1
|
de Lima RMS, da Mata MJ, Santos JCPD, Costa L, Marques VHM, Bento LVDS, Lugon MDMV, Arcego DM, Barauna VG, Bittencourt AS, Bittencourt APSDV. Exploring the role of environmental enrichment and early life adversity on emotional development. Behav Brain Res 2024; 472:115147. [PMID: 39029628 DOI: 10.1016/j.bbr.2024.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Early life adversity has been linked with a higher probability of developing behavioral impairments and environmental manipulation is a strategy that may reduce the negative effects of exposure to adversity in early life. Here, we focused on exploring the influence of environmental enrichment (EE) as a protective factor in the context of early life adversity. We hypothesized that 24 hours of maternal deprivation (MD), in the second week of life, could induce anxiety-like behavior alterations and that exposure to EE could induce resilience to these behaviors due to alterations in the serotonergic system. Male Wistar rats were exposed to MD, on postnatal days 11 and 13, and to EE, after weaning. In adulthood, we performed a series of behavioral tests for fear, anxiety, and locomotor activity. We also measured the levels of serotonin in the amygdala and dorsal raphe nucleus. Our results revealed that MD does not impact fear behavior or the levels of serotonin, while EE decreases locomotor activity in a novel environment and enhances exploration in the predator odor test. EE also decreases serotonin in the amygdala and increases its turnover rate levels. Our findings provide insights into the critical timeframe during which stress exposure impacts the development and confirm that exposure to EE has an independent and protective effect for anxiety-like behaviors later in life.
Collapse
Affiliation(s)
- Randriely Merscher Sobreira de Lima
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Programa de Pós-Graduação em Bioquímica e Farmacologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Espírito Santo, Brazil.
| | - Martielo Januario da Mata
- Programa de Pós-Graduação em Bioquímica e Farmacologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Josefa Cristina Pereira Dos Santos
- Programa de Pós-Graduação em Bioquímica e Farmacologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Ludhielle Costa
- Programa de Pós-Graduação em Bioquímica e Farmacologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Victor Hugo Moreira Marques
- Programa de Pós-Graduação em Bioquímica e Farmacologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Lucas Victor Dos Santos Bento
- Programa de Pós-Graduação em Bioquímica e Farmacologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Marcelo di Marcello Valladão Lugon
- Programa de Pós-Graduação em Bioquímica e Farmacologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Danusa Mar Arcego
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Valério Garrone Barauna
- Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Athelson Stefanon Bittencourt
- Programa de Pós-Graduação em Bioquímica e Farmacologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Espírito Santo, Brazil; Departamento de Morfologia, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Ana Paula Santana de Vasconcellos Bittencourt
- Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| |
Collapse
|
2
|
Bridgeland-Stephens L, Thorpe SKS, Chappell J. Potential resilience treatments for orangutans ( Pongo spp.): Lessons from a scoping review of interventions in humans and other animals. Anim Welf 2023; 32:e77. [PMID: 38487448 PMCID: PMC10937215 DOI: 10.1017/awf.2023.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024]
Abstract
Wild orangutans (Pongo spp.) rescued from human-wildlife conflict must be adequately rehabilitated before being returned to the wild. It is essential that released orangutans are able to cope with stressful challenges such as food scarcity, navigating unfamiliar environments, and regaining independence from human support. Although practical skills are taught to orangutans in rehabilitation centres, post-release survival rates are low. Psychological resilience, or the ability to 'bounce back' from stress, may be a key missing piece of the puzzle. However, there is very little knowledge about species-appropriate interventions which could help captive orangutans increase resilience to stress. This scoping review summarises and critically analyses existing human and non-human animal resilience literature and provides suggestions for the development of interventions for orangutans in rehabilitation. Three scientific databases were searched in 2021 and 2023, resulting in 63 human studies and 266 non-human animal studies. The first section brings together human resilience interventions, identifying common themes and assessing the applicability of human interventions to orangutans in rehabilitation. The second section groups animal interventions into categories of direct stress, separation stress, environmental conditions, social stress, and exercise. In each category, interventions are critically analysed to evaluate their potential for orangutans in rehabilitation. The results show that mild and manageable forms of intervention have the greatest potential benefit with the least amount of risk. The study concludes by emphasising the need for further investigation and experimentation, to develop appropriate interventions and measure their effect on the post-release survival rate of orangutans.
Collapse
Affiliation(s)
| | | | - Jackie Chappell
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Healey K, Waters RC, Knight SG, Wandling GM, Hall NI, Jones BN, Shobande MJ, Melton JG, Pandey SC, Scott Swartzwelder H, Maldonado-Devincci AM. Adolescent intermittent ethanol exposure alters adult exploratory and affective behaviors, and cerebellar Grin2b expression in C57BL/6J mice. Drug Alcohol Depend 2023; 253:111026. [PMID: 38006668 PMCID: PMC10990063 DOI: 10.1016/j.drugalcdep.2023.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/17/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein (FMR1), glutamate receptors (Grin2a, Grin2b and Grm5) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2b (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2b expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE.
Collapse
Affiliation(s)
- Kati Healey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Renee C Waters
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, United States
| | - Sherilynn G Knight
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States
| | - Nzia I Hall
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; University of North Carolina at Chapel Hill School of Medicine, NC 27516, United States
| | - Brooke N Jones
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Mariah J Shobande
- Department of Chemical, Biological and Bioengineering, College of Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Jaela G Melton
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Antoniette M Maldonado-Devincci
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States.
| |
Collapse
|
4
|
Lonstein JS, Vitale EM, Olekanma D, McLocklin A, Pence N, Bredewold R, Veenema AH, Johnson AW, Burt SA. Anxiety, aggression, reward sensitivity, and forebrain dopamine receptor expression in a laboratory rat model of early-life disadvantage. Dev Psychobiol 2023; 65:e22421. [PMID: 37860907 DOI: 10.1002/dev.22421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
Despite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring. Dams and litters were chronically exposed to restricted (1-cm deep) or ample (4-cm deep) home cage bedding postpartum, with or without lead acetate (0.1%) in their drinking water from insemination through 1-week postweaning. Restricted-bedding mothers showed more pup-directed behaviors and behavioral fragmentation, while lead-exposed mothers showed more nestbuilding. Restricted bedding-raised male offspring showed higher anxiety and aggression. Either restricted bedding or lead exposure impaired goal-directed performance in a reinforcer devaluation task in females, whereas restricted bedding alone disrupted it in males. Lead exposure, but not limited bedding, also reduced sucrose reward sensitivity in a progressive ratio task in females. D1 and D2 receptor mRNA in the medial prefrontal cortex and nucleus accumbens (NAc) were each affected by the early-life treatments and differently between the sexes. Most notably, adult males (but not females) exposed to both early-life treatments had greatly increased D1 receptor mRNA in the NAc core. These results illuminate neural mechanisms through which ELD threatens neurobehavioral development and highlight forebrain dopamine as a factor.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Erika M Vitale
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Doris Olekanma
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Andrew McLocklin
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Nathan Pence
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Healey K, Waters RC, Knight SG, Wandling GM, Hall NI, Jones BN, Shobande MJ, Melton JG, Pandey SC, Scott Swartzwelder H, Maldonado-Devincci AM. Adolescent Intermittent Ethanol Exposure Alters Adult Exploratory and Affective Behaviors, and Cerebellar Grin2B Expression in C57BL/6J Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528396. [PMID: 36824954 PMCID: PMC9949091 DOI: 10.1101/2023.02.13.528396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein ( FMR1) , glutamate receptors ( Grin2a , Grin2B and Grm5 ) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2B (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2B expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE. Highlights Adolescent intermittent ethanol (AIE) exposure decreased exploratory behavior in adult male and female mice.In females, but not males, AIE increased anxiety-like behavior.In males, but not females, AIE reduced stress reactivity in adulthood.These findings indicate sex differences in the enduring effects of AIE on exploratory and affective behaviors. Cerebellar Grin2B mRNA levels were increased in adulthood in both male and female AIE-exposed mice. These findings add to the small, but growing literature on behavioral AIE effects in mice, and establish cerebellar excitatory synaptic gene expression as an enduring effect of adolescent ethanol exposure.
Collapse
|
6
|
Mavrenkova PV, Khlebnikova NN, Alchinova IB, Demorzhi MS, Shoibonov BB, Karganov MY. Effects of Maternal Separation and Subsequent Stress on Behaviors and Brain Monoamines in Rats. Brain Sci 2023; 13:956. [PMID: 37371434 DOI: 10.3390/brainsci13060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Childhood adversity can induce maladaptive behaviors and increase risk for affective disorders, post-traumatic stress disorder, personality disorders, and vulnerability to stress in adulthood. Deprivation of maternal care interrupts brain development through the disturbance of various neurotransmitters, however, the details remain unclear. The features of the symptoms of disorders are largely determined by early stress protocol, genetic characteristics (line), and the sex of the animals. The purpose of current study was (1) to assess behavioral changes in adult Wistar rats of both sexes after early life stress; (2) to determine the levels of monoamines in brain structures involved in the motor, emotional, and social reactions in rats aged 1 and 2 months; and (3) to determine the level of monoamines after physical or emotional stress in adult rats. The rat pups were separated from their dams and isolated from siblings in tight boxes at a temperature of 22-23 °C for 6 h during postnatal days 2-18. The data were processed predominantly using two-way analysis of variance and the Newman-Keys test as the post hoc analysis. The adult rats demonstrated an increase in motor activity and aggressiveness and a decrease in levels of anxiety and sociability. Behavioral disturbances were accompanied by region-, sex-, and age-dependent changes in the levels of monoamines and their metabolites. The dopaminergic and noradrenergic systems were found to be sensitive to psycho-emotional stress.
Collapse
Affiliation(s)
- Polina V Mavrenkova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Nadezhda N Khlebnikova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina B Alchinova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Marina S Demorzhi
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Batozhab B Shoibonov
- P. K. Anokhin Institute of Normal Physiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Mikhail Yu Karganov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
7
|
Fang H, Li J, Lu L, Yang J, Feng H, Yin X, Wang S, He X, Song L, Shi Y, Gao Y, Shi H, Yin X. Long-lasting and sex-dependent effects of late lactational maternal deprivation on socioemotional behaviors in adult mice. Neurosci Lett 2023; 799:137096. [PMID: 36738955 DOI: 10.1016/j.neulet.2023.137096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
The lactation period is an important period for individual development and a sensitive period for the behavioral phenotypes and plasticity of individual offspring. Early life experiences (e.g., maternal deprivation (MD) and neglect) have significant long-lasting and dual effects on individual stress reactivities during adulthood. Theoretically, stress inoculation can improve the adaptive capacity of the body, but overstress can lead to dysfunction when adaptive mechanisms fail.To date, the potential effects of late lactational MD on the socioemotional behaviors of mouse offspring during adulthood are still not fully understood. In the present study, mice were subjected to early deprivation by individually separating pups from their dam for 0 min, 15 min, and 3 h per day from PND 13-25. The social dominance test (SDT), social interaction test (SI), open field test (OFT), and forced swim test (FST) were carried out during adulthood. The results showed that the social dominance of male mice in the 15 min/d MD group significantly increased, especially in low-rank mice. In the 3 h/d MD group, the social dominance of female mice was decreased, especially in the lower-rank mice. The anxiolytic and antidepressant-like effects of the 15 min/d MD group were significantly increased in male mice. Our study provides direct evidence that MD during late lactation period results in long-lasting effects on social dominance as well as on anxiety and depression phenotypes in a sex-dependent manner.
Collapse
Affiliation(s)
- Hanlu Fang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabo Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Liuhua Lu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jingyu Yang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, 050017, China.
| | - Xi Yin
- Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
8
|
Dos Santos AS, Segabinazi E, de Almeida W, Faustino AM, Bronauth LP, Dos Santos TM, Ferreira FS, Wyse ATS, Marcuzzo S, Pereira LO. Resistance exercise was safe for the pregnancy and offspring's development and partially protected rats against early life stress-induced effects. Behav Brain Res 2023; 445:114362. [PMID: 36889464 DOI: 10.1016/j.bbr.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Promising evidence points to gestational physical exercise as the key to preventing various disorders that affect the offspring neurodevelopment, but there are no studies showing the impact of resistance exercise on offspring health. Thus, the aim of this study was to investigate whether resistance exercise during pregnancy is able to prevent or to alleviate the possible deleterious effects on offspring, caused by early life-stress (ELS). Pregnant rats performed resistance exercise throughout the gestational period:they climbed a sloping ladder with a weight attached to their tail, 3 times a week. Male and female pups, on the day of birth (P0), were divided into 4 experimental groups: 1) rats of sedentary mothers (SED group); 2) rats of exercised mothers (EXE group); 3) rats of sedentary mothers and submitted to maternal separation (ELS group) and 4) rats of exercised mothers and submitted to MS (EXE + ELS group). From P1 to P10, pups from groups 3 and 4 were separated from their mothers for 3 h/day. Maternal behavior was assessed. From P30, behavioral tests were performed and on P38 the animals were euthanized and prefrontal cortex samples were collected. Oxidative stress and tissue damage analysis by Nissl staining were performed. Our results demonstrate that male rats are more susceptible to ELS than females, showing impulsive and hyperactive behavior similar to that seen in children with ADHD. This behavior was attenuated by the gestational resistance exercise. Our results demonstrate, for the first time, that resistance exercise performed during pregnancy seems to be safe for the pregnancy and offspring's neurodevelopment and are effective in preventing ELS-induced damage only in male rats. Interestingly, resistance exercise during pregnancy improved maternal care and it is reasonable to propose that this finding may be related to the protective role on the animals neurodevelopment, observed in our study.
Collapse
Affiliation(s)
- Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Martins Faustino
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Loise Peres Bronauth
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Hasegawa R, Saito-Nakaya K, Gu L, Kanazawa M, Fukudo S. Maternal separation and TNBS-induced gut inflammation synergistically alter the sexually differentiated stress response in rats. Biopsychosoc Med 2023; 17:7. [PMID: 36841797 PMCID: PMC9960214 DOI: 10.1186/s13030-022-00258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Neonatal maternal separation (MS) has been used to model long-lasting changes in behavior caused by neuroplastic changes associated with exposure to early-life stress. Earlier studies showed that transient gut inflammation can influence the development of irritable bowel syndrome (IBS). A prevailing paradigm of the etiology of IBS is that transient noxious events lead to long-lasting sensitization of the neural pain circuit, despite complete resolution of the initiating event. This study characterizes the changes in behaviors and neuroendocrine parameters after MS and early-phase trinitrobenzene sulfonic acid (TNBS)-induced colitis. We tested the hypothesis that MS and gut inflammation synergistically induce (1) hyperactivity in male rats and anxiety-like behaviors in female rats and (2) activation of the HPA axis in female rats and deactivation of the HPA axis in male rats after colorectal distention (CRD). METHODS Male and female rat pups were separated from their dams for 180 min daily from postnatal day (PND) 2 to PND 14 (MS). Early-phase colitis was induced by colorectal administration with TNBS on PND 8. The elevated plus-maze test was performed at 7 weeks. Tonic CRD was performed at 60 mmHg for 15 min at 8 weeks. Plasma ACTH and serum corticosterone were measured at baseline or after the CRD. Analysis of variance was performed for comparison among controls, TNBS, MS, and MS + TNBS. RESULTS In male rats, the time spent in open arms significantly differed among the groups (p < 0.005). The time spent in open arms in male MS + TNBS rats was significantly higher than that of controls (p < 0.009) or TNBS rats (p < 0.031, post hoc test). Female rats showed no difference in the time spent in open arms among the groups. MS and gut inflammation induced an increase in plasma ACTH in female rats but not in male rats at baseline. CONCLUSIONS These findings suggest that MS and gut inflammation synergistically induce hyperactive behavior or exaggerated hypothalamic-pituitary-adrenal axis function depending on sex.
Collapse
Affiliation(s)
- Ryoko Hasegawa
- grid.69566.3a0000 0001 2248 6943Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 Japan
| | - Kumi Saito-Nakaya
- grid.69566.3a0000 0001 2248 6943Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 Japan ,grid.69566.3a0000 0001 2248 6943Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo, Aoba, Sendai 980-8575 Japan
| | - Li Gu
- grid.69566.3a0000 0001 2248 6943Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 Japan ,grid.410560.60000 0004 1760 3078Department of Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Motoyori Kanazawa
- grid.69566.3a0000 0001 2248 6943Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan.
| |
Collapse
|
10
|
Jarrar Q, Ayoub R, Alhussine K, Goh KW, Moshawih S, Ardianto C, Goh BH, Ming LC. Prolonged Maternal Separation Reduces Anxiety State and Increases Compulsive Burying Activity in the Offspring of BALB/c Mice. J Pers Med 2022; 12:1921. [PMID: 36422097 PMCID: PMC9699014 DOI: 10.3390/jpm12111921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND The elevated plus maze (EPM) and the marble burying (MB) tests are common behavioral tests used for behavioral phenotyping in mouse models for neurodevelopmental disorders. However, the behavioral effects of maternal separation (MS), a standard paradigm for early life stress in animals, in both the EPM and MB tests remain incompletely known. OBJECTIVES This study aimed to investigate the behavioral effects of prolonged MS in the offspring of mice using the EPM and MB tests. METHODS Male BALB/c mice were isolated from their mothers for 4 h each day during the first 30 days after birth. On day 50 postnatal, groups of separated and non-separated mice (n = 18/each group) were subjected to the EPM and MB tests for comparative behavioral evaluations. In addition, the locomotor activity of mice was evaluated using the actophotometer test. RESULTS The findings of the EPM test revealed that separated mice exhibited anxiolytic-like behaviors, as evidenced by a significant increase in the latency to closed arms and the time spent in the open arms compared with non-separated mice. Separated mice also showed compulsive burying activity in the MB test, as determined by a significant increase in the number of buried marbles. The results of the actophotometer test did not show any significant change in locomotor activity. CONCLUSIONS Prolonged MS caused the adult offspring of mice to exhibit a decrease in anxiety state and increased compulsive burying activity, which were not associated with a change in locomotor activity. Further investigations with validated tests are needed to support these findings.
Collapse
Affiliation(s)
- Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman 11622, Jordan
| | - Rami Ayoub
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman 11622, Jordan
| | - Kawther Alhussine
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman 11622, Jordan
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Said Moshawih
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Petaling Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
11
|
Filarowska-Jurko J, Komsta L, Smaga I, Surowka P, Marszalek-Grabska M, Grochecki P, Nizio D, Filip M, Kotlinska JH. Maternal Separation Alters Ethanol Drinking and Reversal Learning Processes in Adolescent Rats: The Impact of Sex and Glycine Transporter Type 1 (GlyT1) Inhibitor. Int J Mol Sci 2022; 23:5350. [PMID: 35628160 PMCID: PMC9141364 DOI: 10.3390/ijms23105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Adverse early life experiences are associated with an enhanced risk for mental and physical health problems, including substance abuse. Despite clinical evidence, the mechanisms underlying these relationships are not fully understood. Maternal separation (MS) is a commonly used animal model of early neglect. The aim of the current study is to determine whether the N-methyl-D-aspartate receptor (NMDAR)/glycine sites are involved in vulnerability to alcohol consumption (two-bottle choice paradigm) and reversal learning deficits (Barnes maze task) in adolescent rats subjected to the MS procedure and whether these effects are sex dependent. By using ELISA, we evaluated MS-induced changes in the NMDAR subunits (GluN1, GluN2A, GluN2B) expression, especially in the glycine-binding subunit, GluN1, in the prefrontal cortex (PFC) and ventral striatum (vSTR) of male/female rats. Next, we investigated whether Org 24598, a glycine transporter 1 (GlyT1) inhibitor, was able to modify ethanol drinking in adolescent and adult male/female rats with prior MS experience and reversal learning in the Barnes maze task. Our findings revealed that adolescent MS female rats consumed more alcohol which may be associated with a substantial increase in GluN1 subunit of NMDAR in the PFC and vSTR. Org 24598 decreased ethanol intake in both sexes with a more pronounced decrease in ethanol consumption in adolescent female rats. Furthermore, MS showed deficits in reversal learning in both sexes. Org 24598 ameliorated reversal learning deficits, and this effect was reversed by the NMDAR/glycine site inhibitor, L-701,324. Collectively, our results suggest that NMDAR/glycine sites might be targeted in the treatment of alcohol abuse in adolescents with early MS, especially females.
Collapse
Affiliation(s)
- Joanna Filarowska-Jurko
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (J.F.-J.); (P.G.)
| | - Lukasz Komsta
- Department of Medicinal Chemistry, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-324 Krakow, Poland; (I.S.); (P.S.); (M.F.)
| | - Paulina Surowka
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-324 Krakow, Poland; (I.S.); (P.S.); (M.F.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (J.F.-J.); (P.G.)
| | - Dorota Nizio
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-324 Krakow, Poland; (I.S.); (P.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (J.F.-J.); (P.G.)
| |
Collapse
|
12
|
Laguna A, Lajud N, Juárez J, Sanz‐Martin A. Chronic early‐life stress increases cognitive impulsivity and D2 immunoreactivity in the nucleus accumbens of adult rats. Dev Psychobiol 2022; 64:e22259. [DOI: 10.1002/dev.22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Arturo Laguna
- Laboratorio de Estrés y Neurodesarrollo CUCBA Instituto de Neurociencias Universidad de Guadalajara Guadalajara Jalisco Mexico
| | - Naima Lajud
- Laboratorio de Neurobiología del Desarrollo División de Neurociencias Centro de Investigación Biomédica de Michoacán‐Instituto Mexicano del Seguro Social Morelia Michoacan Mexico
| | - Jorge Juárez
- Laboratorio de Farmacología y Conducta Instituto de Neurociencias CUCBA Universidad de Guadalajara Guadalajara Jalisco Mexico
| | - Araceli Sanz‐Martin
- Laboratorio de Estrés y Neurodesarrollo CUCBA Instituto de Neurociencias Universidad de Guadalajara Guadalajara Jalisco Mexico
| |
Collapse
|
13
|
Waters RC, Worth HM, Vasquez B, Gould E. Inhibition of adult neurogenesis reduces avoidance behavior in male, but not female, mice subjected to early life adversity. Neurobiol Stress 2022; 17:100436. [PMID: 35146080 PMCID: PMC8819473 DOI: 10.1016/j.ynstr.2022.100436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Early life adversity (ELA) increases the risk of developing neuropsychiatric illnesses such as anxiety disorders. However, the mechanisms connecting these negative early life experiences to illness later in life remain unclear. In rodents, plasticity mechanisms, specifically adult neurogenesis in the ventral hippocampus, have been shown to be altered by ELA and important for buffering against detrimental stress-induced outcomes. The current study sought to explore whether adult neurogenesis contributes to ELA-induced changes in avoidance behavior. Using the GFAP-TK transgenic model, which allows for the inhibition of adult neurogenesis, and CD1 littermate controls, we subjected mice to an ELA paradigm of maternal separation and early weaning (MSEW) or control rearing. We found that mice with intact adult neurogenesis showed no behavioral changes in response to MSEW. After reducing adult neurogenesis, however, male mice previously subjected to MSEW had an unexpected decrease in avoidance behavior. This finding was not observed in female mice, suggesting that a sex difference exists in the role of adult-born neurons in buffering against ELA-induced changes in behavior. Taken together with the existing literature on ELA and avoidance behavior, this work suggests that strain differences exist in susceptibility to ELA and that adult-born neurons may play a role in regulating adaptive behavior.
Collapse
|
14
|
Abdelwahab LA, Galal OO, Abd El-Rahman SS, El-Brairy AI, Khattab MM, El-Khatib AS. Targeting the oxytocin system to ameliorate early life depressive-like behaviors in maternally-separated rats. Biol Pharm Bull 2021; 44:1445-1457. [PMID: 34349049 DOI: 10.1248/bpb.b21-00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxytocin (OXT) - "the love hormone" - has been involved in the anti-depressant activity of some selective serotonin reuptake inhibitors (SSRIs). The exact mechanism underlying the OXT pathway in depression is not fully clear. This study aimed to investigate the effect of OXT analogue, carbetocin (CBT) and the SSRI, escitalopram (ESCIT) on depressive-like behaviors following maternal separation (MS). It is worthy to mention that intranasal CBT has been approved by FDA for Prader-Willi syndrome. Adolescent Wistar albino maternally-separated rats were given CBT, (100 μg/animal/day via inhalation route), and, ESCIT, (20 mg kg-1, po) either alone or in combination for 7 days. Repeated 3-h MS demonstrated increased immobility time in forced swim test (FST) and decreased locomotor activity in open field test. MS elevated plasma level of adrenocortico-trophic hormone (ACTH) but notably reduced plasma OXT, with no effect on hippocampal OXT-R expression. Following MS, hippocampal contents of 5-hydroxytryptamine receptors (5HT1A-R), serotonin transporter (SERT) were increased. CBT and ESCIT corrected the behavioral dysfunction in FST and suppressed the high levels of ACTH. Additionally, both treatments boosted OXT level, reduced 5HT1A-R and normalized SERT contents, which reflects increased availability of serotonin. Finally, CBT markedly ameliorated the histopathological damage induced by MS and suppressed the increased glial fibrillary acidic protein. CBT and ESCIT manage depressive-like behavior by positively affecting serotonergic and oxytocinergic systems. Targeting OXT system -using CBT- ameliorated depressive like behaviors induced by maternal separation most probably via enhancing OXT plasma levels, attenuating hormonal ACTH and restoring the expression of hippocampal oxytocin and serotonin mechanisms.
Collapse
Affiliation(s)
- Lobna A Abdelwahab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| | - Omneya O Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University (ACU)
| | | | - Amany I El-Brairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University
| |
Collapse
|
15
|
Bianco CD, Hübner IC, Bennemann B, de Carvalho CR, Brocardo PS. Effects of postnatal ethanol exposure and maternal separation on mood, cognition and hippocampal arborization in adolescent rats. Behav Brain Res 2021; 411:113372. [PMID: 34022294 DOI: 10.1016/j.bbr.2021.113372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/24/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Ethanol exposure and early life stress during brain development are associated with an increased risk of developing psychiatric disorders. We used a third-trimester equivalent model of fetal alcohol spectrum disorders combined with a maternal separation (MS) protocol to evaluate whether these stressors cause sexually dimorphic behavioral and hippocampal dendritic arborization responses in adolescent rats. Wistar rat pups were divided into four experimental groups: 1) Control; 2) MS (MS, for 3 h/day from postnatal (PND) 2 to PND14); 3) EtOH (EtOH, 5 g/kg/day, i.p., PND2, 4, 6, 8, and 10); 4) EtOH + MS. All animals were divided into two cohorts and subjected to a battery of behavioral tests when they reached adolescence (PND37-44). Animals from cohort 1 were submitted to: 1) the open field test; 2) self-cleaning behavior (PND38); and 3) the motivation test (PND39-41). Animals from cohort 2 were submitted to: 1) the novel object recognition (PND37-39); 2) social investigation test (PND40); and 3) Morris water maze test (PND41-44). At PND45, the animals were euthanized, and the brains were collected for subsequent dendritic analysis. Postnatal ethanol exposure (PEE) caused anxiety-like behavior in females and reduced motivation, and increased hippocampal dendritic arborization in both sexes. MS reduced body weight, increased locomotor activity in females, and increased motivation, and hippocampal dendritic arborization in both sexes. We found that males from the EtOH + MS groups are more socially engaged than females, who were more interested in sweets than males. Altogether, these data suggest that early life adverse conditions may alter behavior in a sex-dependent manner in adolescent rats.
Collapse
Affiliation(s)
- Claudia Daniele Bianco
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ian Carlos Hübner
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Bianca Bennemann
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Cristiane Ribeiro de Carvalho
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia S Brocardo
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
16
|
Raony Í, Geraldo A, Pandolfo P. A single episode of stress during adolescence impairs short-term memory and increases risk behaviour in an animal model of attention-deficit/hyperactivity disorder. Behav Processes 2021; 187:104395. [PMID: 33839237 DOI: 10.1016/j.beproc.2021.104395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/04/2020] [Accepted: 04/05/2021] [Indexed: 01/16/2023]
Abstract
Adolescence is a period of increased sensitivity to stress and vulnerability to the manifestation of psychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD). Nevertheless, the relationship between stress during adolescence and ADHD is still unclear. Knowing that stress can have long-term consequences, the aim of this study was to evaluate the impact of a single episode of restraint stress during adolescence on locomotion, risk behaviour and short-term memory in adult spontaneously hypertensive rats (SHR), a validated animal model of ADHD. A single episode of stress during adolescence increased risk behaviour and impaired short-term recognition memory, but did not alter locomotion in adult SHR. These findings show that stress during adolescence, even acute, may lead to long-term behavioural consequences in an animal model of ADHD.
Collapse
Affiliation(s)
- Ícaro Raony
- Laboratory of Neurobiology of Animal Behaviour, Department of Neurobiology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - Arnaldo Geraldo
- Laboratory of Neurobiology of Animal Behaviour, Department of Neurobiology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - Pablo Pandolfo
- Laboratory of Neurobiology of Animal Behaviour, Department of Neurobiology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Life-course effects of early life adversity exposure on eating behavior and metabolism. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:237-273. [PMID: 34311901 DOI: 10.1016/bs.afnr.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Environmental variations in early life influence brain development, making individuals more vulnerable to psychiatric and metabolic disorders. Early life stress (ELS) has a strong impact on the development of eating behavior. However, eating is a complex behavior, determined by an interaction between signals of energy homeostasis, neuronal circuits involved in its regulation, and circuits related to rewarding properties of the food. Although mechanisms underlying ELS-induced altered feeding behavior are not completely understood, evidence suggest that the effects of ELS on metabolic, mood, and emotional disorders, as well as reward system dysfunctions can contribute directly or indirectly to altered feeding behavior. The focus of this chapter is to discuss the effects of ELS on eating behavior and metabolism, considering different factors that control appetite such as energy homeostasis, hedonic properties of the food, emotional and cognitive status. After highlighting classic studies on the association between ELS and eating behavior alterations, we discuss how exposure to adversity can interact with genetics characteristics to predict variable outcomes.
Collapse
|
18
|
Fernández-Teruel A. Conflict between Threat Sensitivity and Sensation Seeking in the Adolescent Brain: Role of the Hippocampus, and Neurobehavioural Plasticity Induced by Pleasurable Early Enriched Experience. Brain Sci 2021; 11:brainsci11020268. [PMID: 33672653 PMCID: PMC7924176 DOI: 10.3390/brainsci11020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 01/28/2023] Open
Abstract
Adolescence is characterized both by the exacerbation of the experience of anxiety, fear or threat, on one hand, and by increased reward seeking (reward sensitivity) and risk taking on the other hand. The rise of these apparently opposite processes, i.e., threat-related anxiety and reward-related sensation seeking, seems to stem from a relatively decreased top-down inhibition of amygdala and striatal circuits by regulatory systems (e.g., prefrontal cortex, hippocampus) that mature later. The present commentary article aims to discuss recent related literature and focusses on two main issues: (i) the septo-hippocampal system (in particular the ventral hippocampus) might be a crucial region for the regulation of approach–avoidance conflict and also for the selection of the most appropriate responses during adolescence, and (ii) developmental studies involving early-life pleasurable-enriched experience (as opposed to early-life adversity) might be a useful study paradigm in order to decipher whether neuroplasticity induced by such experiences (for example, in the hippocampus and associated circuitry) may lead to better top-down inhibition and more “balanced” adolescent responses to environmental demands.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Department of Psychiatry & Forensic Medicine, Medical Psychology Unit, School of Medicine & Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
19
|
Sex-Dependent End-of-Life Mental and Vascular Scenarios for Compensatory Mechanisms in Mice with Normal and AD-Neurodegenerative Aging. Biomedicines 2021; 9:biomedicines9020111. [PMID: 33498895 PMCID: PMC7911097 DOI: 10.3390/biomedicines9020111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Life expectancy decreases with aging, with cardiovascular, mental health, and neurodegenerative disorders strongly contributing to the total disability-adjusted life years. Interestingly, the morbidity/mortality paradox points to females having a worse healthy life expectancy. Since bidirectional interactions between cardiovascular and Alzheimer’s diseases (AD) have been reported, the study of this emerging field is promising. In the present work, we further explored the cardiovascular–brain interactions in mice survivors of two cohorts of non-transgenic and 3xTg-AD mice, including both sexes, to investigate the frailty/survival through their life span. Survival, monitored from birth, showed exceptionally worse mortality rates in females than males, independently of the genotype. This mortality selection provided a “survivors” cohort that could unveil brain–cardiovascular interaction mechanisms relevant for normal and neurodegenerative aging processes restricted to long-lived animals. The results show sex-dependent distinct physical (worse in 3xTg-AD males), neuropsychiatric-like and cognitive phenotypes (worse in 3xTg-AD females), and hypothalamic–pituitary–adrenal (HPA) axis activation (higher in females), with higher cerebral blood flow and improved cardiovascular phenotype in 3xTg-AD female mice survivors. The present study provides an experimental scenario to study the suggested potential compensatory hemodynamic mechanisms in end-of-life dementia, which is sex-dependent and can be a target for pharmacological and non-pharmacological interventions.
Collapse
|
20
|
Kim HB, Yoo JY, Yoo SY, Suh SW, Lee S, Park JH, Lee JH, Baik TK, Kim HS, Woo RS. Early-life stress induces EAAC1 expression reduction and attention-deficit and depressive behaviors in adolescent rats. Cell Death Discov 2020; 6:73. [PMID: 32818073 PMCID: PMC7415155 DOI: 10.1038/s41420-020-00308-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023] Open
Abstract
Neonatal maternal separation (NMS), as an early-life stress (ELS), is a risk factor to develop emotional disorders. However, the exact mechanisms remain to be defined. In the present study, we investigated the mechanisms involved in developing emotional disorders caused by NMS. First, we confirmed that NMS provoked impulsive behavior, orienting and nonselective attention-deficit, abnormal grooming, and depressive-like behaviors in adolescence. Excitatory amino acid carrier 1 (EAAC1) is an excitatory amino acid transporter expressed specifically by neurons and is the route for the neuronal uptake of glutamate/aspartate/cysteine. Compared with that in the normal control group, EAAC1 expression was remarkably reduced in the ventral hippocampus and cerebral cortex in the NMS group. Additionally, EAAC1 expression was reduced in parvalbumin-positive hippocampal GABAergic neurons in the NMS group. We also found that EAAC1-knockout (EAAC1-/-) mice exhibited impulsive-like, nonselective attention-deficit, and depressive-like behaviors compared with WT mice in adolescence, characteristics similar to those of the NMS behavior phenotype. Taken together, our results revealed that ELS induced a reduction in EAAC1 expression, suggesting that reduced EAAC1 expression is involved in the pathophysiology of attention-deficit and depressive behaviors in adolescence caused by NMS.
Collapse
Affiliation(s)
- Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Seoul Lee
- Department of Pharmacology and Brain Research Institute, College of Medicine, Wonkwang University, Jeonbuk, 54538 Republic of Korea
| | - Ji Hye Park
- Department of Pharmacology and Brain Research Institute, College of Medicine, Wonkwang University, Jeonbuk, 54538 Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, 34520 Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 110-799 Korea
- Seoul National University College of Medicine, Bundang Hospital, Sungnam, 13620 Republic of Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| |
Collapse
|
21
|
Angulo R, Bustamante J, Estades V, Ramírez V, Jorquera B. Sex Differences in Cue Competition Effects With a Conditioned Taste Aversion Preparation. Front Behav Neurosci 2020; 14:107. [PMID: 32655385 PMCID: PMC7325977 DOI: 10.3389/fnbeh.2020.00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to test whether male and female rats might show differences in cue competition effects in a conditioned taste aversion (CTA) model. Experiment 1 tested for sex differences in overshadowing. After conditioning of a flavored compound AB or only one simple flavor A (being A and B a solution of sugar 10% and salt 1%, counterbalanced), consumption of the A solution at test was larger in the former than in the latter case only in males. Thus, the usual effect of overshadowing was observed in males but not in females. Experiment 2 examined sex differences in blocking with the same stimuli used in Experiment 1. After conditioning of AB, the consumption of B was larger for the animals that previously received a single conditioning trial with A than for those that received unpaired presentations of A and the illness. As observed in Experiment 1, the typical blocking effect appeared only in males but not in females. The present findings thus support the hypothesis that sex dimorphism might be expressed in classical conditioning, or at least, in cue competition effects such as overshadowing and blocking with a taste aversion model.
Collapse
Affiliation(s)
- Rocio Angulo
- Instituto de Ciencias Sociales, Universidad de O’Higgins, Rancagua, Chile
| | | | | | | | | |
Collapse
|
22
|
Wu R, Huang Y, Liu Y, Shen Q, Han Y, Yang S, Wei W. Repeated predator odor exposure alters maternal behavior of postpartum Brandt's voles and offspring's locomotor activity. Behav Processes 2020; 177:104143. [PMID: 32445852 DOI: 10.1016/j.beproc.2020.104143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/03/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
Abstract
Recent evidence indicates that predation risk plays a special role in the rodent behavior of dams and offspring, but little is known about the effect of maternal exposure to the predator cues in the absence of pups. Here, we assessed the effects of repeated predator odor exposure on various maternal responses in postpartum Brandt's voles (Lasiopodomys brandtii). We also examined offspring's behavioral response to a novel environment. Only mother voles were exposed to distilled water, rabbit urine and cat urine for 60 min daily from postpartum day (PP) 1-18. Maternal behavior was immediately tested after these exposures on PP1, 3, 6, 9 and 18. Repeated cat odor (CO) and rabbit odor (RO) exposure disrupted hovering over pups in a time-dependent fashion. Repeated CO exposure also time-dependently disrupted pup retrieval, whereas RO exposure induced long-term reduction in pup licking. Juvenile offspring of CO-exposed mothers showed increased locomotor activity and decreased rearing in the open field at postnatal day 30. These findings demonstrated that maternal exposure to predator or non-predator odors had a disruptive effect on the maternal behavior of Brandt's voles when only the mother was exposed to these odors, and that the adversity experience with predation risk significantly impacted the behavioral development of offspring. Future work should explore possible behavioral mechanisms, such as the effect of predation risk, on the dams' emotional processing or pup preference.
Collapse
Affiliation(s)
- Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yefeng Huang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuan Liu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qiuyi Shen
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuxuan Han
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shengmei Yang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wanhong Wei
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
23
|
Lundberg S, Nylander I, Roman E. Behavioral Profiling in Early Adolescence and Early Adulthood of Male Wistar Rats After Short and Prolonged Maternal Separation. Front Behav Neurosci 2020; 14:37. [PMID: 32265671 PMCID: PMC7096550 DOI: 10.3389/fnbeh.2020.00037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Early-life stress and its possible correlations to genes, environment, and later health outcomes can only be studied retrospectively in humans. Animal models enable the exploration of such connections with prospective, well-controlled study designs. However, with the recent awareness of replicability issues in preclinical research, the reproducibility of results from animal models has been highlighted. The present study aims to reproduce the behavioral effects of maternal separation (MS) previously observed in the multivariate concentric square fieldTM (MCSF) test. A second objective was to replicate the adolescent behavioral profiles previously described in the MCSF test. Male rats, subjected to short or prolonged MS or standard rearing, were subjected to behavioral testing in early adolescence and early adulthood. As seen in previous studies, the behavioral effects of MS in the MCSF were small at both tested time points. When tested in early adolescence, the animals exhibited a similar behavioral profile as previously seen, and the finding of adolescent behavioral types was also reproduced. The distribution of animals into the behavioral types was different than in the initial study, but in a manner consistent with developmental theories, as the current cohort was younger than the previous. Notably, the Shelter seeker behavioral type persisted through development, while the Explorer type did not. The lack of basal behavioral effect after MS is in line with the literature on this MS paradigm; the working hypothesis is that the prolonged MS gives rise to a phenotype predisposed to negative health outcomes but which is not apparent without additional provocation.
Collapse
Affiliation(s)
- Stina Lundberg
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ingrid Nylander
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
24
|
Cao XJ, Huang YX, Zhu P, Zhang ZG. The impacts of maternal separation experience and its pattern on depression and dysfunctional attitude in middle school students in rural China. Int J Soc Psychiatry 2020; 66:188-197. [PMID: 31894719 DOI: 10.1177/0020764019895795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In China, because of the growth of economically driven rural-to-urban migration, there are lots of children in rural area who are separating or have separation experience with their parents. Until now, few studies focused on solely maternal separation and no research studied whether its pattern will affect children's later psychological status. AIM The aim of this study was to determine whether early or late maternal separation affects depression and dysfunctional attitude in middle school students and what is the role of cumulative duration and meeting frequency. METHODS Maternal separation experience was obtained by using questionnaires. We got early maternal separation group first. Then, late maternal separation and control group were obtained with the same number by matching grade, sex and family socioeconomic status. All the students in the three groups completed the scales of Children's Depression Inventory (CDI) and Dysfunctional Attitude Scale (DAS). RESULTS Both CDI and DAS scores of early separation group are higher than the other two groups. When we split the data by sex, only females presented the same results. When cumulative duration is short, there is significant difference in both scores of CDI and DAS among the three groups, which showed the scores of early separation group are higher than the other two groups. When the cumulative duration is long, there is no significant difference among the three groups. When meeting frequency is high, there is no significant difference among the three groups. When it is low, there is significant difference among the three groups, which showed the CDI and DAS scores of early separation group are higher than the other two groups. Furthermore, the same results are also found in females. CONCLUSION Early maternal separation may exert negative influence on student's depression and dysfunctional attitude. The sex, cumulative duration and meeting frequency may also play important roles in the effect.
Collapse
Affiliation(s)
- Xiu-Jing Cao
- Department of Maternal and Child Health Care, School of Public Health, Anhui Medical University, Hefei, China.,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Yi-Xuan Huang
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China.,Faculty of Science, McGill University, Montreal, QC, Canada
| | - Ping Zhu
- Department of Maternal and Child Health Care, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhi-Gang Zhang
- Maternity and Child Health Care of Suzhou, Suzhou, China
| |
Collapse
|
25
|
González-Pardo H, Arias JL, Vallejo G, Conejo NM. Environmental enrichment effects after early stress on behavior and functional brain networks in adult rats. PLoS One 2019; 14:e0226377. [PMID: 31830106 PMCID: PMC6907785 DOI: 10.1371/journal.pone.0226377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023] Open
Abstract
Early life stress is associated with long-term and pervasive adverse effects on neuroendocrine development, affecting normal cognitive and emotional development. Experimental manipulations like environmental enrichment (EE) may potentially reverse the effects of early life stress induced by maternal separation (MS) paradigm in rodents. However, the functional brain networks involved in the effects of EE after prolonged exposure to MS have not yet been investigated. In order to evaluate possible changes in brain functional connectivity induced by EE after MS, quantitative cytochrome c oxidase (CCO) histochemistry was applied to determine regional brain oxidative metabolism in adult male rats. Unexpectedly, results show that prolonged MS during the entire weaning period did not cause any detrimental effects on spatial learning and memory, including depressive-like behavior evaluated in the forced-swim test, and decreased anxiety-like behavior. However, EE seemed to alter anxiety- and depression-like behaviors in both control and MS groups, but improved spatial memory in the latter groups. Analysis of brain CCO activity showed significantly lower metabolic capacity in most brain regions selected in EE groups probably associated with chronic stress, but no effects of MS on brain metabolic capacity. In addition, principal component analysis of CCO activity revealed increased large-scale functional brain connectivity comprising at least three main networks affected by EE in both MS and control groups. Moreover, EE induced a pattern of functional brain connectivity associated with stress and anxiety-like behavior as compared with non-enriched groups. In conclusion, EE had differential effects on cognition and emotional behavior irrespective of exposure to MS. In view of the remarkable effects of EE on brain function and behavior, implementation of rodent housing conditions should be optimized by evaluating the balance between scientific validity and animal welfare.
Collapse
Affiliation(s)
- Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology and Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology and Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Guillermo Vallejo
- Methodology Area, Department of Psychology and Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Nélida M. Conejo
- Laboratory of Neuroscience, Department of Psychology and Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
- * E-mail:
| |
Collapse
|
26
|
Effect of early maternal separation stress on attention, spatial learning and social interaction behaviour. Exp Brain Res 2019; 237:1993-2010. [DOI: 10.1007/s00221-019-05567-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
|
27
|
Risbrough VB, Glynn LM, Davis EP, Sandman CA, Obenaus A, Stern HS, Keator DB, Yassa MA, Baram TZ, Baker DG. Does Anhedonia Presage Increased Risk of Posttraumatic Stress Disorder? : Adolescent Anhedonia and Posttraumatic Disorders. Curr Top Behav Neurosci 2019; 38:249-265. [PMID: 29796839 PMCID: PMC9167566 DOI: 10.1007/7854_2018_51] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anhedonia, the reduced ability to experience pleasure, is a dimensional entity linked to multiple neuropsychiatric disorders, where it is associated with diminished treatment response, reduced global function, and increased suicidality. It has been suggested that anhedonia and the related disruption in reward processing may be critical precursors to development of psychiatric symptoms later in life. Here, we examine cross-species evidence supporting the hypothesis that early life experiences modulate development of reward processing, which if disrupted, result in anhedonia. Importantly, we find that anhedonia may confer risk for later neuropsychiatric disorders, especially posttraumatic stress disorder (PTSD). Whereas childhood trauma has long been associated with increased anhedonia and increased subsequent risk for trauma-related disorders in adulthood, here we focus on an additional novel, emerging direct contributor to anhedonia in rodents and humans: fragmented, chaotic environmental signals ("FRAG") during critical periods of development. In rodents, recent data suggest that adolescent anhedonia may derive from aberrant pleasure/reward circuit maturation. In humans, recent longitudinal studies support that FRAG is associated with increased anhedonia in adolescence. Both human and rodent FRAG exposure also leads to aberrant hippocampal function. Prospective studies are underway to examine if anhedonia is also a marker of PTSD risk. These preliminary cross-species studies provide a critical construct for future examination of the etiology of trauma-related symptoms in adults and for and development of prophylactic and therapeutic interventions. In addition, longitudinal studies of reward circuit development with and without FRAG will be critical to test the mechanistic hypothesis that early life FRAG modifies reward circuitry with subsequent consequences for adolescent-emergent anhedonia and contributes to risk and resilience to trauma and stress in adulthood.
Collapse
Affiliation(s)
- Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Center of Excellence for Stress and Mental Health, San Diego Veterans Administration, La Jolla, CA, USA.
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Elysia P Davis
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Psychology, University of Denver, Denver, CO, USA
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Hal S Stern
- Department of Statistics, University of California, Irvine, CA, USA
| | - David B Keator
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Computer Science, University of California, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, CA, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California, Irvine, CA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, San Diego Veterans Administration, La Jolla, CA, USA
| |
Collapse
|
28
|
Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK. Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology. Sci Rep 2019; 9:6372. [PMID: 31011160 PMCID: PMC6476885 DOI: 10.1038/s41598-019-42860-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/09/2019] [Indexed: 12/28/2022] Open
Abstract
Ancestral environmental exposures to a variety of factors and toxicants have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. One of the most widely used agricultural pesticides worldwide is the herbicide glyphosate (N-(phosphonomethyl)glycine), commonly known as Roundup. There are an increasing number of conflicting reports regarding the direct exposure toxicity (risk) of glyphosate, but no rigorous investigations on the generational actions. The current study using a transient exposure of gestating F0 generation female rats found negligible impacts of glyphosate on the directly exposed F0 generation, or F1 generation offspring pathology. In contrast, dramatic increases in pathologies in the F2 generation grand-offspring, and F3 transgenerational great-grand-offspring were observed. The transgenerational pathologies observed include prostate disease, obesity, kidney disease, ovarian disease, and parturition (birth) abnormalities. Epigenetic analysis of the F1, F2 and F3 generation sperm identified differential DNA methylation regions (DMRs). A number of DMR associated genes were identified and previously shown to be involved in pathologies. Therefore, we propose glyphosate can induce the transgenerational inheritance of disease and germline (e.g. sperm) epimutations. Observations suggest the generational toxicology of glyphosate needs to be considered in the disease etiology of future generations.
Collapse
Affiliation(s)
- Deepika Kubsad
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | | | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
29
|
Jackson C, Barrett DW, Shumake J, Gonzales E, Gonzalez-Lima F, Lane MA. Maternal omega-3 fatty acid intake during neurodevelopment does not affect pup behavior related to depression, novelty, or learning. BMC Res Notes 2018; 11:812. [PMID: 30442183 PMCID: PMC6238316 DOI: 10.1186/s13104-018-3915-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/09/2018] [Indexed: 11/23/2022] Open
Abstract
Objective Previously, we showed that consumption of a diet supplemented with omega-3 polyunsaturated fatty acids (n-3FAs) for two rounds of gestation and lactation increased the ability of rat dams to cope with stress when compared to dams that ingested a diet lacking n-3FAs. The objective of this study was to determine if the diets of these dams affected the behavior of their pups later in life. To isolate the neurodevelopmental effects of n-3FAs, pups from the second gestation were weaned to a diet adequate in n-3FAs. Pup testing began at 8 weeks of age and consisted of the forced swim, open field, and hole board tests to examine depression-related behavior, reaction to novelty, and learning and memory, respectively. Results Given the considerable difference in the n-3FA content of the maternal diet, we expected a large effect size, however with the exception of rearing duration, maternal diet did not affect behavior in any of the tests conducted. These results suggest that maternal n-3FA supplementation during neurodevelopment likely does not affect offspring behavior when a diet adequate in n-3FA is provided post-weaning. Rather, we hypothesize that brain n-3FAs at the time of testing confer altered behavior and corroborate the need for additional research. Electronic supplementary material The online version of this article (10.1186/s13104-018-3915-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corey Jackson
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - Douglas W Barrett
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Jason Shumake
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Elisa Gonzales
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - F Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Michelle A Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA.
| |
Collapse
|
30
|
Baeta-Corral R, Johansson B, Giménez-Llort L. Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer's Disease and Affects Mice with Normal Aging. Front Pharmacol 2018; 9:79. [PMID: 29497377 PMCID: PMC5818407 DOI: 10.3389/fphar.2018.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022] Open
Abstract
Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer's disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD). The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg) counterparts with normal aging. Animals were treated (water or caffeine in drinking water) from adulthood (6 months of age) until middle-aged (13 months of age), that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml) was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical indicator of their impaired peripheral immune system, and trended to increase their corticosterone levels. Our observations of adverse caffeine effects in an Alzheimer's disease model together with previous clinical observations suggest that an exacerbation of BPSD-like symptoms may partly interfere with the beneficial cognitive effects of caffeine. These results are relevant when coffee-derived new potential treatments for dementia are to be devised and tested.
Collapse
Affiliation(s)
- Raquel Baeta-Corral
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Björn Johansson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
- Department of Geriatrics, Karolinska University Hospital, Solna, Sweden
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Császár-Nagy N, Bókkon I. Mother-newborn separation at birth in hospitals: A possible risk for neurodevelopmental disorders? Neurosci Biobehav Rev 2018; 84:337-351. [DOI: 10.1016/j.neubiorev.2017.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022]
|
32
|
Jordan CJ, Andersen SL. Sensitive periods of substance abuse: Early risk for the transition to dependence. Dev Cogn Neurosci 2016; 25:29-44. [PMID: 27840157 PMCID: PMC5410194 DOI: 10.1016/j.dcn.2016.10.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
Early substance use dramatically increases the risk of substance use disorder (SUD). Although many try drugs, only a small percentage transition to SUD. High reactivity of reward, habit, and stress systems increase risk. Identification of early risk enables targeted, preventative interventions for SUD. Prevention must start before the sensitive adolescent period to maximize resilience.
Early adolescent substance use dramatically increases the risk of lifelong substance use disorder (SUD). An adolescent sensitive period evolved to allow the development of risk-taking traits that aid in survival; today these may manifest as a vulnerability to drugs of abuse. Early substance use interferes with ongoing neurodevelopment to induce neurobiological changes that further augment SUD risk. Although many individuals use drugs recreationally, only a small percentage transition to SUD. Current theories on the etiology of addiction can lend insights into the risk factors that increase vulnerability from early recreational use to addiction. Building on the work of others, we suggest individual risk for SUD emerges from an immature PFC combined with hyper-reactivity of reward salience, habit, and stress systems. Early identification of risk factors is critical to reducing the occurrence of SUD. We suggest preventative interventions for SUD that can be either tailored to individual risk profiles and/or implemented broadly, prior to the sensitive adolescent period, to maximize resilience to developing substance dependence. Recommendations for future research include a focus on the juvenile and adolescent periods as well as on sex differences to better understand early risk and identify the most efficacious preventions for SUD.
Collapse
Affiliation(s)
- Chloe J Jordan
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States.
| | - Susan L Andersen
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| |
Collapse
|
33
|
Majdak P, Grogan EL, Gogola JV, Sorokina A, Tse S, Rhodes JS. The impact of maternal neglect on genetic hyperactivity. Behav Brain Res 2016; 313:282-292. [PMID: 27449202 DOI: 10.1016/j.bbr.2016.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Early environmental conditions are increasingly appreciated as critical in shaping behavior and cognition. Evidence suggests that stressful rearing environments can have an enduring impact on behaviors in adulthood, but few studies have explored the possibility that rearing environment could exacerbate genetic hyperactivity disorders. Uncovering a strong environmental influence on the transmission of hyperactivity could provide novel avenues for translational research. Recently we developed a selectively bred High-Active line of mice to model ADHD, providing a unique resource to address the question of environmental transmission. The High-Active line demonstrates transgenerational hyperactivity, but the influence of the postnatal environment (i.e. maternal care provided by dams) on hyperactivity had not been systemically quantified. This study employed a cross-fostering method to simultaneously address 1) whether High-Active and Control pups are provided with similar levels of care in the early environment, and 2) whether any differences in rearing environment influence hyperactive behavior. High-Active dams demonstrated impairment in all measures of maternal competence relative to Controls, which reduced survival rates and significantly reduced the body mass of offspring in early life and at weaning. While the deteriorated postnatal environment provided by High-Active dams was ultimately sufficient to depress Control activity, the hyperactivity of High-Active offspring remained unaffected by fostering condition. These data not only confirm the power of genetics to influence hyperactivity across generations, but also provide evidence that early rearing environments may not have a significant impact on the extreme end of hyperactive phenotypes.
Collapse
Affiliation(s)
- Petra Majdak
- The Neuroscience Program, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA; The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA.
| | - Elizabeth L Grogan
- The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Joseph V Gogola
- The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Anastassia Sorokina
- The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Stephen Tse
- The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Justin S Rhodes
- The Neuroscience Program, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA; The Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA; Department of Psychology, University of Illinois, 603 E. Daniel Street, Champaign, IL 61820, USA
| |
Collapse
|
34
|
Bock J, Breuer S, Poeggel G, Braun K. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model. Brain Struct Funct 2016; 222:765-780. [PMID: 27306789 PMCID: PMC5334429 DOI: 10.1007/s00429-016-1244-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/28/2016] [Indexed: 02/02/2023]
Abstract
In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using (14C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.
Collapse
Affiliation(s)
- J Bock
- Institute of Biology, Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Leipziger Str. 44, 39118, Magdeburg, Germany
- Center for Behavioral Brain Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - S Breuer
- Institute of Biology, Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Leipziger Str. 44, 39118, Magdeburg, Germany
| | - G Poeggel
- Institute for Biology, Human Biology, University of Leipzig, 04103, Leipzig, Germany
| | - K Braun
- Institute of Biology, Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Leipziger Str. 44, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Science, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
35
|
Frankenhuis WE, Panchanathan K, Nettle D. Cognition in harsh and unpredictable environments. Curr Opin Psychol 2016. [DOI: 10.1016/j.copsyc.2015.08.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Molet J, Heins K, Zhuo X, Mei YT, Regev L, Baram TZ, Stern H. Fragmentation and high entropy of neonatal experience predict adolescent emotional outcome. Transl Psychiatry 2016; 6:e702. [PMID: 26731439 PMCID: PMC5068874 DOI: 10.1038/tp.2015.200] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/22/2023] Open
Abstract
Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Across evolution, maternal care is a key source of environmental sensory signals to the developing brain, and a vast body of work has linked quantitative and qualitative aspects of maternal care to emotional outcome in children and animals. However, the fundamental properties of maternal signals, that promote advantageous vs pathological outcomes in the offspring, are unknown and have been a topic of intense study. We studied emotional outcomes of adolescent rats reared under routine or impoverished environments, and used mathematical approaches to analyze the nurturing behaviors of the dams. Unexpectedly, whereas the quantity and typical qualities of maternal care behaviors were indistinguishable in the two environments, their patterns and rhythms differed drastically and influenced emotional outcomes. Specifically, unpredictable, fragmented maternal care patterns translated into high-entropy rates of sensory signals to the offspring in the impoverished cages. During adolescence, these offspring had significant reductions in sucrose preference and in peer-play, two independent measures of the ability to experience pleasure. This adolescent anhedonia, often a harbinger of later depression, was not accompanied by measures of anxiety or helplessness. Dopaminergic pleasure circuits underlying anhedonia are engaged by predictable sequences of events, and predictable sensory signals during neonatal periods may be critical for their maturation. Conversely, unpredictability maternal-derived signals may disrupt these developmental processes, provoking anhedonia. In sum, high-entropy and fragmented patterns of maternal-derived sensory input to the developing brain predicts, and might promote, the development of anhedonia in rodents, with potential clinical implications.
Collapse
Affiliation(s)
- J Molet
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - K Heins
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
| | - X Zhuo
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Y T Mei
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - L Regev
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - T Z Baram
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA,Department of Pediatrics, University of California-Irvine, Irvine, CA, USA,Department of Neurology, School of Medicine, University of California-Irvine, Irvine, CA, USA,Departments of Pediatrics; Anatomy/Neurobiology; Neurology, University of California-Irvine, Medical Sciences I, ZOT: 4475, Irvine, CA 92697-4475, USA. E-mail:
| | - H Stern
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
37
|
van der Veen R, Kentrop J, van der Tas L, Loi M, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M. Complex Living Conditions Impair Behavioral Inhibition but Improve Attention in Rats. Front Behav Neurosci 2015; 9:357. [PMID: 26733839 PMCID: PMC4689791 DOI: 10.3389/fnbeh.2015.00357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023] Open
Abstract
Rapid adaptation to changes, while maintaining a certain level of behavioral inhibition is an important feature in every day functioning. How environmental context and challenges in life can impact on the development of this quality is still unknown. In the present study, we examined the effect of a complex rearing environment during adolescence on attention and behavioral inhibition in adult male rats. We also tested whether these effects were affected by an adverse early life challenge, maternal deprivation (MD). We found that animals that were raised in large, two floor MarlauTM cages, together with 10 conspecifics, showed improved attention, but impaired behavioral inhibition in the 5-choice serial reaction time task. The early life challenge of 24 h MD on postnatal day 3 led to a decline in bodyweight during adolescence, but did not by itself influence responses in the 5-choice task in adulthood, nor did it moderate the effects of complex housing. Our data suggest that a complex rearing environment leads to a faster adaptation to changes in the environment, but at the cost of lower behavioral inhibition.
Collapse
Affiliation(s)
- Rixt van der Veen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands; Centre for Child and Family Studies, Leiden UniversityLeiden, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Liza van der Tas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Manila Loi
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | | | | | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
38
|
Lazzaretti C, Kincheski GC, Pandolfo P, Krolow R, Toniazzo AP, Arcego DM, Couto-Pereira NDS, Zeidán-Chuliá F, Galvalisi M, Costa G, Scorza C, Souza TME, Dalmaz C. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats. J Integr Neurosci 2015; 15:81-95. [PMID: 26620193 DOI: 10.1142/s0219635216500047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood.
Collapse
Affiliation(s)
- Camilla Lazzaretti
- * Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Pablo Pandolfo
- ‡ Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ, Brazil
| | - Rachel Krolow
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,¶ Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Ana Paula Toniazzo
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Danusa Mar Arcego
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fares Zeidán-Chuliá
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Martin Galvalisi
- ∥ Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gustavo Costa
- ** Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Scorza
- ∥ Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Tadeu Mello E Souza
- * Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,§ Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- * Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,§ Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Ganguly P, Holland FH, Brenhouse HC. Functional Uncoupling NMDAR NR2A Subunit from PSD-95 in the Prefrontal Cortex: Effects on Behavioral Dysfunction and Parvalbumin Loss after Early-Life Stress. Neuropsychopharmacology 2015; 40:2666-75. [PMID: 25953359 PMCID: PMC4864660 DOI: 10.1038/npp.2015.134] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 11/09/2022]
Abstract
Exposure to early-life stress increases vulnerability to psychiatric disorders, including depression, schizophrenia, and anxiety. Growing evidence implicates aberrant development of the prefrontal cortex (PFC) in the effects of early-life stress, which often emerge in adolescence or young adulthood. Specifically, early-life stress in the form of maternal separation (MS) in rodents has been shown to decrease parvalbumin (PVB)-positive interneurons in the adolescent PFC; however, the mechanism underpinning behavioral dysfunction and PVB loss is not yet known. We recently reported that MS causes overexpression of the NMDA subunit NR2A in the PFC of adolescent rats. Elevated PFC NR2A is also found in developmental models of schizophrenia and is correlated with behavioral deficits, acting largely through its association with the postsynaptic protein PSD-95. In addition, adolescent maturation of PVB-positive interneurons relies on NR2A-driven NMDA activity. Therefore, it is possible that the NR2A/PSD-95 signaling complex has a role in adolescent MS effects. Here, we aimed to determine whether a discrete manipulation of PFC NR2A could prevent MS effects on PFC-controlled behaviors, including cognition, anxiety, and novelty-induced hyperlocomotion, as well as PVB loss in adolescence. We intracranially infused the NR2A-specific blocking peptide TAT2A in order to uncouple NR2A from PSD-95 in the early-adolescent PFC, without antagonizing the NMDA receptor. We demonstrated that MS rats treated with TAT2A during early adolescence were protected from MS-induced PVB loss and exhibited less anxious behavior than those infused with control peptide. These data implicate NR2A-related N-methyl-D-aspartate receptor development in adolescent behavioral and neural consequences of early-life stress.
Collapse
Affiliation(s)
- Prabarna Ganguly
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Heather C Brenhouse
- Department of Psychology, Northeastern University, Boston, MA, USA,Department of Psychology, Northeastern University, 125 NI, Boston, MA 02115, USA, Tel: +1 617 373 6856, Fax: +1 617 373 8714, E-mail:
| |
Collapse
|
40
|
Marwitz SE, Woodie LN, Blythe SN. Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats. Physiol Behav 2015; 151:147-54. [DOI: 10.1016/j.physbeh.2015.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/29/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
|
41
|
Brett ZH, Sheridan M, Humphreys K, Smyke A, Gleason MM, Fox N, Zeanah C, Nelson C, Drury S. A neurogenetics approach to defining differential susceptibility to institutional care. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2015; 39:150-160. [PMID: 25663728 PMCID: PMC4317330 DOI: 10.1177/0165025414538557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An individual's neurodevelopmental and cognitive sequelae to negative early experiences may, in part, be explained by genetic susceptibility. We examined whether extreme differences in the early caregiving environment, defined as exposure to severe psychosocial deprivation associated with institutional care compared to normative rearing, interacted with a biologically informed genoset comprising BDNF (rs6265), COMT (rs4680), and SIRT1 (rs3758391) to predict distinct outcomes of neurodevelopment at age 8 (N = 193, 97 males and 96 females). Ethnicity was categorized as Romanian (71%), Roma (21%), unknown (7%), or other (1%). We identified a significant interaction between early caregiving environment (i.e., institutionalized versus never institutionalized children) and the a priori defined genoset for full-scale IQ, two spatial working memory tasks, and prefrontal cortex gray matter volume. Model validation was performed using a bootstrap resampling procedure. Although we hypothesized that the effect of this genoset would operate in a manner consistent with differential susceptibility, our results demonstrate a complex interaction where vantage susceptibility, diathesis stress, and differential susceptibility are implicated.
Collapse
Affiliation(s)
| | | | | | - Anna Smyke
- Tulane University School of Medicine, USA
| | | | | | | | - Charles Nelson
- Boston Children's Hospital and Harvard Medical School, USA
| | | |
Collapse
|
42
|
Breivik T, Gundersen Y, Murison R, Turner JD, Muller CP, Gjermo P, Opstad K. Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood. Open Dent J 2015; 9:65-78. [PMID: 25713634 PMCID: PMC4333617 DOI: 10.2174/1874210601509010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
Background and Objective: Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Material and Methods: Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Results: Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1β in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Conclusion: Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis.
Collapse
Affiliation(s)
- Torbjørn Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway ; Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| | - Yngvar Gundersen
- Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| | - Robert Murison
- Department of Biology and Medical Psychology, Faculty of Psychology, University of Bergen, Norway
| | - Jonathan D Turner
- Institute of Immunology, CRP- Santé/Laboratoire National de Sante, 20A Rue Auguste Lumière, L-1950, Luxembourg
| | - Claude P Muller
- Institute of Immunology, CRP- Santé/Laboratoire National de Sante, 20A Rue Auguste Lumière, L-1950, Luxembourg
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway
| | - Kristian Opstad
- Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| |
Collapse
|
43
|
Stein JS, Renda CR, Hinnenkamp JE, Madden GJ. Impulsive choice, alcohol consumption, and pre-exposure to delayed rewards: II. Potential mechanisms. J Exp Anal Behav 2015; 103:33-49. [PMID: 25418607 PMCID: PMC4314314 DOI: 10.1002/jeab.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/26/2014] [Indexed: 01/08/2023]
Abstract
In a prior study (Stein et al., 2013), we reported that rats pre-exposed to delayed rewards made fewer impulsive choices, but consumed more alcohol (12% wt/vol), than rats pre-exposed to immediate rewards. To understand the mechanisms that produced these findings, we again pre-exposed rats to either delayed (17.5 s; n=32) or immediate (n=30) rewards. In posttests, delay-exposed rats made significantly fewer impulsive choices at 15- and 30-s delays to a larger, later food reward than the immediacy-exposed comparison group. Behavior in an open-field test provided little evidence of differential stress exposure between groups. Further, consumption of either 12% alcohol or isocaloric sucrose in subsequent tests did not differ between groups. Because Stein et al. introduced alcohol concentration gradually (3-12%), we speculate that their group differences in 12% alcohol consumption were not determined by alcohol's pharmacological effects, but by another variable (e.g., taste) that was preserved as an artifact from lower concentrations. We conclude that pre-exposure to delayed rewards generalizes beyond the pre-exposure delay; however, this same experimental variable does not robustly influence alcohol consumption.
Collapse
|
44
|
Ennaceur A. Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav 2014; 135:55-71. [PMID: 24910138 DOI: 10.1016/j.physbeh.2014.05.032] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 02/05/2023]
Abstract
The plus-maze, the light-dark box and the open-field are the main current tests of unconditioned anxiety for mice and rats. Despite their disappointing achievements, they remain as popular as ever and seem to play an important role in an ever-growing demand for behavioral phenotyping and drug screening. Numerous reviews have repeatedly reported their lack of consistency and reliability but they failed to address the core question of whether these tests do provide unequivocal measures of fear-induced anxiety, that these measurements are not confused with measures of fear-induced avoidance or natural preference responses - i.e. discriminant validity. In the present report, I examined numerous issues that undermine the validity of the current tests, and I highlighted various flaws in the aspects of these tests and the methodologies pursued. This report concludes that the evidence in support of the validity of the plus-maze, the light/dark box and the open-field as anxiety tests is poor and methodologically questionable.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Department of Pharmacy, Wharncliffe Street, Sunderland SR1 3SD, UK.
| |
Collapse
|
45
|
Roque S, Mesquita AR, Palha JA, Sousa N, Correia-Neves M. The behavioral and immunological impact of maternal separation: a matter of timing. Front Behav Neurosci 2014; 8:192. [PMID: 24904343 PMCID: PMC4033212 DOI: 10.3389/fnbeh.2014.00192] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 05/08/2014] [Indexed: 11/13/2022] Open
Abstract
Maternal separation (MS), an early life stressful event, has been demonstrated to trigger neuropsychiatric disorders later in life, in particular depression. Experiments using rodents subjected to MS protocols have been very informative for the establishment of this association. However, the mechanism by which MS leads to neuropsychiatric disorders is far from being understood. This is probably associated with the multifactorial nature of depression but also with the fact that different research MS protocols have been used (that vary on temporal windows and time of exposure to MS). In the present study, MS was induced in rats in two developmental periods: for 6 h per day for 14 days between postnatal days 2-15 (MS2-15) and 7-20 (MS7-20). These two periods were defined to differ essentially on the almost complete (MS2-15) or partial (MS7-20) overlap with the stress hypo-responsive period. Behavioral, immunological, and endocrine parameters, frequently associated with depressive-like behavior, were analyzed in adulthood. Irrespectively from the temporal window, both MS exposure periods led to increased sera corticosterone levels. However, only MS2-15 animals displayed depressive and anxious-like behaviors. Moreover, MS2-15 was also the only group presenting alterations in the immune system, displaying decreased percentage of CD8(+) T cells, increased spleen T cell CD4/CD8 ratio, and thymocytes with increased resistance to dexamethasone-induced cell death. A linear regression model performed to predict depressive-like behavior showed that both corticosterone levels and T cell CD4/CD8 ratio explained 37% of the variance observed in depressive-like behavior. Overall, these findings highlight the existence of "critical periods" for early life stressful events to exert programing effects on both central and peripheral systems, which are of relevance for distinct patterns of susceptibility to emotional disorders later in life.
Collapse
Affiliation(s)
- Susana Roque
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga , Portugal
| | - Ana Raquel Mesquita
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; Neuropsychophysiology Laboratory, Center for Research in Psychology (CIPsi), School of Psychology, University of Minho , Braga , Portugal
| | - Joana A Palha
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga , Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga , Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga , Portugal
| |
Collapse
|
46
|
Shumake J, Furgeson-Moreira S, Monfils MH. Predictability and heritability of individual differences in fear learning. Anim Cogn 2014; 17:1207-21. [PMID: 24791664 PMCID: PMC4138434 DOI: 10.1007/s10071-014-0752-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/05/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022]
Abstract
Our objective was to characterize individual differences in fear conditioning and extinction in an outbred rat strain, to test behavioral predictors of these individual differences, and to assess their heritability. We fear-conditioned 100 Long-Evans rats, attempted to extinguish fear the next day, and tested extinction recall on the third day. The distribution of freezing scores after fear conditioning was skewed, with most rats showing substantial freezing; after fear extinction, the distribution was bimodal with most rats showing minimal freezing, but a substantial portion showing maximal freezing. Longer rearing episodes measured prior to conditioning predicted less freezing at the beginning of extinction, but differences in extinction learning were not predicted by any baseline exploratory behaviors. We tested the heritability of extinction differences by breeding rats from the top and bottom 20 % of freezing scores during extinction recall. We then ran the offspring through the same conditioning/extinction procedure, with the addition of recording ultrasonic vocalizations throughout training and testing. Only a minority of rats emitted distress vocalizations during fear acquisition, but the incidence was less frequent in the offspring of good extinguishers than in poor extinguishers or randomly bred controls. The occurrence of distress vocalizations during acquisition predicted higher levels of freezing during fear recall regardless of breeding line, but the relationship between vocalization and freezing was no longer evident following extinction training, at which point freezing levels were influenced only by breeding and not by vocalization. The heritability (h2) of extinction recall was estimated at 0.36, consistent with human estimates.
Collapse
Affiliation(s)
- Jason Shumake
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA,
| | | | | |
Collapse
|
47
|
Sasaki A, de Vega W, Sivanathan S, St-Cyr S, McGowan PO. Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring. Neuroscience 2014; 272:92-101. [PMID: 24791714 DOI: 10.1016/j.neuroscience.2014.04.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023]
Abstract
Maternal obesity and overconsumption of saturated fats during pregnancy have profound effects on offspring health, ranging from metabolic to behavioral disorders in later life. The influence of high-fat diet (HFD) exposure on the development of brain regions implicated in anxiety behavior is not well understood. We previously found that maternal HFD exposure is associated with an increase in anxiety behavior and alterations in the expression of several genes involved in inflammation via the glucocorticoid signaling pathway in adult rat offspring. During adolescence, the maturation of feedback systems mediating corticosteroid sensitivity is incomplete, and therefore distinct from adulthood. In this study, we examined the influence of maternal HFD on several measures of anxiety behavior and gene expression in adolescent offspring. We examined the expression of corticosteroid receptors and related inflammatory processes, as corticosteroid receptors are known to regulate circulating corticosterone levels during basal and stress conditions in addition to influencing inflammatory processes in the hippocampus and amygdala. We found that adolescent animals perinatally exposed to HFD generally showed decreased anxiety behavior accompanied by a selective alteration in the expression of the glucocorticoid receptor and several downstream inflammatory genes in the hippocampus and amygdala. These data suggest that adolescence constitutes an additional period when the effects of developmental programming may modify mental health trajectories.
Collapse
Affiliation(s)
- A Sasaki
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - W de Vega
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - S Sivanathan
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - S St-Cyr
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - P O McGowan
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
48
|
Behavioral effects of bovine lactoferrin administration during postnatal development of rats. Biometals 2014; 27:1039-55. [PMID: 24752859 DOI: 10.1007/s10534-014-9735-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 01/11/2023]
Abstract
We tested the hypothesis that rats consuming bovine lactoferrin (bLf) during postnatal development would show better performance of stressful tasks during adolescence. In the first study, we orally administered bLf (750 mg/kg) once daily between postnatal days 16-34. Rats then underwent a battery of behavioral tests: open field (forced exploration of risky environment), light-dark emergence (voluntary exploration of risky environment), baited holeboard (working and reference memory), food neophobia (preference for familiar versus novel food), forced swim (test for antidepressant efficacy), and shuttle-box escape (learning to escape footshock). bLf-supplemented rats showed less exploration of the risky environment, greater preference for the familiar food odor, and faster escape responses. The effect of bLf on forced-swim behavior depended on sex: immobility increased for males and decreased for females. In the next study, we replaced the forced-swim test with an escape-swim test in which rats learned to use a visual cue to locate an escape platform, and we tested the dose response of bLf on this and the shuttle-box escape test, with subjects receiving vehicle or bLf at 500, 1,000, or 2,000 mg/kg. Under this modified testing battery, improvement of escape from footshock was not observed at any dose. However, males, but not females, showed a significant dose-dependent effect of bLf on acquisition of the water-escape task. On average, males receiving a higher dose mastered the task 20-25 % sooner than rats receiving a lower dose or vehicle. These results offer preliminary evidence that bLf supplementation during development can improve subsequent cognitive performance during stress.
Collapse
|
49
|
Abad S, Fole A, del Olmo N, Pubill D, Pallàs M, Junyent F, Camarasa J, Camins A, Escubedo E. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density. Psychopharmacology (Berl) 2014; 231:863-74. [PMID: 24158501 DOI: 10.1007/s00213-013-3304-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/23/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. METHODS AND RESULTS Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. CONCLUSIONS This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.
Collapse
Affiliation(s)
- Sònia Abad
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), University of Barcelona, Avda. Joan XXIII s/n, Barcelona, 08028, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bernheim A, Halfon O, Boutrel B. Controversies about the enhanced vulnerability of the adolescent brain to develop addiction. Front Pharmacol 2013; 4:118. [PMID: 24348419 PMCID: PMC3842532 DOI: 10.3389/fphar.2013.00118] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/29/2013] [Indexed: 12/14/2022] Open
Abstract
Adolescence, defined as a transition phase toward autonomy and independence, is a natural time of learning and adjustment, particularly in the setting of long-term goals and personal aspirations. It also is a period of heightened sensation seeking, including risk taking and reckless behaviors, which is a major cause of morbidity and mortality among teenagers. Recent observations suggest that a relative immaturity in frontal cortical neural systems may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors. However, converging preclinical and clinical studies do not support a simple model of frontal cortical immaturity, and there is substantial evidence that adolescents engage in dangerous activities, including drug abuse, despite knowing and understanding the risks involved. Therefore, a current consensus considers that much brain development during adolescence occurs in brain regions and systems that are critically involved in the perception and evaluation of risk and reward, leading to important changes in social and affective processing. Hence, rather than naive, immature and vulnerable, the adolescent brain, particularly the prefrontal cortex, should be considered as prewired for expecting novel experiences. In this perspective, thrill seeking may not represent a danger but rather a window of opportunities permitting the development of cognitive control through multiple experiences. However, if the maturation of brain systems implicated in self-regulation is contextually dependent, it is important to understand which experiences matter most. In particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse episodes of stress or unrestricted access to drugs can shape the adolescent brain and potentially trigger life-long maladaptive responses.
Collapse
Affiliation(s)
- Aurélien Bernheim
- Center for Psychiatric Neuroscience, Division of Child and Adolescent Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | - Benjamin Boutrel
- Center for Psychiatric Neuroscience, Division of Child and Adolescent Psychiatry, Lausanne University Hospital Lausanne, Switzerland ; Division of Child and Adolescent Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| |
Collapse
|