1
|
Costa A, Gurnari C, Scalzulli E, Cicconi L, Guarnera L, Carmosino I, Cerretti R, Bisegna ML, Capria S, Minotti C, Iori AP, Torrieri L, Venditti A, Pulsoni A, Martelli M, Voso MT, Breccia M. Response Rates and Transplantation Impact in Patients with Relapsed Acute Promyelocytic Leukemia. Cancers (Basel) 2024; 16:3214. [PMID: 39335185 PMCID: PMC11429657 DOI: 10.3390/cancers16183214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has radically improved the prognosis of acute promyelocytic leukemia (APL), with cure rates above 80%. While relapse occurs in less than 20% of cases, addressing this issue remains challenging. Identifying effective salvage therapies for relapsed APL is crucial to improve patient outcomes. METHODS A retrospective analysis was performed on a multicentric cohort of 67 APL patients in first relapse, treated in three Italian hematology centers from June 1981 to November 2021. The overall survival (OS) and cumulative incidence of relapse (CIR) were calculated, and predictive factors were assessed using Cox regression models. RESULTS Overall, 61 patients (91%) received ATO ± ATRA (40.3%), chemo-based regimens (40.3%), or ATRA ± Gemtuzumab ozogamicin (GO) (10.4%). Complete remission (CR) was achieved in 98.2% of patients (molecular CR, n = 71.4%). With a median follow-up time of 54.5 months, the 5-year OS was 73% in the ATO ± ATRA group, 44% in the chemo-based group, and 29% in the ATRA ± GO group (p = 0.035). The 5-year OS rate was also higher for transplant recipients vs. non-recipients within the chemo-based cohort (50% vs. 33%, p = 0.017), but not in the ATO-based cohort (p = 0.12). ATO-based salvage therapy resulted in better OS in both univariate (p = 0.025) and multivariate analyses (p = 0.026). The 2-year CIR was higher in patients without molecular CR vs. patients in molecular CR (66% vs. 24%, p = 0.034). Molecular CR was a significant predictor of second relapse in both univariate (p = 0.035) and multivariate analyses (p = 0.036). CONCLUSIONS Our findings support the efficacy of ATO-based therapies in first relapse of APL and confirm the achievement of molecular remission as an independent outcome predictor in both first and second APL relapse.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, 09121 Cagliari, Italy
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| | - Laura Cicconi
- Department of Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, 04100 Latina, Italy
| | - Luca Guarnera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| | - Raffaella Cerretti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| | - Saveria Capria
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| | - Clara Minotti
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| | - Anna Paola Iori
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| | - Lorenzo Torrieri
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Pulsoni
- Department of Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, 04100 Latina, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, 00161 Rome, Italy
| |
Collapse
|
2
|
Marques IS, Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, de Melo IG, Assis J, Pereira D, Medeiros R. Long Non-Coding RNAs: Bridging Cancer-Associated Thrombosis and Clinical Outcome of Ovarian Cancer Patients. Int J Mol Sci 2023; 25:140. [PMID: 38203310 PMCID: PMC10778953 DOI: 10.3390/ijms25010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer (OC) and venous thromboembolism (VTE) have a close relationship, in which tumour cells surpass the haemostatic system to drive cancer progression. Long non-coding RNAs (lncRNAs) have been implicated in VTE pathogenesis, yet their roles in cancer-associated thrombosis (CAT) and their prognostic value are unexplored. Understanding how these lncRNAs influence venous thrombogenesis and ovarian tumorigenesis may lead to the identification of valuable biomarkers for VTE and OC management. Thus, this study evaluated the impact of five lncRNAs, namely MALAT1, TUG1, NEAT1, XIST and MEG8, on a cohort of 40 OC patients. Patients who developed VTE after OC diagnosis had worse overall survival compared to their counterparts (log-rank test, p = 0.028). Elevated pre-chemotherapy MEG8 levels in peripheral blood cells (PBCs) predicted VTE after OC diagnosis (Mann-Whitney U test, p = 0.037; Χ2 test, p = 0.033). In opposition, its low levels were linked to a higher risk of OC progression (adjusted hazard ratio (aHR) = 3.00; p = 0.039). Furthermore, low pre-chemotherapy NEAT1 levels in PBCs were associated with a higher risk of death (aHR = 6.25; p = 0.008). As for the remaining lncRNAs, no significant association with VTE incidence, OC progression or related mortality was observed. Future investigation with external validation in larger cohorts is needed to dissect the implications of the evaluated lncRNAs in OC patients.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
3
|
Sun Z, Lin D, Shen Y, Ma K, Wang B, Liu H, Chen S, Wu D, Wang Y. Critical role of MXRA7 in differentiation blockade in human acute promyelocytic leukemia cells. Exp Hematol 2023; 125-126:45-54. [PMID: 37419299 DOI: 10.1016/j.exphem.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
The biology of the matrix remodeling-associated 7 (MXRA7) gene has been ill defined. Bioinformatic analysis of public data sets revealed that MXRA7 messenger RNA (mRNA) was highly expressed in acute myeloid leukemia (AML), especially acute promyelocytic leukemia (APL). High expression of MXRA7 was associated with poor overall survival of patients with AML. We confirmed that MXRA7 expression was upregulated in patients with APL and cell lines. Knockdown or overexpression of MXRA7 did not affect the proliferation of NB4 cells directly. Knockdown of MXRA7 in NB4 cells promoted drug-induced cell apoptosis, whereas overexpression of MXRA7 had no obvious influence on drug-induced cell apoptosis. Lowering MXRA7 protein levels in NB4 cells promoted all-trans retinoic acid (ATRA)-induced cell differentiation possibly through decreasing the PML-RARα level and increasing PML and RARα levels. Correspondingly, overexpression of MXRA7 showed consistent results. We also demonstrated that MXRA7 altered the expression of genes involved in leukemic cell differentiation and growth. Knockdown of MXRA7 upregulated the expression levels of C/EBPB, C/EBPD, and UBE2L6, and downregulated the expression levels of KDM5A, CCND2, and SPARC. Moreover, knockdown of MXRA7 inhibited the malignancy of NB4 cells in a non-obese diabetic-severe combined immune-deficient mice model. In conclusion, this study demonstrated that MXRA7 influences the pathogenesis of APL via regulation of cell differentiation. The novel findings about the role of MXRA7 in leukemia not only shed light on the biology of this gene but also proposed this gene as a new target for APL treatment.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunpeng Ma
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Benfang Wang
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Hong Liu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Suning Chen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Yiqiang Wang
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
4
|
Franza M, Albanesi J, Mancini B, Pennisi R, Leone S, Acconcia F, Bianchi F, di Masi A. The clinically relevant CHK1 inhibitor MK-8776 induces the degradation of the oncogenic protein PML-RARα and overcomes ATRA resistance in acute promyelocytic leukemia cells. Biochem Pharmacol 2023:115675. [PMID: 37406967 DOI: 10.1016/j.bcp.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Acute promyelocytic leukemia (APL) is a hematological disease characterized by the expression of the oncogenic fusion protein PML-RARα. The current treatment approach for APL involves differentiation therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, the development of resistance to therapy, occurrence of differentiation syndrome, and relapses necessitate the exploration of new treatment options that induce differentiation of leukemic blasts with low toxicity. In this study, we investigated the cellular and molecular effects of MK-8776, a specific inhibitor of CHK1, in ATRA-resistant APL cells. Treatment of APL cells with MK-8776 resulted in a decrease in PML-RARα levels, increased expression of CD11b, and increased granulocytic activity consistent with differentiation. Interestingly, we showed that the MK-8776-induced differentiating effect resulted synergic with ATO. We found that the reduction of PML-RARα by MK-8776 was dependent on both proteasome and caspases. Specifically, both caspase-1 and caspase-3 were activated by CHK1 inhibition, with caspase-3 acting upstream of caspase-1. Activation of caspase-3 was necessary to activate caspase-1 and promote PML-RARα degradation. Transcriptomic analysis revealed significant modulation of pathways and upstream regulators involved in the inflammatory response and cell cycle control upon MK-8776 treatment. Overall, the ability of MK-8776 to induce PML-RARα degradation and stimulate differentiation of immature APL cancer cells into more mature forms recapitulates the concept of differentiation therapy. Considering the in vivo tolerability of MK-8776, it will be relevant to evaluate its potential clinical benefit in APL patients resistant to standard ATRA/ATO therapy, as well as in patients with other forms of acute leukemias.
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Jacopo Albanesi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Benedetta Mancini
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Stefano Leone
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Filippo Acconcia
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alessandra di Masi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy.
| |
Collapse
|
5
|
Wang L, Zhang Q, Ye L, Ye X, Yang W, Zhang H, Zhou X, Ren Y, Ma L, Zhang X, Mei C, Xu G, Li K, Luo Y, Jiang L, Lin P, Zhu S, Lang W, Wang Y, Shen C, Han Y, Liu X, Yang H, Lu C, Sun J, Jin J, Tong H. All-trans retinoic acid enhances the cytotoxic effect of decitabine on myelodysplastic syndromes and acute myeloid leukaemia by activating the RARα-Nrf2 complex. Br J Cancer 2023; 128:691-701. [PMID: 36482192 PMCID: PMC9938271 DOI: 10.1038/s41416-022-02074-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Decitabine (DAC) is used as the first-line therapy in patients with higher-risk myelodysplastic syndromes (HR-MDS) and elderly acute myeloid leukaemia (AML) patients unsuitable for intensive chemotherapy. However, the clinical outcomes of patients treated with DAC as a monotherapy are far from satisfactory. Adding all-trans retinoic acid (ATRA) to DAC reportedly benefitted MDS and elderly AML patients. However, the underlying mechanisms remain unclear and need further explorations from laboratory experiments. METHODS We used MDS and AML cell lines and primary cells to evaluate the combined effects of DAC and ATRA as well as the underlying mechanisms. We used the MOLM-13-luciferase murine xenograft model to verify the enhanced cytotoxic effect of the drug combination. RESULTS The combination treatment reduced the viability of MDS/AML cells in vitro, delayed leukaemia progress, and extended survival in murine xenograft models compared to non- and mono-drug treated models. DAC application as a single agent induced Nrf2 activation and downstream antioxidative response, and restrained reactive oxygen species (ROS) generation, thus leading to DAC resistance. The addition of ATRA blocked Nrf2 activation by activating the RARα-Nrf2 complex, leading to ROS accumulation and ROS-dependent cytotoxicity. CONCLUSIONS These results demonstrate that combining DAC and ATRA has potential for the clinical treatment of HR-MDS/AML and merits further exploration.
Collapse
Affiliation(s)
- Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Xingnong Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Hua Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Gaixiang Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Kongfei Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Lingxu Jiang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Peipei Lin
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, Zhejiang, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Yuxia Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Chuying Shen
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Yueyuan Han
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Haiyang Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Chenxi Lu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Haidary AM, Noor S, Noor S, Ahmad M, Yousufzai AW, Saadaat R, Ahmed ZA, Rasooli AJ, Zahier AS, Malakzai HA, Ibrahimkhil AS, Sharif S, Anwari MS, Saqib AH, Baryali T, Nasir N. Rare additional chromosomal abnormalities in acute promyelocytic leukaemia resulting in rapidly fatal disease: report of a case. EJHAEM 2022; 3:218-222. [PMID: 35846222 PMCID: PMC9175789 DOI: 10.1002/jha2.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Background Acute promyelocytic leukaemia results from reciprocal translocation between the long arms of chromosomes 15 and 17. This translocation leads to the formation of chimeric gene, which is both the diagnostic marker as well as the therapeutic target of the disease. Additional chromosomal abnormalities are randomly encountered either at diagnosis or during therapy. Here, we present a case of acute promyelocytic leukaemia that had a rare cytogenetic profile at diagnosis. Case presentation Our patient was a 14-year-old boy, who presented with characteristic clinical and morphological features of acute promyelocytic leukaemia. Karyotypic analysis revealed trisomy of chromosome 8 with deletion of 9p in addition to t(15;17). The patient passed away within the first 8 h of presentation while receiving conventional chemotherapy and haemodynamic resuscitation. Conclusion Our patient presented with a rare cytogenetic profile and rapidly progressive disease. According to our extensive literature search, this was the first case of acute promyelocytic leukaemia having pathognomonic t(15;17) along with trisomy 8 and 9q deletion.
Collapse
Affiliation(s)
- Ahmed Maseh Haidary
- Department of Pathology and Clinical LaboratoryFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | - Sarah Noor
- Department of Haemato‐OncologyAli‐Abad Teaching HospitalKabulAfghanistan
| | - Sahar Noor
- Department of Paediatric MedicineFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | - Maryam Ahmad
- Department of Pathology and Clinical LaboratoryFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | | | - Ramin Saadaat
- Department of Pathology and Clinical LaboratoryFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | - Zeeshan Ansar Ahmed
- Department of Pathology and Laboratory ServicesAgha Khan UniversityKarachiPakistan
| | - Abdul Jamil Rasooli
- Department of Paediatric MedicineFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | | | - Haider Ali Malakzai
- Department of Pathology and Clinical LaboratoryFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | - Abdul Sami Ibrahimkhil
- Department of Pathology and Clinical LaboratoryFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | - Samuel Sharif
- Department of Pathology and Clinical LaboratoryFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | - Mohammad Sarwar Anwari
- Department of Pathology and Clinical LaboratoryFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | - Abdul Hadi Saqib
- Department of Pathology and Clinical LaboratoryFrench Medical Institute for Mothers and Children (FMIC)KabulAfghanistan
| | - Tawab Baryali
- Department of QualityFrench Medical Institute for Mothers and ChildrenKabulAfghanistan
| | - Najla Nasir
- Department of Internal MedicineRabia Balkhi HospitalKabulAfghanistan
| |
Collapse
|
8
|
Sanz MA, Barragán E. History of Acute Promyelocytic Leukemia. Clin Hematol Int 2021; 3:142-152. [PMID: 34938986 PMCID: PMC8690702 DOI: 10.2991/chi.k.210703.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
In this article, we discuss the history of acute promyelocytic leukemia (APL) from the pre-therapeutic era, which began after its recognition by Hillestad in 1947 as a nosological entity, to the present day. It is a paradigmatic history that has transformed the “most malignant leukemia form” into the most curable one. The identification of a balanced reciprocal translocation between chromosomes 15 and 17, resulting in fusion between the promyelocytic leukemia gene and the retinoic acid receptor alpha, has been crucial in understanding the mechanisms of leukemogenesis, and responsible for the peculiar response to targeted therapy with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). We review the milestones that marked successive therapeutic advances, beginning with the introduction of the first successful chemotherapy in the early 1970s, followed by a subsequent incorporation of ATRA and ATO in the late 1980s and early 1990s which have revolutionized the treatment of this disease. Over the past two decades, treatment optimization has relied on the combination of ATRA, ATO, and chemotherapy according to risk-adapted approaches, which together with improvements in supportive therapy have paved the way for cure for most patients with APL.
Collapse
Affiliation(s)
- Miguel A Sanz
- Department of Hematology, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Eva Barragán
- Clinical Laboratory, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Carlos III Institute, Madrid, Spain
| |
Collapse
|
9
|
Gurnari C, Divona M, Voso MT. What are the considerations for the pharmacotherapeutic management of acute promyelocytic leukemia in children? Expert Opin Pharmacother 2021; 23:289-294. [PMID: 34842028 DOI: 10.1080/14656566.2021.2006182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, OH, USA
| | - Mariadomenica Divona
- Laboratory of Advanced Diagnostics in Oncohematology, Hematology Department, Tor Vergata Hospital, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Neuro-Oncohematology, Rome, Italy
| |
Collapse
|
10
|
Fabiani E, Cicconi L, Nardozza AM, Cristiano A, Rossi M, Ottone T, Falconi G, Divona M, Testi AM, Annibali O, Castelli R, Lazarevic V, Rego E, Montesinos P, Esteve J, Venditti A, Della Porta M, Arcese W, Lo-Coco F, Voso MT. Mutational profile of ZBTB16-RARA-positive acute myeloid leukemia. Cancer Med 2021; 10:3839-3847. [PMID: 34042280 PMCID: PMC8209618 DOI: 10.1002/cam4.3904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background The ZBTB16‐RARA fusion gene, resulting from the reciprocal translocation between ZBTB16 on chromosome 11 and RARA genes on chromosome 17 [t(11;17)(q23;q21)], is rarely observed in acute myeloid leukemia (AML), and accounts for about 1% of retinoic acid receptor‐α (RARA) rearrangements. AML with this rare translocation shows unusual bone marrow (BM) morphology, with intermediate aspects between acute promyelocytic leukemia (APL) and AML with maturation. Patients may have a high incidence of disseminated intravascular coagulation at diagnosis, are poorly responsive to all‐trans retinoic acid (ATRA) and arsenic tryoxyde, and are reported to have an overall poor prognosis. Aims The mutational profile of ZBTB16‐RARA rearranged AML has not been described so far. Materials and methods We performed targeted next‐generation sequencing of 24 myeloid genes in BM diagnostic samples from seven ZBTB16‐RARA+AML, 103 non‐RARA rearranged AML, and 46 APL. The seven ZBTB16‐RARA‐positive patients were then screened for additional mutations using whole exome sequencing (n = 3) or an extended cancer panel including 409 genes (n = 4). Results ZBTB16‐RARA+AML showed an intermediate number of mutations per patient and involvement of different genes, as compared to APL and other AMLs. In particular, we found a high incidence of ARID1A mutations in ZBTB16‐RARA+AML (five of seven cases, 71%). Mutations in ARID2 and SMARCA4, other tumor suppressor genes also belonging to SWI/SNF chromatin remodeling complexes, were also identified in one case (14%). Discussion and conclusion Our data suggest the association of mutations of the ARID1A gene and of the other members of the SWI/SNF chromatin remodeling complexes with ZBTB16‐RARA+AMLs, where they may support the peculiar disease phenotype.
Collapse
Affiliation(s)
- Emiliano Fabiani
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Laura Cicconi
- Unit of Hematology, Santo Spirito Hospital, Rome, Italy
| | - Anna Maria Nardozza
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Marianna Rossi
- Cancer Center - IRCCS Humanitas Clinical & Research Hospital and Humanitas University, Milan, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Anna Maria Testi
- Department of Translational and Precision Medicine and Hematology, Sapienza University, Rome, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplantation Unit, University Campus Biomedico, Rome, Italy
| | - Roberto Castelli
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, Milan, Italy
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Eduardo Rego
- Department of Internal Medicine, Medical School of Ribeirao Preto, Sau Paulo, Brazil
| | - Pau Montesinos
- Hematology Department, Hospital Universitari i Politècnico la Fe, Valencia, Spain
| | - Jordi Esteve
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Matteo Della Porta
- Cancer Center - IRCCS Humanitas Clinical & Research Hospital and Humanitas University, Milan, Italy
| | - William Arcese
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| |
Collapse
|
11
|
Gurnari C, Voso MT, Girardi K, Mastronuzzi A, Strocchio L. Acute Promyelocytic Leukemia in Children: A Model of Precision Medicine and Chemotherapy-Free Therapy. Int J Mol Sci 2021; 22:ijms22020642. [PMID: 33440683 PMCID: PMC7826974 DOI: 10.3390/ijms22020642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute promyelocytic leukemia (APL) represents a paradigm of precision medicine. Indeed, in the last decades, the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) completely revolutionized the therapeutic approach to this previously highly fatal disorder. This entirely chemotherapy-free treatment, which provided excellent survival rates, has been initially validated in adults and, recently, translated in the pediatric setting. This review summarizes currently available data on the use of ATRA and ATO combination in pediatric APL, providing a particular focus on peculiar issues and challenges, such as the occurrence of pseudotumor cerebri and death during induction (early death), as well as the advantage offered by the ATO/ATRA combination in sparing long-term sequelae.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Laboratorio di Neuro-Oncoematologia, Fondazione Santa Lucia, 00179 Rome, Italy
| | - Katia Girardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
| | - Angela Mastronuzzi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
| | - Luisa Strocchio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
- Correspondence:
| |
Collapse
|
12
|
Xu HH, Wang NN, Jiang ZH, Sun YT, Xu LL, Ma ZC, Gao Y. Sharing and Helping: Regularity and Characteristics of Pathogenesis of a Widely Used Transgene Initiated Murine Acute Promyelocytic Leukemia Model. Stem Cells Dev 2020; 30:39-48. [PMID: 33176587 DOI: 10.1089/scd.2020.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A transgenic acute promyelocytic leukemia (APL) murine model established by Michael Bishop by cloning a human PML-RARα cDNA into the hMRP8 expression cassette has been widely used in the all-trans retinoid acid and arsenic preparations for the research of APL. However, in the existing literature, the data of regularity and characteristics of the pathogenesis of this model were still missing, which hinder the development of many studies, especially application of new technologies such as single-cell sequencing. Therefore, in this article, we have made up this part of the missing data using an improved APL murine model. We clarified the effects of different inoculation doses on the onset time, latency, morbidity, life span, and proportion of APL cells in peripheral blood (PB), spleen, bone marrow, and so on. The relationship between the proportion of APL cells in the bone marrow, spleen, and PB and organ histological changes was also revealed. These results were a supplement and refinement of this APL model. It would add to the knowledge base of the field and aid in ensuring that accurate models are used for directed interventions. It also provides a great convenience for the researchers who will carry out similar research.
Collapse
Affiliation(s)
- Huan-Hua Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ning-Ning Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhen-Hong Jiang
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Yu-Ting Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Long-Long Xu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Zeng-Chun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
13
|
Rashid A, Wang R, Zhang L, Yue J, Yang M, Yen A. Dissecting the novel partners of nuclear c-Raf and its role in all-trans retinoic acid (ATRA)-induced myeloblastic leukemia cells differentiation. Exp Cell Res 2020; 394:111989. [PMID: 32283065 PMCID: PMC10656057 DOI: 10.1016/j.yexcr.2020.111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023]
Abstract
All-trans retinoic acid (ATRA) is an anti-cancer differentiation therapy agent effective for acute promyelocytic leukemia (APL) but not acute myeloid leukemia (AML) in general. Using the HL-60 human non-APL AML model where ATRA causes nuclear enrichment of c-Raf that drives differentiation and G1/G0 cell cycle arrest, we now observe that c-Raf in the nucleus showed novel interactions with several prominent regulators of the cell cycle and cell differentiation. One is cyclin-dependent kinase 2 (Cdk2). ATRA treatment caused c-Raf to dissociate from Cdk2. This was associated with enhanced binding of Cdk2 with retinoic acid receptor α (RARα). Consistent with this novel Raf/CDK2/RARα axis contributing to differentiation, CD38 expression per cell, which is transcriptionally regulated by a retinoic acid response element (RARE), is enhanced. The RB tumor suppressor, a fundamental regulator of G1 cell cycle progression or arrest, was also targeted by c-Raf in the nucleus. RB and specifically the S608 phosphorylated form (pS608RB) complexed with c-Raf. ATRA treatment induced S608RB-hypophosphorylation associated with G1/G0 cell cycle arrest and release of c-Raf from RB. We also found that nuclear c-Raf interacted with SMARCD1, a pioneering component of the SWI/SNF chromatin remodeling complex. ATRA treatment diminished the amount of this protein bound to c-Raf. The data suggest that ATRA treatment to HL-60 human cells re-directed c-Raf from its historically pro-proliferation functions in the cytoplasm to pro-differentiation functions in the nucleus.
Collapse
Affiliation(s)
- Asif Rashid
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Rui Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Devadas SK, Jain H, Bagal B, Sengar M, Dangi U, Khattry N, Amre P, Patkar N, Subramaniam PG, Nair R, Menon H. Sequential Treatment of Arsenic Trioxide Followed by All Trans Retinoic Acid with Anthracyclines has Excellent Long-Term Cure in Acute Promyelocytic Leukemia. Indian J Hematol Blood Transfus 2020; 37:30-36. [PMID: 33692610 PMCID: PMC7900266 DOI: 10.1007/s12288-020-01311-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) remains the most curable myeloid leukemia made feasible through effective use of two differentiating agents, all trans retinoic acid (ATRA) and arsenic trioxide (ATO) with or without chemotherapy (CT). However, early morbidity and mortality remains a problem. With the objective of reducing early death a strategy of sequential induction ATO followed by consolidation ATRA in combination with CT was adopted by our group. The long-term outcomes of patient of APL treated on this sequential approach at our center was analyzed. In this retrospective analysis of prospectively maintained database consecutive adult patients with APL irrespective of their Sanz risk group were treated using a protocol of ATO (10 mg IV infusion over 3 h daily for 45 days) in the first phase followed by ATRA (45 mg/m2 for 60 days) in combination with Daunorubicin (60 mg/m2 for 3 days × 3 cycles) in second phase. All patients received maintenance ATRA (45 m/m2 for 15 days every 3 months) for a period of 18 months in phase 3. Patients were monitored for cytogenetic and molecular responses after phase 1 and 2. All patients were followed up for toxicity, event free and overall survival. 131 consecutive patients were treated in this study. At a median follow up of 60 months, 84.81% patients are alive with an overall event free survival (EFS) of 77.82%. Sanz low risk patients fared better (85%) versus intermediate and high-risk patients who had a 76% EFS. Proportion of patients alive at last follow up were 100% in Sanz low risk group and 82% in intermediate and high-risk group. The sequential schedule showed excellent tolerance and toxicity profile when treating newly diagnosed APL. The long-term follow-up data shows comparable if not better survival compared with the published real-world data and this has been consistent across all risk group.
Collapse
Affiliation(s)
| | - Hasmukh Jain
- Department of Medical Oncology, Tata Memorial Center, Lower Parel, Mumbai, India
| | - Bausaheb Bagal
- Department of Medical Oncology, Tata Memorial Center, Lower Parel, Mumbai, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Center, Lower Parel, Mumbai, India
| | - Uma Dangi
- Department of Medical Oncology, Tata Memorial Center, Lower Parel, Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Center, Lower Parel, Mumbai, India
| | - Pratibha Amre
- Department of Cytogenetics, Tata Memorial Center, Mumbai, India
| | - Nikhil Patkar
- Department of Hemato-pathology, Tata Memorial Center, Mumbai, India
| | - P G Subramaniam
- Department of Hemato-pathology, Tata Memorial Center, Mumbai, India
| | - Reena Nair
- Department of Medical Oncology, Tata Memorial Center, Lower Parel, Mumbai, India
| | - Hari Menon
- Department of Medical Oncology, Tata Memorial Center, Lower Parel, Mumbai, India
| |
Collapse
|
15
|
Gurnari C, De Bellis E, Divona M, Ottone T, Lavorgna S, Voso MT. When Poisons Cure: The Case of Arsenic in Acute Promyelocytic Leukemia. Chemotherapy 2020; 64:238-247. [PMID: 32521534 DOI: 10.1159/000507805] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 11/19/2022]
Abstract
Arsenic has been known for centuries for its double-edged potential: a poison and at the same time a therapeutic agent. The name "arsenikon," meaning "potent," speaks itself for the pharmaceutical properties of this compound, questioned and analyzed for at least 2000 years. In the last decades, acute promyelocytic leukemia (APL) has evolved from a highly fatal to a curable disease, due to the use of all-trans-retinoic acid and, more recently, arsenic trioxide combinations. The success of these entirely chemo-free regimens increased the awareness of APL and reduced the prevalence of early deaths, which was an impending issue in this disease. Further improvements are expected with the next use of oral arsenic formulations, which will allow a complete outpatient approach, at least in the post-induction settings, further improving patients' quality of life. The wide use of standardized approaches in APL will also help unravel long-standing open questions, including the pathogenesis, prevention, and treatment of the differentiation syndrome and of short-term organ toxicities. In the long term, the study of survivorship issues, such as fertility and organ-related and psychological damages, in the increasing number of survivors will help further improve their life after APL.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora De Bellis
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Serena Lavorgna
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy, .,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Roma, Italy,
| |
Collapse
|
16
|
Su Z, Liu X, Xu Y, Hu W, Zhao C, Zhao H, Feng X, Zhang S, Yang J, Shi X, Peng J. Novel reciprocal fusion genes involving HNRNPC and RARG in acute promyelocytic leukemia lacking RARA rearrangement. Haematologica 2020; 105:e376-e378. [PMID: 32354871 DOI: 10.3324/haematol.2019.244715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Zhan Su
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao .,Department of Haematology, Qilu Hospital, Cheeloo College of Medcine, Shandong University, Jinan
| | - Xin Liu
- Department of Stem Cell Transplantation, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin
| | - Yan Xu
- Department of Lymphoma & Myloma, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin
| | - Weiyu Hu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao
| | - Chunting Zhao
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao
| | - Hongguo Zhao
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao
| | - Xianqi Feng
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao
| | - Shuchao Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Yang
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao
| | - Xue Shi
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao
| | - Jun Peng
- Department of Haematology, Qilu Hospital, Cheeloo College of Medcine, Shandong University, Jinan
| |
Collapse
|
17
|
Dang CC, Guan YK, Lau NS, Chan SY. Two successful deliveries of healthy children by a young woman diagnosed and treated during induction and relapsed therapy for acute promyelocytic leukemia. J Oncol Pharm Pract 2020; 26:2034-2037. [PMID: 32279594 DOI: 10.1177/1078155220915764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Acute promyelocytic leukemia is an oncologic emergency. The limited cases reported in the literature have led to poor understanding of the safety of management of acute promyelocytic leukemia during pregnancy. CASE REPORT Herein is an acute promyelocytic leukemia case of a 22-year-old young pregnant woman who had various social problems. The patient was diagnosed with acute promyelocytic leukemia in her the second trimester of her first pregnancy.Management and outcome: She was treated with all-trans-retinoic acid with idarubicin and successfully delivered a healthy baby. She completed induction with idarubicin but defaulted her all-trans-retinoic acid, 6-mercaptopurine and methotrexate maintenance. She relapsed after one year and was salvaged with all-trans-retinoic acid high dose cytarabine and arsenic trioxide. She went into remission and had autologous stem cells collected and was planned for an autologous stem cell transplant but she defaulted. She relapsed when she was pregnant with her second baby during her third trimester (29+weeks) 10 months later. Salvage chemotherapy with arsenic trioxide, all-trans-retinoic acid and idarubicin was given. Patient underwent an emergency lower segment caesarian section at 31 weeks of pregnancy due to abnormal fetal cardiotocography. A healthy baby was delivered. DISCUSSION This drug regimen is controversial during pregnancy owing to the teratogenic effects and fatal retinoic acid syndrome especially in early gestation. In this case, patient was started the induction therapy of all-trans-retinoic acid treatment at her second trimester during her first pregnancy. CONCLUSION Our lady demonstrated the possibility of using all-trans-retinoic acid and arsenic trioxide and chemotherapy during second and third trimester with successful pregnancy outcomes.
Collapse
Affiliation(s)
- Chee Chean Dang
- Department of Pharmacy (Oncology/Haematology), Hospital Melaka, Melaka, Malaysia.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yong Khee Guan
- Clinical Haematology & Internal Medicine, Pantai Hospital Ayer Keroh, Melaka, Malaysia
| | - Ngee Siang Lau
- Department of Medicine (Haematology), Hospital Melaka, Melaka, Malaysia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
18
|
Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers (Basel) 2020; 12:cancers12030624. [PMID: 32182684 PMCID: PMC7139833 DOI: 10.3390/cancers12030624] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Although acute promyelocytic leukemia (APL) is one of the most characterized forms of acute myeloid leukemia (AML), the molecular mechanisms involved in the development and progression of this disease are still a matter of study. APL is defined by the PML-RARA rearrangement as a consequence of the translocation t(15;17)(q24;q21). However, this abnormality alone is not able to trigger the whole leukemic phenotype and secondary cooperating events might contribute to APL pathogenesis. Additional somatic mutations are known to occur recurrently in several genes, such as FLT3, WT1, NRAS and KRAS, whereas mutations in other common AML genes are rarely detected, resulting in a different molecular profile compared to other AML subtypes. How this mutational spectrum, including point mutations in the PML-RARA fusion gene, could contribute to the 10%–15% of relapsed or resistant APL patients is still unknown. Moreover, due to the uncertain impact of additional mutations on prognosis, the identification of the APL-specific genetic lesion is still the only method recommended in the routine evaluation/screening at diagnosis and for minimal residual disease (MRD) assessment. However, the gene expression profile of genes, such as ID1, BAALC, ERG, and KMT2E, once combined with the molecular events, might improve future prognostic models, allowing us to predict clinical outcomes and to categorize APL patients in different risk subsets, as recently reported. In this review, we will focus on the molecular characterization of APL patients at diagnosis, relapse and resistance, in both children and adults. We will also describe different standardized molecular approaches to study MRD, including those recently developed. Finally, we will discuss how novel molecular findings can improve the management of this disease.
Collapse
Affiliation(s)
- Alessandro Liquori
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Mariam Ibañez
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Claudia Sargas
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Miguel Ángel Sanz
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Eva Barragán
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - José Cervera
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
19
|
Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, Daver N. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discov 2020; 10:506-525. [DOI: 10.1158/2159-8290.cd-19-1011] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
|
20
|
Mitrovic M, Kostic T, Virijevic M, Karan‐Djurasevic T, Suvajdzic Vukovic N, Pavlovic S, Tosic N. The influence of Wilms' tumor 1 gene expression level on prognosis and risk stratification of acute promyelocytic leukemia patients. Int J Lab Hematol 2019; 42:82-87. [DOI: 10.1111/ijlh.13144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mirjana Mitrovic
- Clinic of Hematology Clinical Center of Serbia Belgrade Serbia
- School of Medicine University of Belgrade Belgrade Serbia
| | - Tatjana Kostic
- Institute for Molecular Genetics and Genetic Engineering University of Belgrade Belgrade Serbia
| | - Marijana Virijevic
- Clinic of Hematology Clinical Center of Serbia Belgrade Serbia
- School of Medicine University of Belgrade Belgrade Serbia
| | | | - Nada Suvajdzic Vukovic
- Clinic of Hematology Clinical Center of Serbia Belgrade Serbia
- School of Medicine University of Belgrade Belgrade Serbia
| | - Sonja Pavlovic
- Institute for Molecular Genetics and Genetic Engineering University of Belgrade Belgrade Serbia
| | - Natasa Tosic
- Institute for Molecular Genetics and Genetic Engineering University of Belgrade Belgrade Serbia
| |
Collapse
|
21
|
NLS-RARα contributes to differentiation block and increased leukemogenic potential in vivo. Cell Signal 2019; 65:109431. [PMID: 31654721 DOI: 10.1016/j.cellsig.2019.109431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
The fusion oncogene, promyelocytic leukemia (PML)-retinoic acid receptor-α (RARα), is crucial for acute promyelocytic leukemia (APL) pathogenesis. Previous studies have reported that PML-RARα is cleaved by neutrophil elastase (NE), an early myeloid-specific serine protease, leading to translocation of the nuclear localization signal (NLS) of the PML protein to the N-terminal of RARα. This study was designed to evaluate the value of NLS-RARα in the early diagnosis of APL. To investigate the potential functional role of NLS-RARα in leukemogenesis, HL-60 and U937 cell lines were transfected with NLS-RARα lentivirus and negative control (LVNC). The results showed that the induced expression of NLS-RARα down-regulated expressions of CD11b, CD11c, and CD14 compared to the LVNC group induced by 1α, 25-dihydroxyvitamin D3(1,25(OH)2D3). This suggested that NLS-RARα overexpression inhibited granulocytic and monocytic differentiation of myeloid leukemia cells. In addition, Wright-Giemsa staining, flow cytometry, respiratory burst assay, and NBT reduction assay all confirmed the importance of NLS-RARα in differentiation. The mechanistic investigations revealed that induced NLS-RARα expression inhibited 1,25(OH)2D3-induced granulocytic differentiation by regulating the cell cycle regulators p19INK4D, p21WAF1/CIP1, cyclinD1, cyclin E1, and pRB. Furthermore, the cleaved protein NLS-RARα enhanced the oncogenicity of U937 cells in NOD/SCID mice. These findings collectively demonstrated that NLS-RARα blocked granulocytic and monocytic differentiation of myeloid leukemia cells by inhibiting the downstream targets of the RARα signal pathway and the cell cycle. This may provide a promising new target and method for diagnosing and treating APL.
Collapse
|
22
|
Noguera NI, Catalano G, Banella C, Divona M, Faraoni I, Ottone T, Arcese W, Voso MT. Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies. Cancers (Basel) 2019; 11:cancers11101591. [PMID: 31635329 PMCID: PMC6826966 DOI: 10.3390/cancers11101591] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
This review highlights new findings that have deepened our understanding of the mechanisms of leukemogenesis, therapy and resistance in acute promyelocytic leukemia (APL). Promyelocytic leukemia-retinoic acid receptor α (PML-RARa) sets the cellular landscape of acute promyelocytic leukemia (APL) by repressing the transcription of RARa target genes and disrupting PML-NBs. The RAR receptors control the homeostasis of tissue growth, modeling and regeneration, and PML-NBs are involved in self-renewal of normal and cancer stem cells, DNA damage response, senescence and stress response. The additional somatic mutations in APL mainly involve FLT3, WT1, NRAS, KRAS, ARID1B and ARID1A genes. The treatment outcomes in patients with newly diagnosed APL improved dramatically since the advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). ATRA activates the transcription of blocked genes and degrades PML-RARα, while ATO degrades PML-RARa by promoting apoptosis and has a pro-oxidant effect. The resistance to ATRA and ATO may derive from the mutations in the RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa, but such mutations cannot explain the majority of resistances experienced in the clinic, globally accounting for 5-10% of cases. Several studies are ongoing to unravel clonal evolution and resistance, suggesting the therapeutic potential of new retinoid molecules and combinatorial treatments of ATRA or ATO with different drugs acting through alternative mechanisms of action, which may lead to synergistic effects on growth control or the induction of apoptosis in APL cells.
Collapse
Affiliation(s)
- N I Noguera
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - G Catalano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - C Banella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - M Divona
- Policlinico Tor vergata, 00133 Rome, Italy.
| | - I Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - T Ottone
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - W Arcese
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| | - M T Voso
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| |
Collapse
|
23
|
Iaccarino L, Ottone T, Alfonso V, Cicconi L, Divona M, Lavorgna S, Travaglini S, Ferrantini A, Falconi G, Baer C, Usai M, Forghieri F, Venditti A, Del Principe MI, Arcese W, Voso MT, Haferlach T, Lo‐Coco F. Mutational landscape of patients with acute promyelocytic leukemia at diagnosis and relapse. Am J Hematol 2019; 94:1091-1097. [PMID: 31292998 DOI: 10.1002/ajh.25573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
Despite the high probability of cure of patients with acute promyelocytic leukemia (APL), mechanisms of relapse are still largely unclear. Mutational profiling at diagnosis and/or relapse may help to identify APL patients needing frequent molecular monitoring and early treatment intervention. Using an NGS approach including a 31 myeloid gene-panel, we tested BM samples of 44 APLs at the time of diagnosis, and of 31 at relapse. Mutations in PML and RARA genes were studied using a customized-NGS-RNA panel. Patients relapsing after ATRA-chemotherapy rarely had additional mutations (P = .009). In patients relapsing after ATRA/ATO, the PML gene was a preferential mutation target. We then evaluated the predictive value of mutations at APL diagnosis. A median of two mutations was detectable in 9/11 patients who later relapsed, vs one mutation in 21/33 patients who remained in CCR (P = .0032). This corresponded to a significantly lower risk of relapse in patients with one or less mutations (HR 0.046; 95% CI 0.011-0.197; P < .0001). NGS-analysis at the time of APL diagnosis may inform treatment decisions, including alternative treatments for cases with an unfavorable mutation profile.
Collapse
Affiliation(s)
- Licia Iaccarino
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | - Tiziana Ottone
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
- Neuro‐OncohematologySanta Lucia Foundation, I.R.C.C.S. Rome Italy
| | - Valentina Alfonso
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | - Laura Cicconi
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | | | - Serena Lavorgna
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | - Serena Travaglini
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | - Aleandra Ferrantini
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | - Giulia Falconi
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | | | - Monica Usai
- Hematology Unit, Department of Medical Sciences and Public HealthUniversity of Cagliari Cagliari Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Surgical and Medical SciencesUniversity of Modena and Reggio Emilia Italy
| | - Adriano Venditti
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | | | - William Arcese
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | - Maria Teresa Voso
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| | | | - Francesco Lo‐Coco
- Department of Biomedicine and PreventionUniversity of Tor Vergata Rome Italy
| |
Collapse
|
24
|
Digital PCR in Myeloid Malignancies: Ready to Replace Quantitative PCR? Int J Mol Sci 2019; 20:ijms20092249. [PMID: 31067725 PMCID: PMC6540058 DOI: 10.3390/ijms20092249] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/13/2023] Open
Abstract
New techniques are on the horizon for the detection of small leukemic clones in both, acute leukemias and myeloproliferative disorders. A promising approach is based on digital polymerase chain reaction (PCR). Digital PCR (dPCR) is a breakthrough technology designed to provide absolute nucleic acid quantification. It is particularly useful to detect a low amount of target and therefore it represents an alternative method for detecting measurable residual disease (MRD). The main advantages are the high precision, the very reliable quantification, the absolute quantification without the need for a standard curve, and the excellent reproducibility. Nowadays the main disadvantages of this strategy are the costs that are still higher than standard qPCR, the lack of standardized methods, and the limited number of laboratories that are equipped with instruments for dPCR. Several studies describing the possibility and advantages of using digital PCR for the detection of specific leukemic transcripts or mutations have already been published. In this review we summarize the available data on the use of dPCR in acute myeloid leukemia and myeloproliferative disorders.
Collapse
|
25
|
Pötsch I, Baier D, Keppler BK, Berger W. Challenges and Chances in the Preclinical to Clinical Translation of Anticancer Metallodrugs. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite being “sentenced to death” for quite some time, anticancer platinum compounds are still the most frequently prescribed cancer therapies in the oncological routine and recent exciting news from late-stage clinical studies on combinations of metallodrugs with immunotherapies suggest that this situation will not change soon. It is perhaps surprising that relatively simple molecules like cisplatin, discovered over 50 years ago, are still widely used clinically, while none of the highly sophisticated metal compounds developed over the last decade, including complexes with targeting ligands and multifunctional (nano)formulations, have managed to obtain clinical approval. In this book chapter, we summarize the current status of ongoing clinical trials for anticancer metal compounds and discuss the reasons for previous failures, as well as new opportunities for the clinical translation of metal complexes.
Collapse
Affiliation(s)
- Isabella Pötsch
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Dina Baier
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
| | - Walter Berger
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
26
|
Yan W, Li J, Zhang Y, Yin Y, Cheng Z, Wang J, Hu G, Liu S, Wang Y, Xu Y, Peng H, Zhang G. RNF8 is responsible for ATRA resistance in variant acute promyelocytic leukemia with GTF2I/RARA fusion, and inhibition of the ubiquitin-proteasome pathway contributes to the reversion of ATRA resistance. Cancer Cell Int 2019; 19:84. [PMID: 30992691 PMCID: PMC6449960 DOI: 10.1186/s12935-019-0803-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/23/2019] [Indexed: 01/20/2023] Open
Abstract
Background GTF2I-RARA is a newly identified RARA fusion gene in variant acute promyelocytic leukemia (APL) patients with t(7;17)(q11;q21). Clinical manifestation in the patient showed that it is a sort of ATRA-insensitive oncogene and is different from the classic PML-RARA in terms of therapeutic reaction. Methods To reveal the functional characteristics and regulating mechanism of the GTF2I-RARA fusion gene, we established a GTF2I-RARA-transfected HL60 cell model and examined its sensitivity to ATRA by western blot, MTT assay, flow cytometry, and Wright-Giemsa staining. Coimmunoprecipitation and confocal microscopy were used to examine the binding of GTF2I-RARA and transcriptional corepressors. We also performed ChIP-seq to search for potential target genes. Immunoprecipitation, ubiquitination assay, western blot, luciferase assay, and real-time PCR were used to analyze the effects of RNF8 on RARA. Flow cytometry and Wright-Giemsa staining were used to study the effect of MG132 and ATRA on the GTF2I-RARA-transfected HL60 cell model. Result We confirmed resistance of GTF2I-RARA to ATRA. Compared with PML-RARA, GTF2I-RARA has a higher affinity to HDAC3 under ATRA treatment. Using the ChIP-sequencing approach, we identified 221 GTF2I-RARA binding sites in model cells and found that the RING finger protein 8 (RNF8) is a target gene of GTF2I-RARA. RNF8 participates in disease progression and therapy resistance in APL with the GTF2I-RARA transcript. Elevated RNF8 expression promotes the interaction between RARA and RNF8 and induces RARA Lys-48 linkage ubiquitylation and degradation, resulting in attenuated transcriptional activation of RARA. Conclusion Our results suggest that RNF8 is a key GTF2I-RARA downstream event. Using the combination of MG132 and ATRA to treat GTF2I-RARA-HL60 cells, a synergistic effect leading to GTF2I-RARA-HL60 cell differentiation was confirmed. Taken together, the targeting of RNF8 may be an alternative choice for treatment in variant APL with GTF2I-RARA fusion. Electronic supplementary material The online version of this article (10.1186/s12935-019-0803-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenzhe Yan
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Ji Li
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yang Zhang
- 2Department of Oncology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yafei Yin
- Department of Hematology, Xiangtan Central Hospital, Changsha, 410011 Hunan China
| | - Zhao Cheng
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Jiayi Wang
- 4Department of Nephrology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Guoyu Hu
- 5Department of Hematology, Zhuzhou No.1 Hospital, Zhuzhou, 410011 Hunan China
| | - Sufang Liu
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yewei Wang
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yunxiao Xu
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Hongling Peng
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Guangsen Zhang
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
27
|
Moradzadeh M, Ghorbani A, Erfanian S, Mohaddes ST, Rahimi H, Karimiani EG, Mashkani B, Chiang SC, El-Khamisy SF, Tabarraei A, Sadeghnia HR. Study of the mechanisms of crocetin-induced differentiation and apoptosis in human acute promyelocytic leukemia cells. J Cell Biochem 2019; 120:1943-1957. [PMID: 30203596 DOI: 10.1002/jcb.27489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
Crocetin, the major carotenoid in saffron, exhibits potent anticancer effects. However, the antileukemic effects of crocetin are still unclear, especially in primary acute promyelocytic leukemia (APL) cells. In the current study, the potential antipromyelocytic leukemia activity of crocetin and the underlying molecular mechanisms were investigated. Crocetin (100 µM), like standard anti-APL drugs, all-trans retinoic acid (ATRA, 10 µM) and As2 O 3 (arsenic trioxide, 50 µM), significantly inhibited proliferation and induced apoptosis in primary APL cells, as well as NB4 and HL60 cells. The effect was associated with the decreased expressions of prosurvival genes Akt and BCL2, the multidrug resistance (MDR) proteins, ABCB1 and ABCC1 and the inhibition of tyrosyl-DNA phosphodiesterase 1 (TDP1), while the expressions of proapoptotic genes CASP3, CASP9, and BAX/BCL2 ratio were significantly increased. In contrast, crocetin at relatively low concentration (10 µM), like ATRA (1 µM) and As 2 O 3 (0.5 µM), induced differentiation of leukemic cells toward granulocytic pattern, and increased the number of differentiated cells expressing CD11b and CD14, while the number of the immature cells expressing CD34 or CD33 was decreased. Furthermore, crocetin suppressed the expression of clinical marker promyelocytic leukemia/retinoic acid receptor-α ( PML/RARα) in NB4 and primary APL cells, and reduced the expression of histone deacetylase 1 ( HDAC1) in all leukemic cells. The results suggested that crocetin can be considered as a candidate for future preclinical and clinical trials of complementary APL treatment.
Collapse
Affiliation(s)
- Maliheh Moradzadeh
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of New Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saiedeh Erfanian
- Non-Communicable Diseases Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Seyedeh Tahereh Mohaddes
- Internal Medicine Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Rahimi
- Internal Medicine Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Baratali Mashkani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shih-Chieh Chiang
- Department of Molecular Biology and Biotechnology, Krebs and Sheffield Institute of Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, Krebs and Sheffield Institute of Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Sadeghnia
- Department of New Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Sun J, Zhu J, Zhou D, Zhu L, Yang X, Xie M, Li L, Huang X, Zhu M, Zheng Y, Xie W, Ye X. Factors Affecting Early Death and Survival of Patients With Acute Promyelocytic Leukemia Treated With ATRA-Based Therapy Regimens. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 19:e63-e70. [PMID: 30661514 DOI: 10.1016/j.clml.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE To perform a retrospective analysis of the prognostic relevance of clinicopathologic parameters in a well-documented cohort of patients treated with all-trans-retinoic acid (ATRA)-based induction regimens in order to discover which indicators can predict a high risk of early death (ED) and patient survival. PATIENTS AND METHODS We analyzed data of 288 newly diagnosed adult acute promyelocytic leukemia patients in Hangzhou, China. The median follow-up time was 32 months (range, 6-78 months). RESULTS The 3-year disease-free and overall survival rates were 90.83% and 91.69%, respectively. In the multivariable analysis, older age (≥ 60 years) was the only independent risk factor for ED (hazard ratio [HR] = 15.057; P = .004). High white blood cell count was not a risk factor for ED (P = .055), but it was for relapse (HR = 2.7; P = .009). FLT3 mutation (HR = 3.9; 95% confidence interval, 1.4 to 10; P = .007) and older age (≥ 60 years) (HR = 5.3; 95% confidence interval, 2.4 to 11; P < .001) were prognostic factors for poorer disease-free and overall survival. Interestingly, CD15 negativity (HR = 0.23; P = .049) was a prognostic factor for relapse. The ED rate was 5.9% (17/288 patients). CONCLUSION The perceived impact of the identification of these high-risk factors should be described in order to decide whether any modifications to treatment strategy should be entertained.
Collapse
Affiliation(s)
- Jianai Sun
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jingjing Zhu
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - De Zhou
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lixia Zhu
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiudi Yang
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Mixue Xie
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Li Li
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xianbo Huang
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Mingyu Zhu
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yanlong Zheng
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wanzhuo Xie
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiujin Ye
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
29
|
Basophil-lineage commitment in acute promyelocytic leukemia predicts for severe bleeding after starting therapy. Mod Pathol 2018; 31:1318-1331. [PMID: 29572500 DOI: 10.1038/s41379-018-0038-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 02/04/2023]
Abstract
Severe hemorrhagic events occur in a significant fraction of acute promyelocytic leukemia patients, either at presentation and/or early after starting therapy, leading to treatment failure and early deaths. However, identification of independent predictors for high-risk of severe bleeding at diagnosis, remains a challenge. Here, we investigated the immunophenotype of bone marrow leukemic cells from 109 newly diagnosed acute promyelocytic leukemia patients, particularly focusing on the identification of basophil-related features, and their potential association with severe bleeding episodes and patient overall survival.From all phenotypes investigated on leukemic cells, expression of the CD203c and/or CD22 basophil-associated markers showed the strongest association with the occurrence and severity of bleeding (p ≤ 0.007); moreover, aberrant expression of CD7, coexpression of CD34+/CD7+ and lack of CD71 was also more frequently found among patients with (mild and severe) bleeding at baseline and/or after starting treatment (p ≤ 0.009). Multivariate analysis showed that CD203c expression (hazard ratio: 26.4; p = 0.003) and older age (hazard ratio: 5.4; p = 0.03) were the best independent predictors for cumulative incidence of severe bleeding after starting therapy. In addition, CD203c expression on leukemic cells (hazard ratio: 4.4; p = 0.01), low fibrinogen levels (hazard ratio: 8.8; p = 0.001), older age (hazard ratio: 9.0; p = 0.002), and high leukocyte count (hazard ratio: 5.6; p = 0.02) were the most informative independent predictors for overall survival.In summary, our results show that the presence of basophil-associated phenotypic characteristics on leukemic cells from acute promyelocytic leukemia patients at diagnosis is a powerful independent predictor for severe bleeding and overall survival, which might contribute in the future to (early) risk-adapted therapy decisions.
Collapse
|
30
|
Suppression of APC/CCdh1 has subtype specific biological effects in acute myeloid leukemia. Oncotarget 2018; 7:48220-48230. [PMID: 27374082 PMCID: PMC5217013 DOI: 10.18632/oncotarget.10196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 06/09/2016] [Indexed: 12/17/2022] Open
Abstract
The E3 ubiquitin ligase and tumor suppressor APC/CCdh1 is crucial for cell cycle progression, development and differentiation in many cell types. However, little is known about the role of Cdh1 in hematopoiesis. Here we analyzed Cdh1 expression and function in malignant hematopoiesis. We found a significant decrease of Cdh1 in primary acute myeloid leukemia (AML) blasts compared to normal CD34+ cells. Thus, according to its important role in connecting cell cycle exit and differentiation, decreased expression of Cdh1 may be a mechanism contributing to the differentiation block in leukemogenesis. Indeed, knockdown (kd) of Cdh1 in HL-60 cell line (AML with maturation, FAB M2) led to less differentiated cells and a delay in PMA-induced differentiation. Acute promyelocytic leukemia (APL, FAB M3) is an AML subtype which is highly vulnerable to differentiation therapy with all-trans retinoic acid (ATRA). Accordingly, we found that APL is resistant to a Cdh1-kd mediated differentiation block. However, further depletion of Cdh1 in APL significantly reduced viability of leukemia cells upon ATRA-induced differentiation. Thus, low Cdh1 expression may be important in AML biology by contributing to the differentiation block and response to therapy depending on differences in the microenvironment and the additional genetic background.
Collapse
|
31
|
Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. ENVIRONMENT INTERNATIONAL 2018; 112:183-197. [PMID: 29275244 DOI: 10.1016/j.envint.2017.12.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.
Collapse
Affiliation(s)
- Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Moradzadeh M, Roustazadeh A, Tabarraei A, Erfanian S, Sahebkar A. Epigallocatechin-3-gallate enhances differentiation of acute promyelocytic leukemia cells via inhibition of PML-RARα and HDAC1. Phytother Res 2017; 32:471-479. [PMID: 29193405 DOI: 10.1002/ptr.5990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022]
Abstract
The use of all-trans retinoic acid (ATRA) has dramatically improved the treatment and survival rate of patients with acute promyelocytic leukemia (APL). However, toxicity and resistance to this drug are major problems in the treatment of APL with ATRA. Earlier studies have suggested that the green tea polyphenol epigallocatechin gallate (EGCG) induces cell death in hematopoietic neoplasms without adversely affecting normal cells. In the present study, the potential therapeutic effect of EGCG in APL and the underlying molecular mechanisms were investigated. EGCG (100 μM) significantly inhibited proliferation and induced apoptosis in HL-60 and NB4 cells. This effect was associated with decreased expressions of multidrug resistance proteins ABCB1, and ABCC1, whereas the expressions of pro-apoptotic genes CASP3, CASP8, p21, and Bax/Bcl-2 ratio were significantly increased. EGCG, at 25 μM concentration, induced differentiation of leukemic cells towards granulocytic pattern in a similar manner to that observed for ATRA (1 μM). Furthermore, EGCG suppressed the expression of clinical marker PML/RARα in NB4 cells and reduced the expression of HDAC1 in leukemic cells. In conclusion, the results suggested that EGCG can be considered as a potential treatment for APL.
Collapse
Affiliation(s)
- Maliheh Moradzadeh
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abazar Roustazadeh
- Research Center for Non-Communicable Diseases and Biochemistry Department, Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saiedeh Erfanian
- Research Center for Non-Communicable Diseases and Biochemistry Department, Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Iaccarino L, Ottone T, Hasan SK, Divona M, Cicconi L, Lavorgna S, Alfonso V, Basso G, Barragán E, Bocchia M, Rego EM, Grimwade D, Voso MT, Lo-Coco F. Comparative genomic analysis of PML and RARA breakpoints in paired diagnosis/relapse samples of patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Leuk Lymphoma 2017; 59:1268-1270. [PMID: 28838264 DOI: 10.1080/10428194.2017.1369067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Licia Iaccarino
- a Department of Biomedicine and Prevention , Università di Roma "Tor Vergata" , Rome , Italy
| | - Tiziana Ottone
- a Department of Biomedicine and Prevention , Università di Roma "Tor Vergata" , Rome , Italy
| | - Syed Khizer Hasan
- b Department of Medical Oncology ACTREC , Tata Memorial Centre , Navi Mumbai , India
| | - Mariadomenica Divona
- a Department of Biomedicine and Prevention , Università di Roma "Tor Vergata" , Rome , Italy
| | - Laura Cicconi
- a Department of Biomedicine and Prevention , Università di Roma "Tor Vergata" , Rome , Italy
| | - Serena Lavorgna
- a Department of Biomedicine and Prevention , Università di Roma "Tor Vergata" , Rome , Italy
| | - Valentina Alfonso
- a Department of Biomedicine and Prevention , Università di Roma "Tor Vergata" , Rome , Italy
| | - Giuseppe Basso
- c Department of Women's and Children's Health , University of Padova , Padova , Italy
| | - Eva Barragán
- d Department of Clinical Chemistry, Laboratory of Molecular Biology , Hospital Universitario La Fe , Valencia , Spain
| | - Monica Bocchia
- e Department of Medicine and Immunological Sciences, Division of Hematology and Transplants , University of Siena , Siena , Italy
| | - Eduardo Magalhaes Rego
- f Department of Internal Medicine, Medical School of Ribeirao Preto and Center for Cell Based Therapy , University of São Paulo , Ribeirao Preto , Brazil
| | - David Grimwade
- g Department of Medical and Molecular Genetics , King's College London School of Medicine , London , UK
| | - Maria Teresa Voso
- a Department of Biomedicine and Prevention , Università di Roma "Tor Vergata" , Rome , Italy
| | - Francesco Lo-Coco
- a Department of Biomedicine and Prevention , Università di Roma "Tor Vergata" , Rome , Italy
| |
Collapse
|
34
|
Kuroda H, Tachikawa M, Uchida Y, Inoue K, Ohtsuka H, Ohtsuki S, Unno M, Terasaki T. All-trans retinoic acid enhances gemcitabine cytotoxicity in human pancreatic cancer cell line AsPC-1 by up-regulating protein expression of deoxycytidine kinase. Eur J Pharm Sci 2017; 103:116-121. [DOI: 10.1016/j.ejps.2017.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
|
35
|
Brunetti C, Anelli L, Zagaria A, Minervini A, Minervini CF, Casieri P, Coccaro N, Cumbo C, Tota G, Impera L, Orsini P, Specchia G, Albano F. Droplet Digital PCR Is a Reliable Tool for Monitoring Minimal Residual Disease in Acute Promyelocytic Leukemia. J Mol Diagn 2017; 19:437-444. [DOI: 10.1016/j.jmoldx.2017.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022] Open
|
36
|
Fasan A, Haferlach C, Perglerovà K, Kern W, Haferlach T. Molecular landscape of acute promyelocytic leukemia at diagnosis and relapse. Haematologica 2017; 102:e222-e224. [PMID: 28341736 DOI: 10.3324/haematol.2016.162206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
37
|
Hassan IB, Zaabi MRA, Alam A, Hashim MJ, Tallman MS, Kristensen J. Characteristics features and factors influencing early death in Acute promyelocytic leukemia; Experience from United Arab Emirates (UAE). Int J Hematol 2017; 106:90-98. [DOI: 10.1007/s12185-017-2211-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
|
38
|
Hong Q, Li Y, Chen X, Ye H, Tang L, Zhou A, Hu Y, Gao Y, Chen R, Xia Y, Duan S. CDKN2B, SLC19A3 and DLEC1 promoter methylation alterations in the bone marrow of patients with acute myeloid leukemia during chemotherapy. Exp Ther Med 2016; 11:1901-1907. [PMID: 27168825 DOI: 10.3892/etm.2016.3092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Previous studies have demonstrated that promoter hypermethylation of tumor suppressor genes contributes to the occurrence and development of acute myeloid leukemia (AML). However, the association of DNA methylation with chemotherapeutic outcomes remains unknown. In the present study, 15 patients with AML were recruited, and the promoter methylation status of cyclin-dependent kinase inhibitor 2B (CDKN2B), solute carrier family 19 member 3 (SLC19A3) and deleted in lung and esophageal cancer 1 (DLEC1) genes was examined prior to and following various chemotherapeutic regimens in order to identify any alterations. The results suggested that chemotherapy-induced hypermethylation of CDKN2B and DLEC1 may be specific to males and females, respectively, and that there were no alterations in SLC19A3 methylation following chemotherapy. These results may provide an improved understanding of gene methylation to guide the development of an individualized chemotherapy for AML. Due to the complexity of AML and the wide range of treatment types, future studies with a larger sample size are required in order to verify the results of the present investigation.
Collapse
Affiliation(s)
- Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yirun Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoying Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huadan Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Linlin Tang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Annan Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yuting Gao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Rongrong Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yongming Xia
- Department of Hematology, Yuyao People's Hospital, Yuyao, Zhejiang 315400, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
39
|
From molecular interaction to acute promyelocytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network. Sci Rep 2016; 6:24307. [PMID: 27098097 PMCID: PMC4838884 DOI: 10.1038/srep24307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) remains the best example of a malignancy that can be cured clinically by differentiation therapy. We demonstrate that APL may emerge from a dynamical endogenous molecular-cellular network obtained from normal, non-cancerous molecular interactions such as signal transduction and translational regulation under physiological conditions. This unifying framework, which reproduces APL, normal progenitor, and differentiated granulocytic phenotypes as different robust states from the network dynamics, has the advantage to study transition between these states, i.e. critical drivers for leukemogenesis and targets for differentiation. The simulation results quantitatively reproduce microarray profiles of NB4 and HL60 cell lines in response to treatment and normal neutrophil differentiation, and lead to new findings such as biomarkers for APL and additional molecular targets for arsenic trioxide therapy. The modeling shows APL and normal states mutually suppress each other, both in "wiring" and in dynamical cooperation. Leukemogenesis and recovery under treatment may be a consequence of spontaneous or induced transitions between robust states, through "passes" or "dragging" by drug effects. Our approach rationalizes leukemic complexity and constructs a platform towards extending differentiation therapy by performing "dry" molecular biology experiments.
Collapse
|
40
|
Albano F, Zagaria A, Anelli L, Coccaro N, Tota G, Brunetti C, Minervini CF, Impera L, Minervini A, Cellamare A, Orsini P, Cumbo C, Casieri P, Specchia G. Absolute quantification of the pretreatment PML-RARA transcript defines the relapse risk in acute promyelocytic leukemia. Oncotarget 2016; 6:13269-77. [PMID: 25944686 PMCID: PMC4537013 DOI: 10.18632/oncotarget.3773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 12/05/2022] Open
Abstract
In this study we performed absolute quantification of the PML-RARA transcript by droplet digital polymerase chain reaction (ddPCR) in 76 newly diagnosed acute promyelocytic leukemia (APL) cases to verify the prognostic impact of the PML-RARA initial molecular burden. ddPCR analysis revealed that the amount of PML-RARA transcript at diagnosis in the group of patients who relapsed was higher than in that with continuous complete remission (CCR) (272 vs 89.2 PML-RARA copies/ng, p = 0.0004, respectively). Receiver operating characteristic analysis detected the optimal PML-RARA concentration threshold as 209.6 PML-RARA/ng (AUC 0.78; p < 0.0001) for discriminating between outcomes (CCR versus relapse). Among the 67 APL cases who achieved complete remission after the induction treatment, those with >209.6 PML-RARA/ng had a worse relapse-free survival (p = 0.0006). At 5-year follow-up, patients with >209.6 PML-RARA/ng had a cumulative incidence of relapse of 50.3% whereas 7.5% of the patients with suffered a relapse (p < 0.0001). Multivariate analysis identified the amount of PML-RARA before induction treatment as the sole independent prognostic factor for APL relapse. Our results show that the pretreatment PML-RARA molecular burden could therefore be used to improve risk stratification in order to develop more individualized treatment regimens for high-risk APL cases.
Collapse
Affiliation(s)
- Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Angelo Cellamare
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| |
Collapse
|
41
|
González B, Bueno D, Rubio P, San Román S, Plaza D, Sastre A, García-Miguel P, Fernández L, Valentín J, Martínez I, Pérez-Martínez A. An immunological approach to acute myeloid leukaemia. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.anpede.2015.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Role of Signal Regulatory Protein α in Arsenic Trioxide-induced Promyelocytic Leukemia Cell Apoptosis. Sci Rep 2016; 6:23710. [PMID: 27010069 PMCID: PMC4806322 DOI: 10.1038/srep23710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 01/30/2023] Open
Abstract
Signal regulatory protein α (SIRPα) has been shown to operate as a negative regulator in cancer cell survival. The mechanism underneath such function, however, remains poorly defined. In the present study, we demonstrate that overexpression of SIRPα in acute promyelocytic leukemia (APL) cells results in apoptosis possibly via inhibiting the β-catenin signaling pathway and upregulating Foxo3a. Pharmacological activation of β-catenin signal pathway attenuates apoptosis caused by SIRPα. Interestingly, we also find that the pro-apoptotic effect of SIRPα plays an important role in arsenic trioxide (ATO)-induced apoptosis in APL cells. ATO treatment induces the SIRPα protein expression in APL cells and abrogation of SIRPα induction by lentivirus-mediated SIRPα shRNA significantly reduces the ATO-induced apoptosis. Mechanistic study further shows that induction of SIRPα protein in APL cells by ATO is mediated through suppression of c-Myc, resulting in reduction of three SIRPα-targeting microRNAs: miR-17, miR-20a and miR-106a. In summary, our results demonstrate that SIRPα inhibits tumor cell survival and significantly contributes to ATO-induced APL cell apoptosis.
Collapse
|
43
|
Testa U, Lo-Coco F. Prognostic factors in acute promyelocytic leukemia: strategies to define high-risk patients. Ann Hematol 2016; 95:673-80. [DOI: 10.1007/s00277-016-2622-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022]
|
44
|
[An immunological approach to acute myeloid leukaemia]. An Pediatr (Barc) 2016; 84:195-202. [PMID: 26776165 DOI: 10.1016/j.anpedi.2015.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Acute myeloid leukaemia (AML) is the second haematological malignancy in the paediatric population, and one of the leading causes of childhood cancer mortality. Survival is currently around 60%, with no improvement in last decades, suggesting that new therapeutic approaches are needed. The anti-leukaemia effect mediated by the lymphocytes and natural killer (NK) cells of the immune system has been established in haematopoietic stem cell transplantation, and also as adoptive immunotherapy after consolidation chemotherapy schemes. PATIENTS AND METHODS A retrospective study was conducted on the clinical characteristics of patients diagnosed and treated for AML in our centre during 1996-2014. The mean fluorescence intensities of HLA-I, MICA/B and ULBP1-4, ligands for NK cell receptors, were also analysed in ten new diagnosed leukaemia cases, five myeloid and five lymphoid. RESULTS A total of 67 patients were used in this analysis. With a median follow up of 25 months, the event-free survival was 62% (95% CI: 55-67). Secondary AML, non-M3 phenotype, and the absence of favourable cytogenetic markers had a lower survival. The probability of relapse was 38% (95% CI: 31-45). The expression of HLA-I and ULBP-4 was significantly lower in myeloid than in lymphoid blast cells. CONCLUSIONS Our clinical results are similar to those described in the literature. Survival did not significantly change in recent decades, and the likelihood of relapse remains high. Myeloid blasts might be more susceptible to the cytotoxicity of NK cells through their lower expression of HLA-I. NK therapy strategies in minimal disease situation could be effective, as reported by other groups.
Collapse
|
45
|
Central nervous system haemorrhage causing early death in acute promyelocytic leukaemia. Cent Eur J Immunol 2016; 40:486-8. [PMID: 26862315 PMCID: PMC4737747 DOI: 10.5114/ceji.2015.56975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/01/2015] [Indexed: 11/17/2022] Open
Abstract
Acute promyelocytic leukaemia (APL) is a rare type of paediatric leukaemia characterised by a specific genetic mutation and life-threatening coagulopathy. The discovery of all-trans retinoic acid (ATRA), which acts directly on promyelocytic locus-retinoic acid receptor α (PML-RARα) gene product, brought a revolution to the therapy of this disorder. Unfortunately, despite an improvement in the complete remission rate, the early death (ED) rate has not changed significantly, and the haemorrhages remain a major problem. The most common bleeding site, which accounts for about 65-80% of haemorrhages, is the central nervous system. Second in line are pulmonary haemorrhages (32%), while gastrointestinal bleedings are relatively rare. Haemorrhages result from thrombocytopaenia, disseminated intravascular coagulopathy (DIC), and systemic fibrinolysis. Herein we present a boy aged one year and nine months with APL. The patient was not eligible for ATRA administration due to poor clinical condition. He developed bleeding diathesis that presented as disseminated intravascular coagulation (DIC) and led to intracranial haemorrhage, which resulted in the patient's death.
Collapse
|
46
|
Whitelaw CBA, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol 2015; 238:247-56. [PMID: 26414877 PMCID: PMC4737318 DOI: 10.1002/path.4648] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022]
Abstract
The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site‐specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- C Bruce A Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Science, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Timothy P Sheets
- Animal Bioscience and Biotechnology Laboratory, ARS, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, Beltsville, MD, 20742, USA
| | - Simon G Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Science, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Bhanu P Telugu
- Animal Bioscience and Biotechnology Laboratory, ARS, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, Beltsville, MD, 20742, USA
| |
Collapse
|
47
|
De Angelis F, Breccia M. Molecular Monitoring as a Path to Cure Acute Promyelocytic Leukemia. ACTA ACUST UNITED AC 2015; 3:119-132. [PMID: 27182481 PMCID: PMC4837932 DOI: 10.1007/s40487-015-0013-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 11/28/2022]
Abstract
Acute promyelocytic leukemia (APL) is a molecularly well-defined disease, characterized by a specific chromosomal translocation; the improvement in biologic and clinical
knowledge and subsequent introduction of molecularly targeted therapies have transformed the management of APL, with survival rates now exceeding 80%. Minimal residual disease (MRD) assessment in APL is the most important tool for its treatment; the prognostic role of the molecular detection of promyelocytic leukemia retinoic acid receptor α (PML-RARα) transcript after consolidation therapy in the early identification of the following hematologic relapse is now well established and guides preemptive therapy. First experiences performed with a qualitative polymerase chain reaction (PCR) approach were replaced with more accurate real-time quantitative PCR (RQ-PCR), which guarantees a numeric quantification of MRD. The identification of arsenic trioxide (ATO) as a valid therapy not only in relapsed patients but also as an alternative to standard therapy alone or in association with all-trans-retinoic acid enlarges the setting of validation of MRD evaluation in APL patients, considering a possible different clearance of PML-RARα with innovative therapy different from the standard ones. MRD monitoring demonstrated its validity also in the setting of relapsed patients with interesting results in the autologous and allogeneic stem cell transplantation setting or with the use of other biological agents. The aim of this review is to report and discuss the actual state of the art of MRD in APL.
Collapse
Affiliation(s)
- Federico De Angelis
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Via Benevento 6, 00161 Rome, Italy
| | - Massimo Breccia
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Via Benevento 6, 00161 Rome, Italy
| |
Collapse
|
48
|
Giri S, Pathak R, Martin MG, Bhatt VR. Survival of de novo and secondary acute promyelocytic leukemia: a propensity-matched analysis of the SEER database. Leuk Lymphoma 2015; 57:385-391. [PMID: 26084205 DOI: 10.3109/10428194.2015.1063142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prior studies demonstrated that secondary acute promyelocytic leukemia (sAPL) and de novo APL may but not consistently have similar overall survival (OS). We used the Surveillance, Epidemiology, and End Results (SEER) 13 database to compare their OS. Patients with sAPL (n = 90), compared to de novo APL (n = 1600), were more likely to be older, White and diagnosed after year 2005. Mortality rate at 1 month (28.9% vs. 23.0%, p = 0.20) and 5-year OS (42% vs. 50%, p = 0.24) was similar between sAPL and de novo APL. In a multivariate analysis, sAPL was associated with similar OS as de novo APL (hazard ratio, HR 1.11; 95% confidence interval, CI 0.78-1.58; p = 0.546). This population-based study demonstrated no difference in OS or early mortality rate between sAPL and de novo APL. sAPL can be managed very similarly to de novo APL and does not need to be excluded from clinical trials of APL.
Collapse
Affiliation(s)
- Smith Giri
- a Department of Medicine , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ranjan Pathak
- b Department of Medicine , Reading Health System , Reading , PA , USA
| | - Mike G Martin
- a Department of Medicine , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Vijaya Raj Bhatt
- c University of Nebraska Medical Center , Department of Internal Medicine, Division of Hematology-Oncology , Omaha, Nebraska , USA
| |
Collapse
|
49
|
Kharabi Masouleh B, Chevet E, Panse J, Jost E, O'Dwyer M, Bruemmendorf TH, Samali A. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol 2015; 8:87. [PMID: 26179601 PMCID: PMC4504168 DOI: 10.1186/s13045-015-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated by three major stress sensors IRE-1α, PERK, and ATF6α. Studies described the UPR as a critical network in selection, adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review, we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic, clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an attractive novel target in acute leukemias.
Collapse
Affiliation(s)
- Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Eric Chevet
- Université Rennes 1 - ER_440 "Oncogenesis, Stress & Signaling", Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael O'Dwyer
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Medicine, National University of Ireland, Galway, Ireland
| | - Tim H Bruemmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Afshin Samali
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
50
|
The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumour Biol 2015; 36:8973-84. [DOI: 10.1007/s13277-015-3597-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/19/2015] [Indexed: 12/31/2022] Open
|