1
|
Gallo A, De Moura Lima A, Böye M, Hausberger M, Lemasson A. Study of repertoire use reveals unexpected context-dependent vocalizations in bottlenose dolphins (Tursiops truncatus). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:56. [PMID: 38060031 DOI: 10.1007/s00114-023-01884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Dolphins are known for their complex vocal communication, not least because of their capacity for acoustic plasticity. Paradoxically, we know little about their capacity for flexible vocal use. The difficulty in describing the behaviours performed underwater while vocalizing makes it difficult to analyse the contexts of emissions. Dolphins' main vocal categories are typically considered to be used for scanning the environment (clicks), agonistic encounters (burst pulses) and socio-affiliative interactions (whistles). Dolphins can also combine these categories in mixed vocal emissions, whose use remains unclear. To better understand how vocalizations are used, we simultaneously recorded vocal production and the associated behaviours by conducting underwater observations (N = 479 events) on a group of 7 bottlenose dolphins under human care. Our results showed a non-random association between vocal categories and behavioural contexts. Precisely, clicks were preferentially emitted during affiliative interactions and not during other social/solitary contexts, supporting a possible complementary communicative function. Burst pulses were associated to high arousal contexts (agonistic and social play), pinpointing on their use as an "emotively charged" signal. Whistles were related to solitary swimming and not preferentially produced in any social context. This questions whistles' functions and supports their potential role as a distant contact call. Finally, mixed vocalizations were especially found associated with sexual (bust pulse-whistle-click), solitary play (burst pulse-whistle) and affiliative (click-whistle) behaviours. Depending on the case, their emission seems to confirm, modify or refine the functions of their simple counterparts. These results open up new avenues of research into the contextual use of dolphin acoustic signals.
Collapse
Affiliation(s)
- Alessandro Gallo
- Laboratoire d'Ethologie Animale Et Humaine, Université de Rennes, Université de Caen-Normandie, UMR 6552, Rennes, France.
- UMR 8002, Integrative Center for Neuroscience and Cognition, Université de Paris Cité, Paris, France.
- Centre de Recherche Et d'Études Pour L'Animal Sauvage (CREAS), Port Saint Père, France.
| | - Alice De Moura Lima
- Laboratoire d'Ethologie Animale Et Humaine, Université de Rennes, Université de Caen-Normandie, UMR 6552, Rennes, France
- Centre de Recherche Et d'Études Pour L'Animal Sauvage (CREAS), Port Saint Père, France
| | - Martin Böye
- Centre de Recherche Et d'Études Pour L'Animal Sauvage (CREAS), Port Saint Père, France
| | - Martine Hausberger
- UMR 8002, Integrative Center for Neuroscience and Cognition, Université de Paris Cité, Paris, France
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Alban Lemasson
- Laboratoire d'Ethologie Animale Et Humaine, Université de Rennes, Université de Caen-Normandie, UMR 6552, Rennes, France
| |
Collapse
|
2
|
Rio R. First acoustic evidence of signature whistle production by spinner dolphins (Stenella longirostris). Anim Cogn 2023; 26:1915-1927. [PMID: 37676587 DOI: 10.1007/s10071-023-01824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
A dolphin's signature whistle (SW) is a distinctive acoustic signal, issued in a bout pattern of unique frequency modulation contours; it allows individuals belonging to a given group to recognize each other and, consequently, to maintain contact and cohesion. The current study is the first scientific evidence that spinner dolphins (Stenella longirostris) produce SWs. Acoustic data were recorded at a shallow rest bay called "Biboca", in Fernando de Noronha Archipelago, Brazil. In total, 1902 whistles were analyzed; 40% (753/1,902) of them were classified as stereotyped whistles (STW). Based on the SIGID method, 63% (472/753) of all STWs were identified as SWs; subsequently, they were categorized into one of 18 SW types. SWs accounted for 25% (472/1,902) of the acoustic repertoire. External observers have shown near perfect agreement to classify whistles into the adopted SW categorization. Most acoustic and temporal variables measured for SWs showed mean values similar to those recorded in other studies with spinner dolphins, whose authors did not differentiate SWs from non-SWs. Principal component analysis has explained 78% of total SW variance, and it emphasized the relevance of shape/contour and frequency variables to SW variance. This scientific discovery helps improving bioacoustics knowledge about the investigated species. Future studies to be conducted in Fernando de Noronha Archipelago should focus on continuous investigations about SW development and use by S. longirostris, expanding individuals' identifications (Photo ID and SW Noronha Catalog), assessing long-term whistle stability and emission rates, and making mother-offspring comparisons with sex-based differences.
Collapse
Affiliation(s)
- Raul Rio
- Laboratory of Observational and Bioacoustics Technologies Applied to Biodiversity (TecBio), Department of Veterinary Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil.
- Ocean Sound, Non-Governmental Organization (NGO), Santos, São Paulo, Brazil.
| |
Collapse
|
3
|
Watson SK, Filippi P, Gasparri L, Falk N, Tamer N, Widmer P, Manser M, Glock H. Optionality in animal communication: a novel framework for examining the evolution of arbitrariness. Biol Rev Camb Philos Soc 2022; 97:2057-2075. [PMID: 35818133 PMCID: PMC9795909 DOI: 10.1111/brv.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022]
Abstract
A critical feature of language is that the form of words need not bear any perceptual similarity to their function - these relationships can be 'arbitrary'. The capacity to process these arbitrary form-function associations facilitates the enormous expressive power of language. However, the evolutionary roots of our capacity for arbitrariness, i.e. the extent to which related abilities may be shared with animals, is largely unexamined. We argue this is due to the challenges of applying such an intrinsically linguistic concept to animal communication, and address this by proposing a novel conceptual framework highlighting a key underpinning of linguistic arbitrariness, which is nevertheless applicable to non-human species. Specifically, we focus on the capacity to associate alternative functions with a signal, or alternative signals with a function, a feature we refer to as optionality. We apply this framework to a broad survey of findings from animal communication studies and identify five key dimensions of communicative optionality: signal production, signal adjustment, signal usage, signal combinatoriality and signal perception. We find that optionality is widespread in non-human animals across each of these dimensions, although only humans demonstrate it in all five. Finally, we discuss the relevance of optionality to behavioural and cognitive domains outside of communication. This investigation provides a powerful new conceptual framework for the cross-species investigation of the origins of arbitrariness, and promises to generate original insights into animal communication and language evolution more generally.
Collapse
Affiliation(s)
- Stuart K. Watson
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Piera Filippi
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland
| | - Luca Gasparri
- Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland,Univ. Lille, CNRS, UMR 8163 – STL – Savoirs Textes LangageF‐59000LilleFrance
| | - Nikola Falk
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Nicole Tamer
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland
| | - Paul Widmer
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland
| | - Marta Manser
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Hans‐Johann Glock
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland
| |
Collapse
|
4
|
King SL, Jensen FH. Rise of the machines: Integrating technology with playback experiments to study cetacean social cognition in the wild. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie L. King
- School of Biological Sciences University of Bristol BS8 1TQ Bristol United Kingdom
| | - Frants H. Jensen
- Biology department, Syracuse University 107 College Place 13244 Syracuse NY USA
| |
Collapse
|
5
|
Bauer GB, Cook PF, Harley HE. The Relevance of Ecological Transitions to Intelligence in Marine Mammals. Front Psychol 2020; 11:2053. [PMID: 33013519 PMCID: PMC7505747 DOI: 10.3389/fpsyg.2020.02053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Macphail's comparative approach to intelligence focused on associative processes, an orientation inconsistent with more multifaceted lay and scientific understandings of the term. His ultimate emphasis on associative processes indicated few differences in intelligence among vertebrates. We explore options more attuned to common definitions by considering intelligence in terms of richness of representations of the world, the interconnectivity of those representations, the ability to flexibly change those connections, and knowledge. We focus on marine mammals, represented by the amphibious pinnipeds and the aquatic cetaceans and sirenians, as animals that transitioned from a terrestrial existence to an aquatic one, experiencing major changes in ecological pressures. They adapted with morphological transformations related to streamlining the body, physiological changes in respiration and thermoregulation, and sensory/perceptual changes, including echolocation capabilities and diminished olfaction in many cetaceans, both in-air and underwater visual focus, and enhanced senses of touch in pinnipeds and sirenians. Having a terrestrial foundation on which aquatic capacities were overlaid likely affected their cognitive abilities, especially as a new reliance on sound and touch, and the need to surface to breath changed their interactions with the world. Vocal and behavioral observational learning capabilities in the wild and in laboratory experiments suggest versatility in group coordination. Empirical reports on aspects of intelligent behavior like problem-solving, spatial learning, and concept learning by various species of cetaceans and pinnipeds suggest rich cognitive abilities. The high energy demands of the brain suggest that brain-intelligence relationships might be fruitful areas for study when specific hypotheses are considered, e.g., brain mapping indicates hypertrophy of specific sensory areas in marine mammals. Modern neuroimaging techniques provide ways to study neural connectivity, and the patterns of connections between sensory, motor, and other cortical regions provide a biological framework for exploring how animals represent and flexibly use information in navigating and learning about their environment. At this stage of marine mammal research, it would still be prudent to follow Macphail's caution that it is premature to make strong comparative statements without more empirical evidence, but an approach that includes learning more about how animals flexibly link information across multiple representations could be a productive way of comparing species by allowing them to use their specific strengths within comparative tasks.
Collapse
Affiliation(s)
- Gordon B. Bauer
- Division of Social Sciences, New College of Florida, Sarasota, FL, United States
- Mote Marine Laboratory, Sarasota, FL, United States
| | - Peter F. Cook
- Division of Social Sciences, New College of Florida, Sarasota, FL, United States
- Mote Marine Laboratory, Sarasota, FL, United States
| | - Heidi E. Harley
- Division of Social Sciences, New College of Florida, Sarasota, FL, United States
- Mote Marine Laboratory, Sarasota, FL, United States
- The Seas, Epcot, Walt Disney World Resorts, Lake Buena Vista, FL, United States
| |
Collapse
|
6
|
Morrison EL, DeLong CM, Wilcox KT. How humans discriminate acoustically among bottlenose dolphin signature whistles with and without masking by boat noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:4162. [PMID: 32611182 DOI: 10.1121/10.0001450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic noise in the world's oceans is known to impede many species' ability to perceive acoustic signals, but little research has addressed how this noise affects the perception of bioacoustic signals used for communication in marine mammals. Bottlenose dolphins (Tursiops truncatus) use signature whistles containing identification information. Past studies have used human participants to gain insight into dolphin perception, but most previous research investigated echolocation. In Experiment 1, human participants were tested on their ability to discriminate among signature whistles from three dolphins. Participants' performance was nearly errorless. In Experiment 2, participants identified signature whistles masked by five different samples of boat noise utilizing different signal-to-noise ratios. Lower signal-to-noise ratio and proximity in frequency between the whistle and noise both significantly decreased performance. Like dolphins, human participants primarily identified whistles using frequency contour. Participants reported greater use of amplitude in noise-present vs noise-absent trials, but otherwise did not vary cue usage. These findings can be used to generate hypotheses about dolphins' performance and auditory cue use for future research. This study may provide insight into how specific characteristics of boat noise affect dolphin whistle perception and may have implications for conservation and regulations.
Collapse
Affiliation(s)
- Evan L Morrison
- Department of Psychology, College of Liberal Arts, Rochester Institute of Technology, 18 Lomb Memorial Drive, Rochester, New York 14623, USA
| | - Caroline M DeLong
- Department of Psychology, College of Liberal Arts, Rochester Institute of Technology, 18 Lomb Memorial Drive, Rochester, New York 14623, USA
| | - Kenneth Tyler Wilcox
- Department of Psychology, College of Arts and Letters, University of Notre Dame, 390 Corbett Family Hall, Notre Dame, Indiana 46556, USA
| |
Collapse
|
7
|
Lima A, Sébilleau M, Boye M, Durand C, Hausberger M, Lemasson A. Captive Bottlenose Dolphins Do Discriminate Human-Made Sounds Both Underwater and in the Air. Front Psychol 2018; 9:55. [PMID: 29445350 PMCID: PMC5797741 DOI: 10.3389/fpsyg.2018.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Bottlenose dolphins (Tursiops truncatus) spontaneously emit individual acoustic signals that identify them to group members. We tested whether these cetaceans could learn artificial individual sound cues played underwater and whether they would generalize this learning to airborne sounds. Dolphins are thought to perceive only underwater sounds and their training depends largely on visual signals. We investigated the behavioral responses of seven dolphins in a group to learned human-made individual sound cues, played underwater and in the air. Dolphins recognized their own sound cue after hearing it underwater as they immediately moved toward the source, whereas when it was airborne they gazed more at the source of their own sound cue but did not approach it. We hypothesize that they perhaps detected modifications of the sound induced by air or were confused by the novelty of the situation, but nevertheless recognized they were being “targeted.” They did not respond when hearing another group member’s cue in either situation. This study provides further evidence that dolphins respond to individual-specific sounds and that these marine mammals possess some capacity for processing airborne acoustic signals.
Collapse
Affiliation(s)
- Alice Lima
- Université de Rennes, Ethologie Animale et Humaine, UMR 6552, CNRS, Université de Caen Normandie, Paimpont, France.,Département Scientifique et Pédagogique, Planète Sauvage, Port-Saint-Père, France
| | - Mélissa Sébilleau
- Université de Rennes, Ethologie Animale et Humaine, UMR 6552, CNRS, Université de Caen Normandie, Paimpont, France
| | - Martin Boye
- Département Scientifique et Pédagogique, Planète Sauvage, Port-Saint-Père, France
| | | | - Martine Hausberger
- CNRS, Ethologie Animale et Humaine, UMR 6552, Université de Rennes, Université de Caen Normandie, Rennes, France
| | - Alban Lemasson
- Université de Rennes, Ethologie Animale et Humaine, UMR 6552, CNRS, Université de Caen Normandie, Paimpont, France
| |
Collapse
|
8
|
Fu Y, Kloepper LN. A systematic method for isolating, tracking and discriminating time-frequency components of bat echolocation calls. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:716. [PMID: 29495687 DOI: 10.1121/1.5023205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Echolocating bats can rapidly modify frequency modulation (FM) curvatures of their calls when facing challenging echolocation tasks. Frequency parameters, such as start/end/peak frequency, have often been extracted from the time-frequency domain to study the call variation. Even though this kind of signal investigation method reveals important findings, these approaches to analyze bat echolocation calls use bulk parameters, which hide subtleties in the call structure that may be important to the bat. In some cases, calls can have the same start and end frequencies but have different FM curvatures, and subsequently may influence the sensory task performance. In the present study, the authors demonstrate an algorithm using a combination of digital filters, power limited time-frequency information, derivative dynamic time warping, and agglomerative hierarchical clustering to extract and categorize the time-frequency components (TFCs) of 21 calls from Brazilian free-tailed bat (Tadarida brasiliensis) to quantitatively compare FM curvatures. The detailed curvature analysis shows an alternative perspective to look into the TFCs and hence serves as the preliminary step to understand the adaptive call design of bats.
Collapse
Affiliation(s)
- Yanqing Fu
- Department of Biology, Saint Mary's College, 149 Le Mans Hall, Notre Dame, Indiana 46556, USA
| | - Laura N Kloepper
- Department of Biology, Saint Mary's College, 149 Le Mans Hall, Notre Dame, Indiana 46556, USA
| |
Collapse
|
9
|
Sayigh LS, Wells RS, Janik VM. What's in a voice? Dolphins do not use voice cues for individual recognition. Anim Cogn 2017; 20:1067-1079. [PMID: 28791513 PMCID: PMC5640738 DOI: 10.1007/s10071-017-1123-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 07/14/2017] [Accepted: 07/28/2017] [Indexed: 12/04/2022]
Abstract
Most mammals can accomplish acoustic recognition of other individuals by means of “voice cues,” whereby characteristics of the vocal tract render vocalizations of an individual uniquely identifiable. However, sound production in dolphins takes place in gas-filled nasal sacs that are affected by pressure changes, potentially resulting in a lack of reliable voice cues. It is well known that bottlenose dolphins learn to produce individually distinctive signature whistles for individual recognition, but it is not known whether they may also use voice cues. To investigate this question, we played back non-signature whistles to wild dolphins during brief capture-release events in Sarasota Bay, Florida. We hypothesized that non-signature whistles, which have varied contours that can be shared among individuals, would be recognizable to dolphins only if they contained voice cues. Following established methodology used in two previous sets of playback experiments, we found that dolphins did not respond differentially to non-signature whistles of close relatives versus known unrelated individuals. In contrast, our previous studies showed that in an identical context, dolphins reacted strongly to hearing the signature whistle or even a synthetic version of the signature whistle of a close relative. Thus, we conclude that dolphins likely do not use voice cues to identify individuals. The low reliability of voice cues and the need for individual recognition were likely strong selective forces in the evolution of vocal learning in dolphins.
Collapse
Affiliation(s)
- Laela S Sayigh
- School of Cognitive Science, Hampshire College, Amherst, MA, 01002, USA. .,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | - Vincent M Janik
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, UK
| |
Collapse
|
10
|
Branstetter BK, Bakhtiari K, Black A, Trickey JS, Finneran JJ, Aihara H. Energetic and informational masking of complex sounds by a bottlenose dolphin (Tursiops truncatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1904. [PMID: 27914406 DOI: 10.1121/1.4962530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With few exceptions, laboratory studies of auditory masking in marine mammals have been limited to examining detection thresholds for simple tonal signals embedded in broadband noise. However, detection of a sound has little adaptive advantage without the knowledge of what produced the sound (recognition) and where the sound originated (localization). In the current study, a bottlenose dolphin's masked detection thresholds (energetic masking) and masked recognition thresholds (informational masking) were estimated for a variety of complex signals including dolphin vocalizations, frequency modulated signals, and a 10 kHz pure tone. Broadband noise types included recordings of natural sounds and computer generated sounds. Detection thresholds were estimated using a standard go, no-go adaptive staircase procedure. The same dolphin learned to associate whistle-like FM sounds with specific arbitrary objects using a three alternative, matching-to-sample (MTS) procedure. The dolphin's performance in the MTS task was then tested in the presence of the same masking noise types used in the detection task. Recognition thresholds were, on average, about 4 dB higher than detection thresholds for similar signal-noise conditions. The 4 dB difference is likely due to additional cognitive demands of recognition, including attention and pattern recognition.
Collapse
Affiliation(s)
- Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - Kimberly Bakhtiari
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - Amy Black
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - Jennifer S Trickey
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Hitomi Aihara
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Number 200, San Diego, California 92106, USA
| |
Collapse
|
11
|
Branstetter BK, DeLong CM, Dziedzic B, Black A, Bakhtiari K. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency. PLoS One 2016; 11:e0147512. [PMID: 26863519 PMCID: PMC4749311 DOI: 10.1371/journal.pone.0147512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin's (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin's ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin's acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition.
Collapse
Affiliation(s)
- Brian K. Branstetter
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Caroline M. DeLong
- Department of Psychology, College of Liberal Arts, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Brandon Dziedzic
- Department of Psychology, College of Liberal Arts, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Amy Black
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Kimberly Bakhtiari
- National Marine Mammal Foundation, San Diego, California, United States of America
| |
Collapse
|
12
|
Kershenbaum A, Blumstein DT, Roch MA, Akçay Ç, Backus G, Bee MA, Bohn K, Cao Y, Carter G, Cäsar C, Coen M, DeRuiter SL, Doyle L, Edelman S, Ferrer-i-Cancho R, Freeberg TM, Garland EC, Gustison M, Harley HE, Huetz C, Hughes M, Bruno JH, Ilany A, Jin DZ, Johnson M, Ju C, Karnowski J, Lohr B, Manser MB, McCowan B, Mercado E, Narins PM, Piel A, Rice M, Salmi R, Sasahara K, Sayigh L, Shiu Y, Taylor C, Vallejo EE, Waller S, Zamora-Gutierrez V. Acoustic sequences in non-human animals: a tutorial review and prospectus. Biol Rev Camb Philos Soc 2016; 91:13-52. [PMID: 25428267 PMCID: PMC4444413 DOI: 10.1111/brv.12160] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 10/02/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022]
Abstract
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise - let alone understand - the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, 'Analysing vocal sequences in animals'. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.
Collapse
Affiliation(s)
- Arik Kershenbaum
- National Institute for Mathematical and Biological Synthesis, 1122 Volunteer Blvd., Suite 106, University of Tennessee, Knoxville, TN 37996-3410, USA
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Marie A. Roch
- Department of Computer Science, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA
| | - Çağlar Akçay
- Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY 14850, USA
| | - Gregory Backus
- Department of Biomathematics, North Carolina State University, Raleigh, NC 27607, USA
| | - Mark A. Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota, 100 Ecology Building, 1987 Upper Buford Cir, Falcon Heights, MN 55108, USA
| | - Kirsten Bohn
- Integrated Science, Florida International University, Modesto Maidique Campus, 11200 SW 8th Street, AHC-4, 351, Miami, FL 33199, USA
| | - Yan Cao
- Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Gerald Carter
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Cristiane Cäsar
- Department of Psychology & Neuroscience, University of St. Andrews, St Mary’s Quad South Street, St Andrews, Fife, KY16 9JP, UK
| | - Michael Coen
- Department of Biostatistics and Medical Informatics, University of Wisconsin, K6/446 Clinical Sciences Center, 600 Highland Avenue, Madison, WI 53792-4675, USA
| | - Stacy L. DeRuiter
- School of Mathematics and Statistics, University of St. Andrews, St Andrews, KY16 9SS, UK
| | - Laurance Doyle
- Carl Sagan Center for the Study of Life in the Universe, SETI Institute, 189 Bernardo Ave, Suite 100, Mountain View, CA 94043, USA
| | - Shimon Edelman
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853-7601, USA
| | - Ramon Ferrer-i-Cancho
- Department of Computer Science, Universitat Politecnica de Catalunya, (Catalonia), Calle Jordi Girona, 31, 08034 Barcelona, Spain
| | - Todd M. Freeberg
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, Tennessee 37996, USA
| | - Ellen C. Garland
- National Marine Mammal Laboratory, AFSC/NOAA, 7600 Sand Point Way N.E., Seattle, Washington 98115, USA
| | - Morgan Gustison
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA
| | - Heidi E. Harley
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Rd, Sarasota, FL 34243, USA
| | - Chloé Huetz
- CNPS, CNRS UMR 8195, Université Paris-Sud, UMR 8195, Batiments 440-447, Rue Claude Bernard, 91405 Orsay, France
| | - Melissa Hughes
- Department of Biology, College of Charleston, 66 George St, Charleston, SC 29424, USA
| | - Julia Hyland Bruno
- Department of Psychology, Hunter College and the Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Amiyaal Ilany
- National Institute for Mathematical and Biological Synthesis, 1122 Volunteer Blvd., Suite 106, University of Tennessee, Knoxville, TN 37996-3410, USA
| | - Dezhe Z. Jin
- Department of Physics, Pennsylvania State University, 104 Davey Lab, University Park, PA 16802-6300, USA
| | - Michael Johnson
- Department of Electrical and Computer Engineering, Marquette University, 1515 W. Wisconsin Ave., Milwaukee, WI 53233, USA
| | - Chenghui Ju
- Department of Biology, Queen College, The City Univ. of New York, 65-30 Kissena Blvd., Flushing, New York 11367, USA
| | - Jeremy Karnowski
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0515, USA
| | - Bernard Lohr
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Marta B. Manser
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Brenda McCowan
- Department of Veterinary Medicine, University of California Davis, 1 Peter J Shields Ave, Davis, CA 95616, USA
| | - Eduardo Mercado
- Department of Psychology; Evolution, Ecology, & Behavior, University at Buffalo, The State University of New York, Park Hall Room 204, Buffalo, NY 14260-4110, USA
| | - Peter M. Narins
- Department of Integrative Biology & Physiology, University of California Los Angeles, 612 Charles E. Young Drive East, Los Angeles, CA 90095-7246, USA
| | - Alex Piel
- Division of Biological Anthropology, University of Cambridge, Pembroke Street Cambridge, CB2 3QG, UK
| | - Megan Rice
- Department of Psychology, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096-0001, USA
| | - Roberta Salmi
- Department of Anthropology, University of Georgia at Athens, 355 S Jackson St, Athens, GA 30602, USA
| | - Kazutoshi Sasahara
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Laela Sayigh
- Biology Department, Woods Hole Oceanographic Institution, 86 Water St, Woods Hole, MA 02543, USA
| | - Yu Shiu
- Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY 14850, USA
| | - Charles Taylor
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Edgar E. Vallejo
- Department of Computer Science, Monterrey Institute of Technology, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico C.P. 64849, Monterrey, Nuevo León, Mexico
| | - Sara Waller
- Department of Philosophy, Montana State University, 2-155 Wilson Hall, Bozeman, Montana 59717, USA
| | - Veronica Zamora-Gutierrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- Centre for Biodiversity and Environmental Research, University College London, London WC1H 0AG, UK
| |
Collapse
|
13
|
Brunoldi M, Bozzini G, Casale A, Corvisiero P, Grosso D, Magnoli N, Alessi J, Bianchi CN, Mandich A, Morri C, Povero P, Wurtz M, Melchiorre C, Viano G, Cappanera V, Fanciulli G, Bei M, Stasi N, Taiuti M. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea. PLoS One 2016; 11:e0145362. [PMID: 26789265 PMCID: PMC4720475 DOI: 10.1371/journal.pone.0145362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation.
Collapse
Affiliation(s)
- Marco Brunoldi
- Department of Physics, University of Genova, Genova, Italy
- * E-mail:
| | | | | | | | - Daniele Grosso
- Department of Physics, University of Genova, Genova, Italy
| | | | - Jessica Alessi
- Department of the Earth, Environment and Life Science, University of Genova, Genova, Italy
| | - Carlo Nike Bianchi
- Department of the Earth, Environment and Life Science, University of Genova, Genova, Italy
| | - Alberta Mandich
- Department of the Earth, Environment and Life Science, University of Genova, Genova, Italy
| | - Carla Morri
- Department of the Earth, Environment and Life Science, University of Genova, Genova, Italy
| | - Paolo Povero
- Department of the Earth, Environment and Life Science, University of Genova, Genova, Italy
| | - Maurizio Wurtz
- Department of the Earth, Environment and Life Science, University of Genova, Genova, Italy
| | | | | | - Valentina Cappanera
- Area Marina Protetta di Portofino, Ministry for the Environment and for the Protection of Territory and Sea, Santa Margherita Ligure, Genova, Italy
| | - Giorgio Fanciulli
- Area Marina Protetta di Portofino, Ministry for the Environment and for the Protection of Territory and Sea, Santa Margherita Ligure, Genova, Italy
| | - Massimiliano Bei
- Direzione Marittima di Genova, Ministry for the Infrastructures and Transport, Genova, Italy
| | - Nicola Stasi
- Direzione Marittima di Genova, Ministry for the Infrastructures and Transport, Genova, Italy
| | - Mauro Taiuti
- Department of Physics, University of Genova, Genova, Italy
| |
Collapse
|
14
|
Cetacean vocal learning and communication. Curr Opin Neurobiol 2014; 28:60-5. [DOI: 10.1016/j.conb.2014.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 11/21/2022]
|
15
|
Musser WB, Bowles AE, Grebner DM, Crance JL. Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1990-2002. [PMID: 25324098 DOI: 10.1121/1.4893906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Limited previous evidence suggests that killer whales (Orcinus orca) are capable of vocal production learning. However, vocal contextual learning has not been studied, nor the factors promoting learning. Vocalizations were collected from three killer whales with a history of exposure to bottlenose dolphins (Tursiops truncatus) and compared with data from seven killer whales held with conspecifics and nine bottlenose dolphins. The three whales' repertoires were distinguishable by a higher proportion of click trains and whistles. Time-domain features of click trains were intermediate between those of whales held with conspecifics and dolphins. These differences provided evidence for contextual learning. One killer whale spontaneously learned to produce artificial chirps taught to dolphins; acoustic features fell within the range of inter-individual differences among the dolphins. This whale also produced whistles similar to a stereotyped whistle produced by one dolphin. Thus, results provide further support for vocal production learning and show that killer whales are capable of contextual learning. That killer whales produce similar repertoires when associated with another species suggests substantial vocal plasticity and motivation for vocal conformity with social associates.
Collapse
Affiliation(s)
- Whitney B Musser
- Department of Environmental and Ocean Sciences, University of San Diego, 5998 Alcalá Park, San Diego, California 92110
| | - Ann E Bowles
- Hubbs-SeaWorld Research Institute, 2595 Ingraham Street, San Diego, California 92109
| | - Dawn M Grebner
- Bioacoustician, 5029 Onstad Street, San Diego, California 92110
| | - Jessica L Crance
- National Marine Mammal Laboratory, 7800 Sand Point Way, Seattle, Washington 98115
| |
Collapse
|
16
|
Kriesell HJ, Elwen SH, Nastasi A, Gridley T. Identification and characteristics of signature whistles in wild bottlenose dolphins (Tursiops truncatus) from Namibia. PLoS One 2014; 9:e106317. [PMID: 25203814 PMCID: PMC4159226 DOI: 10.1371/journal.pone.0106317] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
A signature whistle type is a learned, individually distinctive whistle type in a dolphin's acoustic repertoire that broadcasts the identity of the whistle owner. The acquisition and use of signature whistles indicates complex cognitive functioning that requires wider investigation in wild dolphin populations. Here we identify signature whistle types from a population of approximately 100 wild common bottlenose dolphins (Tursiops truncatus) inhabiting Walvis Bay, and describe signature whistle occurrence, acoustic parameters and temporal production. A catalogue of 43 repeatedly emitted whistle types (REWTs) was generated by analysing 79 hrs of acoustic recordings. From this, 28 signature whistle types were identified using a method based on the temporal patterns in whistle sequences. A visual classification task conducted by 5 naïve judges showed high levels of agreement in classification of whistles (Fleiss-Kappa statistic, κ = 0.848, Z = 55.3, P<0.001) and supported our categorisation. Signature whistle structure remained stable over time and location, with most types (82%) recorded in 2 or more years, and 4 identified at Walvis Bay and a second field site approximately 450 km away. Whistle acoustic parameters were consistent with those of signature whistles documented in Sarasota Bay (Florida, USA). We provide evidence of possible two-voice signature whistle production by a common bottlenose dolphin. Although signature whistle types have potential use as a marker for studying individual habitat use, we only identified approximately 28% of those from the Walvis Bay population, despite considerable recording effort. We found that signature whistle type diversity was higher in larger dolphin groups and groups with calves present. This is the first study describing signature whistles in a wild free-ranging T. truncatus population inhabiting African waters and it provides a baseline on which more in depth behavioural studies can be based.
Collapse
Affiliation(s)
- Hannah Joy Kriesell
- Department of Conservation Biology, Georg-August University Göttingen, Göttingen, Germany
- Namibian Dolphin Project, Walvis Bay, Namibia
| | - Simon Harvey Elwen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, Gauteng, South Africa
- Namibian Dolphin Project, Walvis Bay, Namibia
| | - Aurora Nastasi
- Namibian Dolphin Project, Walvis Bay, Namibia
- Sapienza Università di Roma, Dipartimento di Scienze della Terra, Rome, Italy
| | - Tess Gridley
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, Gauteng, South Africa
- Namibian Dolphin Project, Walvis Bay, Namibia
- * E-mail:
| |
Collapse
|
17
|
Kershenbaum A, Sayigh LS, Janik VM. The encoding of individual identity in dolphin signature whistles: how much information is needed? PLoS One 2013; 8:e77671. [PMID: 24194893 PMCID: PMC3806847 DOI: 10.1371/journal.pone.0077671] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022] Open
Abstract
Bottlenose dolphins (Tursiops truncatus) produce many vocalisations, including whistles that are unique to the individual producing them. Such “signature whistles” play a role in individual recognition and maintaining group integrity. Previous work has shown that humans can successfully group the spectrographic representations of signature whistles according to the individual dolphins that produced them. However, attempts at using mathematical algorithms to perform a similar task have been less successful. A greater understanding of the encoding of identity information in signature whistles is important for assessing similarity of whistles and thus social influences on the development of these learned calls. We re-examined 400 signature whistles from 20 individual dolphins used in a previous study, and tested the performance of new mathematical algorithms. We compared the measure used in the original study (correlation matrix of evenly sampled frequency measurements) to one used in several previous studies (similarity matrix of time-warped whistles), and to a new algorithm based on the Parsons code, used in music retrieval databases. The Parsons code records the direction of frequency change at each time step, and is effective at capturing human perception of music. We analysed similarity matrices from each of these three techniques, as well as a random control, by unsupervised clustering using three separate techniques: k-means clustering, hierarchical clustering, and an adaptive resonance theory neural network. For each of the three clustering techniques, a seven-level Parsons algorithm provided better clustering than the correlation and dynamic time warping algorithms, and was closer to the near-perfect visual categorisations of human judges. Thus, the Parsons code captures much of the individual identity information present in signature whistles, and may prove useful in studies requiring quantification of whistle similarity.
Collapse
Affiliation(s)
- Arik Kershenbaum
- National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee, United States of America ; Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | | | | |
Collapse
|
18
|
Evans-Wilent J, Dudzinski KM. Vocalizations associated with pectoral fin contact in bottlenose dolphins (Tursiops truncatus). Behav Processes 2013; 100:74-81. [PMID: 23954831 DOI: 10.1016/j.beproc.2013.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 06/28/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Pectoral fin contact in bottlenose dolphins represents one form of tactile communication. Acoustic communication associated with pectoral fin contact is an additional level of communication that may change or enhance the tactile message between two individuals. In this study, we examine vocalization types associated with pectoral fin contact in a group of captive bottlenose dolphins (Tursiops truncatus). From 2006 to 2009, vocalizations potentially associated with 748 pectoral fin contacts were examined: whistles, click trains and overlap of whistles and click trains were documented when associated with fin contact. Dolphins were also documented not vocalizing when exchanging pectoral fin contacts. Call type associated with pectoral fin contact was compared for the proportion of the type of pectoral fin contact, vocalizer sex, initiator and receiver roles, and gender pair. Overall, vocalizations differed significantly by vocalizer role as rubber or rubbee, initiator, and sex. Receivers and rubbees clicked and used overlap vocalizations more frequently, and males produced overlap vocalizations more frequently. These results suggest that whistles may be used to initiate pectoral fin contact or show preference for a particular partner, while click trains may be used to show disinterest in pectoral fin contact or to signal the end of a contact. Examining vocalizations produced in conjunction with tactile contact is a relatively new approach in the study of individual dolphin behavior and may be useful for understanding dolphin social alliances and social preferences for various individuals within a population.
Collapse
Affiliation(s)
- J Evans-Wilent
- Environmental Studies Department, Connecticut College, New London, CT 06320, USA.
| | | |
Collapse
|
19
|
Abstract
In animal communication research, vocal labeling refers to incidents in which an animal consistently uses a specific acoustic signal when presented with a specific object or class of objects. Labeling with learned signals is a foundation of human language but is notably rare in nonhuman communication systems. In natural animal systems, labeling often occurs with signals that are not influenced by learning, such as in alarm and food calling. There is a suggestion, however, that some species use learned signals to label conspecific individuals in their own communication system when mimicking individually distinctive calls. Bottlenose dolphins (Tursiops truncatus) are a promising animal for exploration in this area because they are capable of vocal production learning and can learn to use arbitrary signals to report the presence or absence of objects. Bottlenose dolphins develop their own unique identity signal, the signature whistle. This whistle encodes individual identity independently of voice features. The copying of signature whistles may therefore allow animals to label or address one another. Here, we show that wild bottlenose dolphins respond to hearing a copy of their own signature whistle by calling back. Animals did not respond to whistles that were not their own signature. This study provides compelling evidence that a dolphin's learned identity signal is used as a label when addressing conspecifics. Bottlenose dolphins therefore appear to be unique as nonhuman mammals to use learned signals as individually specific labels for different social companions in their own natural communication system.
Collapse
|
20
|
Janik VM, Sayigh LS. Communication in bottlenose dolphins: 50 years of signature whistle research. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:479-89. [DOI: 10.1007/s00359-013-0817-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/29/2022]
|
21
|
King SL, Sayigh LS, Wells RS, Fellner W, Janik VM. Vocal copying of individually distinctive signature whistles in bottlenose dolphins. Proc Biol Sci 2013; 280:20130053. [PMID: 23427174 PMCID: PMC3619487 DOI: 10.1098/rspb.2013.0053] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/24/2013] [Indexed: 11/12/2022] Open
Abstract
Vocal learning is relatively common in birds but less so in mammals. Sexual selection and individual or group recognition have been identified as major forces in its evolution. While important in the development of vocal displays, vocal learning also allows signal copying in social interactions. Such copying can function in addressing or labelling selected conspecifics. Most examples of addressing in non-humans come from bird song, where matching occurs in an aggressive context. However, in other animals, addressing with learned signals is very much an affiliative signal. We studied the function of vocal copying in a mammal that shows vocal learning as well as complex cognitive and social behaviour, the bottlenose dolphin (Tursiops truncatus). Copying occurred almost exclusively between close associates such as mother-calf pairs and male alliances during separation and was not followed by aggression. All copies were clearly recognizable as such because copiers consistently modified some acoustic parameters of a signal when copying it. We found no evidence for the use of copying in aggression or deception. This use of vocal copying is similar to its use in human language, where the maintenance of social bonds appears to be more important than the immediate defence of resources.
Collapse
Affiliation(s)
- Stephanie L. King
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Laela S. Sayigh
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Randall S. Wells
- Chicago Zoological Society, c/o Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - Wendi Fellner
- The Seas, Epcot, Walt Disney World Resort, 2016 Avenue of the Stars, EC Trl. W-251, Lake Buena Vista, FL 32830, USA
| | - Vincent M. Janik
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
22
|
Chmelnitsky EG, Ferguson SH. Beluga whale, Delphinapterus leucas, vocalizations from the Churchill River, Manitoba, Canada. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:4821-4835. [PMID: 22712953 DOI: 10.1121/1.4707501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Classification of animal vocalizations is often done by a human observer using aural and visual analysis but more efficient, automated methods have also been utilized to reduce bias and increase reproducibility. Beluga whale, Delphinapterus leucas, calls were described from recordings collected in the summers of 2006-2008, in the Churchill River, Manitoba. Calls (n=706) were classified based on aural and visual analysis, and call characteristics were measured; calls were separated into 453 whistles (64.2%; 22 types), 183 pulsed∕noisy calls (25.9%; 15 types), and 70 combined calls (9.9%; seven types). Measured parameters varied within each call type but less variation existed in pulsed and noisy call types and some combined call types than in whistles. A more efficient and repeatable hierarchical clustering method was applied to 200 randomly chosen whistles using six call characteristics as variables; twelve groups were identified. Call characteristics varied less in cluster analysis groups than in whistle types described by visual and aural analysis and results were similar to the whistle contours described. This study provided the first description of beluga calls in Hudson Bay and using two methods provides more robust interpretations and an assessment of appropriate methods for future studies.
Collapse
Affiliation(s)
- Elly G Chmelnitsky
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, Winnipeg, Manitoba, R3T 2N2, Canada.
| | | |
Collapse
|
23
|
van der Woude SE. Bottlenose dolphins (Tursiops truncatus) moan as low in frequency as baleen whales. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:1552. [PMID: 19739768 DOI: 10.1121/1.3177272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite a vast number of investigations on the vocal repertoire of bottlenose dolphins, it is still not fully described. This publication reports on a newly discovered tonal low-frequency vocalization in the species at frequencies similar to baleen whale "moans." Dolphin moans are characterized by a slightly modulated fundamental frequency well below 500 Hz that ranges in duration from 0.2 to 8.7 s. Recordings (68 h) were obtained from eight Black Sea bottlenose dolphins residing in an open sea enclosure in Israel. Of 132 unambiguous moans, 49 occurred clearly associated with the release of air from a dolphin's blowhole, which allowed for identifying five moaning individuals. Reasons why this vocalization has not been previously described in any toothed whale are discussed. Moans might not be part of the species' natural repertoire but likewise might have been overlooked due to their inconspicuousness and scarcity, technical limitations, or methodological biases. The function of moaning is unclear; however, the data suggest that moans are signals of anticipating physical satiation provided by humans, i.e., feeding or petting. To further address these questions, verification of moans in other populations and experimental investigation of the properties of moan production and perception are required.
Collapse
Affiliation(s)
- Sylvia E van der Woude
- Department of Animal Systematics and Evolution, Institute for Biology, Free University Berlin, Berlin, Germany
| |
Collapse
|
24
|
|