1
|
Abdollahi A, Aghayan HR, Mousivand Z, Motasadizadeh H, Maghsoudian S, Abdorashidi M, Ostad SN, Larijani B, Raoufi M, Javar HA. Chitosan based extruded nanofibrous bioscaffold for local delivery of mesenchymal stem cells to improve diabetic wound healing. Stem Cell Res Ther 2024; 15:262. [PMID: 39148112 PMCID: PMC11328517 DOI: 10.1186/s13287-024-03772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/27/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs)-based treatment strategy has shown promise in bolstering the healing process of chronic wounds in diabetic patients, who are at risk of amputation and mortality. To overcome the drawbacks of suboptimal cell retention and diminished cell viability at the injury site, a novel nanofibrous biomaterial-based scaffold was developed by using a controlled extrusion of a polymeric solution to deliver the cells (human adipose-derived MSCs (ADMSCs) and placenta-derived MSCs (PLMSCs)) locally to the animal model of diabetic ulcers. METHODS The physicochemical and biological properties of the nano-bioscaffold were characterized in terms of microscopic images, FTIR spectroscopy, tensile testing, degradation and swelling tests, contact angle measurements, MTT assay, and cell attachment evaluation. To evaluate the therapeutic efficacy, a study using an excisional wound model was conducted on diabetic rats. RESULTS The SEM and AFM images of scaffolds revealed a network of uniform nanofibers with narrow diameters between 100-130 nm and surface roughness less than 5 nm, respectively. ADMSCs and PLMSCs had a typical spindle-shaped or fibroblast-like morphology when attached to the scaffold. Desired characteristics in terms of swelling, hydrophilicity, biodegradation rate, and biocompatibility were achieved with the CS70 formulation. The wound healing process was accelerated according to wound closure rate assay upon treatment with MSCs loaded scaffold resulting in increased re-epithelialization, neovascularization, and less inflammatory reaction. Our findings unequivocally demonstrated that the cell-loaded nano-bioscaffold exhibited more efficacy compared with its acellular counterpart. In summation, our study underscores the potential of this innovative cellular scaffold as a viable solution for enhancing the healing of diabetic ulcers. CONCLUSION The utilization of MSCs in a nanofibrous biomaterial framework demonstrates significant promise, providing a novel avenue for advancing wound care and diabetic ulcer management.
Collapse
Affiliation(s)
- Alyeh Abdollahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Mousivand
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadmohsen Abdorashidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Abdelrahim M, Gao Q, Zhang Y, Li W, Xing Q, Bradley M, Geng J. Light-mediated intracellular polymerization. Nat Protoc 2024; 19:1984-2025. [PMID: 38514838 DOI: 10.1038/s41596-024-00970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/24/2023] [Indexed: 03/23/2024]
Abstract
The synthesis of synthetic intracellular polymers offers groundbreaking possibilities in cellular biology and medical research, allowing for novel experiments in drug delivery, bioimaging and targeted cancer therapies. These macromolecules, composed of biocompatible monomers, are pivotal in manipulating cellular functions and pathways due to their bioavailability, cytocompatibility and distinct chemical properties. This protocol details two innovative methods for intracellular polymerization. The first one uses 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) as a photoinitiator for free radical polymerization under UV light (365 nm, 5 mW/cm2). The second method employs photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization with visible light (470 nm, 100 mW/cm2). We further elaborate on isolating these intracellular polymers by streptavidin/biotin interaction or immobilized metal ion affinity chromatography for polymers tagged with biotin or histidine. The entire process, from polymerization to isolation, takes ~48 h. Moreover, the intracellular polymers thus generated demonstrate significant potential in enhancing actin polymerization, in bioimaging applications and as a novel avenue in cancer treatment strategies. The protocol extends to animal models, providing a comprehensive approach from cellular to systemic applications. Users are advised to have a basic understanding of organic synthesis and cell biology techniques.
Collapse
Affiliation(s)
- Mohamed Abdelrahim
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yichuan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Weishuo Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Koch KC, Jadon N, Thesmar I, Tew GN, Minter LM. Combating bone marrow failure with polymer materials. Front Immunol 2024; 15:1396486. [PMID: 38694497 PMCID: PMC11061490 DOI: 10.3389/fimmu.2024.1396486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Bone marrow failure (BMF) has become one of the most studied autoimmune disorders, particularly due to its prevalence both as an inherited disease, but also as a result of chemotherapies. BMF is associated with severe symptoms such as bleeding episodes and susceptibility to infections, and often has underlying characteristics, such as anemia, thrombocytopenia, and neutropenia. The current treatment landscape for BMF requires stem cell transplantation or chemotherapies to induce immune suppression. However, there is limited donor cell availability or dose related toxicity associated with these treatments. Optimizing these treatments has become a necessity. Polymer-based materials have become increasingly popular, as current research efforts are focused on synthesizing novel cell matrices for stem cell expansion to solve limited donor cell availability, as well as applying polymer delivery vehicles to intracellularly deliver cargo that can aid in immunosuppression. Here, we discuss the importance and impact of polymer materials to enhance therapeutics in the context of BMF.
Collapse
Affiliation(s)
- Kayla C. Koch
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Nidhi Jadon
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Iris Thesmar
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Tan X, Zhang M, Tu B. Evaluation of bioactive extract nanoparticles on pulp stem cell behavior relevant to dental care using chemical composition of gelatin-Arabian gum nano polymer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:975-984. [PMID: 38911239 PMCID: PMC11193506 DOI: 10.22038/ijbms.2024.76467.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/18/2024] [Indexed: 06/25/2024]
Abstract
Objectives This study aimed to investigate the impact of bioactive plant extracts on the proliferation and migration of dental pulp stem cells (DPSCs) and their potential implications for dental care, focusing on the nurse-caring aspect. Materials and Methods TDPSCs were cultured on gelatin polymer scaffolds mimicking the extracellular matrix (ECM) environment. Bioactive plant extracts with antibacterial, anti-inflammatory, and anti-oxidant properties were incorporated into the gelatin polymer at concentrations ranging from 0.1% to 2.0%. Proliferation and migration assays were performed, considering nurse-caring practices during the experiments. Results Treatment with specific bioactive plant extracts significantly enhanced DPSC proliferation, showing a 2.5-fold increase compared to the control groups. The migration assay revealed a substantial increase in cell migration distance, with treated cells covering an average distance of 400-500 μm compared to 220-260 μm in the control group. Treated cells also exhibited improved viability and metabolic activity, with a 30% increase in cell viability and a 10-20% increase in metabolic activity compared to the control group. Conclusion This study demonstrates that bioactive plant extracts have the potential to enhance DPSC proliferation, migration, viability, and metabolic activity. These findings support the use of these extracts in dental care, benefiting from the nurse-caring practices.
Collapse
Affiliation(s)
- Xiaoni Tan
- Department of Endodontics, Changsha Stomatological Hospital, No.389, Youyi Road, Tianxin District, Changsha 410008, Hunan Province, China
| | - Moli Zhang
- Department of Endodontics, Changsha Stomatological Hospital, No.389, Youyi Road, Tianxin District, Changsha 410008, Hunan Province, China
| | - BiBo Tu
- Department of Endodontics, Changsha Stomatological Hospital, No.389, Youyi Road, Tianxin District, Changsha 410008, Hunan Province, China
| |
Collapse
|
5
|
Molina-Peña R, Ferreira NH, Roy C, Roncali L, Najberg M, Avril S, Zarur M, Bourgeois W, Ferreirós A, Lucchi C, Cavallieri F, Hindré F, Tosi G, Biagini G, Valzania F, Berger F, Abal M, Rousseau A, Boury F, Alvarez-Lorenzo C, Garcion E. Implantable SDF-1α-loaded silk fibroin hyaluronic acid aerogel sponges as an instructive component of the glioblastoma ecosystem: Between chemoattraction and tumor shaping into resection cavities. Acta Biomater 2024; 173:261-282. [PMID: 37866725 DOI: 10.1016/j.actbio.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges were designed as an implantable scaffold to trap GB cells. They presented shape memory and fit brain cavities. Histological results after implantation in brain immunocompetent Fischer rats revealed that SF-HA-Hep sponges are well tolerated for more than 3 months while moderately and reversibly colonized by immuno-inflammatory cells. The use of human U87MG GB cells overexpressing the CXCR4 receptor (U87MG-CXCR4+) and responding to SDF-1α allowed demonstrating directional GB cell attraction and colonization of the device in vitro and in vivo in orthotopic resection cavities in Nude rats. Not modifying global survival, aerogel sponge implantation strongly shaped U87MG-CXCR4+ tumors in cavities in contrast to random infiltrative growth in controls. Overall, those results support the interest of SF-HA-Hep sponges as modifiers of the GB ecosystem dynamics acting as "cell meeting rooms" and biocompatible niches whose properties deserve to be considered toward the development of new clinical procedures. STATEMENT OF SIGNIFICANCE: Brain tumor glioblastoma (GB) is one of the worst unmet clinical needs. To prevent the relapse in the resection cavity situation, new implantable biopolymer aerogel sponges loaded with a chemoattractant molecule were designed and preclinically tested as a prototype targeting the interaction between the initial tumor location and its attraction by the peritumoral environment. While not modifying global survival, biocompatible SDF1-loaded hyaluronic acid and silk fibroin sponges induce directional GB cell attraction and colonization in vitro and in rats in vivo. Interestingly, they strongly shaped GB tumors in contrast to random infiltrative growth in controls. These results provide original findings on application of exogenous engineered niches that shape tumors and serve as cell meeting rooms for further clinical developments.
Collapse
Affiliation(s)
- Rodolfo Molina-Peña
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | | | - Charlotte Roy
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Loris Roncali
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Mathie Najberg
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Sylvie Avril
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, ID Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William Bourgeois
- Inserm UMR1205, Brain Tech Lab, Grenoble Alpes University Hospital (CHUGA), Grenoble, 38000, France
| | - Alba Ferreirós
- NASASBIOTECH S.L., Cantón Grande nº 9, 15003, A Coruña, Spain
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - François Hindré
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Giovani Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - François Berger
- Inserm UMR1205, Brain Tech Lab, Grenoble Alpes University Hospital (CHUGA), Grenoble, 38000, France
| | - Miguel Abal
- NASASBIOTECH S.L., Cantón Grande nº 9, 15003, A Coruña, Spain
| | - Audrey Rousseau
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Frank Boury
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, ID Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Emmanuel Garcion
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
6
|
Zhou J, Li Q, Tian Z, Yao Q, Zhang M. Recent advances in 3D bioprinted cartilage-mimicking constructs for applications in tissue engineering. Mater Today Bio 2023; 23:100870. [PMID: 38179226 PMCID: PMC10765242 DOI: 10.1016/j.mtbio.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Human cartilage tissue can be categorized into three types: hyaline cartilage, elastic cartilage and fibrocartilage. Each type of cartilage tissue possesses unique properties and functions, which presents a significant challenge for the regeneration and repair of damaged tissue. Bionics is a discipline in which humans study and imitate nature. A bionic strategy based on comprehensive knowledge of the anatomy and histology of human cartilage is expected to contribute to fundamental study of core elements of tissue repair. Moreover, as a novel tissue-engineered technology, 3D bioprinting has the distinctive advantage of the rapid and precise construction of targeted models. Thus, by selecting suitable materials, cells and cytokines, and by leveraging advanced printing technology and bionic concepts, it becomes possible to simultaneously realize multiple beneficial properties and achieve improved tissue repair. This article provides an overview of key elements involved in the combination of 3D bioprinting and bionic strategies, with a particular focus on recent advances in mimicking different types of cartilage tissue.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Qi Li
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Zhuang Tian
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Qi Yao
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| |
Collapse
|
7
|
Li Z, Song X, Fan Y, Bao Y, Hou H. Physicochemical properties and cell proliferation and adhesive bioactivity of collagen-hyaluronate composite gradient membrane. Front Bioeng Biotechnol 2023; 11:1287359. [PMID: 37954023 PMCID: PMC10634474 DOI: 10.3389/fbioe.2023.1287359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Membrane materials were widely used in guided tissue regeneration (GTR) to prevent fibroblast invasion and form a confined area for preferentially growing of osteoblast. A novel collagen-hyaluronate composite gradient membrane was prepared by Tilapia (Oreochromis mossambicus) skin collagen and sodium hyaluronate for potential GTR applications and their bioactivities were investigated by cellular viability. SEM results indicated the membrane showed a dense outer and a porous inner surface for effectively guiding the growth of bone tissue. Physicochemical and biosafety experiments showed the tensile strength of membrane was 466.57 ± 44.31 KPa and contact angle was 74.11°, and the membrane showed perfect biocompatibility and cytocompatibility as well, which met the requirements of GTR material. Cell morphology revealed that the membrane could facilitate the adherence and proliferation of fibroblast and osteoblast. The results of qRT-PCR and ELISA demonstrated that the membrane could effectively activate TGF-β/Smad pathway in fibroblast, and promote the expressions of TGF-β1, FN1 and VEGF. Remarkably, RUNX2 was stimulated in BMP2 pathway by the membrane to regulate osteoblast differentiation. In summary, the collagen-hyaluronate composite gradient membrane not only fulfills the prerequisites for use as a GTR material but also demonstrates substantial potential for practical applications in the field.
Collapse
Affiliation(s)
- Zhaoxuan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xue Song
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Bao
- Institute of Feed Research of Chinese Academy of Agriculture Sciences, Beijing, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, China
| |
Collapse
|
8
|
Johnbosco C, Karbaat L, Korthagen NM, Warmink K, Koerselman M, Coeleveld K, Becker M, van Loo B, Zoetebier B, Both S, Weinans H, Karperien M, Leijten J. Microencapsulated stem cells reduce cartilage damage in a material dependent manner following minimally invasive intra-articular injection in an OA rat model. Mater Today Bio 2023; 22:100791. [PMID: 37731960 PMCID: PMC10507156 DOI: 10.1016/j.mtbio.2023.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/05/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints for which no curative treatment exists. Intra-articular injection of stem cells is explored as a regenerative approach, but rapid clearance of cells from the injection site limits the therapeutic outcome. Microencapsulation of mesenchymal stem cells (MSCs) can extend the retention time of MSCs, but the outcomes of the few studies currently performed are conflicting. We hypothesize that the composition of the micromaterial's shell plays a deciding factor in the treatment outcome of intra-articular MSC injection. To this end, we microencapsulate MSCs using droplet microfluidic generators in flow-focus mode using various polymers and polymer concentrations. We demonstrate that polymer composition and concentration potently alter the metabolic activity as well as the secretome of MSCs. Moreover, while microencapsulation consistently prolongs the retention time of MSC injected in rat joints, distinct biodistribution within the joint is demonstrated for the various microgel formulations. Furthermore, intra-articular injections of pristine and microencapsulated MSC in OA rat joints show a strong material-dependent effect on the reduction of cartilage degradation and matrix loss. Collectively, this study highlights that micromaterial composition and concentration are key deciding factors for the therapeutic outcome of intra-articular injections of microencapsulated stem cells to treat degenerative joint diseases.
Collapse
Affiliation(s)
- Castro Johnbosco
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Lisanne Karbaat
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Nicoline M. Korthagen
- Faculty of Veterinary Sciences Department of equine sciences, University of Utrecht, the Netherlands
- Department of Orthopaedics, University Medical Centre Utrecht, the Netherlands
| | - Kelly Warmink
- Department of Orthopaedics, University Medical Centre Utrecht, the Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Katja Coeleveld
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, the Netherlands
| | - Malin Becker
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Bas van Loo
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Bram Zoetebier
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Sanne Both
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Harrie Weinans
- Department of Orthopaedics, University Medical Centre Utrecht, the Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| |
Collapse
|
9
|
Huang F, He Y, Zhang M, Luo K, Li J, Li J, Zhang X, Dong X, Tang J. Progress in Research on Stem Cells in Neonatal Refractory Diseases. J Pers Med 2023; 13:1281. [PMID: 37623531 PMCID: PMC10455340 DOI: 10.3390/jpm13081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
With the development and progress of medical technology, the survival rate of premature and low-birth-weight infants has increased, as has the incidence of a variety of neonatal diseases, such as hypoxic-ischemic encephalopathy, intraventricular hemorrhage, bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity. These diseases cause severe health conditions with poor prognoses, and existing control methods are ineffective for such diseases. Stem cells are a special type of cells with self-renewal and differentiation potential, and their mechanisms mainly include anti-inflammatory and anti-apoptotic properties, reducing oxidative stress, and boosting regeneration. Their paracrine effects can affect the microenvironment in which they survive, thereby affecting the biological characteristics of other cells. Due to their unique abilities, stem cells have been used in treating various diseases. Therefore, stem cell therapy may open up the possibility of treating such neonatal diseases. This review summarizes the research progress on stem cells and exosomes derived from stem cells in neonatal refractory diseases to provide new insights for most researchers and clinicians regarding future treatments. In addition, the current challenges and perspectives in stem cell therapy are discussed.
Collapse
Affiliation(s)
- Fangjun Huang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yang He
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Meng Zhang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Keren Luo
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jiawen Li
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jiali Li
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xinyu Zhang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xiaoyan Dong
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jun Tang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
10
|
Singh PV, Singh PV, Anjankar A. Harnessing the Therapeutic Potential of Stem Cells in the Management of Chronic Obstructive Pulmonary Disease: A Comprehensive Review. Cureus 2023; 15:e44498. [PMID: 37711945 PMCID: PMC10497883 DOI: 10.7759/cureus.44498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory condition with limited treatment options. Stem cell therapy has emerged as a promising approach for COPD management due to its regenerative and immunomodulatory properties. This review article aims to comprehensively explore the therapeutic potential of stem cells in COPD management. The introduction provides background on COPD, highlighting its impact on health and the need for novel therapies. The different types of stem cells relevant to COPD, including embryonic stem cells, adult stem cells, and induced pluripotent stem cells, are described along with their properties and characteristics. The pathogenesis of COPD is discussed, emphasizing the key mechanisms involved in disease development and progression. Subsequently, the role of stem cells in tissue repair, regeneration, and immunomodulation is examined, highlighting their ability to address specific pathological processes in COPD. Mechanisms of action, such as paracrine signaling, immunomodulation, anti-inflammatory effects, and tissue regeneration, are explored. The interaction between stem cells and the host environment, which promotes lung repair, is also discussed. Challenges in stem cell therapy for COPD, including optimal cell sources, delivery methods, safety, and efficacy, are identified. Regulatory considerations and the importance of standardization are emphasized. Potential strategies for optimizing the therapeutic potential of stem cells in COPD management, such as combination therapies and preconditioning techniques, are outlined. Emerging trends and future directions are highlighted, including advanced cell engineering and patient-specific induced pluripotent stem cells. In conclusion, stem cell therapy holds significant promise for COPD management, addressing the limitations of current treatments. Continued research and development are necessary to overcome challenges, optimize therapies, and realize stem cells' full potential in improving the lives of patients with COPD.
Collapse
Affiliation(s)
- Parth V Singh
- Internal Medicine, Indira Gandhi Government Medical College, Nagpur, IND
| | - Prateesh V Singh
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
12
|
Atcha H, Choi YS, Chaudhuri O, Engler AJ. Getting physical: Material mechanics is an intrinsic cell cue. Cell Stem Cell 2023; 30:750-765. [PMID: 37267912 PMCID: PMC10247187 DOI: 10.1016/j.stem.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Advances in biomaterial science have allowed for unprecedented insight into the ability of material cues to influence stem cell function. These material approaches better recapitulate the microenvironment, providing a more realistic ex vivo model of the cell niche. However, recent advances in our ability to measure and manipulate niche properties in vivo have led to novel mechanobiological studies in model organisms. Thus, in this review, we will discuss the importance of material cues within the cell niche, highlight the key mechanotransduction pathways involved, and conclude with recent evidence that material cues regulate tissue function in vivo.
Collapse
Affiliation(s)
- Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
da Rocha LBN, Sousa RB, Dos Santos MVB, Neto NMA, da Silva Soares LL, Alves FLC, de Carvalho MAM, Osajima JA, Silva-Filho EC. Development of a new biomaterial based on cashew tree gum (Anarcadium occidentale L.) enriched with hydroxyapatite and evaluation of cytotoxicity in adipose-derived stem cell cultures. Int J Biol Macromol 2023; 242:124864. [PMID: 37192713 DOI: 10.1016/j.ijbiomac.2023.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
Cashew tree gum is a polysaccharide material highly available in the Northeast region of Brazil. It has been explored for biocompatibility with human tissues. This research aimed to describe the synthesis and characterization of cashew gum/hydroxyapatite scaffold and evaluate the possible cytotoxicity in murine adipo-derived stem cells (ADSCs) cultures. ADSCs of the subcutaneous fat tissue of Wistar rats were collected, isolated, expanded, differentiated into three strains, and characterized immunophenotypically. The scaffolds were synthesized through chemical precipitation, lyophilized and characterized through scanning electron microscopy (SEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal analysis (TG and DTG), and mechanical testing. The scaffold presented a crystalline structure and pores with an average diameter of 94.45 ± 50.57 μm. By mechanical tests, the compressive force and modulus of elasticity were like the cancellous bone. The isolated adipose-derived stem cells (ADSCs) presented fibroblast morphology, adhesion capacity to plastic, differentiation in osteogenic, adipogenic and chondrogenic lineages, positive expression for the CD105 and CD90 markers and negative expression for the CD45 and CD14 markers. The MTT test showed increased cell viability, and the biomaterial showed a high level of hemocompatibility (<5 %). This study allowed the development of a new scaffold for future surgical applicability in tissue regeneration.
Collapse
Affiliation(s)
| | - Ricardo Barbosa Sousa
- Federal Institute of Education, Science, and Technology of Tocantins, Campus Araguaina, 56, Amazonas Avenue, 77826-170 Araguaina, TO, Brazil; Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil.
| | | | | | | | | | | | - Josy Anteveli Osajima
- Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil
| | - Edson C Silva-Filho
- Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil
| |
Collapse
|
14
|
Hoveizi E, Naddaf H, Ahmadianfar S, Bernardi S. Using Odontoblasts Derived from Dog Endometrial Stem Cells Encapsulated in Fibrin Gel Associated with BMP-2 in a Rat Pulp-Capping Model. Curr Issues Mol Biol 2023; 45:2984-2999. [PMID: 37185720 PMCID: PMC10136987 DOI: 10.3390/cimb45040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
This study aimed to treat dental injuries by utilizing one of the most advanced tissue engineering techniques. In this study, an in vitro model was employed to investigate the proliferation and odontogenic differentiation of canine endometrial stem cells (C-EnSCs). Furthermore, the dentin regeneration potential of odontoblast like-cells (OD) derived from C-EnSCs was assessed in rats. The C-EnSCs were isolated by the enzymatic method and identified by flow cytometry. The C-EnSCs were encapsulated in fibrin gel associated with signaling factors to create the proper conditions for cell growth and differentiation. Then, the OD cells were associated with bone morphologic protein-2 (BMP-2) to promote dentin formation in vivo. The animal model used to evaluate the regenerative effect of cells and biomaterials included the preparation of the left maxillary first molar of rats for direct pulp capping operation. Animals were divided into four groups: group 1, a control group without any treatment, group 2, which received fibrin, group 3, which received fibrin with ODs (fibrin/ODs), and group 4, which received fibrin with ODs and BMP-2 (fibrin/ODs/BMP-2). The morphological observations showed the differentiation of C-EnSCs into adipose, bone, neural cells, and ODs. Furthermore, the histomorphometric data of the treated teeth showed how fibrin gel and BMP2 at a concentration of 100 ng/mL provided an optimal microenvironment for regenerating dentin tissue in rats, which was increased significantly with the presence of OD cells within eight weeks. Our study showed that using OD cells derived from C-EnSCs encapsulated in fibrin gel associated with BMP2 can potentially be an appropriate candidate for direct pulp-capping and dentin regeneration.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Hadi Naddaf
- Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Sina Ahmadianfar
- Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Sara Bernardi
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
15
|
Handral HK, Wyrobnik TA, Lam ATL. Emerging Trends in Biodegradable Microcarriers for Therapeutic Applications. Polymers (Basel) 2023; 15:polym15061487. [PMID: 36987266 PMCID: PMC10057597 DOI: 10.3390/polym15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microcarriers (MCs) are adaptable therapeutic instruments that may be adjusted to specific therapeutic uses, making them an appealing alternative for regenerative medicine and drug delivery. MCs can be employed to expand therapeutic cells. MCs can be used as scaffolds for tissue engineering, as well as providing a 3D milieu that replicates the original extracellular matrix, facilitating cell proliferation and differentiation. Drugs, peptides, and other therapeutic compounds can be carried by MCs. The surface of the MCs can be altered, to improve medication loading and release, and to target specific tissues or cells. Allogeneic cell therapies in clinical trials require enormous volumes of stem cells, to assure adequate coverage for several recruitment locations, eliminate batch to batch variability, and reduce production costs. Commercially available microcarriers necessitate additional harvesting steps to extract cells and dissociation reagents, which reduces cell yield and quality. To circumvent such production challenges, biodegradable microcarriers have been developed. In this review, we have compiled key information relating to biodegradable MC platforms, for generating clinical-grade cells, that permit cell delivery at the target site without compromising quality or cell yields. Biodegradable MCs could also be employed as injectable scaffolds for defect filling, supplying biochemical signals for tissue repair and regeneration. Bioinks, coupled with biodegradable microcarriers with controlled rheological properties, might improve bioactive profiles, while also providing mechanical stability to 3D bioprinted tissue structures. Biodegradable materials used for microcarriers have the ability to solve in vitro disease modeling, and are advantageous to the biopharmaceutical drug industries, because they widen the spectrum of controllable biodegradation and may be employed in a variety of applications.
Collapse
Affiliation(s)
- Harish K. Handral
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Correspondence:
| | - Tom Adam Wyrobnik
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Alan Tin-Lun Lam
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| |
Collapse
|
16
|
Chaudhary S, Ghosal D, Tripathi P, Kumar S. Cellular metabolism: a link connecting cellular behaviour with the physiochemical properties of biomaterials for bone tissue engineering. Biomater Sci 2023; 11:2277-2291. [PMID: 36748852 DOI: 10.1039/d2bm01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biomaterial properties, such as surface roughness, morphology, stiffness, conductivity, and chemistry, significantly influence a cell's ability to sense and adhere to its surface and regulate cell functioning. Understanding how biomaterial properties govern changes in cellular function is one of the fundamental goals of tissue engineering. Still, no generalized rule is established to predict cellular processes (adhesion, spreading, growth and differentiation) on biomaterial surfaces. A few studies have highlighted that cells sense biomaterial properties at multiple length scales and regulate various intracellular biochemical processes like cytoskeleton organization, gene regulation, and receptor expression to influence cell function. However, recent studies have found cellular metabolism as another critical aspect of cellular processes that regulate cell behavior, co-relating metabolism to cellular functions like adhesion, proliferation, and differentiation. Now researchers have started to uncover previously overlooked factors on how biomaterial properties govern changes in cellular functions mediated through metabolism. This review highlights how different physiochemical properties of scaffolds designed from different biomaterials influence cell metabolism. The review also discusses the role of metabolism change in cellular functions and cell behavior in the context of bone tissue engineering. It also emphasizes the importance of cell metabolism as a missing link between the cellular behavior and physicochemical properties of scaffolds and serves as a guiding principle for designing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pravesh Tripathi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India. .,Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
17
|
Huang X, Zeng J, Wang Y. Comparison of the enhanced attachment and proliferation of the human mesenchymal stem cells on the biomimetic nanopatterned surfaces of zein, silk fibroin, and gelatin. J Biomed Mater Res B Appl Biomater 2023; 111:161-172. [PMID: 35906959 DOI: 10.1002/jbm.b.35142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022]
Abstract
Natural proteins have been reported to positively affect the attachment and proliferation of cells. For the first time, zein, a plant protein, was utilized to make patterned surface mimicking the extracellular matrix to assist the attachment and proliferation of stem cells. Zein would promote the attachment and proliferation of the stem cells more than 10 times of that of gelatin and silk fibroin, respectively, which are popular protein selections for the formation of the biomaterial scaffolds. The more the surface was covered by zein, the more the stem cell grown. It was revealed that the stem cells would grow and stretch in the direction of the patterns, and the stem cells preferred to grow in the grooves in the size of 8 μm, that was similar to the size of the stem cells, rather than the size larger or smaller than that of the cells, such as 50 and 2 μm. It was concluded that zein is a better choice than silk fibroin and gelatin with highly potential for the formation of patterned surface and structure as the biomaterial scaffolds for stem cell therapy.
Collapse
Affiliation(s)
- Xueying Huang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Jie Zeng
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| |
Collapse
|
18
|
Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology 2023; 31:145-169. [PMID: 36609717 PMCID: PMC9823267 DOI: 10.1007/s10787-022-01115-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
Cell-derived exosomes have opened new horizons in modern therapy for advanced drug delivery and therapeutic applications, due to their key features such as low immunogenicity, high physicochemical stability, capacity to penetrate into tissues, and the innate capacity to communicate with other cells over long distances. Exosome-based liquid biopsy has been potentially used for the diagnosis and prognosis of a range of disorders. Exosomes deliver therapeutic agents, including immunological modulators, therapeutic drugs, and antisense oligonucleotides to certain targets, and can be used as vaccines, though their clinical application is still far from reality. Producing exosomes on a large-scale is restricted to their low circulation lifetime, weak targeting capacity, and inappropriate controls, which need to be refined before being implemented in practice. Several bioengineering methods have been used for refining therapeutic applications of exosomes and promoting their effectiveness, on the one hand, and addressing the existing challenges, on the other. In the short run, new diagnostic platforms and emerging therapeutic strategies will further develop exosome engineering and therapeutic potential. This requires a thorough analysis of exosome engineering approaches along with their merits and drawbacks, as outlined in this paper. The present study is a comprehensive review of novel techniques for exosome development in terms of circulation time in the body, targeting capacity, and higher drug loading/delivery efficacies.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shafiee
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and tissue engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Isaković J, Šerer K, Barišić B, Mitrečić D. Mesenchymal stem cell therapy for neurological disorders: The light or the dark side of the force? Front Bioeng Biotechnol 2023; 11:1139359. [PMID: 36926687 PMCID: PMC10011535 DOI: 10.3389/fbioe.2023.1139359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Neurological disorders are recognized as major causes of death and disability worldwide. Because of this, they represent one of the largest public health challenges. With awareness of the massive burden associated with these disorders, came the recognition that treatment options were disproportionately scarce and, oftentimes, ineffective. To address these problems, modern research is increasingly looking into novel, more effective methods to treat neurological patients; one of which is cell-based therapies. In this review, we present a critical analysis of the features, challenges, and prospects of one of the stem cell types that can be employed to treat numerous neurological disorders-mesenchymal stem cells (MSCs). Despite the fact that several studies have already established the safety of MSC-based treatment approaches, there are still some reservations within the field regarding their immunocompatibility, heterogeneity, stemness stability, and a range of adverse effects-one of which is their tumor-promoting ability. We additionally examine MSCs' mechanisms of action with respect to in vitro and in vivo research as well as detail the findings of past and ongoing clinical trials for Parkinson's and Alzheimer's disease, ischemic stroke, glioblastoma multiforme, and multiple sclerosis. Finally, this review discusses prospects for MSC-based therapeutics in the form of biomaterials, as well as the use of electromagnetic fields to enhance MSCs' proliferation and differentiation into neuronal cells.
Collapse
Affiliation(s)
- Jasmina Isaković
- Omnion Research International, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Klara Šerer
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Barišić
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Dinko Mitrečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
20
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
21
|
Liu F, Quan R, Vyas C, Aslan E. Hybrid biomanufacturing systems applied in tissue regeneration. Int J Bioprint 2022; 9:646. [PMID: 36636138 PMCID: PMC9831066 DOI: 10.18063/ijb.v9i1.646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
Scaffold-based approach is a developed strategy in biomanufacturing, which is based on the use of temporary scaffold that performs as a house of implanted cells for their attachment, proliferation, and differentiation. This strategy strongly depends on both materials and manufacturing processes. However, it is very difficult to meet all the requirements, such as biocompatibility, biodegradability, mechanical strength, and promotion of cell-adhesion, using only single material. At present, no single bioprinting technique can meet the requirements for tissue regeneration of all scales. Thus, multi-material and mixing-material scaffolds have been widely investigated. Challenges in terms of resolution, uniform cell distribution, and tissue formation are still the obstacles in the development of bioprinting technique. Hybrid bioprinting techniques have been developed to print scaffolds with improved properties in both mechanical and biological aspects for broad biomedical engineering applications. In this review, we introduce the basic multi-head bioprinters, semi-hybrid and fully-hybrid biomanufacturing systems, highlighting the modifications, the improved properties and the effect on the complex tissue regeneration applications.
Collapse
Affiliation(s)
- Fengyuan Liu
- Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK,Corresponding author: Fengyuan Liu ()
| | - Rixiang Quan
- Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK,Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore
| | - Enes Aslan
- Department of Machine and Metal Technologies, Gumusova Vocational School, Duzce University, Duzce, 81850, Turkey
| |
Collapse
|
22
|
Johnson HJ, Chakraborty S, Muckom RJ, Balsara NP, Schaffer DV. A scalable and tunable thermoreversible polymer for 3D human pluripotent stem cell biomanufacturing. iScience 2022; 25:104971. [PMID: 36147944 PMCID: PMC9485071 DOI: 10.1016/j.isci.2022.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are an exciting and promising source to enable cell replacement therapies for a variety of unmet medical needs. Though hPSCs can be successfully derived into numerous physiologically relevant cell types, effective translation to the clinic is limited by challenges in scalable production of high-quality cells, cellular immaturity following the differentiation process, and the use of animal-derived components in culture. To address these limitations, we have developed a fully defined, reproducible, and tunable thermoreversible polymer for high-quality, scalable 3D cell production. Our reproducible synthesis method enables precise control of gelation temperature (24°C–32°C), hydrogel stiffness (100–4000 Pa), and the prevention of any unintended covalent crosslinking. After material optimization, we demonstrated hPSC expansion, pluripotency maintenance, and differentiation into numerous lineages within the hydrogel. Overall, this 3D thermoreversible hydrogel platform has broad applications in scalable, high-quality cell production to overcome the biomanufacturing burden of stem cell therapy. Synthesis of a scalable, tunable, and reproducible thermoreversible hydrogel Optimization of hydrogel properties including stiffness, LCST, and viscosity Expansion and pluripotency maintenance of hESCs in the hydrogel platform Differentiation of neurons, cardiomyocytes, and hepatocytes in the hydrogel platform
Collapse
|
23
|
A Molecular View on Biomaterials and Dental Stem Cells Interactions: Literature Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomaterials and stem cells are essential components in the field of regenerative medicine. Various biomaterials have been designed that have appropriate biochemical and biophysical characteristics to mimic the microenvironment of an extracellular matrix. Dental stem cells (DT-MSCs) represent a novel source for the development of autologous therapies due to their easy availability. Although research on biomaterials and DT-MSCs has progressed, there are still challenges in the characteristics of biomaterials and the molecular mechanisms involved in regulating the behavior of DT-MSCs. In this review, the characteristics of biomaterials are summarized, and their classification according to their source, bioactivity, and different biological effects on the expansion and differentiation of DT-MSCs is summarized. Finally, advances in research on the interaction of biomaterials and the molecular components involved (mechanosensors and mechanotransduction) in DT-MSCs during their proliferation and differentiation are analyzed. Understanding the molecular dynamics of DT-MSCs and biomaterials can contribute to research in regenerative medicine and the development of autologous stem cell therapies.
Collapse
|
24
|
Hao D, Lopez JM, Chen J, Iavorovschi AM, Lelivelt NM, Wang A. Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050202. [PMID: 35621480 PMCID: PMC9137730 DOI: 10.3390/bioengineering9050202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular microenvironment is a highly dynamic network of biophysical and biochemical elements, which surrounds cells and transmits molecular signals. Extracellular microenvironment controls are of crucial importance for the ability to direct cell behavior and tissue regeneration. In this review, we focus on the different components of the extracellular microenvironment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and introduce engineering approaches for these components, which can be used to achieve a higher degree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review the technologies established to engineer native-mimicking artificial components of the extracellular microenvironment for improved regenerative applications. This review presents a thorough analysis of the current research in extracellular microenvironment engineering and monitoring, which will facilitate the development of innovative tissue engineering strategies by utilizing different components of the extracellular microenvironment for regenerative medicine in the future.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Juan-Maria Lopez
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Jianing Chen
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Alexandra Maria Iavorovschi
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Nora Marlene Lelivelt
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
25
|
Xu Y, Chang Y, Yao Y, Zhang M, Dupont RL, Rather AM, Bao X, Wang X. Modularizable Liquid-Crystal-Based Open Surfaces Enable Programmable Chemical Transport and Feeding using Liquid Droplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108788. [PMID: 35333418 DOI: 10.1002/adma.202108788] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Droplet-based miniature reactors have attracted interest in both fundamental studies, for the unique reaction kinetics they enable, and applications in bio-diagnosis and material synthesis. However, the precise and automatic feeding of chemicals, important for the delicate reactions in these miniaturized chemical reactors, either requires complex, high-cost microfluidic devices or lacks the capability to maintain a pinning-free droplet movement. Here, the design and synthesis of a new class of liquid crystal (LC)-based open surfaces, which enable a controlled chemical release via a programmable LC phase transition without sacrificing the free transport of the droplets, are reported. It is demonstrated that their intrinsic slipperiness and self-healing properties enable a modularizable assembly of LC surfaces that can be loaded with different chemicals to achieve a wide range of chemical reactions carried out within the droplets, including sequential and parallel chemical reactions, crystal growth, and polymer synthesis. Finally, an LC-based chemical feeding device is developed that can automatically control the release of chemicals to direct the simultaneous differentiation of human induced pluripotent stem cells into endothelial progenitor cells and cardiomyocytes. Overall, these LC surfaces exhibit desirable levels of automation, responsiveness, and controllability for use in miniature droplet carriers and reactors.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Adil M Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
26
|
Fan Y, Zhi Y, He M, Ahmadzadeh B, Rohani S. Cellulose acetate/Plerixafor wound dressings for transplantation of menstrual blood stem cells: Potential treatment modality for diabetic wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
28
|
Abstract
Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.
Collapse
|
29
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
30
|
Zhan Z, Liu Z, Nan H, Li J, Xie Y, Hu C. Heterogeneous spheroids with tunable interior morphologies by droplet-based microfluidics. Biofabrication 2022; 14. [PMID: 35290971 DOI: 10.1088/1758-5090/ac5e12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
Abstract
Heterogeneous spheroids that mimic the complex three-dimensional environment of natural tissues are needed in various biomedical applications. Geometric cues from cellular matrix play invaluable roles in governing cell behavior and phenotype. However, the structural complexity of interior morphologies of spheroids is currently limited due to poor spatial resolution of positioning/orientation of cellular constructs. Here, a coaxial capillary microfluidic device is developed to generate gelatin methacrylate (GelMA) microspheres with tunable dimensions and interior morphologies, such as core-shell, or microspheres with interior undulated wavy, or spiral canals, by manipulating the two-phase flow of hydrogel precursor solution and methylcellulose solution. The formation of diverse and exquisite interior morphologies is caused by the interacting viscous instabilities of the two-phase flow in the microfluidic system, followed by water-in-oil emulsion and photo-initiated polymerization. Polyethylene glycol diacrylate (PEGDA) is incorporated into the GelMA solution to tune the mechanical properties of the fabricated microspheres, and an optimized concentration of PEGDA is confirmed by evaluating the in vitro proliferation and vascularization of human umbilical endothelial cells. Further, a heterogeneous spheroid with spiral blood vessel lumen is constructed to demonstrate the versatility and potential of the proposed droplet-based microfluidic approach for building functional tissue constructs.
Collapse
Affiliation(s)
- Zhen Zhan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Zeyang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Haochen Nan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Jianjie Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Yuan Xie
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Chengzhi Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
31
|
Mesenchymal Stem-Cell Remodeling of Adsorbed Type-I Collagen-The Effect of Collagen Oxidation. Int J Mol Sci 2022; 23:ijms23063058. [PMID: 35328478 PMCID: PMC8953637 DOI: 10.3390/ijms23063058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
This study describes the effect of collagen type I (Col I) oxidation on its physiological remodeling by adipose tissue-derived mesenchymal stem cells (ADMSCs), both mechanical and proteolytic, as an in vitro model for the acute oxidative stress that may occur in vivo upon distinct environmental changes. Morphologically, remodeling was interpreted as the mechanical rearrangement of adsorbed FITC-labelled Col I into a fibril-like pattern. This process was strongly abrogated in cells cultured on oxidized Col I albeit without visible changes in cell morphology. Proteolytic activity was quantified utilizing fluorescence de-quenching (FRET effect). The presence of ADMSCs caused a significant increase in native FITC-Col I fluorescence, which was almost absent in the oxidized samples. Parallel studies in a cell-free system confirmed the enzymatic de-quenching of native FITC-Col I by Clostridial collagenase with statistically significant inhibition occurring in the oxidized samples. Structural changes to the oxidized Col I were further studied by differential scanning calorimetry. In the oxidized samples, an additional endotherm with sustained enthalpy (∆H) was observed at 33.6 °C along with Col I’s typical one at 40.5 °C. Collectively, these data support that the remodeling of Col I by ADMSCs is altered upon oxidation due to intrinsic changes to the protein’s structure, which represents a novel mechanism for the control of stem cell behavior.
Collapse
|
32
|
Pollara L, Sottile V, Valente EM. Patient-derived cellular models of primary ciliopathies. J Med Genet 2022; 59:517-527. [DOI: 10.1136/jmedgenet-2021-108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Primary ciliopathies are rare inherited disorders caused by structural or functional defects in the primary cilium, a subcellular organelle present on the surface of most cells. Primary ciliopathies show considerable clinical and genetic heterogeneity, with disruption of over 100 genes causing the variable involvement of several organs, including the central nervous system, kidneys, retina, skeleton and liver. Pathogenic variants in one and the same gene may associate with a wide range of ciliopathy phenotypes, supporting the hypothesis that the individual genetic background, with potential additional variants in other ciliary genes, may contribute to a mutational load eventually determining the phenotypic manifestations of each patient. Functional studies in animal models have uncovered some of the pathophysiological mechanisms linking ciliary gene mutations to the observed phenotypes; yet, the lack of reliable human cell models has previously limited preclinical research and the development of new therapeutic strategies for primary ciliopathies. Recent technical advances in the generation of patient-derived two-dimensional (2D) and three-dimensional (3D) cellular models give a new spur to this research, allowing the study of pathomechanisms while maintaining the complexity of the genetic background of each patient, and enabling the development of innovative treatments to target specific pathways. This review provides an overview of available models for primary ciliopathies, from existing in vivo models to more recent patient-derived 2D and 3D in vitro models. We highlight the advantages of each model in understanding the functional basis of primary ciliopathies and facilitating novel regenerative medicine, gene therapy and drug testing strategies for these disorders.
Collapse
|
33
|
Liu B, Tao C, Wu Z, Yao H, Wang DA. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J Mater Chem B 2022; 10:1734-1753. [DOI: 10.1039/d1tb02706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haematopoietic stem cells are the basis for building and maintaining lifelong haematopoietic mechanisms and important resources for the treatment of blood disorders. Haematopoietic niches are microenvironment in the body where...
Collapse
|
34
|
Jiang B, Li W, Stewart S, Ou W, Liu B, Comizzoli P, He X. Sand-mediated ice seeding enables serum-free low-cryoprotectant cryopreservation of human induced pluripotent stem cells. Bioact Mater 2021; 6:4377-4388. [PMID: 33997514 PMCID: PMC8111032 DOI: 10.1016/j.bioactmat.2021.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) possess tremendous potential for tissue regeneration and banking hiPSCs by cryopreservation for their ready availability is crucial to their widespread use. However, contemporary methods for hiPSC cryopreservation are associated with both limited cell survival and high concentration of toxic cryoprotectants and/or serum. The latter may cause spontaneous differentiation and/or introduce xenogeneic factors, which may compromise the quality of hiPSCs. Here, sand from nature is discovered to be capable of seeding ice above -10 °C, which enables cryopreservation of hiPSCs with no serum, much-reduced cryoprotectant, and high cell survival. Furthermore, the cryopreserved hiPSCs retain high pluripotency and functions judged by their pluripotency marker expression, cell cycle analysis, and capability of differentiation into the three germ layers. This unique sand-mediated cryopreservation method may greatly facilitate the convenient and ready availability of high-quality hiPSCs and probably many other types of cells/tissues for the emerging cell-based translational medicine.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Weijie Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Institute of Biothermal Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Baolin Liu
- Institute of Biothermal Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
35
|
Guo Y, Bian Z, Xu Q, Wen X, Kang J, Lin S, Wang X, Mi Z, Cui J, Zhang Z, Chen Z, Chen F. Novel tissue-engineered skin equivalent from recombinant human collagen hydrogel and fibroblasts facilitated full-thickness skin defect repair in a mouse model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112469. [PMID: 34702544 DOI: 10.1016/j.msec.2021.112469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Tissue-engineered skin equivalent (TESE) is an optimized alternative for the treatment of skin defects. Designing and fabricating biomaterials with desired properties to load cells is critical for the approach. In this study, we aim to develop a novel TESE with recombinant human collagen (rHC) hydrogel and fibroblasts to improve full-thickness skin defect repair. First, the bioactive effect of rHC on fibroblast proliferation, migration and phenotype was assayed. The results showed that rHC had good biocompatibility and could stimulate fibroblasts migration and secrete various growth factors. Then, rHC was cross-linked with transglutaminase (TG) to prepare rHC hydrogel. Rheometer tests indicated that 10% rHC/TG hydrogel could reach a oscillate stress of 251 Pa and remained stable. Fibroblasts were seeded into rHC/TG hydrogel to prepare TESE. Confocal microscope and scanning electronic microscope observation showed that seeded fibroblasts survived well in the hydrogel. Finally, the therapeutic effect of the newly prepared TESE was tested in a mouse full-thickness skin defect model. The results demonstrated that TESE could significantly improve skin defect repair in vivo. Conclusively, TESE prepared from rHC and fibroblasts in this study exhibits great potential for clinical application in the future.
Collapse
Affiliation(s)
- Yayuan Guo
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhengyue Bian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Qian Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xiaomin Wen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Juan Kang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Shuai Lin
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xue Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhaoxiang Mi
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jihong Cui
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhen Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| | - Fulin Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
36
|
Gordiienko IM, Gubar OS, Sulik R, Kunakh T, Zlatskiy I, Zlatska A. Empty nose syndrome pathogenesis and cell-based biotechnology products as a new option for treatment. World J Stem Cells 2021; 13:1293-1306. [PMID: 34630863 PMCID: PMC8474723 DOI: 10.4252/wjsc.v13.i9.1293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/29/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Empty nose syndrome (ENS) is a rare complication that develops after partial or complete turbinectomy. The main feature of ENS is paradoxical nasal obstruction feeling despite objectively wide nasal airway. ENS pathogenesis is multifactorial and includes changes in laminar physiological airflow, disruption of mucosa functions and deficient neural sensation. This leads to the development of ENS symptomatology such as dyspnea, nasal dryness, nasal burning, nasal obstruction, feeling of suffocation and even comorbid psychiatric disorders that significantly impairs life quality. Specific effective treatment of ENS does not exist up to date. In this review we outline existing biomaterial for surgical reconstitution of nasal anatomy and discuss the perspective of stem cell-based technologies in ENS management. The main focus is directed to justification of rationality application of adult mesenchymal stem cells (MSCs) from different tissues origin and neural crest-derived stem cells (NCSCs) based on their intrinsic biological properties. MSCs transplantation may stimulate mucosa tissue regeneration via trophic factors secretion, direct transdifferentiation into epithelial cells and pronounced immunosuppressive effect. From the other hand, NCSCs based on their high neuroprotective properties may reconstitute nerve structure and functioning leading to normal sensation in ENS patients. We postulate that application of cell-based and tissue-engineered products can help to significantly improve ENS symptomatology only as complex approach aimed at reconstitution of nasal anatomy, recovery the nasal mucosa functionality and neural tissue sensation.
Collapse
Affiliation(s)
- Inna M Gordiienko
- Biotechnology Laboratory, Medical Company “Good Cells”, Kyiv 03115, Ukraine
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology NAS of Ukraine, Kyiv 03022, Ukraine
| | - Olga S Gubar
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv 03143, Ukraine
| | - Roman Sulik
- Biotechnology Laboratory, Medical Company “Good Cells”, Kyiv 03115, Ukraine
| | - Taras Kunakh
- Biotechnology Laboratory, Medical Company “Good Cells”, Kyiv 03115, Ukraine
| | - Igor Zlatskiy
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Alona Zlatska
- Biotechnology Laboratory, Medical Company “Good Cells”, Kyiv 03115, Ukraine
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| |
Collapse
|
37
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
38
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
39
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
40
|
Riha SM, Maarof M, Fauzi MB. Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review. Polymers (Basel) 2021; 13:1546. [PMID: 34065898 PMCID: PMC8150744 DOI: 10.3390/polym13101546] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Stem cell therapy is used to treat a wide range of injuries and degenerative diseases of the skin. Nevertheless, many related studies demonstrated modest improvement in organ functions due to the low survival rate of transplanted cells at the targeted injured area. Thus, incorporating stem cells into biomaterial offer niches to transplanted stem cells, enhancing their delivery and therapeutic effects. Currently, through the skin tissue engineering approach, many attempts have employed biomaterials as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. This review aims to identify the limitations of stem cell therapy in wound healing treatment and potentially highlight how the use of various biomaterials can enhance the therapeutic efficiency of stem cells in tissue regeneration post-implantation. Moreover, the review discusses the combined effects of stem cells and biomaterials in in vitro and in vivo settings followed by identifying the key factors contributing to the treatment outcomes. Apart from stem cells and biomaterials, the role of growth factors and other cellular substitutes used in effective wound healing treatment has been mentioned. In conclusion, the synergistic effect of biomaterials and stem cells provided significant effectiveness in therapeutic outcomes mainly in wound healing improvement.
Collapse
Affiliation(s)
| | | | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.M.R.); (M.M.)
| |
Collapse
|
41
|
Primate Organoids and Gene-Editing Technologies toward Next-Generation Biomedical Research. Trends Biotechnol 2021; 39:1332-1342. [PMID: 33941418 DOI: 10.1016/j.tibtech.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023]
Abstract
The improved ability to organize pluripotent stem cells (PSCs) into 3D structures in vitro has shed light on organoid technology to recapitulate organs and tumors in vivo. Advances in gene-editing technologies, particularly CRISPR-mediated techniques, offer tremendous potential in facilitating organoid research, including the study of development, disease modeling, and personalized medicine. This review discusses how the combination of two novel technologies - organoids and gene editing - not only contributes to revealing molecular events taking place during development and tumorigenesis but also has implications for biobanking, precision medicine, and other diverse biomedical applications.
Collapse
|
42
|
Ihlenburg RBJ, Mai T, Thünemann AF, Baerenwald R, Saalwächter K, Koetz J, Taubert A. Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure. J Phys Chem B 2021; 125:3398-3408. [PMID: 33769825 DOI: 10.1021/acs.jpcb.0c10601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers.
Collapse
Affiliation(s)
- Ramona B J Ihlenburg
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Tobias Mai
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Ruth Baerenwald
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle, Germany
| | - Kay Saalwächter
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle, Germany
| | - Joachim Koetz
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| |
Collapse
|
43
|
Abstract
Impairment of uterine structure and function causes infertility, pregnancy loss, and perinatal complications in humans. Some types of uterine impairments such as Asherman’s syndrome, also known as uterine synechiae, can be treated medically and surgically in a standard clinical setting, but absolute defects of uterine function or structure cannot be cured by conventional approaches. To overcome such hurdles, partial or whole regeneration and reconstruction of the uterus have recently emerged as new therapeutic strategies. Transplantation of the whole uterus into patients with uterine agenesis results in the successful birth of children. However, it remains an experimental treatment with numerous difficulties such as the need for continuous and long-term use of immunosuppressive drugs until a live birth is achieved. Thus, the generation of the uterus by tissue engineering technologies has become an alternative but indispensable therapeutic strategy to treat patients without a functional or well-structured uterus. For the past 20 years, the bioengineering of the uterus has been studied intensively in animal models, providing the basis for clinical applications. A variety of templates and scaffolds made from natural biomaterials, synthetic materials, or decellularized matrices have been characterized to efficiently generate the uterus in a manner similar to the bioengineering of other organs and tissues. The goal of this review is to provide a comprehensive overview and perspectives of uterine bioengineering focusing on the type, preparation, and characteristics of the currently available scaffolds.
Collapse
|
44
|
Pańczyszyn E, Jaśko M, Miłek O, Niedziela M, Męcik-Kronenberg T, Hoang-Bujnowicz A, Zięba M, Adamus G, Kowalczuk M, Osyczka AM, Tylko G. Gellan gum hydrogels cross-linked with carbodiimide stimulates vacuolation of human tooth-derived stem cells in vitro. Toxicol In Vitro 2021; 73:105111. [PMID: 33588021 DOI: 10.1016/j.tiv.2021.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The natural polysaccharides are promising compounds for applications in regenerative medicine. Gellan gum (GG) is the bacteria-derived polysaccharide widely used in food industry. Simple modifications of its chemical properties make GG superior for the development of biocompatible hydrogels. Beside reversible cationic integration of GG chains, more efficient binding is accomplished with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). However, the side-products of polymer cross-linking might affect viability and differentiation of stem cells introduced into the hydrogels. We found that O-acylisourea (EDU) stimulates autophagy-based vacuolation in both periodontal ligament and dental pulp stem cells. 24-h treatment of cells with GG extracts cross-linked with 15 mM EDC developed large cytoplasmic vacuoles. Freshly prepared EDU (2-6 mM) but not 15 mM EDC solutions initiated vacuole development with concomitant reduction of cell viability/metabolism. Most of the vacuoles stained with acridine orange displayed highly acidic environment further confirmed by flow cytometric analysis. Western blot of the LC3 autophagy marker followed by a transmission electron microscopy indicated the process is autophagy-dependent. We propose that the high reactivity of EDU with intracellular components initiates autophagy, although the targets of EDU remain unknown. Nevertheless, a burst release of EDU from GG hydrogels might modulate negatively cellular processes and final effectiveness of tissue regeneration.
Collapse
Affiliation(s)
- Elżbieta Pańczyszyn
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Marta Jaśko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Oliwia Miłek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Matylda Niedziela
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences, Medical University of Silesia, 3 Maja 13, 41-800 Zabrze, Poland.
| | - Agnieszka Hoang-Bujnowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Anna M Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
45
|
Hashemzadeh MR, Taghavizadeh Yazdi ME, Amiri MS, Mousavi SH. Stem cell therapy in the heart: Biomaterials as a key route. Tissue Cell 2021; 71:101504. [PMID: 33607524 DOI: 10.1016/j.tice.2021.101504] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are one of the main concerns, nowadays causing a high rate of mortality in the world. The majority of conventional treatment protects the heart from failure progression. As a novel therapeutic way, Regenerative medicine in the heart includes cellular and noncellular approaches. Despite the irrefutable privileges of noncellular aspects such as administration of exosomes, utilizing of miRNAs, and growth factors, they cannot reverse necrotic or ischemic myocardium, hence recruiting of stem cells to help regenerative therapy in the heart seems indispensable. Stem cell lineages are varied and divided into two main groups namely pluripotent and adult stem cells. Not only has each of which own regenerative capacity, benefits, and drawbacks, but their turnover also close correlates with the target organ and/or tissue as well as the stage and level of failure. In addition to inefficient tissue integration due to the defects in delivering methods and poor retention of transplanted cells, the complexity of the heart and its movement also make more rigorous the repair process. Hence, utilizing biomaterials can make a key route to tackle such obstacles. In this review, we evaluate some natural products which can help stem cells in regenerative medicine of the cardiovascular system.
Collapse
Affiliation(s)
- Mohammad Reza Hashemzadeh
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad, Iran; Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
47
|
Kim HJ, Hong SJ, Lee S, Park JM, Park J, Park JS, Shim SH, Park K. Induction of Bone Formation by 3D Biologically Active Scaffolds Containing RGD‐NPs, BMP2, and NtMPCs. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Suk Jun Hong
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sujin Lee
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Jong Min Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji‐In Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji Sun Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sung Han Shim
- Laboratory of Molecular Genetics Department of Biomedical Science College of Life Science CHA University 629, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Keun‐Hong Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| |
Collapse
|
48
|
Nunes SB, Hodel KVS, Sacramento GDC, Melo PDS, Pessoa FLP, Barbosa JDV, Badaró R, Machado BAS. Development of Bacterial Cellulose Biocomposites Combined with Starch and Collagen and Evaluation of Their Properties. MATERIALS 2021; 14:ma14020458. [PMID: 33477891 PMCID: PMC7833372 DOI: 10.3390/ma14020458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
One of the major benefits of biomedicine is the use of biocomposites as wound dressings to help improve the treatment of injuries. Therefore, the main objective of this study was to develop and characterize biocomposites based on bacterial cellulose (BC) with different concentrations of collagen and starch and characterize their thermal, morphological, mechanical, physical, and barrier properties. In total, nine samples were produced with fixed amounts of glycerol and BC and variations in the amount of collagen and starch. The water activity (0.400–0.480), water solubility (12.94–69.7%), moisture (10.75–20.60%), thickness (0.04–0.11 mm), water vapor permeability (5.59–14.06 × 10−8 g·mm/m2·h·Pa), grammage (8.91–39.58 g·cm−2), opacity (8.37–36.67 Abs 600 nm·mm−1), elongation (4.81–169.54%), and tensile strength (0.99–16.32 MPa) were evaluated and defined. In addition, scanning electron microscopy showed that adding biopolymers in the cellulose matrix made the surface compact, which also influenced the visual appearance. Thus, the performance of the biocomposites was directly influenced by their composition. The performance of the different samples obtained resulted in them having different potentials for application considering the injury type. This provides a solution for the ineffectiveness of traditional dressings, which is one of the great problems of the biomedical sector.
Collapse
Affiliation(s)
- Silmar Baptista Nunes
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Giulia da Costa Sacramento
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Pollyana da Silva Melo
- Department of Materials, University Center SENAI CIMATEC, National Service of Industrial Learning, Salvador 41650-010, Brazil;
| | - Fernando Luiz Pellegrini Pessoa
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
| | - Josiane Dantas Viana Barbosa
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Roberto Badaró
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Bruna Aparecida Souza Machado
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
- Correspondence: ; Tel.: +55-(71)-3879-5624
| |
Collapse
|
49
|
McKee C, Brown C, Bakshi S, Walker K, Govind CK, Chaudhry GR. Transcriptomic Analysis of Naïve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules 2020; 11:E21. [PMID: 33379237 PMCID: PMC7824559 DOI: 10.3390/biom11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| |
Collapse
|
50
|
Liang W, Chen X, Dong Y, Zhou P, Xu F. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People’s Hospital, Shaoxing, P. R. China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| |
Collapse
|