA repair efficiency affect the outcome of chemotherapy in multiple myeloma. Br J Cancer 2014; 111:1293-304. [PMID: 25051404 PMCID: PMC4183844 DOI: 10.1038/bjc.2014.410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 01/20/2023] Open
Abstract
Background: Melphalan is one of the most active chemotherapeutic agents in the treatment of multiple myeloma (MM). However, the mechanism underlying differential patient responses to melphalan therapy is unknown. Methods: Chromatin structure, transcriptional activity and DNA damage response signals were examined following ex vivo treatment with melphalan of both malignant bone marrow plasma cells (BMPCs) and peripheral blood mononuclear cells (PBMCs) of MM patients, responders (n=57) or non-responders (n=28) to melphalan therapy. PBMCs from healthy controls (n=25) were also included in the study. Results: In both BMPCs and PBMCs, the local chromatin looseness, transcriptional activity and repair efficiency of the transcribed strand (TS) were significantly higher in non-responders than in responders and lowest in healthy controls (all P<0.05). Moreover, we found that melphalan-induced apoptosis inversely correlated with the repair efficiency of the TS, with the duration of the inhibition of mRNA synthesis, phosphorylation of p53 at serine 15 and apoptosis rates being higher in responders than in non-responders (all P<0.001). Conclusions: Our findings provide a mechanistic basis for the link between DNA repair efficiency and response to melphalan therapy. Interestingly, the observation of these phenomena in PBMCs provides a novel approach for the prediction of response to anti-myeloma therapy.
Collapse
Affiliation(s)
- M Gkotzamanidou
- 1] Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA [2] Department of Clinical Therapeutics, University of Athens School of Medicine, 11528 Athens, Greece
| | - P P Sfikakis
- First Department of Propedeutic Medicine, University of Athens School of Medicine, 11527 Athens, Greece
| | - S A Kyrtopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - C Bamia
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens School of Medicine, 11527 Athens, Greece
| | - M A Dimopoulos
- Department of Clinical Therapeutics, University of Athens School of Medicine, 11528 Athens, Greece
| | - V L Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
40
|
Implications of heterogeneity in multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:232546. [PMID: 25101266 PMCID: PMC4102035 DOI: 10.1155/2014/232546] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/02/2014] [Indexed: 11/17/2022]
Abstract
Multiple myeloma is the second most common hematologic malignancy in the world. Despite improvement in outcome, the disease is still incurable for most patients. However, not all myeloma are the same. With the same treatment, some patients can have very long survival whereas others can have very short survival. This suggests that there is underlying heterogeneity in myeloma. Studies over the years have revealed multiple layers of heterogeneity. First, clinical parameters such as age and tumor burden could significantly affect outcome. At the genetic level, there are also significant heterogeneity ranging for chromosome numbers, genetic translocations, and genetic mutations. At the clonal level, there appears to be significant clonal heterogeneity with multiple clones coexisting in the same patient. At the cell differentiation level, there appears to be a hierarchy of clonally related cells that have different clonogenic potential and sensitivity to therapies. These levels of complexities present challenges in terms of treatment and prognostication as well as monitoring of treatment. However, if we can clearly delineate and dissect this heterogeneity, we may also be presented with unique opportunities for precision and personalized treatment of myeloma. Some proof of concepts of such approaches has been demonstrated.
Collapse
|
41
|
Stella F, Pedrazzini E, Baialardo E, Fantl DB, Schutz N, Slavutsky I. Quantitative analysis of CKS1B mRNA expression and copy number gain in patients with plasma cell disorders. Blood Cells Mol Dis 2014; 53:110-7. [PMID: 24973170 DOI: 10.1016/j.bcmd.2014.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022]
Abstract
In this study, we have examined CKS1B gene expression and copy number in a total of 114- patients at diagnosis: 83 with multiple myeloma (MM) and 31 with monoclonal gammopathy of undetermined significance (MGUS). Results were correlated with cytogenetics, FISH and clinical characteristic. Significant CKS1B mRNA levels in MM compared to MGUS cases (p<0.048) were detected. In MM, the frequency of 1q21 (CKS1B) copy gain was significantly higher in cases with abnormal karyotype compared to patients with normal karyotype (p=0.021). Global analysis showed a positive correlation between CKS1B expression and 1q21 copy number (p<0.0001). No association between CKS1B mRNA expression and clinical parameters was found. However, a significantly higher level of β2 microglobulin in cases with 1q21 gains than those without (p=0.0094) was observed. Overall survival was shorter in cases with 1q21 gain compared to those with normal 1q21 region (p=0.0082). Our results suggest a role for CKS1B in the multiple step process of progression of MGUS to MM and show that CKS1B copy gain has a more significant prognostic value than its overexpression. This adverse impact on survival probably reflects the genetic instability associated to chromosome 1q alterations resulting in a more aggressive behavior of the disease.
Collapse
Affiliation(s)
- Flavia Stella
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| | - Estela Pedrazzini
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina; Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Argentina
| | | | - Dorotea Beatriz Fantl
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Natalia Schutz
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
42
|
p53 abnormalities and potential therapeutic targeting in multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:717919. [PMID: 25028664 PMCID: PMC4083709 DOI: 10.1155/2014/717919] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/20/2014] [Indexed: 01/02/2023]
Abstract
p53 abnormalities are regarded as an independent prognostic marker in multiple myeloma. Patients harbouring this genetic anomaly are commonly resistant to standard therapy. Thus, various p53 reactivating agents have been developed in order to restore its tumour suppressive abilities. Small molecular compounds, especially, have gained popularity in its efficacy against myeloma cells. For instance, promising preclinical results have steered both nutlin-3 and PRIMA-1 into phase I/II clinical trials. This review summarizes different modes of p53 inactivation in myeloma and highlights the current p53-based therapies that are being utilized in the clinic. Finally, we discuss the potential and promise that the novel small molecules possess for clinical application in improving the treatment outcome of myeloma.
Collapse
|
43
|
MicroRNA: important player in the pathobiology of multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:521586. [PMID: 24991558 PMCID: PMC4065722 DOI: 10.1155/2014/521586] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/19/2014] [Indexed: 01/13/2023]
Abstract
Recent studies have revealed a pivotal role played by a class of small, noncoding RNAs, microRNA (miRNA), in multiple myeloma (MM), a plasma cell (PC) malignancy causing significant morbidity and mortality. Deregulated miRNA expression in patient's PCs and plasma has been associated with tumor progression, molecular subtypes, clinical staging, prognosis, and drug response in MM. A number of important oncogenic and tumor suppressor miRNAs have been discovered to regulate important genes and pathways such as p53 and IL6-JAK-STAT signaling. miRNAs may also form complex regulatory circuitry with genetic and epigenetic machineries, the deregulation of which could lead to malignant transformation and progression. The translational potential of miRNAs in the clinic is being increasingly recognized that they could represent novel biomarkers and therapeutic targets. This review comprehensively summarizes current progress in delineating the roles of miRNAs in MM pathobiology and management.
Collapse
|
44
|
Campo S, Allegra A, D'Ascola A, Alonci A, Scuruchi M, Russo S, Avenoso A, Gerace D, Campo GM, Musolino C. MiRNome expression is deregulated in the peripheral lymphoid compartment of multiple myeloma. Br J Haematol 2014; 165:801-13. [PMID: 24620752 DOI: 10.1111/bjh.12828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in the regulation of gene expression. Selected groups of miRNAs are differentially expressed in various types of cancers. Alterations in miRNAs gene expression have been shown in cells from the B-cell malignancy, multiple myeloma (MM). However, although MM is a disease of plasma cells, abnormalities have been detected in the peripheral blood of the patients. The goal of our study was to analyse the entire miRNome in peripheral lymphocytes of MM patients using reverse transcription quantitative polymerase chain reaction. Using in silica analysis, we also evaluated some of the most interesting and significant pathways. Analysis revealed that MM samples had a distinct miRNA profile compared to the controls. This resulted in the identification of 203 miRNAs, 85 of which were over-expressed and 118 under-expressed. Of these, 184 possessed validated or highly predicted mRNA targets. We identified 12 354 mRNA targets of the transcriptome: 36·4% of the related proteins are involved in death processes while the 21% are required for growth and cell proliferation. We have demonstrated that miRNAs are differentially expressed in the peripheral blood of MM patients compared to controls, affecting some pathways involved in the anti-apoptotic process, cell proliferation and maybe anti-angiogenesis.
Collapse
Affiliation(s)
- Salvatore Campo
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang L, Chen L, Chu ZB, Tang B, Wang K, Wu XF, Xu J, Hu Y. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 2014; 29:196-206. [PMID: 24732595 DOI: 10.1038/leu.2014.135] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 03/05/2014] [Accepted: 04/09/2014] [Indexed: 12/17/2022]
Abstract
Aberrant DNA hypermethylation contributes to myelomagenesis by silencing tumor-suppressor genes. Recently, a few reports have suggested that a novel class of small non-coding RNAs, called Piwi-interacting RNAs (piRNAs), may be involved in the epigenetic regulation of cancer. In this study, for the first time we provided evidence that the expression of piRNA-823 was upregulated in multiple myeloma (MM) patients and cell lines, and positively correlated with clinical stage. Silencing piRNA-823 in MM cells induced deregulation of cell cycle regulators and apoptosis-related proteins expression, accompanied by inhibition of tumorigenicity in vitro and in vivo. Moreover, piRNA-823 was directly relevant to de novo DNA methyltransferases, DNMT3A and 3B, in primary CD138(+) MM cells. The inhibited expression of piRNA-823 in MM cells resulted in marked reduction of DNMT3A and 3B at both mRNA and protein levels, which in turn led to decrease in global DNA methylation and reexpression of methylation-silenced tumor suppressor, p16(INK4A). In addition, piRNA-823 abrogation in MM cells induced reduction of vascular endothelial growth factor secretion, with consequent decreased proangiogenic activity. Altogether, these data support an oncogenic role of piRNA-823 in the biology of MM, providing a rational for the development of piRNA-targeted therapeutic strategies in MM.
Collapse
Affiliation(s)
- H Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Q-L Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C-Y Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L-S Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z-B Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - B Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - K Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X-F Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Ivyna Bong PN, Ng CC, Lam KY, Megat Baharuddin PJN, Chang KM, Zakaria Z. Identification of novel pathogenic copy number aberrations in multiple myeloma: the Malaysian context. Mol Cytogenet 2014; 7:24. [PMID: 24690091 PMCID: PMC4021726 DOI: 10.1186/1755-8166-7-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/24/2014] [Indexed: 02/07/2023] Open
Abstract
Background Multiple myeloma is an incurable disease. Little is known about the genetic and molecular mechanisms governing the pathogenesis of multiple myeloma. The risk of multiple myeloma predispositions varies among different ethnicities. More than 50% of myeloma cases showed normal karyotypes with conventional cytogenetic analysis due to the low mitotic activity and content of plasma cells in the bone marrow. In the present study, high resolution array comparative genomic hybridization technique was used to identify copy number aberrations in 63 multiple myeloma patients of Malaysia. Results Copy number aberrations were identified in 100% of patients analyzed (n = 63). Common chromosomal gains were detected at regions 1q, 2q, 3p, 3q, 4q, 5q, 6q, 8q, 9q, 10q, 11q, 13q, 14q, 15q, 21q and Xq while common chromosomal losses were identified at regions 3q and 14q. There were a total of 25 and 5 genes localized within the regions of copy number gains and losses, respectively (>30% penetrance). The LYST, CLK1, ACSL1 and NFKBIA are genes localized within the copy number aberration regions and they represent novel information that has never been previously described in multiple myeloma patients. Conclusions In general, due to the differences in genetic background, dietary and lifestyle practices of Malaysian compared to the Caucasian population, these chromosomal alterations might be unique for Asian MM patients. Genes identified in this study could be potential molecular therapeutic targets for the treatment and management of patients with multiple myeloma.
Collapse
Affiliation(s)
- Pau Ni Ivyna Bong
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
47
|
Morgan GJ, Johnson DC, Weinhold N, Goldschmidt H, Landgren O, Lynch HT, Hemminki K, Houlston RS. Inherited genetic susceptibility to multiple myeloma. Leukemia 2014; 28:518-24. [PMID: 24247655 DOI: 10.1038/leu.2013.344] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 12/29/2022]
Abstract
Although the familial clustering of multiple myeloma (MM) supports the role of inherited susceptibility, only recently has direct evidence for genetic predisposition been demonstrated. A meta-analysis of two genome-wide association (GWA) studies has identified single-nucleotide polymorphisms (SNPs) localising to a number of genomic regions that are robustly associated with MM risk. In this review, we provide an overview of the evidence supporting a genetic contribution to the predisposition to MM and MGUS (monoclonal gammopathy of unknown significance), and the insight this gives into the biological basis of disease aetiology. We also highlight the promise of future approaches to identify further specific risk factors and their potential clinical utility.
Collapse
Affiliation(s)
- G J Morgan
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Institute of Cancer Research, Surrey, UK
| | - D C Johnson
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Institute of Cancer Research, Surrey, UK
| | - N Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - H Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - O Landgren
- Multiple Myeloma Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - H T Lynch
- Department of Preventive Medicine, Creighton's Hereditary Cancer Center, Omaha, NE, USA
| | - K Hemminki
- 1] Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany [2] Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - R S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, Surrey, UK
| |
Collapse
|
48
|
Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 2014; 28:1725-1735. [PMID: 24518206 PMCID: PMC4126852 DOI: 10.1038/leu.2014.70] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/17/2023]
Abstract
MYC locus rearrangements – often complex combinations of translocations, insertions, deletions, and inversions - in multiple myeloma (MM) were thought to be a late progression event, which often did not involve immunoglobulin genes. Yet germinal center activation of MYC expression has been reported to cause progression to MM in an MGUS prone mouse strain. Although previously detected in 16% of MM, we find MYC rearrangements in nearly 50% of MM, including smoldering MM, and they are heterogeneous in some cases. Rearrangements reposition MYC near a limited number of genes associated with conventional enhancers, but mostly with super-enhancers (e.g., IGH, IGL, IGK, NSMCE2, TXNDC5, FAM46C, FOXO3, IGJ, PRDM1). MYC rearrangements are associated with a significant increase of MYC expression that is monoallelic, but MM tumors lacking a rearrangement have bi-allelic MYC expression at significantly higher levels than in MGUS. We also show that germinal center activation of MYC does not cause MM in a mouse strain that rarely develops spontaneous MGUS. It appears that increased MYC expression at the MGUS/MM transition usually is bi-allelic, but sometimes can be mono-allelic if there is a MYC rearrangement. Our data suggests that MYC rearrangements, regardless of when they occur during MM pathogenesis, provide one event that contributes to tumor autonomy.
Collapse
|
49
|
Sekiguchi N, Ootsubo K, Wagatsuma M, Midorikawa K, Nagata A, Noto S, Yamada K, Takezako N. Impact of C-Myc gene-related aberrations in newly diagnosed myeloma with bortezomib/dexamethasone therapy. Int J Hematol 2014; 99:288-95. [PMID: 24496825 DOI: 10.1007/s12185-014-1514-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 12/28/2022]
Abstract
Recent studies have suggested that c-Myc over-expression may be a factor indicating poor prognosis in multiple myeloma (MM), although c-Myc gene-related abnormalities, including translocation and gene amplification, have not been fully investigated in the novel agent era. Additional chromosome 8 may be considered as aggressive disease in the 1990s. To clarify the impact of these aberrations, we retrospectively analyzed newly diagnosed MM (NDMM) and relapsed/refractory MM (RRMM) with bortezomib and dexamethasone induction therapy. In the present study, the high-risk group was defined as having at least one of the following present: non-hyperdiploidy, IgH/FGFR3, and del p53. Forty NDMM cases were analyzed. At the median follow-up duration of 14.1 months, 14 RRMM were recognized. The proportions of patients in the high-risk, c-Myc gene-related aberrations, and additional chromosome 8 groups at diagnosis were 45.5, 22.5, and 10 %, respectively. The proportions of patients who developed RRMM in the high-risk, c-Myc gene-related aberrations, and additional chromosome 8 groups were 41.7, 77.7, and 50 %, respectively. Furthermore, patients with c-Myc gene-related abnormalities tended to exhibit inferior progression-free survival (PFS), and those with c-Myc gene-related abnormalities and/or additional chromosome 8 showed statistically shorter PFS. Therefore, c-Myc gene-related abnormalities and additional chromosome 8 may be related to a poorer prognosis.
Collapse
Affiliation(s)
- Naohiro Sekiguchi
- Division of Hematology, National Hospital Organization Disaster Medical Center, 3256 Midori-cho, Tachikawa, Tokyo, 190-0014, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Palladino C, Bruno B, Boccadoro M. Discovering the meaning of monoclonal gammopathy of undetermined significance: current knowledge, future challenges. Transl Med UniSa 2014; 8:12-8. [PMID: 24778994 PMCID: PMC4000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/04/2014] [Indexed: 11/17/2022] Open
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) is a non malignant plasma cell disorder with a relatively low risk of progression to Multiple Myeloma (MM) and to related Plasma cells disordes (lymphoplasmacellular neoplasms, Waldenstrom Macroglobulinemia or light chain amyloidosis). It is a quite common finding, especially in the population above the age of 50 and it can also present in association with many non malignant conditions. Differential diagnosis of symptomatic and asymptomatic forms is the determinant for starting therapy. Over the last few years many advances in the understanding of the biology of MGUS, together with large epidemiological studies, allowed to define risk models to estimate the risk of progression to MM according to MGUS isotype and, more recently, to peculiar flow cytometry findings. The goal of many recent studies aims at evaluating individual patients and their overall risk of progression, the detection of early signs of progression and the development of timely treatment strategies.
Collapse
Affiliation(s)
- C. Palladino
- Division of Hematology, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino, Torino, Italy
| | - B. Bruno
- Division of Hematology, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino, Torino, Italy,
| | - M. Boccadoro
- Division of Hematology, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|