1
|
Kang F, Bonné R, Nielsen LP. Electromagnetic induction properties of filamentous bacteria in sediment. PNAS NEXUS 2025; 4:pgaf011. [PMID: 39898181 PMCID: PMC11787994 DOI: 10.1093/pnasnexus/pgaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Microbial perception of spatial electromagnetic fields is essential for navigation and communication on Earth's surface system, but current understanding of this phenomenon is limited. At present, cable bacteria of the Desulfobulbaceae family have the longest known range of electron transport. In fact, the flow of electrons along these long filamentous bacteria generates an external electrostatic field, suggesting a potential for electromagnetic induction mirroring that of metallic wires. In this study, we measured the responses of cable bacteria to externally applied electric waves. We noted the formation and disappearance of square waves caused by a pair of spatially variable electric fields, generating negative and positive mirror-symmetric inductions (±1.20 mV in marine sediment) along the horizontally filamentous bacterial layer. Both seawater Candidatus Electrothrix and freshwater Ca. Electronema exhibited this electric induction. The distinct spatial boundary of bacterial induction was strictly confined within 12.5 mm below the surface of the seawater sediment. The results of this study open further avenues of research into understanding how bacteria sense and respond to spatial electromagnetic information.
Collapse
Affiliation(s)
- Fuxing Kang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Jiangsu, China
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Robin Bonné
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Dar RA, Tsui TH, Zhang L, Smoliński A, Tong YW, Mohamed Rasmey AH, Liu R. Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2025; 207:114902. [DOI: 10.1016/j.rser.2024.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Ebrahiminezhad A, Karami A, Karimi Z, Kargar M, Vaez A, Berenjian A. Lag Plot: A Novel Method to Determine Viable Bacterial Cell Number via a Single OD Measurement. Mol Biotechnol 2024:10.1007/s12033-024-01295-3. [PMID: 39354205 DOI: 10.1007/s12033-024-01295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Bactericidal activity is a valuable parameter which is considered and measured for antimicrobial compounds. The available standard protocol to evaluate bactericidal activity is based on the direct colony count. Colony counting requires serial dilution, plating, overnight incubation, and direct counting, which is time-and labor-intensive. In regard to eliminate direct plate count, novel techniques were developed based on the real-time growth monitoring which can come with some limitations and drawbacks. These drawbacks encourage us to develop a novel technique with simple procedure to determine viable bacterial cell count. In this procedure, real-time growth monitoring is not required. In fact, after an incubation time, the number of viable bacteria can be determined with a single OD measurement and through an equation. In this regard, four standard bacterial strains, including Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Bacillus subtilis (ATCC 23857), were cultured with descending inoculum densities (1.5 × 107 to 15 CFU/mL) and growth curves were drawn. As expected, growth in the samples with lower inoculum densities recorded with longer lag phase. Also, a direct relation was observed between the recorded turbidities and initial cell counts. A logarithmic curve (lag plot) was obtained by plotting the OD, after 12-18 h incubation, against initial cell counts. In all examined strains, R2 was calculated in the range of 0.96-0.99 which is acceptable value for coefficient of determination. Equation corresponding to the lag plot was obtained and called lag equation. This equation is applicable to calculate the number of viable cells in unknown samples simply by inoculation, incubation, and single OD measurement. Developed technique can be introduced as a simple substitution for labor- and time-intensive direct colony counting.
Collapse
Affiliation(s)
| | - Abdolreza Karami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Islamic Azad University, Jahrom Branch, Jahrom, Iran
| | - Zeinab Karimi
- Department of Medical Biotechnology, and Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| | - Mohammad Kargar
- Department of Microbiology, Islamic Azad University, Jahrom Branch, Jahrom, Iran
| | - Ahmad Vaez
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Liu T, Shen J, Qian Y, Zhao Y, Meng X, Liu Z, Jia F. The enhancement mechanism of adding stachyose to Lactiplantibacillus plantarum SS-128 in the probiotic/prebiotic combination biopreservation in salmon. Lebensm Wiss Technol 2024; 205:116526. [DOI: 10.1016/j.lwt.2024.116526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Ma H, Wereley ST, Linnes JC, Kinzer-Ursem TL. Computational fluid dynamics method for determining the rotational diffusion coefficient of cells. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2024; 36:042010. [PMID: 40051613 PMCID: PMC11884428 DOI: 10.1063/5.0193862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
This work presents a straightforward computational method to estimate rotational diffusion coefficientD r of cells and particles of various size using continuum fluid mechanics theory. We calculate the torque ( Γ ) for cells and particles immersed in fluids to find the mobility coefficient μ and then obtainD r by substituting Γ in the Einstein relation. Geometries are constructed using triangular mesh, and the model is solved with computational fluid dynamics techniques. This method is less intensive and more efficient than widely used models. We simulate eight different particle geometries and compare the results with previous literature.
Collapse
Affiliation(s)
- Hui Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Steven T. Wereley
- Department of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacqueline C. Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
6
|
Guzmán-Armenteros TM, Villacís-Chiriboga J, Guerra LS, Ruales J. Electromagnetic fields effects on microbial growth in cocoa fermentation: A controlled experimental approach using established growth models. Heliyon 2024; 10:e24927. [PMID: 38317962 PMCID: PMC10839996 DOI: 10.1016/j.heliyon.2024.e24927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Understanding the effects of electromagnetic fields is crucial in the fermentation of cocoa beans, since through precise control of fermentation conditions the sensory and nutritional properties of cocoa beans could be improved. This study aimed to evaluate the effect of oscillating magnetic fields (OMF) on the kinetic growth of the core microbial communities of the Collections Castro Naranjal (CCN 51) cocoa bean. The data was obtained by three different models: Gompertz, Baranyi, and Logistic. The cocoa beans were subjected to different OMF strengths ranging from 0 mT to 80 mT for 1 h using the Helmholtz coil electromagnetic device. The viable microbial populations of lactic acid bacteria (LAB), acetic acid bacteria (AAB), and yeast (Y) were quantified using the colony-forming unit (CFU) counting method. The logistic model appropriately described the growth of LAB and Y under magnetic field exposure. Whereas the Baranyi model was suitable for describing AAB growth. The microbial populations in cocoa beans exposed to magnetic fields showed lower (maximum specific growth rate (μmax), values than untreated controls, with AAB exhibiting the highest average growth rate value at 5 mT and Y having the lowest average maximum growth rate value at 80 mT. The lower maximum specific growth rates and longer lag phases when exposed to magnetic fields compared to controls demonstrate the influence of magnetic fields on microbial growth kinetics.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología (DECAB), Escuela Politécnica Nacional (EPN), Quito, Ecuador
- Escuela Superior Politécnica del Litoral, Facultad de Ingeniería Mecánica y Ciencias de la Producción, carrera de Ingeniería en Alimentos, Guayaquil, Ecuador
| | - José Villacís-Chiriboga
- Departamento de Ciencia de Alimentos y Biotecnología (DECAB), Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | - Luis Santiago Guerra
- Universidad Central del Ecuador (UCE), Facultad de Ciencias Médicas, Carrera de Medicina, Campus El Dorador, Quito, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología (DECAB), Escuela Politécnica Nacional (EPN), Quito, Ecuador
| |
Collapse
|
7
|
Chen S, Jin Y, Yang N, Wei L, Xu D, Xu X. Improving microbial production of value-added products through the intervention of magnetic fields. BIORESOURCE TECHNOLOGY 2024; 393:130087. [PMID: 38042431 DOI: 10.1016/j.biortech.2023.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The magnetic field application is emerging as an auxiliary physical strategy to facilitate rapid biomass accumulation and intracellular production of compounds. However, the underlying mechanisms and principles governing the application of magnetic fields for microbial growth and biotransformation are not yet fully understood. Therefore, a better understanding of interdisciplinary technologies integration, expanded magnetic field application, and scaled-up industrial implementation is crucial. In this review, the magnetic field characteristics, magnetic field-assisted fermentation devices, and the working mechanism of magnetic field have been reviewed comprehensively from both physical and microbiological perspectives. The review suggests that magnetic fields affect the biochemical processes in microorganisms by mediating nutrient transport across membranes, electron transfer during photosynthesis and respiration, enzyme activity and gene expression. Moreover, the recent advances in magnetic field application for microbial fermentation and conversion in biochemical, food and agricultural fields have been summarized.
Collapse
Affiliation(s)
- Sirui Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Na Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Liwen Wei
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| |
Collapse
|
8
|
Ossowicz-Rupniewska P, Nowak A, Konopacki M, Kordas M, Kucharski Ł, Klebeko J, Świątek E, Rakoczy R. Increase of ibuprofen penetration through the skin by forming ion pairs with amino acid alkyl esters and exposure to the electromagnetic field. Eur J Pharm Biopharm 2023:S0939-6411(23)00117-0. [PMID: 37164233 DOI: 10.1016/j.ejpb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
A method of increasing the permeability of ibuprofen through the skin using a rotating magnetic field (RMF) is presented. This study evaluated whether 50 Hz RMF modifies ibuprofen's permeability through the skin. Ibuprofen and its structural modifications in the form of ibuprofenates of isopropyl esters of L-amino acids such as L-valine, L-phenylalanine, L-proline, and L-aspartic acid were used in the research. To this end, Franz cells with skin as membrane were exposed to 50 Hz RMF with 5% ibuprofen and its derivatives in an ethanol solution for 48 h. Following the exposures, the amount of penetrated compound was analysed. Regardless of the compound tested, a significant increase in drug transport through the skin was observed. The differences in the first 30 minutes of permeation are particularly noticeable. Furthermore, it was shown that using RMF increases the permeability of ibuprofen from 4 to 244 times compared to the test without the RMF. The greatest differences were observed for unmodified ibuprofen. However, it is noteworthy that the largest amounts of the active substance were obtained with selected modifications and exposure to RMF. The RMF may be an innovative and interesting technology that increases the penetration of anti-inflammatory and anti-ache drugs through the skin.
Collapse
Affiliation(s)
- Paula Ossowicz-Rupniewska
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Piastów Ave. 42, 71-065 Szczecin, Poland.
| | - Anna Nowak
- Pomeranian Medical University in Szczecin, Department of Cosmetic and Pharmaceutical Chemistry, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland
| | - Maciej Konopacki
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Marian Kordas
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Łukasz Kucharski
- Pomeranian Medical University in Szczecin, Department of Cosmetic and Pharmaceutical Chemistry, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland
| | - Joanna Klebeko
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Ewelina Świątek
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Rafał Rakoczy
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
9
|
Basak S. The potential of pulsed magnetic field to achieve microbial inactivation and enzymatic stability in foods: A concise critical review. FUTURE FOODS 2023. [DOI: 10.1016/j.fufo.2023.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
10
|
Madondo NI, Rathilal S, Bakare BF, Tetteh EK. Application of Bioelectrochemical Systems and Anaerobic Additives in Wastewater Treatment: A Conceptual Review. Int J Mol Sci 2023; 24:4753. [PMID: 36902185 PMCID: PMC10003464 DOI: 10.3390/ijms24054753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The interspecies electron transfer (IET) between microbes and archaea is the key to how the anaerobic digestion process performs. However, renewable energy technology that utilizes the application of a bioelectrochemical system together with anaerobic additives such as magnetite-nanoparticles can promote both direct interspecies electron transfer (DIET) as well as indirect interspecies electron transfer (IIET). This has several advantages, including higher removal of toxic pollutants present in municipal wastewater, higher biomass to renewable energy conversion, and greater electrochemical efficiencies. This review explores the synergistic influence of bioelectrochemical systems and anaerobic additives on the anaerobic digestion of complex substrates such as sewage sludge. The review discussions present the mechanisms and limitations of the conventional anaerobic digestion process. In addition, the applicability of additives in syntrophic, metabolic, catalytic, enzymatic, and cation exchange activities of the anaerobic digestion process are highlighted. The synergistic effect of bio-additives and operational factors of the bioelectrochemical system is explored. It is elucidated that a bioelectrochemical system coupled with nanomaterial additives can increase biogas-methane potential compared to anaerobic digestion. Therefore, the prospects of a bioelectrochemical system for wastewater require research attention.
Collapse
Affiliation(s)
- Nhlanganiso Ivan Madondo
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Sudesh Rathilal
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Babatunde Femi Bakare
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Faculty of Engineering, Mangosuthu University of Technology, Durban 4026, South Africa
| | - Emmanuel Kweinor Tetteh
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| |
Collapse
|
11
|
Wu SC, Shih CC. Experimental validation of stability and applicability of Start Growth Time method for high-throughput bacterial ecotoxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85050-85061. [PMID: 35789463 DOI: 10.1007/s11356-022-21812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Ecotoxicity assessments based on bacteria as model organisms are widely used for routine toxicity screening because it has the advantages of time-saving, high sensitivity, cost-effectiveness, and less ethical responsibility. Determination of ecotoxicity effect via bacterial growth can avoid the restriction of model bacteria selection and unique equipment requirements, but traditional viable cell count methods are relatively labor- and time-intensive. The Start Growth Time method (SGT) is a high-throughput and time-conserving method to determine the amount of viable bacterial cells. However, its usability and stability for ecotoxicity assessment are rarely studied. This study confirmed its applicability in terms of bacterial types (gram-positive and gram-negative), growth phases (middle exponential and early stationary phases), and simultaneous existence of dead cells (adjustment by flow cytometry). Our results verified that the stability of establishing SGT correlation is independent of the bacterial type and dead-cell portion. Moreover, we only observed the effect of growth phases on the slope value of established SGT correlation in Shewanella oneidensis, which suggests that preparing inoculum for the SGT method should be consistent in keeping its stability. Our results also elucidate that the SGT values and the live cell percentages meet the non-linear exponential correlation with high correlation coefficients from 0.97 to 0.99 for all the examined bacteria. The non-linear exponential correlation facilitates the application of the SGT method in the ecotoxicity assessment. Finally, applying the exponential SGT correlation to evaluate the ecotoxicity effect of copper ions on E. coli was experimentally validated. The SGT-based method would require about 6 to 7 h to finish the assessment and obtain an estimated EC50 at 2.27 ± 0.04 mM. This study demonstrates that the exponential SGT correlation can be a high-throughput, time-conversing, and wide-applicable method for bacterial ecotoxicity assessment.
Collapse
Affiliation(s)
- Siang Chen Wu
- Department of Environmental Engineering, National Chung Hsing University, CEE Building, Room 521, 145 Xingda Road, South Dist., Taichung, 40227, Taiwan.
| | - Chang-Chun Shih
- Department of Environmental Engineering, National Chung Hsing University, CEE Building, Room 521, 145 Xingda Road, South Dist., Taichung, 40227, Taiwan
| |
Collapse
|
12
|
The use of the electromagnetic field in microbial process bioengineering. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:27-72. [PMID: 36328731 DOI: 10.1016/bs.aambs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.
Collapse
|
13
|
Enhancement of Polypeptide Yield Derived from Rapeseed Meal with Low-Intensity Alternating Magnetic Field. Foods 2022; 11:foods11192952. [PMID: 36230028 PMCID: PMC9562669 DOI: 10.3390/foods11192952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The application of physical processing technologies in fermentation is an effective way to improve the quality of substrates. The purpose of the study was to evaluate the feasibility of enhancing the polypeptides of rapeseed meal (RSM) by a low-intensity alternating magnetic field (LF-MF)-assisted solid-state fermentation. A protease-producing strain B16 from RSM was isolated and identified as Bacillus velezensis by analyzing its morphology and 16S rDNA sequencing. Then, it was employed in solid-state fermentation for polypeptide production. The results showed that the neutral protease activity could reach 147.48 U/mL when B.velezensis was cultured under suitable conditions. The protease activity increased rapidly on the 2.5th day of traditional fermentation, while the polypeptide yield reached the maximum on the third day. The highest polypeptides content was achieved by LF-MF-assisted fermentation at magnetic field intensity 140 Gs, treatment 4 h, magnetic field intervention after 16 h of inoculation, and rotation speed 50 rpm/min, which increased by 18.98% compared with traditional fermentation. Therefore, LF-MF-assisted fermentation effectively enhanced the polypeptide yield. The results suggested that LF-MF technology would be widely used to produce bioactive components from agro-industrial by-products.
Collapse
|
14
|
Wang M, Xu Z, Huang Y, Dong B. Static magnetic field enhances Cladosporium sp. XM01 growth and fungal Mn(II) oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129332. [PMID: 35752045 DOI: 10.1016/j.jhazmat.2022.129332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Fungal Mn oxidation is a crucial pathway in the biogeochemical cycling of toxic substances. However, few studies have aimed to promote the process of fungal Mn oxidation or systematically establish the mechanism of action. The effects of static magnetic field (SMF) treatment on the growth and Mn(II) oxidation capability of an Mn-oxidizing fungus, Cladosporium sp. XM01, were investigated. Results showed that 20.1 mT SMF treatment promoted the growth of strain XM01, and increased the Mn(II) removal rate by accelerating the adsorption and oxidation of Mn(II). In addition, the results of RNA sequencing suggested that SMF mainly stimulated energy metabolism and protein synthesis, accelerating the growth of strain XM01. Notably, KEGG pathway enrichment analysis found that SMF treatment significantly up-regulated the pathway of oxidative phosphorylation system, which is capable of stimulating the generation of superoxide (O2•-). Moreover, exposure to 20.1 mT SMF significantly promoted the activities of antioxidant enzymes including SOD and CAT. These results indicate that SMF treatment stimulates the generation of O2•- by strain XM01, and therefore, accelerates Mn(II) oxidation. This is a novel study using external SMF treatment to enhance fungal Mn(II) oxidation.
Collapse
Affiliation(s)
- Mei Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yangrui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Enhancement Effects of Water Magnetization and/or Disinfection by Sodium Hypochlorite on Secondary Slaughterhouse Wastewater Effluent Quality and Disinfection By-Products. Processes (Basel) 2022. [DOI: 10.3390/pr10081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wastewater disinfection is one of the most critical issues in protecting human health against exposure to waterborne pathogenies. Chlorine is among the most commonly used disinfectants in many wastewaters’ treatment plants. Nevertheless, disquiets regarding chlorine’s disinfection by-products (DBPs) have grown recently. One of the most effective ways to reduce DBPs generation is to reduce chlorine dosage by increasing disinfectant efficiency. Using magnetic field (MF) in wastewater treatment is one of the promising research topics with significant progression. This study aimed to evaluate the efficiency of using a magnetic field and/or sodium hypochlorite (NaClO) disinfection on secondary slaughterhouse wastewater effluent quality and by-products. Three groups of secondary slaughterhouse wastewater effluents were used: G1 was treated with NaClO only at 0, 2, 4, and 6 mg/L; G2 was treated with exposure to MF at 14,500 gausses, and G3 was pretreated with MF, then NaClO at the exact chlorine dosages and MF strength. The results showed an augmented effect when using a magnetic field as a pre-treatment step before NaClO treatment in the remediation of slaughterhouse wastewater over the use of any of them solely. The removal rate of COD and BOD increased by up to 26 and 20%, respectively, when pre-treatment with MF was employed as a mean percentage at all chlorine dosages, while TSS, TDS, and EC increased by 23.5 and 5.5%, respectively. Over and above, the removal rate for each TN and TP increased by 12 and 6.5% as a mean percentage at all chlorine dosages when using a combination of the two. In addition, pre-treatment by MF reduced the required concentration of NaClO from 6 to 4 mg/L, resulting in an 11% increase in the reduction rate of total coliform count, 8% increase in the reduction rate of fecal coliforms, and 10% increase in the reduction rate of E. coli and 5% in Salmonella via increasing the disinfection efficiency of NaClO. Finally, it decreased the concentration of Chloroform produced by more than 77.2% by using the higher concentration of NaClO (6 mg/L). The issue that approved the promising approach of using MF as a pre-treatment step in the treatment of slaughterhouse wastewater provides the advantage of using smaller dosages of disinfection, lowering the cost of the procedure process, and reducing the harmful concentration of DBPs.
Collapse
|
16
|
Feng HJ, Chen L, Ding YC, Ma XJ, How SW, Wu D. Mechanism on the microbial salt tolerance enhancement by electrical stimulation. Bioelectrochemistry 2022; 147:108206. [PMID: 35868204 DOI: 10.1016/j.bioelechem.2022.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
The application of biological methods in industrial saline wastewater treatment is limited, since the activities of microorganisms are strongly inhibited by the highly concentrated salts. Acclimatized halotolerant and halophilic microorganisms are of high importance since they can resist the environmental stresses of high salinity. The acclimation to salinity can be passive or active based on whether external simulation is used. However, there is a need for development of economic, efficient and reliable active biological stimulation technologies to accelerate salinity acclimation. Recent studies have shown that electrical stimulation can effectively enhance microbial salt tolerance and pollutant removal ability. However, there have been no comprehensive reviews of the mechanisms involved. Therefore, this mini-review described the mechanisms of electrical stimulation that can significantly improve microbial bioactivity and biodiversity. These mechanisms include regulation of Na+ and K+ transporters by changing membranepotential and promoting ATP production, as well as regulation of extracellular polymer substances through enhanced release of low molecular weight EPS and quorum sensing molecules. The information provided herein will facilitate the application of biological high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yang-Cheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China.
| | - Xiang-Juan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Seow-Wah How
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| | - Di Wu
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
17
|
Effect of an Electromagnetic Field on Anaerobic Digestion: Comparing an Electromagnetic System (ES), a Microbial Electrolysis System (MEC), and a Control with No External Force. Molecules 2022; 27:molecules27113372. [PMID: 35684310 PMCID: PMC9182473 DOI: 10.3390/molecules27113372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
This study examined the application of an electromagnetic field to anaerobic digestion by using an electromagnetic system (ES), a microbial electrolysis cell (MEC), and a control with no external force. The experimental work was performed by carrying out biochemical methane potential (BMP) tests using 1 L biodigesters. The bioelectrochemical digesters were supplied with 0.4 V for 30 days at 40 °C. The electromagnetic field of the ES was generated by coiling copper wire to form a solenoid in the BMP system, whereas the MEC consisted of zinc and copper electrodes inside the BMP system. The best performing system was the MEC, with a yield of 292.6 mL CH4/g chemical oxygen demand removed (CODremoved), methane content of 86%, a maximum current density of 23.3 mA/m2, a coulombic efficiency of 110.4%, and an electrical conductivity of 180 µS/cm. Above 75% removal of total suspended solids (TSS), total organic carbon (TOC), phosphate, and ammonia nitrogen (NH3-N) was also recorded. However, a longer exposure (>8 days) to higher magnetic intensity (6.24 mT) on the ES reduced its overall performance. In terms of energy, the MEC produced the greatest annual energy profit (327.0 ZAR/kWh or 23.36 USD/kWh). The application of an electromagnetic field in anaerobic digestion, especially a MEC, has the potential to maximize the methane production and the degradability of the wastewater organic content.
Collapse
|
18
|
Konopacki M, Grygorcewicz B, Kordas M, Ossowicz-Rupniewska P, Nowak A, Perużyńska M, Rakoczy R. Intensification of bacterial cellulose production process with sequential electromagnetic field exposure aided by dynamic modelling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface. Curr Issues Mol Biol 2022; 44:1316-1325. [PMID: 35723311 PMCID: PMC8947294 DOI: 10.3390/cimb44030088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Growing interest in bacteriophage research and use, especially as an alternative treatment option for multidrug-resistant bacterial infection, requires rapid development of production methods and strengthening of bacteriophage activities. Bacteriophage adsorption to host cells initiates the process of infection. The rotating magnetic field (RMF) is a promising biotechnological method for process intensification, especially for the intensification of micromixing and mass transfer. This study evaluates the use of RMF to enhance the infection process by influencing bacteriophage adsorption rate. The RMF exposition decreased the t50 and t75 of bacteriophages T4 on Escherichia coli cells and vb_SauM_A phages on Staphylococcus aureus cells. The T4 phage adsorption rate increased from 3.13 × 10−9 mL × min−1 to 1.64 × 10−8 mL × min−1. The adsorption rate of vb_SauM_A phages exposed to RMF increased from 4.94 × 10−9 mL × min−1 to 7.34 × 10−9 mL × min−1. Additionally, the phage T4 zeta potential changed under RMF from −11.1 ± 0.49 mV to −7.66 ± 0.29 for unexposed and RMF-exposed bacteriophages, respectively.
Collapse
|
20
|
Jabłońska J, Dubrowska K, Augustyniak A, Kordas M, Rakoczy R. Application of Magnetically Assisted Reactors for Modulation of Growth and Pyocyanin Production by Pseudomonas aeruginosa. Front Bioeng Biotechnol 2022; 10:795871. [PMID: 35356781 PMCID: PMC8959660 DOI: 10.3389/fbioe.2022.795871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a producer of desired secondary metabolites, including pyocyanin. Potential uses of this pigment urge a search for improved production methods. Recent trends in bioprocessing show the potential of the use of electromagnetic fields (EMFs) to influence the growth of microorganisms and even modulate the concentration of bioproducts. Here, we aimed at assessing the influence of rotating magnetic field (RMF) and static magnetic field (SMF) on pyocyanin production, growth rate, and respiration of P. aeruginosa. Moreover, exposure time to EMFs (2, 6, and 12 h) and culture volume (10 and 50 ml) were initially assessed. P. aeruginosa was cultivated in magnetically assisted reactors with 5 and 50 Hz RMF (magnetic induction of 24.32 and 42.64 mT, respectively) and SMF (−17.37 mT). Growth kinetics was assessed with Gompertz equation. The viability was tested using resazurin assay, whereas pyocyanin production by chloroform-HCl methodology. The growth of P. aeruginosa was slightly stimulated by exposure to a RMF with 50 Hz (108% related to the control) and significantly by SMF (132% related to the control), while RMF 5 Hz exposure prolonged the time of inflection (in comparison to RMF 50 Hz and SMF). The 6-h exposure to EMFs resulted in the highest pyocyanin production in comparison to the control, indicating a relationship between exposure time and product concentration. Moreover, cultures led in smaller volumes produced more pyocyanin. Our findings show that the use of different EMF types, frequency, and exposition time and volume could be used interchangeably to obtain different bioprocess aims.
Collapse
Affiliation(s)
- Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
- *Correspondence: Adrian Augustyniak, ; Joanna Jabłońska,
| | - Kamila Dubrowska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Adrian Augustyniak, ; Joanna Jabłońska,
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| |
Collapse
|
21
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Drozd R, Wardach M, Migdał P, Szymczyk-Ziółkowska P, Styburski D, Fijałkowski K. Rotating Magnetic Field Increases β-Lactam Antibiotic Susceptibility of Methicillin-Resistant Staphylococcus aureus Strains. Int J Mol Sci 2021; 22:ijms222212397. [PMID: 34830278 PMCID: PMC8618647 DOI: 10.3390/ijms222212397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have developed resistance to most β-lactam antibiotics and have become a global health issue. In this work, we analyzed the impact of a rotating magnetic field (RMF) of well-defined and strictly controlled characteristics coupled with β-lactam antibiotics against a total of 28 methicillin-resistant and sensitive S. aureus strains. The results indicate that the application of RMF combined with β-lactam antibiotics correlated with favorable changes in growth inhibition zones or in minimal inhibitory concentrations of the antibiotics compared to controls unexposed to RMF. Fluorescence microscopy indicated a drop in the relative number of cells with intact cell walls after exposure to RMF. These findings were additionally supported by the use of SEM and TEM microscopy, which revealed morphological alterations of RMF-exposed cells manifested by change of shape, drop in cell wall density and cytoplasm condensation. The obtained results indicate that the originally limited impact of β-lactam antibiotics in MRSA is boosted by the disturbances caused by RMF in the bacterial cell walls. Taking into account the high clinical need for new therapeutic options, effective against MRSA, the data presented in this study have high developmental potential and could serve as a basis for new treatment options for MRSA infections.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland;
| | - Daniel Styburski
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| |
Collapse
|
22
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Pruss A, Kwiatkowski P, Wardach M, Fijałkowski K. The Impact of Intraspecies Variability on Growth Rate and Cellular Metabolic Activity of Bacteria Exposed to Rotating Magnetic Field. Pathogens 2021; 10:1427. [PMID: 34832583 PMCID: PMC8624435 DOI: 10.3390/pathogens10111427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Majority of research on the influence of magnetic fields on microorganisms has been carried out with the use of different species or different groups of microorganisms, but not with the use of different strains belonging to one species. The purpose of the present study was to assess the effect of rotating magnetic fields (RMF) of 5 and 50 Hz on the growth and cellular metabolic activity of eight species of bacteria: Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Enterococcus faecalis, Enterobacter cloacae, Moraxella catarrhalis, and Bacillus cereus. However, contrary to the research conducted so far, each species was represented by at least four different strains. Moreover, an additional group of S. aureus belonging to a single clonal type but representing different biotypes was also included in the experiment. The results showed a varied influence of RMF on growth dynamics and cellular metabolic activity, diversified to the greatest extent in dependence on the bacterial strain exposed to the RMF and to a lesser extent in dependence on the frequency of the generated magnetic field. It was found that, with regard to the exposed strain of the same species, the effect exerted by the RMF may be positive (i.e., manifests as the increase in the growth rate or/and cellular metabolic activity) or negative (i.e., manifests as a reduction of both aforementioned features) or none. Even when one clonal type of S. aureus was used, the results of RMF exposure also varied (although the degree of differentiation was lower than for strains representing different clones). Therefore, the research has proven that, apart from the previously described factors related primarily to the physical parameters of the magnetic field, one of the key parameters affecting the final result of its influence is the bacterial intraspecies variability.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| |
Collapse
|
23
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Wardach M, Chodaczek G, Dudek B, Fijałkowski K. The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics. Int J Mol Sci 2021; 22:ijms222111551. [PMID: 34768983 PMCID: PMC8583794 DOI: 10.3390/ijms222111551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/05/2022] Open
Abstract
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have become a global issue for healthcare systems due to their resistance to most β-lactam antibiotics, frequently accompanied by resistance to other classes of antibiotics. In this work, we analyzed the impact of combined use of rotating magnetic field (RMF) with various classes of antibiotics (β-lactams, glycopeptides, macrolides, lincosamides, aminoglycosides, tetracyclines, and fluoroquinolones) against nine S. aureus strains (eight methicillin-resistant and one methicillin-sensitive). The results indicated that the application of RMF combined with antibiotics interfering with cell walls (particularly with the β-lactam antibiotics) translate into favorable changes in staphylococcal growth inhibition zones or in minimal inhibitory concentration values compared to the control settings, which were unexposed to RMF. As an example, the MIC value of cefoxitin was reduced in all MRSA strains by up to 42 times. Apart from the β-lactams, the reduced MIC values were also found for erythromycin, clindamycin, and tetracycline (three strains), ciprofloxacin (one strain), gentamicin (six strains), and teicoplanin (seven strains). The results obtained with the use of in vitro biofilm model confirm that the disturbances caused by RMF in the bacterial cell walls increase the effectiveness of the antibiotics towards MRSA. Because the clinical demand for new therapeutic options effective against MRSA is undisputable, the outcomes and conclusions drawn from the present study may be considered an important road into the application of magnetic fields to fight infections caused by methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-9341 (A.J.); +48-91-449-6714 (K.F.)
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Grzegorz Chodaczek
- Laboratory of Confocal Microscopy, Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland;
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Stanisława Przybyszewskiego 63, 51-148 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-9341 (A.J.); +48-91-449-6714 (K.F.)
| |
Collapse
|
24
|
Drozd R, Szymańska M, Żywicka A, Kowalska U, Rakoczy R, Kordas M, Konopacki M, Junka AF, Fijałkowski K. Exposure to non-continuous rotating magnetic field induces metabolic strain-specific response of Komagataeibacter xylinus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Konopacki M, Augustyniak A, Grygorcewicz B, Dołęgowska B, Kordas M, Rakoczy R. Single Mathematical Parameter for Evaluation of the Microorganisms' Growth as the Objective Function in the Optimization by the DOE Techniques. Microorganisms 2020; 8:microorganisms8111706. [PMID: 33142809 PMCID: PMC7692173 DOI: 10.3390/microorganisms8111706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
The cultivation of bacteria sets a ground for studying biological processes in many scientific disciplines. The development of the bacterial population is commonly described with three factors that can be used to evaluate culture conditions. However, selecting only one of them for the optimization protocol is rather problematic and may lead to unintended errors. Therefore, we proposed a novel mathematical approach to obtain a single factor that could be used as the objective function to evaluate the whole growth dynamic and support the optimization of the biomass production process. The sigmoidal-shape curve, which is the commonly used function to plot the amount of biomass versus time, was the base for the mathematical analysis. The key process parameters, such as maximal specific growth rate and lag-phase duration were established with the use of mathematical coefficients of the model curve and combined to create the single growth parameter. Moreover, this parameter was used for the exemplary optimization of the cultivation conditions of Klebsiella pneumoniae that was cultured to be further used in the production of lytic bacteriophages. The proposed growth parameter was successfully validated and used to calculate the optimal process temperature of the selected bacterial strain. The obtained results indicated that the proposed mathematical approach could be effortlessly adapted for a precise evaluation of growth curves.
Collapse
Affiliation(s)
- Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland; (A.A.); (M.K.); (R.R.)
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
- Correspondence:
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland; (A.A.); (M.K.); (R.R.)
- Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer Allee 25, 13355 Berlin, Germany
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland; (A.A.); (M.K.); (R.R.)
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland; (A.A.); (M.K.); (R.R.)
| |
Collapse
|
26
|
Geng S, Fu W, Chen W, Zheng S, Gao Q, Wang J, Ge X. Effects of an external magnetic field on microbial functional genes and metabolism of activated sludge based on metagenomic sequencing. Sci Rep 2020; 10:8818. [PMID: 32483239 PMCID: PMC7264255 DOI: 10.1038/s41598-020-65795-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
This study explored the effect of 70-mT magnetic field on wastewater treatment capacity for activated sludge in long-term laboratory-scale experiments. Metagenomic sequencing were conducted based on Illumina HiSeq 2000 platform after DNA extraction of the activated sludge. Then the effect of the magnetic field on the microbial unigene and metabolic pathways in activated sludge was investigated. As a result, higher pollutant removal was observed at 70 mT, with which the elimination of total nitrogen (TN) was the most effective. Functional genes annotated based on eggNOG database showed that unigenes related to information storage and processing were enhanced by the magnetic field. For CAZy classification, category such as glycosyl transferases was more abundant in the reactor with magnetic field, which has been shown to promote the entire energy supply pathway. Additionally, in the KEGG categories, unigenes related to signaling molecules and interaction were significantly inhibited. Through the enrichment analysis of the nitrogen metabolism pathway, the magnetic field inhibited anabolic nitrate reduction by significantly inhibiting enzymes such as [EC:1.7.7.2], [EC:1.7.7.1], [EC:3.5.5.1], [EC:1.4.1.2] and [EC:4.2.1.1], which are related to the improvement of the denitrification ability. This study can provide insight for future research on the response mechanism of activated sludge to magnetic fields.
Collapse
Affiliation(s)
- Shuying Geng
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.,College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Shulian Zheng
- Taian Chuanyuan Environmental Protection Equipment Co., Ltd, Taian, 271000, China
| | - Qi Gao
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Dezhou, 251100, China
| | - Jing Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohong Ge
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|