1
|
Ulu A, Akkurt Ş, Birhanlı E, Alkan Uçkun A, Uçkun M, Yeşilada Ö, Ateş B. Fabrication, characterization, and application of laccase-immobilized membranes for acetamiprid and diuron degradation. Int J Biol Macromol 2024; 282:136787. [PMID: 39454896 DOI: 10.1016/j.ijbiomac.2024.136787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Water and wastewater pollution by acetamiprid and diuron is considered a serious environmental problem. In this study, chitosan (CHS), a naturally occurring bioadsorbent considered ecologically harmless to remove these micropollutants, was developed as a possible carrier to immobilize laccase (Lac) from Trametes trogii. Polyethylene glycol methyl ether (PEGME) was chosen for blending CHS, so a hybrid biocatalyst-based Lac/CHS-PEGME membrane was prepared. The prepared CHS-PEGME and Lac/CHS-PEGME membranes were characterized by Fourier-transformed-infrared (FTIR) spectroscopy, scanning-electron-microscopy (SEM), and X-ray-diffraction (XRD). Pesticide degradation tests with Lac/CHS-PEGME were performed at different contact times and initial concentrations. Acetamiprid degradation was most effective (84 %) at the 12th hour, at an initial concentration of 0.1 mg/L, while diuron degradation was most effective (65 %) at an initial concentration of 6 mg/L and a contact time of 16th hour. Under optimum conditions, the reusability of Lac/CHS-PEGME was found to be 8 cycles for acetamiprid and 5 cycles for diuron. From these results, it is understood that acetamiprid is degraded more quickly and effectively than diuron. Adsorption process data were well fitted to the Langmuir isotherm model and the pseudo-first-order kinetic model. These findings showed that using Lac/CHS-PEGME was a practical and environmentally friendly method for acetamiprid and diuron degradation.
Collapse
Affiliation(s)
- Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye
| | - Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye
| | - Emre Birhanlı
- Department of Biology, Faculty of Science and Literature, İnönü University, 44280 Malatya, Turkiye
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye.
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye
| | - Özfer Yeşilada
- Department of Biology, Faculty of Science and Literature, İnönü University, 44280 Malatya, Turkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye
| |
Collapse
|
2
|
Serbent MP, Gonçalves Timm T, Vieira Helm C, Benathar Ballod Tavares L. Growth, laccase activity and role in 2,4-D degradation of Lentinus crinitus (L.) Fr. in a liquid medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Xu R, Zhang X, Zelekew OA, Schott E, Wu YN. Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal-organic framework (ZIF-8). RSC Adv 2023; 13:17194-17201. [PMID: 37304779 PMCID: PMC10248541 DOI: 10.1039/d3ra01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Porous materials such as metal-organic frameworks (MOFs) are considered to be suitable materials for immobilizing enzymes to improve their stability. However, conventional MOFs reduce the enzymes' catalytic activity due to difficulties with mass transfer and diffusing reactants after their micropores are occupied by enzyme molecules. To address these issues, a novel hierarchically structured zeolitic imidazolate framework-8 (HZIF-8) was prepared to study the effects of different laccase immobilization approaches such as the post-synthesis (LAC@HZIF-8-P) and de novo (LAC@HZIF-8-D) immobilization of catalytic activities for removing 2,4-dichlorophenol (2,4-DCP). The results showed higher catalytic activity for the laccase-immobilized LAC@HZIF-8 prepared using different methods than for the LAC@MZIF-8 sample, with 80% of 2,4-DCP removed under optimal conditions. These results could be attributable to the multistage structure of HZIF-8. The LAC@HZIF-8-D sample was stable and superior to LAC@HZIF-8-P, maintaining a 2,4-DCP removal efficiency of 80% after three recycles and demonstrating superior laccase thermostability and storage stability. Moreover, after loading with copper nanoparticles, the LAC@HZIF-8-D approach exhibited a 2,4-DCP removal efficiency of 95%, a promising finding for its potential use in environmental purification.
Collapse
Affiliation(s)
- Ran Xu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| | - Xujie Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| | - Osman Ahmend Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
- Department of Materials Science and Engineering, Adama Science and Technology University Adama Ethiopia
| | - Eduardo Schott
- Department of Inorganic Chemistry of the Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile Vicuña Mackenna 4860, Macul Santiago Chile
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| |
Collapse
|
4
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
5
|
Gong YZ, Niu QY, Liu YG, Dong J, Xia MM. Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120232. [PMID: 36155222 DOI: 10.1016/j.envpol.2022.120232] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Microbial technology is the most sustainable and eco-friendly method of environmental remediation. Immobilised microorganisms were introduced to further advance microbial technology. In immobilisation technology, carrier materials distribute a large number of microorganisms evenly on their surface or inside and protect them from external interference to better treat the targets, thus effectively improving their bioavailability. Although many carrier materials have been developed, there have been relatively few comprehensive reviews. Therefore, this paper summarises the types of carrier materials explored in the last ten years from the perspective of structure, microbial activity, and cost. Among these, carbon materials and biofilms, as environmentally friendly functional materials, have been widely applied for immobilisation because of their abundant sources and favorable growth conditions for microorganisms. The novel covalent organic framework (COF) could also be a new immobilisation material, due to its easy preparation and high performance. Different immobilisation methods were used to determine the relationship between carriers and microorganisms. Co-immobilisation is particularly important because it can compensate for the deficiencies of a single immobilisation method. This paper emphasises that impact conditions also affect the immobilisation effect and function. In addition to temperature and pH, the media conditions during the preparation and reaction of materials also play a role. Additionally, this study mainly reviews the applications and mechanisms of immobilised microorganisms in environmental remediation. Future development of immobilisation technology should focus on the discovery of novel and environmentally friendly carrier materials, as well as the establishment of optimal immobilisation conditions for microorganisms. This review intends to provide references for the development of immobilisation technology in environmental applications and to further the improve understanding of immobilisation technology.
Collapse
Affiliation(s)
- You-Zi Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Meng-Meng Xia
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
6
|
Ren D, Jiang S, Fu L, Wang Z, Zhang S, Zhang X, Gong X, Chen W. Laccase immobilized on amino-functionalized magnetic Fe 3O 4-SiO 2 core-shell material for 2,4-dichlorophenol removal. ENVIRONMENTAL TECHNOLOGY 2022; 43:2697-2711. [PMID: 33621162 DOI: 10.1080/09593330.2021.1895323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
In this study, an amino-functionalized magnetic silica microsphere material (Fe3O4-SiO2-NH2) was prepared. Using glutaraldehyde as a cross-linking agent, Trametes versicolor laccase was adsorbed-covalently bonded and immobilized on the material to prepare Laccase @ Fe3O4-SiO2. In addition, the materials were characterized and analysed by SEM, TEM, XRD, FT-IR and VSM. Finally, the thermal inactivation dynamics of immobilized laccase in polar/non-polar/toxic systems and the adsorption and degradation of 2,4-DCP were studied. The results showed that Laccase @ Fe3O4-SiO2 under the optimal conditions (pH 6, temperature 65°C, initial concentration of 2,4-DCP 10 mg/L), the removal rate was as high as 81.6%. Moreover, compared with free laccase, immobilized laccase had good tolerance under low pH and high-temperature conditions, and storage stability was also greatly improved. After repeated use for 7 times, Laccase @ Fe3O4-SiO2 can still maintain 59% removal rate of 2,4-DCP, which gives it the potential for industrial applications.
Collapse
Affiliation(s)
- Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Linjun Fu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangyi Gong
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Sharma A, Vázquez LAB, Hernández EOM, Becerril MYM, Oza G, Ahmed SSSJ, Ramalingam S, Iqbal HMN. Green remediation potential of immobilized oxidoreductases to treat halo-organic pollutants persist in wastewater and soil matrices - A way forward. CHEMOSPHERE 2022; 290:133305. [PMID: 34929272 DOI: 10.1016/j.chemosphere.2021.133305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 02/08/2023]
Abstract
The alarming presence of hazardous halo-organic pollutants in wastewater and soils generated by industrial growth, pharmaceutical and agricultural activities is a major environmental concern that has drawn the attention of scientists. Unfortunately, the application of conventional technologies within hazardous materials remediation processes has radically failed due to their high cost and ineffectiveness. Consequently, the design of innovative and sustainable techniques to remove halo-organic contaminants from wastewater and soils is crucial. Altogether, these aspects have led to the search for safe and efficient alternatives for the treatment of contaminated matrices. In fact, over the last decades, the efficacy of immobilized oxidoreductases has been explored to achieve the removal of halo-organic pollutants from diverse tainted media. Several reports have indicated that these enzymatic constructs possess unique properties, such as high removal rates, improved stability, and excellent reusability, making them promising candidates for green remediation processes. Hence, in this current review, we present an insight of green remediation approaches based on the use of immobilized constructs of phenoloxidases (e.g., laccase and tyrosinase) and peroxidases (e.g., horseradish peroxidase, chloroperoxidase, and manganese peroxidase) for sustainable decontamination of wastewater and soil matrices from halo-organic pollutants, including 2,4-dichlorophenol, 4-chlorophenol, diclofenac, 2-chlorophenol, 2,4,6-trichlorophenol, among others.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico
| | | | | | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro S/n, Sanfandila. Pedro Escobedo, Querétaro, 76703, Mexico
| | - Shiek S S J Ahmed
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
8
|
Applications of Biocatalysts for Sustainable Oxidation of Phenolic Pollutants: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13158620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.
Collapse
|
9
|
Myco-remediation of Chlorinated Pesticides: Insights Into Fungal Metabolic System. Indian J Microbiol 2021; 61:237-249. [PMID: 34294989 DOI: 10.1007/s12088-021-00940-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/03/2021] [Indexed: 12/22/2022] Open
Abstract
Synthetic chemicals including organochlorine pesticides pose environment and health hazard due to persistent and bio-accumulation property. Majority of them are recognized as endocrine disruptors. Fungi are ubiquitous in nature and employs efficient enzymatic machinery for the biotransformation and degradation of toxic, recalcitrant pollutants. This review critically discusses the organochlorine biotransformation process mediated by fungi and highlights the role of enzymatic system responsible for biotransformation, especially distribution of dehalogenase homologs among fungal classes. It also explores the potential use of fungal derived biomaterial, mainly chitosan as an adsorbing biomaterial for pesticides and heavy metals removal. Further, prospects of employing fungus to over-come the existing bioremediation limitations are discussed. The study highlights the potential scope of utilizing fungi for initial biotransformation purposes, preceding final biodegradation by bacterial species under environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00940-8.
Collapse
|
10
|
Cutiño-Avila BV, Sánchez-López MI, Cárdenas-Moreno Y, González-Durruthy M, Ramos-Leal M, Guerra-Rivera G, González-Bacerio J, Guisán JM, Ruso JM, Del Monte-Martínez A. Modeling and experimental validation of covalent immobilization of Trametes maxima laccase on glyoxyl and MANA-Sepharose CL 4B supports, for the use in bioconversion of residual colorants. Biotechnol Appl Biochem 2021; 69:479-491. [PMID: 33580532 DOI: 10.1002/bab.2125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/09/2021] [Indexed: 11/05/2022]
Abstract
Our novel strategy for the rational design of immobilized derivatives (RDID) is directed to predict the behavior of the protein immobilized derivative before its synthesis, by the usage of mathematic algorithms and bioinformatics tools. However, this approach needs to be validated for each target enzyme. The objective of this work was to validate the RDID strategy for covalent immobilization of the enzyme laccase from Trametes maxima MUCL 44155 on glyoxyl- and monoaminoethyl-N-aminoethyl (MANA)-Sepharose CL 4B supports. Protein surface clusters, more probable configurations of the protein-supports systems at immobilization pHs, immobilized enzyme activity, and protein load were predicted by RDID1.0 software. Afterward, immobilization was performed and predictions were experimentally confirmed. As a result, the laccase-MANA-Sepharose CL 4B immobilized derivative is better than laccase-glyoxyl-Sepharose CL 4B in predicted immobilized derivative activity (63.6% vs. 29.5%). Activity prediction was confirmed by an experimentally expressed enzymatic activity of 68%, using 2,6-dimethoxyphenol as substrate. Experimental maximum protein load matches the estimated value (11.2 ± 1.3 vs. 12.1 protein mg/support mL). The laccase-MANA-Sepharose CL 4B biocatalyst has a high specificity for the acid blue 62 colorant. The results obtained in this work suggest the possibility of using this biocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Bessy V Cutiño-Avila
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - María I Sánchez-López
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Yosberto Cárdenas-Moreno
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Michael González-Durruthy
- LAQV-REQUIMTE of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.,Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Ramos-Leal
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba.,Instituto de Fruticultura Tropical, La Habana, Cuba
| | - Gilda Guerra-Rivera
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba.,Departamento de Bioquímica, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - José M Guisán
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
11
|
Ren D, Wang Z, Jiang S, Yu H, Zhang S, Zhang X. Recent environmental applications of and development prospects for immobilized laccase: a review. Biotechnol Genet Eng Rev 2021; 36:81-131. [PMID: 33435852 DOI: 10.1080/02648725.2020.1864187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Laccases have enormous potential as promising 'green' biocatalysts in environmental applications including wastewater treatment and polluted soil bioremediation. The catalytic oxidation reaction they perform uses only molecular oxygen without other cofactors, and the only product after the reaction is water. The immobilization of laccase offers several improvements such as protected activity and enhanced stability over free laccase. In addition, the reusability of immobilized laccase is adistinct advantage for future applications. This review covers the sources of and progress in laccase research, and discusses the different methodologies of laccase immobilization that have emerged in the recent 5-10 years, as well as its applications to environmental fields, and evaluates these emerging technologies. Abbreviations: (2,4,6-TCP): 2,4,6-trichlorophenol; (2,4-DCP): 2,4-dichlorophenol; (ABTS), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); (ACE), acetaminophen; (BC-AS), almond shell; (BC-PM), pig manure; (BC-PW), pine wood; (BPA), bisphenol A; (BPA), bisphenol A; (BPF), bisphenol F; (BPS), bisphenol S; (C60), fullerene; (Ca-AIL), calcium-alginate immobilized laccase; (CBZ), carbamazepine; (CETY), cetirizine; (CHT-PGMA-PEI-Cu (II) NPs), Cu (II)-chelated chitosan nanoparticles; (CLEAs), cross-linked enzyme aggregates; (CMMC), carbon-based mesoporous magnetic composites; (COD), chemical oxygen demand; (CPH), ciprofloxacin hydrochloride; (CS), chitosan; (CTC), chlortetracycline; (Cu-AIL), copper-alginate immobilized laccase; (DBR K-4BL), Drimarene brilliant red K-4BL; (DCF), diclofenac; (E1),estrone; (E2), 17 β-estradiol; (EDC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; (EDCs), endocrine disrupting chemicals; (EE2), 17α-ethinylestradiol; (EFMs), electrospun fibrous membranes; (FL), free laccase; (fsMP), fumed silica microparticles; (GA-CBs), GLU-crosslinked chitosan beads; (GA-CBs), glutaraldehyde-crosslinked chitosan beads; (GA-Zr-MOF), graphene aerogel-zirconium-metal organic framework; (GLU), glutaraldehyde; (GO), graphene oxide; (HMCs), hollow mesoporous carbon spheres; (HPEI/PES), hyperbranched polyethyleneimine/polyether sulfone; (IC), indigo carmine; (IL), immobilized laccase; (kcat), catalytic constant; (Km), Michealis constant; (M-CLEAs), Magnetic cross-linked enzyme aggregates; (MMSNPs-CPTS-IDA-Cu2+), Cu2+-chelated magnetic mesoporous silica nanoparticles; (MSS), magnetic mesoporous silica spheres; (MWNTs), multi-walled carbon nanotubes; (MWNTs), multi-walled carbon nanotubes; (NHS), N-hydroxy succinimide; (O-MWNTs), oxidized-MWNTs; (P(AAm-NIPA)), poly(acrylamide-N-isopropylacrylamide); (p(GMA)), poly(glycidyl methacrylate); (p(HEMA)), poly(hydroxyethyl methacrylate); (p(HEMA-g-GMA)-NH2, poly(glycidyl methacrylate) brush grafted poly(hydroxyethyl methacrylate); (PA6/CHIT), polyamide 6/chitosan; (PAC), powdered active carbon; (PAHs), polycyclic aromatic hydrocarbons; (PAM-CTS), chitosan grafted polyacrylamide hydrogel; (PAN/MMT/GO), polyacrylonitrile/montmorillonite/graphene oxide; (PAN/PVdF), polyacrylonitrile/polyvinylidene fluoride; (PEG), poly ethylene glycol; (PEI), Poly(ethyleneimine); (poly(4-VP)), poly(4-vinyl pyridine); (poly(GMA-MAA)), poly(glycidyl methacrylate-methacrylic acid); (PVA), polyvinyl alcohol; (RBBR), Remazol Brilliant Blue R; (SDE), simulated dye effluent; (semi-IPNs), semi-interpenetrating polymer networks; (TC), tetracycline; (TCH), tetracycline hydrochloride; (TCS), triclosan; (Vmax), maximum activity; (Zr-MOF, MMU), micro-mesoporous Zr-metal organic framework.
Collapse
Affiliation(s)
- Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Hongyan Yu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| |
Collapse
|
12
|
Dao ATN, Loenen SJ, Swart K, Dang HTC, Brouwer A, de Boer TE. Characterization of 2,3,7,8-tetrachlorodibenzo-p-dioxin biodegradation by extracellular lignin-modifying enzymes from ligninolytic fungus. CHEMOSPHERE 2021; 263:128280. [PMID: 33297224 DOI: 10.1016/j.chemosphere.2020.128280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/28/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Ligninolytic fungi secrete extracellular lignin-modifying enzymes (LME) that degrade plant polymers for fungal nutrition but that are, because of their broad substrate specificity, also applicable for the degradation of many hazardous pollutants. Laccase is one of the most well characterized LME and is involved in the removal and degradation of recalcitrant aromatic compounds with or without the assistance of laccase-mediators. The Ligninolytic fungus Rigidoporus sp. FMD21 can degrade 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) with a half-life of 6.2 days. Using Rigidoporus sp. FMD21 crude extracellular enzyme extract (ExE) that mainly consisted of laccase, 77.4% of 2,3,7,8-TCDD was degraded within 36 days. The degradation rate did not depend on the 2,3,7,8-TCDD concentration in the tested range between 0.005 and 0.5 pgTEQ/μL. 2,3,7,8-TCDD was analysed by DR-CALUX® bioassay and the degradation was confirmed by GC-HRMS. In this study, we found evidence for cleavage of the diaryl ether bond in the 2,3,7,8-TCDD molecule and here we propose a new degradation mechanism in which 3,4-dichlorophenol is the main metabolite of 2,3,7,8-TCDD degradation by FMD21's ExE. Six laccase-mediators were tested. Three of them 1-hydroxybenzotriazole (HBT), syringaldehyde (Syr) and violuric acid (Vio) showed an equipotent added effect on 2,3,7,8-TCDD degradation by ExE, however only in case of Vio a level of significance was reached. The others showed no effect or negatively impacted degradation. In conclusion, we have shown that Rigidoporus sp. FMD21 produces extracellular enzymes, mainly laccases that apparently are able to degrade the highly recalcitrant and most toxic 2,3,7,8-congener of TCDD via diaryl bond cleavage into 3,4-dichlorophenol.
Collapse
Affiliation(s)
- Anh T N Dao
- MicroLife Solutions, Science Park 406, 1098XH, Amsterdam, the Netherlands; Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Cau Giay, Hanoi, Asia; Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Sander J Loenen
- MicroLife Solutions, Science Park 406, 1098XH, Amsterdam, the Netherlands
| | - Kees Swart
- BioDetection Systems, Science Park 406, 1098XH, Amsterdam, the Netherlands
| | - Ha T C Dang
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Cau Giay, Hanoi, Asia
| | - Abraham Brouwer
- MicroLife Solutions, Science Park 406, 1098XH, Amsterdam, the Netherlands; Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; BioDetection Systems, Science Park 406, 1098XH, Amsterdam, the Netherlands
| | - Tjalf E de Boer
- MicroLife Solutions, Science Park 406, 1098XH, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
An efficient decolorization of methyl orange dye by laccase from Marasmiellus palmivorus immobilized on chitosan-coated magnetic particles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Wang H, Li S, Li J, Zhong L, Cheng H, Ma Q. Immobilized polyphenol oxidase: Preparation, optimization and oxidation of phenolic compounds. Int J Biol Macromol 2020; 160:233-244. [DOI: 10.1016/j.ijbiomac.2020.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
|
15
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|
16
|
Qiu X, Qin J, Xu M, Kang L, Hu Y. Organic-inorganic nanocomposites fabricated via functional ionic liquid as the bridging agent for Laccase immobilization and its application in 2,4-dichlorophenol removal. Colloids Surf B Biointerfaces 2019; 179:260-269. [DOI: 10.1016/j.colsurfb.2019.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/16/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
|
17
|
A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Serbent MP, Rebelo AM, Pinheiro A, Giongo A, Tavares LBB. Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation. Appl Microbiol Biotechnol 2019; 103:5065-5078. [DOI: 10.1007/s00253-019-09838-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
19
|
Abdollahi K, Yazdani F, Panahi R, Mokhtarani B. Biotransformation of phenol in synthetic wastewater using the functionalized magnetic nano-biocatalyst particles carrying tyrosinase. 3 Biotech 2018; 8:419. [PMID: 30305990 DOI: 10.1007/s13205-018-1445-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
Low conversion efficiency and long-processing time are some of the major problems associated with the use of biocatalysts in industrial processes. In this study, modified magnetic iron oxide nanoparticles bearing tyrosinase (tyrosinase-MNPs) were employed as a magnetic nano-biocatalyst to treat phenol-containing wastewater. Different factors affecting the phenol removal efficiency of the fabricated nano-biocatalyst such as catalyst dosage, pH, temperature, initial phenol concentration, and reusability were investigated. The results proved that the precise dosage of nano-biocatalyst was able to degrade phenol at the wide range of pHs and temperatures. The immobilized tyrosinase showed proper phenol degradation more than 70%, where the substrate with a high concentration of 2500 mg/L was subjected to phenol removal. The nano-biocatalyst was highly efficient and reusable, since it displayed phenol degradation yields of 100% after the third reuse cycle and about 58% after the seventh cycle. Moreover, the immobilized tyrosinase was able to degrade phenol dissolved in real water samples up to 78% after incubation for 60 min. It was also reusable at least seven cycles in the real water sample. The results proved the effectiveness and applicability of the fabricated nano-biocatalyst to treat phenol-containing wastewaters in a shorter time and higher efficiency even at high phenol concentration. The developed nano-biocatalyst can be promising for the micropollutants removal and an alternative for the catalysts used in traditional treatment processes.
Collapse
Affiliation(s)
- Kourosh Abdollahi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| | - Farshad Yazdani
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| | - Reza Panahi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| | - Babak Mokhtarani
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| |
Collapse
|
20
|
Zhu Y, Song J, Zhang J, Yang J, Zhao W, Guo H, Xu T, Zhou X, Zhang L. Encapsulation of laccase within zwitterionic poly-carboxybetaine hydrogels for improved activity and stability. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01460d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulation of laccase within zwitterionic PCB hydrogels for improved activity, affinity and stability.
Collapse
Affiliation(s)
- Yingnan Zhu
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jiayin Song
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jiamin Zhang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jing Yang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Weiqiang Zhao
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Hongshuang Guo
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Tong Xu
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Xiao Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin
- PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Lei Zhang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| |
Collapse
|
21
|
Immobilized Cerrena sp. laccase: preparation, thermal inactivation, and operational stability in malachite green decolorization. Sci Rep 2017; 7:16429. [PMID: 29180686 PMCID: PMC5703875 DOI: 10.1038/s41598-017-16771-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/17/2017] [Indexed: 11/15/2022] Open
Abstract
Laccases are polyphenol oxidases with widespread applications in various industries. In the present study, the laccase from Cerrena sp. HYB07 was immobilized with four methods, namely entrapment in alginate, covalently binding to chitosan as well as formation of cross-linked enzyme aggregates (CLEAs) and magnetic CLEAs (M-CLEAs). The activity recovery rates of the immobilized laccases ranged from 29% to 68%. Immobilization elevated the reaction temperature optimum and reduced substrate specificity, but not necessarily the turnover rate. pH stability of immobilized laccases was improved compared with that of the free laccase, especially at acidic pH values. Thermal inactivation of all laccases followed a simple first-order exponential decay model, and immobilized laccases displayed higher thermostability, as manifested by lower thermal inactivation rate constants and longer enzyme half-life time. Operational stability of the immobilized laccase was demonstrated by decolorization of the triphenylmethane dye malachite green (MG) at 60 °C. MG decolorization with free laccase was accompanied by a shift of the absorption peak and accumulation of a stable, colored intermediate tetradesmethyl MG, probably due to lower thermostability of the free laccase and premature termination of the degradation pathway. In contrast, complete decolorization of MG was achieved with laccase CLEAs at 60 °C.
Collapse
|
22
|
|
23
|
Zucca P, Neves CMB, Simões MMQ, Neves MDGPMS, Cocco G, Sanjust E. Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes. Molecules 2016; 21:E964. [PMID: 27455229 PMCID: PMC6272862 DOI: 10.3390/molecules21070964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications.
Collapse
Affiliation(s)
- Paolo Zucca
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
- Consorzio UNO Oristano, via Carmine snc, Oristano 09170, Italy.
| | - Cláudia M B Neves
- Department of Chemistry and QOPNA, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Mário M Q Simões
- Department of Chemistry and QOPNA, University of Aveiro, Aveiro 3810-193, Portugal.
| | | | - Gianmarco Cocco
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
| | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
| |
Collapse
|
24
|
Jaiswal N, Pandey VP, Dwivedi UN. Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration. Int J Biol Macromol 2016; 86:288-95. [DOI: 10.1016/j.ijbiomac.2016.01.079] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 12/07/2022]
|
25
|
Misson M, Du X, Jin B, Zhang H. Dendrimer-like nanoparticles based β-galactosidase assembly for enhancing its selectivity toward transgalactosylation. Enzyme Microb Technol 2016; 84:68-77. [DOI: 10.1016/j.enzmictec.2015.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/16/2023]
|
26
|
Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone. Talanta 2016; 146:766-71. [DOI: 10.1016/j.talanta.2015.06.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/23/2022]
|
27
|
Yang J, Huang Y, Yang Y, Yuan H, Liu X. Cagelike mesoporous silica encapsulated with microcapsules for immobilized laccase and 2, 4-DCP degradation. J Environ Sci (China) 2015; 38:52-62. [PMID: 26702968 DOI: 10.1016/j.jes.2015.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 06/05/2023]
Abstract
In this study, cage-like mesoporous silica was used as the carrier to immobilize laccase by a physical approach, followed by encapsulating with chitosan/alginate microcapsule membranes to form microcapsules of immobilized laccase based on layer-by-layer technology. The relationship between laccase activity recovery/leakage rate and the coating thickness was simultaneously investigated. Because the microcapsule layers have a substantial network of pores, they act as semipermeable membranes, while the laccase immobilized inside the microcapsules acts as a processing plant for degradation of 2,4-dichlorophenol. The microcapsules of immobilized laccase were able to degrade 2,4-dichlorophenol within a wide range of 2,4-dichlorophenol concentration, temperature and pH, with mean degradation rate around 62%. Under the optimal conditions, the thermal stability and reusability of immobilized laccase were shown to be improved significantly, as the removal rate and degradation rate remained over 40.2% and 33.8% respectively after 6cycles of operation. Using mass spectrometry (MS) and nuclear magnetic resonance (NMR), diisobutyl phthalate and dibutyl phthalate were identified as the products of 2,4-dichlorophenol degradation by the microcapsules of immobilized laccase and laccase immobilized by a physical approach, respectively, further demonstrating the degradation mechanism of 2,4-dichlorophenol by microcapsule-immobilized laccase.
Collapse
Affiliation(s)
- Junya Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Sun H, Yang H, Huang W, Zhang S. Immobilization of laccase in a sponge-like hydrogel for enhanced durability in enzymatic degradation of dye pollutants. J Colloid Interface Sci 2015; 450:353-360. [DOI: 10.1016/j.jcis.2015.03.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 01/25/2023]
|
29
|
Chang Q, Jiang G, Tang H, Li N, Huang J, Wu L. Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(15)60856-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Doğan T, Bayram E, Uzun L, Şenel S, Denizli A. Trametes versicolorlaccase immobilized poly(glycidyl methacrylate) based cryogels for phenol degradation from aqueous media. J Appl Polym Sci 2015. [DOI: 10.1002/app.41981] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Tuğba Doğan
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| | - Engin Bayram
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| | - Lokman Uzun
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| | - Serap Şenel
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| | - Adil Denizli
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| |
Collapse
|
31
|
Novel photoluminescent material by laccase-mediated polymerization of 4-fluoroguaiacol throughout defluorination. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Zhang W, Qing W, Ren Z, Li W, Chen J. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor. BIORESOURCE TECHNOLOGY 2014; 172:16-21. [PMID: 25218626 DOI: 10.1016/j.biortech.2014.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
A composite catalytically active membrane immobilized with Candida rugosa lipase has been prepared by immersion phase inversion technique for enzymatic synthesis of lauryl stearate in a pervaporation membrane reactor. SEM images showed that a "sandwich-like" membrane structure with a porous lipase-PVA catalytic layer uniformly coated on a polyvinyl alcohol (PVA)/polyethersulfone (PES) bilayer was obtained. Optimum conditions for lipase immobilization in the catalytic layer were determined. The membrane was proved to exhibit superior thermal stability, pH stability and reusability than free lipase under similar conditions. In the case of pervaporation coupled synthesis of lauryl stearate, benefited from in-situ water removal by the membrane, a conversion enhancement of approximately 40% was achieved in comparison to the equilibrium conversion obtained in batch reactors. In addition to conversion enhancement, it was also found that excess water removal by the catalytically active membrane appears to improve activity of the lipase immobilized.
Collapse
Affiliation(s)
- Weidong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Weihua Qing
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhongqi Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiangrong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
33
|
Substrate specificity and enzyme recycling using chitosan immobilized laccase. Molecules 2014; 19:16794-809. [PMID: 25329872 PMCID: PMC6270992 DOI: 10.3390/molecules191016794] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/22/2014] [Accepted: 10/08/2014] [Indexed: 11/16/2022] Open
Abstract
The immobilization of laccase (Aspergillus sp.) on chitosan by cross-linking and its application in bioconversion of phenolic compounds in batch reactors were studied. Investigation was performed using laccase immobilized via chemical cross-linking due to the higher enzymatic operational stability of this method as compared to immobilization via physical adsorption. To assess the influence of different substrate functional groups on the enzyme's catalytic efficiency, substrate specificity was investigated using chitosan-immobilized laccase and eighteen different phenol derivatives. It was observed that 4-nitrophenol was not oxidized, while 2,5-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, syringaldazine, 2,6-dimetoxyphenol and ethylphenol showed reaction yields up 90% at 40 °C. The kinetic of process, enzyme recyclability and operational stability were studied. In batch reactors, it was not possible to reuse the enzyme when it was applied to syringaldazne bioconversion. However, when the enzyme was applied to bioconversion of 2,6-DMP, the activity was stable for eight reaction batches.
Collapse
|
34
|
Xu R, Chi C, Li F, Zhang B. Laccase-polyacrylonitrile nanofibrous membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12554-12560. [PMID: 24245853 DOI: 10.1021/am403849q] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Increasing attention has been given to nanobiocatalysis for commercial applications. In this study, laccase was immobilized on polyacrylonitrile (PAN) nanofibrous membranes through ethanol/HCl method of amidination reaction and successfully applied for removal of 2,4,6-trichlorophenol (TCP) from water. PAN membranes with fiber diameters from 200 nm to 300 nm were fabricated via electrospinning and provided a large surface area for enzyme immobilization and catalytic reactions. Images of scanning electron microscope demonstrated the enzyme molecules were aggregated on the nanofiber surface. The immobilized laccase exhibited 72% of the free enzyme activity and kept 60% of its initial activity after 10 operation cycles. Moreover, the storage stability of the immobilized laccase was considered excellent because they maintained more than 92% of the initial activity after 18 days of storage, whereas the free laccase retained only 20%. The laccase-PAN nanofibrous membranes exhibited high removal efficiency of TCP under the combined actions of biodegradation and adsorption. More than 85% of the TCP was removed under optimum conditions. Effects of various factors on TCP removal efficiency of the immobilized laccase were analyzed. Results suggest that laccase-PAN nanofibrous membranes can be used in removing TCP from aqueous sources and have potential for use in other commercial applications.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
| | | | | | | |
Collapse
|
35
|
Wang Y, Chen X, Liu J, He F, Wang R. Immobilization of laccase by Cu(2+) chelate affinity interaction on surface-modified magnetic silica particles and its use for the removal of 2,4-dichlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6222-6231. [PMID: 23589250 DOI: 10.1007/s11356-013-1661-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
Magnetic Cu(2+)-chelated silica particles that employ polyacrylamide as a metal-chelating ligand were developed and used to immobilize laccase by coordination. The particles were characterized by scanning electron microscope and Fourier transform infrared spectroscopy. The preparation, the enzymatic properties of the immobilized laccase, and its catalytic capacity for 2,4-dichlorophenol degradation were systemically evaluated. The results showed that immobilized laccase exhibited maximum enzyme activity when it was immobilized for 1 h at a pH of 4.0 and a temperature of 5 °C. The optimum laccase dose was 20 mg/g of carrier. In comparison to free laccase, the immobilized laccase had better acid adaptability and thermal stability. Higher activity was observed for immobilized laccase at a pH range of 2.0 to 3.5 and temperatures from 25 to 40 °C. The immobilized laccase that was prepared for this work exhibited a good catalytic capacity for removing 2,4-dichlorophnol from aqueous solutions.
Collapse
Affiliation(s)
- Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | | | | | | | | |
Collapse
|
36
|
Laccase-carrying electrospun fibrous membrane for the removal of polycyclic aromatic hydrocarbons from contaminated water. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2012.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Spinelli D, Fatarella E, Di Michele A, Pogni R. Immobilization of fungal (Trametes versicolor) laccase onto Amberlite IR-120 H beads: Optimization and characterization. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Shi X, Leng H, Hu Y, Liu Y, Duan H, Sun H, Chen Y. Removal of 2,4-dichlorophenol in hydroponic solution by four Salix matsudana clones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 86:125-131. [PMID: 23031587 DOI: 10.1016/j.ecoenv.2012.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 06/01/2023]
Abstract
Using plants to treat polluted sites and groundwater is an approach called phytoremediation. The aim of the present study was to investigated the toxicity, uptake, accumulation, and removal of 2,4-dichlorophenol (2,4-DCP) in four Salix matsudana clones and to screen the feasibility of phytoremediation using S. matsudana clones. Willows were exposed to 2,4-DCP in hydroponic solution with the concentrations of 10, 20 and 30mg L(-1) for 96h. The biomass of shoots and roots were reduced. Chlorophyll content decreased significantly compared with the control. All root morphology values were different between clones and different concentrations. The 2,4-DCP endurance of four S. matsudana clones was gauged as follows: clone 18> clone 22> clone 8> clone 10. S. matsudana was found to promote 2,4-DCP removal relative to the contaminated solution without plants. From 52.2% to 73.7% of 2,4-DCP were removed by all treatments after 96h exposure. 2,4-DCP was mainly accumulated in roots than in shoots. Clone 22 was the most efficient for the accumulation of 2,4-DCP in plant tissues. The removal of 2,4-DCP from the media may result from its degradation or polymerized in the root zone by the plant enzymes. Phytoremediation of 2,4-DCP with S. matsudana clone 8, 18 and 22 seem to be a viable option, especially at lower concentrations. These clones could remove 2,4-DCP from aquatic environment rapidly and efficiently. In addition, the toxic effect on trees during the removal process is not lethal.
Collapse
Affiliation(s)
- Xiang Shi
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400 Fuyang, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Ba S, Arsenault A, Hassani T, Jones JP, Cabana H. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Crit Rev Biotechnol 2012; 33:404-18. [PMID: 23051065 DOI: 10.3109/07388551.2012.725390] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.
Collapse
Affiliation(s)
- Sidy Ba
- Department of Chemical Engineering, Université de Sherbrooke , Sherbrooke, Québec , Canada
| | | | | | | | | |
Collapse
|
40
|
da Silva AM, Tavares AP, Rocha CM, Cristóvão RO, Teixeira JA, Macedo EA. Immobilization of commercial laccase on spent grain. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.03.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Savizi ISP, Kariminia HR, Bakhshian S. Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6584-6593. [PMID: 22612728 DOI: 10.1021/es300367h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Effect of cathodic enzymatic decolorization of reactive blue 221 (RB221) on the performance of a dual-chamber microbial fuel cell (MFC) was investigated. Immobilized laccase on the surface of a modified graphite electrode was used in the cathode compartment in order to decolorize the azo dye and enhance the oxygen reduction reaction. First, methylene blue which is an electroactive polymer was electropolymerized on the surface of a graphite bar to prepare the modified electrode. Utilization of the modified electrode with no enzyme in the MFC increased the power density up to 57% due to the reduction of internal resistance from 1000 to 750 Ω. Using the electropolymerized-enzymatic cathode resulted in 65% improvement of the power density and a decolorization efficiency of 74%. Laccase could act as a biocatalyst for oxygen reduction reaction along with catalyzing RB221 decolorization. Treatment of RB221 with immobilized laccase reduced its toxicity up to 5.2%. Degradation products of RB221 were identified using GC-MS, and the decomposition pathway was proposed. A discussion was also provided as to the mechanism of dye decolorization on the enhancement of the MFC performance.
Collapse
Affiliation(s)
- Iman Shahidi Pour Savizi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, PO Box 11155-9465, Tehran, Iran
| | | | | |
Collapse
|
42
|
Menale C, Nicolucci C, Catapane M, Rossi S, Bencivenga U, Mita D, Diano N. Optimization of operational conditions for biodegradation of chlorophenols by laccase-polyacrilonitrile beads system. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Immobilization of laccase by Cu2+ chelate affinity interaction on surface modified magnetic silica particles and its use for the removal of pentachlorophenol. CHINESE CHEM LETT 2012. [DOI: 10.1016/j.cclet.2011.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Arsenault A, Cabana H, Jones JP. Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent. Enzyme Res 2011; 2011:376015. [PMID: 21811672 PMCID: PMC3147005 DOI: 10.4061/2011/376015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/18/2011] [Indexed: 11/24/2022] Open
Abstract
Laccase from Coriolopsis Polyzona was insolubilized as cross-linked
enzyme aggregates (CLEAs) for the first time with chitosan as the cross-linking
agent. Concentrations between 0.01 and 1.867 g/L of chitosan were used and
between 0.05 and 600 mM of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride. The laccase was precipitated using ammonium sulphate and cross-linked
simultaneously. Specific activity and thermal stability of these biocatalysts were
measured. Activities of up to 737 U/g were obtained when
2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was used as a
substrate. Moreover, the stability of these biocatalysts was improved with regards
to thermal degradation compared to free laccase when exposed to denaturing
conditions of high temperature and low pH. The CLEAs stability against chemical
denaturants was also tested but no significant improvement was detected. The total
amount of ABTS to be oxidized during thermal degradation by CLEAs and free laccase
was calculated and the insolubilized enzymes were reported to oxidize more substrate
than free laccase. The formation conditions were analyzed by response surface
methodology in order to determine an optimal environment for the production of
efficient laccase-based CLEAs using chitosan as the cross-linking agent. After 24
hours of formation at pH 3 and at 4°C without agitation, the
CLEAs exhibit the best specific activity.
Collapse
Affiliation(s)
- Alexandre Arsenault
- Environmental Engineering Laboratory, Department of Civil Engineering, University of Sherbrooke, 2 500 Boulevard de l'Université, Sherbrooke, QC, Canada J1K 2R1
| | | | | |
Collapse
|
45
|
Adsorption and decolorization of dyes using solid residues from Pleurotus ostreatus mushroom production. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0074-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Gaitan IJ, Medina SC, González JC, Rodríguez A, Espejo AJ, Osma JF, Sarria V, Alméciga-Díaz CJ, Sánchez OF. Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. BIORESOURCE TECHNOLOGY 2011; 102:3632-3635. [PMID: 21115244 DOI: 10.1016/j.biortech.2010.11.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/04/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
In this study, the biodegradation of a mixture of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) using the laccase produced by the white-rot fungus Trametes pubescens CBS 696.94 was evaluated. Two laccase isoenzymes with molecular weights of about 60 and 120 kDa were identified in the enzymatic crude extract. The highest laccase activity with syringaldazine was observed with pH 6.0 and 60°C, while with 2,2-azino-bis(3-ethylbenzothiazoline-6) sulphonic acid the highest activity was observed between 50 and 60°C and 3.0-4.0 pH. A biodegradation of 100%, 99%, 82.1% and 41.1% for 2-CP, 2,4-DCP, 2,4,6-TCP and PCP, respectively, was observed after 4h of reaction. The reduction in chlorophenols concentration allowed 90% reduction in mixture toxicity. In summary, these results show the feasibility of a laccase enzymatic crude extract from T. pubescens for the reduction of concentration and toxicity of chlorophenols.
Collapse
Affiliation(s)
- Ingrid J Gaitan
- Chemical Engineering Department, Universidad de Los Andes, Bogotá, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang F, Guo C, Yang LR, Liu CZ. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. BIORESOURCE TECHNOLOGY 2010; 101:8931-8935. [PMID: 20655206 DOI: 10.1016/j.biortech.2010.06.115] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 06/22/2010] [Accepted: 06/26/2010] [Indexed: 05/29/2023]
Abstract
Newly large-pore magnetic mesoporous silica nanoparticles (MMSNPs) with wormhole framework structures were synthesized for the first time by using tetraethyl orthosilicate as the silica source and amine-terminated Jeffamine surfactants as template. Iminodiacerate was attached on these MMSNPs through a silane-coupling agent and chelated with Cu(2+). The Cu(2+)-chelated MMSNPs (MMSNPs-CPTS-IDA-Cu(2+)) showed higher adsorption capacity of 98.1 mg g(-1)-particles and activity recovery of 92.5% for laccase via metal affinity adsorption in comparison with MMSNPs via physical adsorption. The Michaelis constant (K(m)) and catalytic constant (k(cat)) of laccase immobilized on the MMSNPs-CPTS-IDA-Cu(2+) were 3.28 mM and 155.4 min(-1), respectively. Storage stability and temperature endurance of the immobilized laccase on MMSNPs-CPTS-IDA-Cu(2+) increased significantly, and the immobilized laccase retained 86.6% of its initial activity after 10 successive batch reactions operated with magnetic separation.
Collapse
Affiliation(s)
- Feng Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | |
Collapse
|
48
|
Dai Y, Niu J, Liu J, Yin L, Xu J. In situ encapsulation of laccase in microfibers by emulsion electrospinning: preparation, characterization, and application. BIORESOURCE TECHNOLOGY 2010; 101:8942-8947. [PMID: 20673716 DOI: 10.1016/j.biortech.2010.07.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
Laccase from Trametes versicolor was successfully in situ encapsulated into the poly(D,L-lactide) (PDLLA)/PEO-PPO-PEO (F108) electrospun microfibers by emulsion electrospinning. The porous morphology of electrospun microfibers was observed with scanning electron microscope, and the core-shell structure of microfibers and existence of laccase in microfibers were proved by laser confocal scanning microscopy micrograph. In this study, fibrous porosity and core-shell structure are advantageous to the activity and stability preservation of immobilized laccase. The activity of immobilized laccase could retain over 67% of that of the free enzyme. After 10 successive runs in the enzyme reactor, the immobilized laccase could also maintain 50% of its initial activity. Crystal violet dye was successfully degraded by the PDLLA/F108-laccase electrospun microfiber membranes. It was observed that the immobilized laccase possessed a broadening pH range of catalysis activity compared to free laccase.
Collapse
Affiliation(s)
- Yunrong Dai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | |
Collapse
|
49
|
Osma JF, Toca-Herrera JL, Rodríguez-Couto S. Transformation pathway of Remazol Brilliant Blue R by immobilised laccase. BIORESOURCE TECHNOLOGY 2010; 101:8509-14. [PMID: 20609582 DOI: 10.1016/j.biortech.2010.06.074] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 03/24/2010] [Accepted: 06/15/2010] [Indexed: 05/18/2023]
Abstract
This study deals with the biotransformation products obtained from the transformation of the anthraquinonic dye Remazol Brilliant Blue R (RBBR) by immobilised laccase from the white-rot fungus Trametes pubescens. A decolouration percentage of 44% was obtained in 42h. RBBR transformation products were investigated using ultraviolet-visible (UV-vis) spectrum scan and High Performance Liquid Chromatography/Mass Spectrometry (LC-MS) analysis. Two compounds were identified as the transformation intermediates (m/z 304.29 and m/z 342.24) and other two as the final transformation products (m/z 343.29 and m/z 207.16). As a result a metabolic pathway for RBBR transformation by laccase was proposed. No backward polymerisation of the transformation products resulting in recurrent colouration was observed after laccase treatment of RBBR. It was also found that the biotransformation products of RBBR showed less phytotoxicity than the dye itself.
Collapse
Affiliation(s)
- Johann F Osma
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Spain
| | | | | |
Collapse
|
50
|
Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater--a short review. Adv Colloid Interface Sci 2009; 152:26-38. [PMID: 19833317 DOI: 10.1016/j.cis.2009.09.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/27/2009] [Accepted: 09/27/2009] [Indexed: 11/23/2022]
Abstract
Chitin and chitosan-derivatives have gained wide attention as effective biosorbents due to low cost and high contents of amino and hydroxyl functional groups which show significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of chitin- and chitosan-derivatives from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. This paper will give an overview of the principal results obtained during the treatment of water and wastewater utilizing chitin and chitosan-derivatives for the removal of: (a) metal cations and metal anions; (b) radionuclides; (c) different classes of dyes; (d) phenol and substituted phenols; (e) different anions and other miscellaneous pollutants. The review provides a summary of recent information obtained using batch studies and deals with the various adsorption mechanisms involved. It is evident from the literature survey that chitin- and chitosan-derivatives have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale.
Collapse
|