1
|
Hesham HM, Dokla EME, Elrazaz EZ, Lasheen DS, Abou El Ella DA. FLT3-PROTACs for combating AML resistance: Analytical overview on chimeric agents developed, challenges, and future perspectives. Eur J Med Chem 2024; 277:116717. [PMID: 39094274 DOI: 10.1016/j.ejmech.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The urgent and unmet medical demand of acute myeloid leukemia (AML) patients has driven the drug discovery process for expansion of the landscape of AML treatment. Despite the several agents developed for treatment of AML, more than 60 % of treated patients undergo relapse again after re-emission, thus, no complete cure for this complex disease has been reached yet. Targeted oncoprotein degradation is a new paradigm that can be employed to solve drug resistance, disease relapse, and treatment failure in complex diseases as AML, the most lethal hematological malignancy. AML is an aggressive blood cancer form and the most common type of acute leukemia, with bad outcomes and a very poor 5-year survival rate. FLT3 mutations occur in about 30 % of AML cases and FLT3-ITD is associated with poor prognosis of this disease. Prevalent FLT3 mutations include internal tandem duplication and point mutations (e.g., D835) in the tyrosine kinase domain, which induce FLT3 kinase activation and result in survival and proliferation of AML cells again. Currently approved FLT3 inhibitors suffer from limited clinical efficacy due to FLT3 reactivation by mutations, therefore, alternative new treatments are highly needed. Proteolysis-targeting chimera (PROTAC) is a bi-functional molecule that consists of a ligand of the protein of interest, FLT3 inhibitor in our case, that is covalently linked to an E3 ubiquitin ligase ligand. Upon FLT3-specific PROTAC binding to FLT3, the PROTAC can recruit E3 for FLT3 ubiquitination, which is subsequently subjected to proteasome-mediated degradation. In this review we tried to address the question if PROTAC technology has succeeded in tackling the disease relapse and treatment failure of AML. Next, we explored the latest FLT3-targeting PROTACs developed in the past few years such as quizartinib-based PROTACs, dovitinib-based PROTACs, gilteritinib-based PROTACs, and others. Then, we followed with a deep analysis of their advantages regarding potency improvement and overcoming AML drug resistance. Finally, we discussed the challenges facing these chimeric molecules with proposed future solutions to circumvent them.
Collapse
Affiliation(s)
- Heba M Hesham
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Eman Z Elrazaz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Sahasrabudhe DM, Liesveld JL, Minhajuddin M, Singh NA, Nath S, Kumar VM, Balys M, Evans AG, Azadniv M, Hansen JN, Becker MW, Sharon A, Thomas VK, Moore RG, Khera MK, Jordan CT, Singh RK. In silico predicted compound targeting the IQGAP1-GRD domain selectively inhibits growth of human acute myeloid leukemia. Sci Rep 2024; 14:12868. [PMID: 38834690 PMCID: PMC11150481 DOI: 10.1038/s41598-024-63392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.
Collapse
Affiliation(s)
- Deepak M Sahasrabudhe
- Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 704, Rochester, NY, 14618, USA.
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Jane L Liesveld
- Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 704, Rochester, NY, 14618, USA
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, US
| | - Niloy A Singh
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Subhangi Nath
- Department of Chemistry, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vishuwes Muthu Kumar
- Department of Chemistry, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Marlene Balys
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew G Evans
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Mitra Azadniv
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeanne N Hansen
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | | | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - V Kaye Thomas
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Richard G Moore
- Division of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Manoj K Khera
- Presude Lifesciences Pvt Ltd., Uttam Nagar, New Delhi, 110059, India
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, US
| | - Rakesh K Singh
- Division of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Slezak AJ, Chang K, Beckman TN, Refvik KC, Alpar AT, Lauterbach AL, Solanki A, Kwon JW, Gomes S, Mansurov A, Hubbell JA. Cysteine-binding adjuvant enhances survival and promotes immune function in a murine model of acute myeloid leukemia. Blood Adv 2024; 8:1747-1759. [PMID: 38324726 PMCID: PMC10985806 DOI: 10.1182/bloodadvances.2023012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
ABSTRACT Therapeutic vaccination has long been a promising avenue for cancer immunotherapy but is often limited by tumor heterogeneity. The genetic and molecular diversity between patients often results in variation in the antigens present on cancer cell surfaces. As a result, recent research has focused on personalized cancer vaccines. Although promising, this strategy suffers from time-consuming production, high cost, inaccessibility, and targeting of a limited number of tumor antigens. Instead, we explore an antigen-agnostic polymeric in situ cancer vaccination platform for treating blood malignancies, in our model here with acute myeloid leukemia (AML). Rather than immunizing against specific antigens or targeting adjuvant to specific cell-surface markers, this platform leverages a characteristic metabolic and enzymatic dysregulation in cancer cells that produces an excess of free cysteine thiols on their surfaces. These thiols increase in abundance after treatment with cytotoxic agents such as cytarabine, the current standard of care in AML. The resulting free thiols can undergo efficient disulfide exchange with pyridyl disulfide (PDS) moieties on our construct and allow for in situ covalent attachment to cancer cell surfaces and debris. PDS-functionalized monomers are incorporated into a statistical copolymer with pendant mannose groups and TLR7 agonists to target covalently linked antigen and adjuvant to antigen-presenting cells in the liver and spleen after IV administration. There, the compound initiates an anticancer immune response, including T-cell activation and antibody generation, ultimately prolonging survival in cancer-bearing mice.
Collapse
Affiliation(s)
- Anna J. Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Kevin Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Taryn N. Beckman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL
| | - Kirsten C. Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | | | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL
| | - Jung Woo Kwon
- Department of Pathology, University of Chicago, Chicago, IL
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
- Committee on Immunology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
4
|
Deng S, Pan Y, An N, Chen F, Chen H, Wang H, Xu X, Liu R, Yang L, Wang X, Du X, Zhang Q. Downregulation of RCN1 promotes pyroptosis in acute myeloid leukemia cells. Mol Oncol 2023; 17:2584-2602. [PMID: 37746742 DOI: 10.1002/1878-0261.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Reticulocalbin-1 (RCN1) is expressed aberrantly and at a high level in various tumors, including acute myeloid leukemia (AML), yet its impact on AML remains unclear. In this study, we demonstrate that RCN1 knockdown significantly suppresses the viability of bone marrow mononuclear cells (BMMNCs) from AML patients but does not affect the viability of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cells (PBSCs) from healthy donors in vitro. Downregulation of RCN1 also reduces the viability of AML cell lines. Further studies showed that the RCN1 knockdown upregulates type I interferon (IFN-1) expression and promotes AML cell pyroptosis through caspase-1 and gasdermin D (GSDMD) signaling. Deletion of the mouse Rcn1 gene inhibits the viability of mouse AML cell lines but not the hematopoiesis of mouse bone marrow. In addition, RCN1 downregulation in human AML cells significantly inhibited tumor growth in the NSG mouse xenograft model. Taken together, our results suggest that RCN1 may be a potential target for AML therapy.
Collapse
Affiliation(s)
- Sisi Deng
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Yuming Pan
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Na An
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Fengyi Chen
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
- Department of Physiology, School of Basic Medical Sciences, International Cancer Center, Shenzhen University Health Sciences Center, China
| | - Huan Chen
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Heng Wang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
- Department of Hematology, Shenzhen Longhua District Central Hospital, China
| | - Xiaojing Xu
- China National GeneBank, BGI-Shenzhen, China
| | - Rui Liu
- China National GeneBank, BGI-Shenzhen, China
| | - Linlin Yang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, International Cancer Center, Shenzhen University Health Sciences Center, China
| | - Xin Du
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Qiaoxia Zhang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| |
Collapse
|
5
|
Morris VS, Ghazi H, Fletcher DM, Guinn BA. A Direct Comparison, and Prioritisation, of the Immunotherapeutic Targets Expressed by Adult and Paediatric Acute Myeloid Leukaemia Cells: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:9667. [PMID: 37298623 PMCID: PMC10253696 DOI: 10.3390/ijms24119667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukaemia (AML) is characterized by impaired myeloid differentiation resulting in an accumulation of immature blasts in the bone marrow and peripheral blood. Although AML can occur at any age, the incidence peaks at age 65. The pathobiology of AML also varies with age with associated differences in incidence, as well as the frequency of cytogenetic change and somatic mutations. In addition, 5-year survival rates in paediatrics are 60-75% but fall to 5-15% in older AML patients. This systematic review aimed to determine whether the altered genes in AML affect the same molecular pathways, indifferent of patient age, and, therefore, whether patients could benefit from the repurposing drugs or the use of the same immunotherapeutic strategies across age boundaries to prevent relapse. Using a PICO framework and PRISMA-P checklist, relevant publications were identified using five literature databases and assessed against an inclusion criteria, leaving 36 articles, and 71 targets for therapy, for further analysis. QUADAS-2 was used to determine the risk of bias and perform a quality control step. We then priority-ranked the list of cancer antigens based on predefined and pre-weighted objective criteria as part of an analytical hierarchy process used for dealing with complex decisions. This organized the antigens according to their potential to act as targets for the immunotherapy of AML, a treatment that offers an opportunity to remove residual leukaemia cells at first remission and improve survival rates. It was found that 80% of the top 20 antigens identified in paediatric AML were also within the 20 highest scoring immunotherapy targets in adult AML. To analyse the relationships between the targets and their link to different molecular pathways, PANTHER and STRING analyses were performed on the 20 highest scoring immunotherapy targets for both adult and paediatric AML. There were many similarities in the PANTHER and STRING results, including the most prominent pathways being angiogenesis and inflammation mediated by chemokine and cytokine signalling pathways. The coincidence of targets suggests that the repurposing of immunotherapy drugs across age boundaries could benefit AML patients, especially when used in combination with conventional therapies. However, due to cost implications, we would recommend that efforts are focused on ways to target the highest scoring antigens, such as WT1, NRAS, IDH1 and TP53, although in the future other candidates may prove successful.
Collapse
Affiliation(s)
- Vanessa S. Morris
- Department of Chemistry and Biochemistry, University of Hull, Kingston upon Hull HU6 7RX, UK;
| | - Hanya Ghazi
- Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK;
| | - Daniel M. Fletcher
- Centre for Biomedicine, Hull York Medical School, Kingston upon Hull HU6 7RX, UK;
| | - Barbara-ann Guinn
- Centre for Biomedicine, Hull York Medical School, Kingston upon Hull HU6 7RX, UK;
| |
Collapse
|
6
|
Ameri M, Alipour M, Madihi M, Nezafat N. Identification of intrinsically disordered regions in hub genes of acute myeloid leukemia: A bioinformatics approach. Biotechnol Appl Biochem 2022; 69:2304-2322. [PMID: 34812529 DOI: 10.1002/bab.2287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/30/2021] [Indexed: 12/27/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Over the past decades, there has been a great challenge in the treatment of AML. A combination of gene expression profiling with computational approaches can lead to the identification of hub genes in AML. However, it is important to study the structure of these hub genes considering their importance in the protein-protein interaction (PPI) network of specific cancer. In this study, we designed an integrated method to analyze the presence of intrinsically disordered regions (IDRs) in selected hub genes of AML. A gene expression profile of AML was obtained from Gene Expression Omnibus (GEO) database. Further analysis identified differentially expressed genes (DEGs) in AML. Additionally, the top 15 hub genes following construction and analysis of the PPI network of DEGs were selected. Validation of hub genes revealed that there is a reverse relationship between overexpression of FLT3, PPBP, and PF4 genes and the survival of AML patients. Based on IDRs investigation, FLT3 and PF4 are partially disordered, while PPBP is mostly disordered. Through clustering the network into structural modules, we identified two important modules in the PPI network of DEGs that showed the important position of PPBP in module 1. Based on further analysis of protein flexibility and its important role in biological processes, we suggest that PPBP can be considered as a potential drug target in AML.
Collapse
Affiliation(s)
- Mehrdad Ameri
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobina Madihi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Ai H, Mi RH, Chen L, Ji X, Yin QS, Wei XD, Song YP. [The clinical safety and efficacy of the patients of acute myeloid leukemia with FLT3-ITD positive treated with sorafenib in combination with venetoclax and azactitidine regimen]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:956-959. [PMID: 36709189 PMCID: PMC9808861 DOI: 10.3760/cma.j.issn.0253-2727.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 01/30/2023]
Affiliation(s)
- H Ai
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - R H Mi
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - L Chen
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - X Ji
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Q S Yin
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - X D Wei
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Y P Song
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
8
|
Fletcher D, Brown E, Javadala J, Uysal‐Onganer P, Guinn B. microRNA expression in acute myeloid leukaemia: New targets for therapy? EJHAEM 2022; 3:596-608. [PMID: 36051053 PMCID: PMC9421970 DOI: 10.1002/jha2.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that short non-coding RNAs, known as microRNAs (miRNAs) and their dysregulation, are implicated in the pathogenesis of acute myeloid leukaemia (AML). This is due to their role in the control of gene expression in a variety of molecular pathways. Therapies involving miRNA suppression and replacement have been developed. The normalisation of expression and the subsequent impact on AML cells have been investigated for some miRNAs, demonstrating their potential to act as therapeutic targets. Focussing on miRs with therapeutic potential, we have reviewed those that have a significant impact on the aberrant biological processes associated with AML, and crucially, impact leukaemic stem cell survival. We describe six miRNAs in preclinical trials (miR-21, miR-29b, miR-126, miR-181a, miR-223 and miR-196b) and two miRNAs that are in clinical trials (miR-29 and miR-155). However none have been used to treat AML patients and greater efforts are needed to develop miRNA therapies that could benefit AML patients in the future.
Collapse
Affiliation(s)
| | - Elliott Brown
- Department of Biomedical SciencesUniversity of HullHull, UK
| | | | - Pinar Uysal‐Onganer
- Cancer Research GroupSchool of Life SciencesUniversity of WestminsterLondonUK
| | | |
Collapse
|
9
|
Phytotherapeutic Approaches to the Prevention of Age-Related Changes and the Extension of Active Longevity. Molecules 2022; 27:molecules27072276. [PMID: 35408672 PMCID: PMC9000830 DOI: 10.3390/molecules27072276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Maintaining quality of life with an increase in life expectancy is considered one of the global problems of our time. This review explores the possibility of using natural plant compounds with antioxidant, anti-inflammatory, anti-glycation, and anti-neurodegenerative properties to slow down the onset of age-related changes. Age-related changes such as a decrease in mental abilities, the development of inflammatory processes, and increased risk of developing type 2 diabetes have a significant impact on maintaining quality of life. Herbal preparations can play an essential role in preventing and treating neurodegenerative diseases that accompany age-related changes, including Alzheimer’s and Parkinson’s diseases. Medicinal plants have known sedative, muscle relaxant, neuroprotective, nootropic, and antiparkinsonian properties. The secondary metabolites, mainly polyphenolic compounds, are valuable substances for the development of new anti-inflammatory and hypoglycemic agents. Understanding how mixtures of plants and their biologically active substances work together to achieve a specific biological effect can help develop targeted drugs to prevent diseases associated with aging and age-related changes. Understanding the mechanisms of the biological activity of plant complexes and mixtures determines the prospects for using metabolomic and biochemical methods to prolong active longevity.
Collapse
|
10
|
Colmenares R, Álvarez N, Barrio S, Martínez-López J, Ayala R. The Minimal Residual Disease Using Liquid Biopsies in Hematological Malignancies. Cancers (Basel) 2022; 14:1310. [PMID: 35267616 PMCID: PMC8909350 DOI: 10.3390/cancers14051310] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
The study of cell-free DNA (cfDNA) and other peripheral blood components (known as "liquid biopsies") is promising, and has been investigated especially in solid tumors. Nevertheless, it is increasingly showing a greater utility in the diagnosis, prognosis, and response to treatment of hematological malignancies; in the future, it could prevent invasive techniques, such as bone marrow (BM) biopsies. Most of the studies about this topic have focused on B-cell lymphoid malignancies; some of them have shown that cfDNA can be used as a novel way for the diagnosis and minimal residual monitoring of B-cell lymphomas, using techniques such as next-generation sequencing (NGS). In myelodysplastic syndromes, multiple myeloma, or chronic lymphocytic leukemia, liquid biopsies may allow for an interesting genomic representation of the tumor clones affecting different lesions (spatial heterogeneity). In acute leukemias, it can be helpful in the monitoring of the early treatment response and the prediction of treatment failure. In chronic lymphocytic leukemia, the evaluation of cfDNA permits the definition of clonal evolution and drug resistance in real time. However, there are limitations, such as the difficulty in obtaining sufficient circulating tumor DNA for achieving a high sensitivity to assess the minimal residual disease, or the lack of standardization of the method, and clinical studies, to confirm its prognostic impact. This review focuses on the clinical applications of cfDNA on the minimal residual disease in hematological malignancies.
Collapse
Affiliation(s)
- Rafael Colmenares
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
| | - Noemí Álvarez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
- Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
| | - Santiago Barrio
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
- Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
- Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Department of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, 28041 Madrid, Spain; (R.C.); (N.Á.); (S.B.); (J.M.-L.)
- Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Department of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Pemovska T, Bigenzahn JW, Srndic I, Lercher A, Bergthaler A, César-Razquin A, Kartnig F, Kornauth C, Valent P, Staber PB, Superti-Furga G. Metabolic drug survey highlights cancer cell dependencies and vulnerabilities. Nat Commun 2021; 12:7190. [PMID: 34907165 PMCID: PMC8671470 DOI: 10.1038/s41467-021-27329-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Interrogation of cellular metabolism with high-throughput screening approaches can unravel contextual biology and identify cancer-specific metabolic vulnerabilities. To systematically study the consequences of distinct metabolic perturbations, we assemble a comprehensive metabolic drug library (CeMM Library of Metabolic Drugs; CLIMET) covering 243 compounds. We, next, characterize it phenotypically in a diverse panel of myeloid leukemia cell lines and primary patient cells. Analysis of the drug response profiles reveals that 77 drugs affect cell viability, with the top effective compounds targeting nucleic acid synthesis, oxidative stress, and the PI3K/mTOR pathway. Clustering of individual drug response profiles stratifies the cell lines into five functional groups, which link to specific molecular and metabolic features. Mechanistic characterization of selective responses to the PI3K inhibitor pictilisib, the fatty acid synthase inhibitor GSK2194069, and the SLC16A1 inhibitor AZD3965, bring forth biomarkers of drug response. Phenotypic screening using CLIMET represents a valuable tool to probe cellular metabolism and identify metabolic dependencies at large.
Collapse
Affiliation(s)
- Tea Pemovska
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ismet Srndic
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexander Lercher
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Andreas Bergthaler
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adrián César-Razquin
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Kartnig
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Kornauth
- Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Philipp B Staber
- Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Abstract
There has been remarkable progress in the treatment of acute myeloid leukemia (AML) which has spanned 5 decades. The changing trends have led to new approaches and significant improvement in outcomes. This review has summarized the historical insights that have shaped the current treatment paradigms of AML.
Collapse
Affiliation(s)
- Jacob M Rowe
- Department of Hematology, Rambam Health Care Campus, Department of Hematology, Shaare Zedek Medical Center, 12 Shmuel Bait St, Jerusalem, IL, 9103102, Israel.
| |
Collapse
|
13
|
Hindley A, Catherwood MA, McMullin MF, Mills KI. Significance of NPM1 Gene Mutations in AML. Int J Mol Sci 2021; 22:ijms221810040. [PMID: 34576201 PMCID: PMC8467861 DOI: 10.3390/ijms221810040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this literature review is to examine the significance of the nucleophosmin 1 (NPM1) gene in acute myeloid leukaemia (AML). This will include analysis of the structure and normal cellular function of NPM1, the type of mutations commonly witnessed in NPM1, and the mechanism by which this influences the development and progression of AML. The importance of NPM1 mutation on prognosis and the treatment options available to patients will also be reviewed along with current guidelines recommending the rapid return of NPM1 mutational screening results and the importance of employing a suitable laboratory assay to achieve this. Finally, future developments in the field including research into new therapies targeting NPM1 mutated AML are considered.
Collapse
Affiliation(s)
- Andrew Hindley
- Clinical Haematology, Belfast City Hospital, Belfast BT9 7AB, UK;
- Correspondence:
| | | | - Mary Frances McMullin
- Centre for Medical Education, Queen’s University Belfast, Belfast BT7 1NN, UK;
- Northern Ireland and Belfast Health and Social Care Trust, Belfast BT9 7AB, UK
| | - Ken I. Mills
- Patrick G Johnston Center for Cancer Research, Queens University Belfast, Belfast BT9 7AE, UK;
| |
Collapse
|
14
|
Zhang Y, Jin J. [Application of Bcl-2 inhibitor venetoclax in acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:438-440. [PMID: 34218592 PMCID: PMC8292995 DOI: 10.3760/cma.j.issn.0253-2727.2021.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Y Zhang
- The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - J Jin
- The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
15
|
Lewis DR, Siembida EJ, Seibel NL, Smith AW, Mariotto AB. Survival outcomes for cancer types with the highest death rates for adolescents and young adults, 1975-2016. Cancer 2021; 127:4277-4286. [PMID: 34308557 DOI: 10.1002/cncr.33793] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Five-year relative survival for adolescent and young adult (AYA) patients with cancer diagnosed at the ages of 15 to 39 years is 85%. Survival rates vary considerably according to the cancer type. The purpose of this study was to analyze long-term survival trends for cancer types with the highest mortality among AYAs to determine where the greatest burden is and to identify areas for future research. METHODS Using data from the Surveillance, Epidemiology, and End Results cancer registry and the National Center for Health Statistics, the authors examined the incidence, mortality, and survival for the 9 cancer types with the highest mortality rates in this age group from 1975 to 2016. JPSurv, new survival trend software, was used in the analysis. RESULTS Results suggested significant improvements in 5-year relative survival for brain and other nervous system tumors, colon and rectum cancer, lung and bronchus cancer, acute myeloid leukemia, and non-Hodgkin lymphoma (all P values < .05). Limited or no improvement in survival was found for female breast cancer, cervical cancer, ovarian cancer, and bone and joint sarcomas. CONCLUSIONS Five-year relative survival for multiple cancer types in AYAs has improved, but some common cancer types in this group still show limited survival improvements (eg, ovarian cancer). Survival improvements in colorectal cancer have been overshadowed by its rising incidence, which suggests a substantial disease burden. Future research should focus on female breast, bone, ovarian, and cervical cancers, which have seen minimal or no improvements in survival. LAY SUMMARY Survival trends for adolescents and young adults with cancer are presented from a 40-year period. Although survival progress is noted for brain cancer, lung cancer, acute myeloid leukemia, and colon and rectum cancer, the incidence of colon and rectum cancer remains high. Minimal progress is evident for female breast, bone, ovarian, and cervical cancers, which are in need of renewed focus.
Collapse
Affiliation(s)
- Denise Riedel Lewis
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Elizabeth J Siembida
- Center for Health Innovation and Outcomes Research, Northwell Health, Manhasset, New York
| | - Nita L Seibel
- Division of Cancer Treatment and Detection, National Cancer Institute, Bethesda, Maryland
| | - Ashley Wilder Smith
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Angela B Mariotto
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
16
|
Handschuh L, Wojciechowski P, Kazmierczak M, Lewandowski K. Transcript-Level Dysregulation of BCL2 Family Genes in Acute Myeloblastic Leukemia. Cancers (Basel) 2021; 13:cancers13133175. [PMID: 34202143 PMCID: PMC8267690 DOI: 10.3390/cancers13133175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022] Open
Abstract
The expression of apoptosis-related BCL2 family genes, fine-tuned in normal cells, is dysregulated in many neoplasms. In acute myeloid leukemia (AML), this problem has not been studied comprehensively. To address this issue, RNA-seq data were used to analyze the expression of 26 BCL2 family members in 27 AML FAB M1 and M2 patients, divided into subgroups differently responding to chemotherapy. A correlation analysis, analysis of variance, and Kaplan-Meier analysis were applied to associate the expression of particular genes with other gene expression, clinical features, and the presence of mutations detected by exome sequencing. The expression of BCL2 family genes was dysregulated in AML, as compared to healthy controls. An upregulation of anti-apoptotic and downregulation of pro-apoptotic genes was observed, though only a decrease in BMF, BNIP1, and HRK was statistically significant. In a group of patients resistant to chemotherapy, overexpression of BCL2L1 was manifested. In agreement with the literature data, our results reveal that BCL2L1 is one of the key players in apoptosis regulation in different types of tumors. An exome sequencing data analysis indicates that BCL2 family genes are not mutated in AML, but their expression is correlated with the mutational status of other genes, including those recurrently mutated in AML and splicing-related. High levels of some BCL2 family members, in particular BIK and BCL2L13, were associated with poor outcome.
Collapse
Affiliation(s)
- Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: ; Tel.: +48-618-528-503
| | - Pawel Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| |
Collapse
|
17
|
MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021; 10:19. [PMID: 33637673 PMCID: PMC7910556 DOI: 10.1038/s41389-021-00309-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
MYB transcription factors are highly conserved from plants to vertebrates, indicating that their functions embrace fundamental mechanisms in the biology of cells and organisms. In humans, the MYB gene family is composed of three members: MYB, MYBL1 and MYBL2, encoding the transcription factors MYB, MYBL1, and MYBL2 (also known as c-MYB, A-MYB, and B-MYB), respectively. A truncated version of MYB, the prototype member of the MYB family, was originally identified as the product of the retroviral oncogene v-myb, which causes leukaemia in birds. This led to the hypothesis that aberrant activation of vertebrate MYB could also cause cancer. Despite more than three decades have elapsed since the isolation of v-myb, only recently investigators were able to detect MYB genes rearrangements and mutations, smoking gun evidence of the involvement of MYB family members in human cancer. In this review, we will highlight studies linking the activity of MYB family members to human malignancies and experimental therapeutic interventions tailored for MYB-expressing cancers.
Collapse
|
18
|
Abstract
The past three years have witnessed remarkable progress in acute myeloid leukemia (AML). The approval and development of targeted therapies and novel agents has improved outcomes for patients with traditionally poor survival rates. This review has summarized the survival impact of chemotherapy-based regimens in AML and described recent advances that will be of significance in the near future.
Collapse
Affiliation(s)
- Jacob M Rowe
- Department of Hematology, Rambam Health Care Campus, Shaare Zedek Medical Center, 12 Shmuel Bait St, Jerusalem, IL, 9103102, Israel.
| |
Collapse
|
19
|
Hernandez-Valladares M, Bruserud Ø, Selheim F. The Implementation of Mass Spectrometry-Based Proteomics Workflows in Clinical Routines of Acute Myeloid Leukemia: Applicability and Perspectives. Int J Mol Sci 2020; 21:ijms21186830. [PMID: 32957646 PMCID: PMC7556012 DOI: 10.3390/ijms21186830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
With the current reproducibility of proteome preparation workflows along with the speed and sensitivity of the mass spectrometers, the transition of the mass spectrometry (MS)-based proteomics technology from biomarker discovery to clinical implementation is under appraisal in the biomedicine community. Therefore, this technology might be implemented soon to detect well-known biomarkers in cancers and other diseases. Acute myeloid leukemia (AML) is an aggressive heterogeneous malignancy that requires intensive treatment to cure the patient. Leukemia relapse is still a major challenge even for patients who have favorable genetic abnormalities. MS-based proteomics could be of great help to both describe the proteome changes of individual patients and identify biomarkers that might encourage specific treatments or clinical strategies. Herein, we will review the advances and availability of the MS-based proteomics strategies that could already be used in clinical proteomics. However, the heterogeneity of complex diseases as AML requires consensus to recognize AML biomarkers and to establish MS-based workflows that allow their unbiased identification and quantification. Although our literature review appears promising towards the utilization of MS-based proteomics in clinical AML in a near future, major efforts are required to validate AML biomarkers and agree on clinically approved workflows.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Computational Biology
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Mass Spectrometry/methods
- Prognosis
- Proteome/analysis
- Proteome/metabolism
- Proteomics/methods
- Robotics/instrumentation
- Robotics/methods
- Workflow
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| |
Collapse
|
20
|
Park S, Cho BS, Kim HJ. New agents in acute myeloid leukemia (AML). Blood Res 2020; 55:S14-S18. [PMID: 32719171 PMCID: PMC7386889 DOI: 10.5045/br.2020.s003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Despite expanding knowledge in the molecular landscape of acute myeloid leukemia (AML) and an increasing understanding of leukemogenic pathways, little has changed in the treatment of AML in the last 40 years. Since introduction in the 1970s, combination chemotherapy consisting of anthracycline and cytarabine has been the mainstay of treatment, with major therapeutic advances based on improving supportive care rather than the introduction of novel therapeutics. Over the last decades, there have been extensive efforts to identify specific target mutations or pathways with the aim of improving clinical outcomes. Finally, after a prolonged wait, we are witnessing the next wave of AML treatment, characterized by a more “precise” and “personalized” understanding of the unique molecular or genetic mapping of individual patients. This new trend has since been further facilitated, with four new FDA approvals granted in 2017 in AML therapeutics. Currently, a total of eight targeted agents have been approved since 2017 (as of Jan. 2020). In this review, we will briefly discuss these newer agents in the context of their indication and the basis of their approval.
Collapse
Affiliation(s)
- Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
21
|
Bartosik T, Kędzia J, Drogosz-Stachowicz J, Janecka A, Krajewska U, Mirowski M, Janecki T. Synthesis of 2,2,6-Trisubstituted 5-Methylidene-tetrahydropyran-4-ones with Anticancer Activity. Molecules 2020; 25:molecules25030611. [PMID: 32019209 PMCID: PMC7038078 DOI: 10.3390/molecules25030611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/24/2022] Open
Abstract
In our continuous search for new, relatively simple 2-alkylidene-1-oxoheterocycles as promising anticancer drug candidates, herein we report an efficient synthesis of 2,2,6-trisubstituted 5-methylidenetetrahydropyran-4-ones. These compounds were obtained in a four step reaction sequence, in which starting diethyl 2-oxopropylphosphonate was transformed into 2,2-disubstituted 5-diethoxyphosphoryldihydropyran-4-ones, followed by Michael addition of various Grignard reagents and Horner-Wadsworth-Emmons reaction of the obtained adducts with formaldehyde. Stereochemistry of the intermediate Michael adducts is also discussed. Final 5-methylidenetetrahydropyran-4-ones were tested for their possible antiproliferative effect against three cancer cell lines and 6-isopropyl-2,2-dimethyl-5-methylidenetetrahydropyran-4-one (11c), which showed very high cytotoxic activity against HL-60 human leukemia cells and was three times more active than known anticancer drug carboplatin, was selected for further biological evaluation, in order to disclose its mechanism of action. The obtained results indicated that 11c induced apoptosis in HL-60 cells and caused the arrest of the cell cycle in the G2/M phase, which may suggest its cytotoxic and cytostatic activity.
Collapse
Affiliation(s)
- Tomasz Bartosik
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (T.B.); (J.K.)
| | - Jacek Kędzia
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (T.B.); (J.K.)
| | - Joanna Drogosz-Stachowicz
- Department of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland; (J.D.-S.)
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland; (J.D.-S.)
| | - Urszula Krajewska
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151, Łódź, Poland; (U.K.); (M.M.)
| | - Marek Mirowski
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151, Łódź, Poland; (U.K.); (M.M.)
| | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (T.B.); (J.K.)
- Correspondence: ; Tel.: +48-426313220
| |
Collapse
|