1
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
2
|
Yu D, Tang Z, Bao S, Guo S, Chen C, Wu Q, Wang M, Zheng Z, Cao P, Xu B, Wu H, Wang N, Huang H, Liu C, Li X, Guo Z. Immunoregulatory Neuro-Vascularized Osseointegration Driven by Different Nano-Morphological CaTiO 3 Bioactive Coatings on Porous Titanium Alloy Scaffolds. Adv Healthc Mater 2025; 14:e2404647. [PMID: 39989094 DOI: 10.1002/adhm.202404647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Indexed: 02/25/2025]
Abstract
Up to now, how to implement the optimal regenerative repair of large load-bearing bone defects using artificial bone prosthesis remains to be an enormous challenge in clinical practice. Titanium-based alloys, especially Ti6Al4V, are applied as artificial bone grafts due to their favorable mechanical property and biocompatibility, assisted by personalized customization of 3D-printing to completely match with the bone defect. However, their bioinert peculiarity restricts osteointegration at the interface between bone and titanium-based implants and bone growth into porous titanium-based scaffolds, for lack of bone regeneration with the aid of blood vessels and neural networks. Of note, ample blood delivery and integral innervation are pivotal to the survival of artificially tissue-engineered bones. Herein, the functionalized surface of 3D printed titanium alloy scaffolds driven immunoregulatory neuro-vascularized osseointegration is delved. Bone-like micro/nano morphology and chemical composition of calcium-rich formula are scrutinized to accelerate the process of bone defect repair, including inflammatory response, angiogenesis, neurogenesis, and osseointegration. Micro/nano-topographic calcium titanate (CaTiO3) coating, especially 10%H2O2-Ca, driven immunoregulatory neuro-vascularized osseointegration is validated and its underlying mechanism is attributed to the signaling pathway of TNF-α /oxidative phosphorylation, providing an effective tactic of the bone tissue-engineered scaffold with surface functionalization-driven immunoregulatory neuro-vascularized osseointegration for clinical large segmental bone defects.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London, HA7 4LP, UK
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shusen Bao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, 310000, China
| | - Shuo Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Changchen Chen
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qi Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Mo Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zenghui Zheng
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Pengfei Cao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Bin Xu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London, HA7 4LP, UK
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
3
|
Li XL, Zhao YQ, Miao L, An YX, Wu F, Han JY, Han JY, Tay FR, Mu Z, Jiao Y, Wang J. Strategies for promoting neurovascularization in bone regeneration. Mil Med Res 2025; 12:9. [PMID: 40025573 PMCID: PMC11874146 DOI: 10.1186/s40779-025-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/26/2025] [Indexed: 03/04/2025] Open
Abstract
Bone tissue relies on the intricate interplay between blood vessels and nerve fibers, both are essential for many physiological and pathological processes of the skeletal system. Blood vessels provide the necessary oxygen and nutrients to nerve and bone tissues, and remove metabolic waste. Concomitantly, nerve fibers precede blood vessels during growth, promote vascularization, and influence bone cells by secreting neurotransmitters to stimulate osteogenesis. Despite the critical roles of both components, current biomaterials generally focus on enhancing intraosseous blood vessel repair, while often neglecting the contribution of nerves. Understanding the distribution and main functions of blood vessels and nerve fibers in bone is crucial for developing effective biomaterials for bone tissue engineering. This review first explores the anatomy of intraosseous blood vessels and nerve fibers, highlighting their vital roles in bone embryonic development, metabolism, and repair. It covers innovative bone regeneration strategies directed at accelerating the intrabony neurovascular system over the past 10 years. The issues covered included material properties (stiffness, surface topography, pore structures, conductivity, and piezoelectricity) and acellular biological factors [neurotrophins, peptides, ribonucleic acids (RNAs), inorganic ions, and exosomes]. Major challenges encountered by neurovascularized materials during their clinical translation have also been highlighted. Furthermore, the review discusses future research directions and potential developments aimed at producing bone repair materials that more accurately mimic the natural healing processes of bone tissue. This review will serve as a valuable reference for researchers and clinicians in developing novel neurovascularized biomaterials and accelerating their translation into clinical practice. By bridging the gap between experimental research and practical application, these advancements have the potential to transform the treatment of bone defects and significantly improve the quality of life for patients with bone-related conditions.
Collapse
Affiliation(s)
- Xin-Ling Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Qing Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Li Miao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Yan-Xin An
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Fan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Yu Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Yuan Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Franklin R Tay
- Graduate School of Augusta University, Augusta, GA, 30912, USA
| | - Zhao Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yang Jiao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China.
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Briones Y, Pascua B, Tiangco N, Crisostomo I, Casiguran S, Remenyi R. Assessing the landscape of clinical and observational trials involving bioprinting: a scoping review. 3D Print Med 2025; 11:5. [PMID: 39961914 PMCID: PMC11834296 DOI: 10.1186/s41205-025-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE Bioprinting is a tissue engineering technique that is rapidly evolving to include complex clinical applications. However, there is limited evidence describing how far bioprinting has progressed past the pre-clinical stage. Thus, we conducted a scoping review to assess the landscape of clinical studies, including interventional and observational trials, involving bioprinting by charting trends in general characteristics, bioprinting application, and trial design. METHODS The term "bioprint" and its variants were searched in five trial databases (ICTRP, ScanMedicine, CENTRAL, NIHCC, HCCTD) and two registries (ClinicalTrials.gov, PHRR) on 22 February 2024. This was followed by duplicate removal and dual independent review to finalize the inclusion list. We included trials published in or translated to English mentioning "bioprint" in their design, while we excluded those that did not adhere to our definition of bioprinting. Finally, data were charted and synthesized narratively. RESULTS Of 36 total search records, 11 trials met the inclusion criteria. Registration dates ranged from 2016 to 2023, with China conducting the most trials globally. Four trials had published results, while the remaining were still in progress. Four interventional trials aimed to implant bioprinted tissues made with autologous cells, including blood vessels, trachea, external ear, and wound dressings. The other seven studies were interventional and observational trials aiming to bioprint autologous cell-laden in vitro models to study conditions such as cancer. CONCLUSION Bioprinting is still in the early stages of clinical research, with a focus on producing patient-specific tissues for cancer precision medicine and regenerative purposes. More standardized reporting of bioprinting-related information is needed to improve research transparency and replicability. As the body of evidence grows, our review may be used as a framework to monitor the clinical translation of bioprinting over the years.
Collapse
Affiliation(s)
- Yumi Briones
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines.
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, 550 First Avenue, New York, 10016, New York, United States of America.
| | - Beatrice Pascua
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- College of Medicine, University of the East Ramon Magsaysay Memorial Medical Center Inc., 64 Aurora Boulevard, Quezon City, 1113, Metro Manila, Philippines
| | - Narra Tiangco
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- Ecology and Biodiversity, Institute for Marine and Antarctic Sciences, 20 Castray Esplanade, Battery Point, 7004, Tasmania, Australia
| | - Isabel Crisostomo
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Samantha Casiguran
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
| | - Roland Remenyi
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines.
| |
Collapse
|
5
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Wu Y, Yue X, Zhang Y, Yu N, Ge C, Liu R, Duan Z, Gao L, Zang X, Sun X, Zhang D. Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration. Mater Today Bio 2025; 30:101436. [PMID: 39866796 PMCID: PMC11762576 DOI: 10.1016/j.mtbio.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS). The microgrooves on the surface of the PLCL film were imprinted using a micropatterned polydimethylsiloxane (PDMS) template. Following aminolysis, the PLCL film was covalently grafted with the EM-7 peptide via glutaraldehyde. Functional group analysis, surface morphology and hydrophilicity were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and an optical contact angle measuring instrument, respectively. Bone regeneration-related cells (e.g., bone marrow mesenchymal stem cells, macrophages, Schwann cells, and endothelial cells) cultured on PLCL films tended to align along the stripes and migrate from the periphery toward the center region in vitro. Subsequently, the PLCL film was encapsulated in an immune-regulating hydrogel synthesized from thiol-modified gelatin and Cu2+ in the presence of PB@PLS nanoparticles, which demonstrated excellent antioxidant properties. This scaffold significantly accelerated critical-sized bone regeneration, as evidenced by an increase in the volume of newly formed bone and histological images in vivo. This innovative approach holds substantial promise for clinical applications in bone regeneration and broader tissue repair.
Collapse
Affiliation(s)
- You Wu
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ying Zhang
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ning Yu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Chengyan Ge
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Rui Liu
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhongying Duan
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Lilong Gao
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xinlong Zang
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xin Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Deteng Zhang
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
7
|
Bai L, Li J, Li G, Zhou D, Su J, Liu C. Skeletal interoception and prospective application in biomaterials for bone regeneration. Bone Res 2025; 13:1. [PMID: 39743568 DOI: 10.1038/s41413-024-00378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025] Open
Abstract
Accumulating research has shed light on the significance of skeletal interoception, in maintaining physiological and metabolic homeostasis related to bone health. This review provides a comprehensive analysis of how skeletal interoception influences bone homeostasis, delving into the complex interplay between the nervous system and skeletal system. One key focus of the review is the role of various factors such as prostaglandin E2 (PGE2) in skeletal health via skeletal interoception. It explores how nerves innervating the bone tissue communicate with the central nervous system to regulate bone remodeling, a process critical for maintaining bone strength and integrity. Additionally, the review highlights the advancements in biomaterials designed to utilize skeletal interoception for enhancing bone regeneration and treatment of bone disorders. These biomaterials, tailored to interact with the body's interoceptive pathways, are positioned at the forefront of innovative treatments for conditions like osteoporosis and fractures. They represent a convergence of bioengineering, neuroscience, and orthopedics, aiming to create more efficient and targeted therapies for bone-related disorders. In conclusion, the review underscores the importance of skeletal interoception in physiological regulation and its potential in developing more effective therapies for bone regeneration. It emphasizes the need for further research to fully understand the mechanisms of skeletal interoception and to harness its therapeutic potential fully.
Collapse
Affiliation(s)
- Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jilong Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Dongyang Zhou
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Changsheng Liu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
8
|
He X, Zeng H, Chen Y. Endothelial progenitor cells and chronic obstructive pulmonary disease: From basic research to clinical application. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1966-1972. [PMID: 40195669 PMCID: PMC11975514 DOI: 10.11817/j.issn.1672-7347.2024.240412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 04/09/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by persistent airflow limitation, with vascular endothelial dysfunction being one of its key pathogenic mechanisms. Endothelial progenitor cells (EPCs), a class of progenitor cells capable of vascular repair and regeneration, play a crucial role in the pathogenesis of COPD. In COPD patients, the number and function of circulating EPCs are significantly reduced, which is closely associated with disease severity, lung function decline, acute exacerbations, nutritional status, and comorbidities. Environmental factors such as smoking, nicotine, electronic cigarettes, and particulate matter 2.5 (PM2.5) can markedly impair both the function and quantity of EPCs. The underlying mechanisms may involve the regulation of vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR), C-X-C motif chemokine ligand 12/C-X-C motif chemokine receptor 4 (CXCL12/CXCR4) signaling pathways, and various cytokine regulations. Moreover, animal studies have shown that intratracheal transplantation of EPCs can significantly improve lung function and pathological changes in emphysema models, suggesting that targeting EPCs may be a promising therapeutic strategy for COPD. Elucidating the molecular mechanisms of EPC mobilization, homing, and dysfunction, and evaluating the efficacy and safety of their clinical application, may offer new insights into the treatment of COPD and other chronic lung diseases.
Collapse
Affiliation(s)
- Xue He
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Research Unit of Respiratory Disease, Central South University, Changsha 410011.
| | - Huihui Zeng
- Research Unit of Respiratory Disease, Central South University, Changsha 410011
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha 410011
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha 410011, China
| | - Yan Chen
- Research Unit of Respiratory Disease, Central South University, Changsha 410011.
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha 410011.
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha 410011, China.
| |
Collapse
|
9
|
Li H, Du R, Xiang A, Liu Y, Guan M, He H. Bone marrow mesenchymal stem cell-derived exosomal miR-181a-5p promotes M2 macrophage polarization to alleviate acute pancreatitis through ZEB2-mediated RACK1 ubiquitination. FASEB J 2024; 38:e70042. [PMID: 39614664 DOI: 10.1096/fj.202400803rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 12/01/2024]
Abstract
As a common digestive disease, acute pancreatitis (AP) often threatens the life of patients. Bone marrow mesenchymal stem cells (BMSCs) derived exosomes have exhibited some benefits for AP. However, the mechanism remains unclear and deserves to be further investigated. The characteristics of BMSCs-exosomes (BMSCs-Exos) were identified. The abundance of genes and proteins was evaluated using quantitative real-time PCR (RT-qPCR), western blot, enzyme-linked immunosorbent assay (ELISA) and IF assay. Cell apoptosis and CD206-positive cells were measured by flow cytometry. The interactions among miR-181a-5p, Zinc finger E-box binding homeobox 2 (ZEB2) and Receptor for Activated C Kinase 1 (RACK1) were verified using dual luciferase reporter assay, RNA immunoprecipitation (RIP), coimmunoprecipitation (Co-IP). BMSCs-Exos effectively improved AP injury through restraining AR42J cell apoptosis and promoting M2 macrophage polarization, which was realized due to BMSCs-Exos harboring an abundance of miR-181a-5p. Further experiments validated miR-181a-5p silenced ZEB2 and ZEB2 reduced RACK1 expression through mediating RACK1 ubiquitination. ZEB2 knockdown decreased AR42J cell apoptosis and induced M2 macrophage polarization to alleviate AP injury, whereas RACK1 downregulation abolished these phenomena. BMSCs-Exos harboring miR-181a-5p suppressed AR42J cell apoptosis and promoted M2 macrophage polarization to delay AP progression through ZEB2-mediated RACK1 ubiquitination.
Collapse
Affiliation(s)
- Hanyu Li
- The Second Department of General Surgery, Yunnan University Affiliated Hospital, Kunming, Yunnan, P.R. China
| | - Ruifeng Du
- The Second Department of General Surgery, Yunnan University Affiliated Hospital, Kunming, Yunnan, P.R. China
| | - Andong Xiang
- The Second Department of General Surgery, Yunnan University Affiliated Hospital, Kunming, Yunnan, P.R. China
| | - Yankui Liu
- The Second Department of General Surgery, Yunnan University Affiliated Hospital, Kunming, Yunnan, P.R. China
| | - Ming Guan
- The Second Department of General Surgery, Yunnan University Affiliated Hospital, Kunming, Yunnan, P.R. China
| | - Hongchun He
- The Second Department of General Surgery, Yunnan University Affiliated Hospital, Kunming, Yunnan, P.R. China
| |
Collapse
|
10
|
Li G, Wu J, Cheng X, Pei X, Wang J, Xie W. Nanoparticle-Mediated Gene Delivery for Bone Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408350. [PMID: 39623813 DOI: 10.1002/smll.202408350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Indexed: 03/17/2025]
Abstract
Critical-sized bone defects represent an urgent clinical problem, necessitating innovative treatment approaches. Gene-activated grafts for bone tissue engineering have emerged as a promising solution. However, traditional gene delivery methods are constrained by limited osteogenic efficacy and safety concerns. Recently, organic and inorganic nanoparticle (NP) vectors have attracted significant attention in bone tissue engineering for their safe, stable, and controllable gene delivery. Targeted gene delivery guided by insights into bone healing mechanisms, coupled with the multifunctional design of NPs, is crucial for enhancing therapeutic outcomes. Here, the theoretical foundations underlying NP-mediated gene therapy for enhancing bone healing across different histological stages are elucidated. Furthermore, the distinct attributes of functionalized NP vectors are discussed, and cutting-edge strategies aimed at optimizing gene delivery efficiency throughout the therapeutic process are highlighted. Additionally, the review addresses the unresolved challenges and prospects of this technology. This review may contribute to the continued development and clinical application of NP-mediated gene delivery for treating critical-sized bone defects.
Collapse
Affiliation(s)
- Guangzhao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinting Cheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenjia Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
11
|
Srivastava E, Qayoom I, Kumar A. Reduced Graphene Oxide-Substituted Nanohydroxyapatite: Rejuvenating Bone-Nerve Crosstalk with Electrical Cues in a Fragility Fracture Rat Model under Hyperglycemia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59738-59751. [PMID: 39467155 DOI: 10.1021/acsami.4c10206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Diabetes has currently acquired the status of epidemic worldwide, and among its various pathological consequences like retinopathy and nephropathy, bone fragility fractures from diabetic osteopathy occurs in later stages and is equally destructive. Chronic hyperglycemia culminates into deteriorating microvasculature and quality of bone, making it prone to fractures. Among these, hip fractures are most common, especially in older diabetic patients apart from underlying neuropathy. Our study is an attempt to ameliorate hip fragility fracture and nerve trauma with electrical stimulation as an interface in a chronic diabetic rat model. We have fabricated reduced graphene oxide-substituted hydroxyapatite as an electroactive bone substitute and incorporated it into chitosan gelatin cryogels. The in situ reduction of graphene oxide during sintering of hydroxyapatite imparts higher potential to the fabricated composite in dealing with problem at question. The cryogels depicted optimum in vitro biocompatibility and enhanced mineralization after ectopic subcutaneous implantation in rats. The therapeutic potency of composite cryogels was evaluated in a hip fracture model with compression to the sciatic nerve in diabetic rats, mimicking the severe clinical trauma. The presence of cryogels in the femoral neck canal coupled with electrical stimulation and biochemical factors significantly improved bone regeneration in diabetic rats as depicted with microcomputed tomography analysis and histology images. The application of electrical stimulation also ameliorated the nerve trauma observed with 70% improvement in electrophysiological parameters such as the compound muscle action potential with combinatorial therapy. We therefore report the successful implication of a multitarget therapy in a chronic diabetic rat model unraveling the bone-nerve crosstalk with electroactive smart cryogels.
Collapse
Affiliation(s)
- Ekta Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Excellence in Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
12
|
Zhang S, Huang L, Bian M, Xiao L, Zhou D, Tao Z, Zhao Z, Zhang J, Jiang LB, Li Y. Multifunctional Bone Regeneration Membrane with Flexibility, Electrical Stimulation Activity and Osteoinductive Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405311. [PMID: 39148189 DOI: 10.1002/smll.202405311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The use of membrane-based guided bone regeneration techniques has great potential for single-stage reconstruction of critical-sized bone defects. Here, a multifunctional bone regeneration membrane combining flexible elasticity, electrical stimulation (ES) and osteoinductive activity is developed by in situ doping of MXene 2D nanomaterials with conductive functionality and β-TCP particles into a Poly(lactic acid-carbonate (PDT) composite nano-absorbable membrane (P/T/MXene) via electrostatic spinning technique. The composite membrane has good feasibility due to its temperature sensitivity, elastic memory capacity, coordinated degradation profile and easy preparation process. In vitro experiments showed the P/T/MXene membrane effectively promoted the recruitment and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under ES and enhanced the angiogenic capacity of endothelial cells, which synergistically promoted bone regeneration through neovascularization. In addition, an in vivo rat model of cranial bone defects further confirmed the bone regeneration efficacy of the P/T/MXene membrane. In conclusion, the developed P/T/MXene membrane can effectively promote bone regeneration through their synergistic multifunctional effects, suggesting the membranes have great potential for guiding tissue regeneration and providing guidance for the biomaterials design.
Collapse
Affiliation(s)
- Shihao Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Australia, 4222, Australia
| | - Dong Zhou
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ziwei Tao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zheng Zhao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Bo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
13
|
Chen S, Zhou X, Li T, He C. Vascularization and Innervation for Bone Tissue Engineering. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1121-1133. [DOI: 10.1021/accountsmr.4c00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tao Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Xiao L, Zhu M, Yu K, Zhang Q, Dai Z, Weir MD, Zhao Z, Bai Y, Schneider A, Oates TW, Xu HHK, Massera J, Zhang K. Effects of Innervation on Angiogenesis and Osteogenesis in Bone and Dental Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:477-489. [PMID: 38183633 DOI: 10.1089/ten.teb.2023.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The repair and regeneration of critical-sized bone defects remain an urgent challenge. Bone tissue engineering represents an exciting solution for regeneration of large bone defects. Recently, the importance of innervation in tissue-engineered bone regeneration has been increasingly recognized. The cross talk between nerve and bone provides important clues for bone repair and regeneration. Furthermore, the promotion of angiogenesis by innervation can accelerate new bone formation. However, the mechanisms involved in the promotion of vascular and bone regeneration by the nervous system have not yet been established. In addition, simultaneous neurogenesis and vascularization in bone tissue engineering have not been fully investigated. This article represents the first review on the effects of innervation in enhancing angiogenesis and osteogenesis in bone and dental tissue engineering. Cutting-edge research on the effects of innervation through biomaterials on bone and dental tissue repairs is reviewed. The effects of various nerve-related factors and cells on bone regeneration are discussed. Finally, novel clinical applications of innervation for bone, dental, and craniofacial tissue regeneration are also examined.
Collapse
Affiliation(s)
- Le Xiao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Minjia Zhu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Kan Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qinrou Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zixiang Dai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Zeqing Zhao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Thomas W Oates
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Li X, Cui Y, He X, Mao L. Hydrogel-Based Systems in Neuro-Vascularized Bone Regeneration: A Promising Therapeutic Strategy. Macromol Biosci 2024; 24:e2300484. [PMID: 38241425 DOI: 10.1002/mabi.202300484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/21/2024]
Abstract
Blood vessels and nerve fibers are distributed throughout the skeletal tissue, which enhance the development and function of each other and have an irreplaceable role in bone formation and remodeling. Despite significant progress in bone tissue engineering, the inadequacy of nerve-vascular network reconstruction remains a major limitation. This is partly due to the difficulty of integrating and regulating multiple tissue types with artificial materials. Thus, understanding the anatomy and underlying coupling mechanisms of blood vessels and nerve fibers within bone to further develop neuro-vascularized bone implant biomaterials is an extremely critical aspect in the field of bone regeneration. Hydrogels have good biocompatibility, controllable mechanical characteristics, and osteoconductive and osteoinductive properties, making them important candidates for research related to neuro-vascularized bone regeneration. This review reports the classification and physicochemical properties of hydrogels, with a focus on the application advantages and status of hydrogels for bone regeneration. The authors also highlight the effect of neurovascular coupling on bone repair and regeneration and the necessity of achieving neuro-vascularized bone regeneration. Finally, the recent progress and design strategies of hydrogel-based biomaterials for neuro-vascularized bone regeneration are discussed.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| |
Collapse
|
17
|
Zhang Q, Gao S, Li B, Li Q, Li X, Cheng J, Peng Z, Liang J, Zhang K, Hai J, Zhang B. Lithium-Doped Titanium Dioxide-Based Multilayer Hierarchical Structure for Accelerating Nerve-Induced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38663861 PMCID: PMC11082843 DOI: 10.1021/acsami.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Despite considerable advances in artificial bone tissues, the absence of neural network reconstruction in their design often leads to delayed or ineffective bone healing. Hence, we propose a multilayer hierarchical lithium (Li)-doped titanium dioxide structure, constructed through microarc oxidation combined with alkaline heat treatment. This structure can induce the sustained release of Li ions, mimicking the environment of neurogenic osteogenesis characterized by high brain-derived neurotrophic factor (BDNF) expression. During in vitro experiments, the structure enhanced the differentiation of Schwann cells (SCs) and the growth of human umbilical vein endothelial cells (HUVECs) and mouse embryo osteoblast progenitor cells (MC3T3-E1). Additionally, in a coculture system, the SC-conditioned media markedly increased alkaline phosphatase expression and the formation of calcium nodules, demonstrating the excellent potential of the material for nerve-induced bone regeneration. In an in vivo experiment based on a rat distal femoral lesion model, the structure substantially enhanced bone healing by increasing the density of the neural network in the tissue around the implant. In conclusion, this study elucidates the neuromodulatory pathways involved in bone regeneration, providing a promising method for addressing bone deformities.
Collapse
Affiliation(s)
- Qianqian Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Shuting Gao
- Dental
Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| | - Bo Li
- The
Third Affiliated Hospital of AFMU, Air Force
Medical University, Xi’an 710000, China
| | - Qian Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xinjie Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jingyang Cheng
- Suzhou
Huaxia Stomatological Hospital, Su Zhou 215000, China
| | - Zhenjun Peng
- State
Key Laboratory of Solid Lubrication, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
| | - Jun Liang
- Research
Institute of Interdisciplinary Science, Dongguan University of Technology, Dongguan 523808, China
| | - Kailiang Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jun Hai
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory of Natural Medicine of Gansu Province, Chinese Academy
of Sciences, Lanzhou Institute of Chemical
Physics, Lanzhou 730000, China
| | - Baoping Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Zhou P, Liu T, Liu W, Sun L, Kang H, Liu K, Luo P, Wang Y, Luo L, Dai H. An Antibacterial Bionic Periosteum with Angiogenesis-Neurogenesis Coupling Effect for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38623938 DOI: 10.1021/acsami.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The periosteum, rich in neurovascular networks, bone progenitor cells, and stem cells, is vital for bone repair. Current artificial periosteal materials face challenges in mechanical strength, bacterial infection, and promoting osteogenic differentiation and angiogenesis. To address these issues, we adjusted the electrospinning ratio of poly-ε-caprolactone and chitosan and incorporated Zn doping whitlockite with polydopamine coating into a nanofiber membrane. After a series of characterizations, optimal results were achieved with a poly-ε-caprolactone: chitosan ratio of 8:1 and 5% nanoparticle content. In vitro cell experiments and in vivo calvarial defect models, the sustained release of Mg2+ and Ca2+ promoted vascularization and new bone formation, respectively, while the release of Zn2+ was conducive to antibacterial and cooperated with Mg2+ to promote neurovascularization. Consequently, this antibacterial bionic periosteum with an angiogenesis-neurogenesis coupling effect demonstrates a promising potential for bone repair applications.
Collapse
Affiliation(s)
- Peiqian Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Tuozhou Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, 138 Tongzipo Road, Changsha, Hunan 410008, China
| | - Lingshun Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Haifei Kang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Peiyuan Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Ling Luo
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, 138 Tongzipo Road, Changsha, Hunan 410008, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
| |
Collapse
|
19
|
Lu Z, Miao X, Zhang C, Sun B, Skardal A, Atala A, Ai S, Gong J, Hao Y, Zhao J, Dai K. An osteosarcoma-on-a-chip model for studying osteosarcoma matrix-cell interactions and drug responses. Bioact Mater 2024; 34:1-16. [PMID: 38173844 PMCID: PMC10761322 DOI: 10.1016/j.bioactmat.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Marrow niches in osteosarcoma (OS) are a specialized microenvironment that is essential for the maintenance and regulation of OS cells. However, existing animal xenograft models are plagued by variability, complexity, and high cost. Herein, we used a decellularized osteosarcoma extracellular matrix (dOsEM) loaded with extracellular vesicles from human bone marrow-derived stem cells (hBMSC-EVs) and OS cells as a bioink to construct a micro-osteosarcoma (micro-OS) through 3D printing. The micro-OS was further combined with a microfluidic system to develop into an OS-on-a-chip (OOC) with a built-in recirculating perfusion system. The OOC system successfully integrated bone marrow niches, cell‒cell and cell-matrix crosstalk, and circulation, allowing a more accurate representation of OS characteristics in vivo. Moreover, the OOC system may serve as a valuable research platform for studying OS biological mechanisms compared with traditional xenograft models and is expected to enable precise and rapid evaluation and consequently more effective and comprehensive treatments for OS.
Collapse
Affiliation(s)
- Zuyan Lu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - XiangWan Miao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Chenyu Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - JiaNing Gong
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Liu Z, Luo X, Xu R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair. Front Cell Dev Biol 2024; 12:1359295. [PMID: 38510177 PMCID: PMC10950953 DOI: 10.3389/fcell.2024.1359295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The jawbone, a unique structure in the human body, undergoes faster remodeling than other bones due to the presence of stem cells and its distinct immune microenvironment. Long-term exposure of jawbones to an oral environment rich in microbes results in a complex immune balance, as shown by the higher proportion of activated macrophage in the jaw. Stem cells derived from the jawbone have a higher propensity to differentiate into osteoblasts than those derived from other bones. The unique immune microenvironment of the jaw also promotes osteogenic differentiation of jaw stem cells. Here, we summarize the various types of stem cells and immune cells involved in jawbone reconstruction. We describe the mechanism relationship between immune cells and stem cells, including through the production of inflammatory bodies, secretion of cytokines, activation of signaling pathways, etc. In addition, we also comb out cellular interaction of immune cells and stem cells within the jaw under jaw development, homeostasis maintenance and pathological conditions. This review aims to eclucidate the uniqueness of jawbone in the context of stem cell within immune microenvironment, hopefully advancing clinical regeneration of the jawbone.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Wang P, Shao W, Li Z, Wang B, Lv X, Huang Y, Feng Y. Non-bone-derived exosomes: a new perspective on regulators of bone homeostasis. Cell Commun Signal 2024; 22:70. [PMID: 38273356 PMCID: PMC10811851 DOI: 10.1186/s12964-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Accumulating evidence indicates that exosomes help to regulate bone homeostasis. The roles of bone-derived exosomes have been well-described; however, recent studies have shown that some non-bone-derived exosomes have better bone targeting ability than bone-derived exosomes and that their performance as a drug delivery vehicle for regulating bone homeostasis may be better than that of bone-derived exosomes, and the sources of non-bone-derived exosomes are more extensive and can thus be better for clinical needs. Here, we sort non-bone-derived exosomes and describe their composition and biogenesis. Their roles and specific mechanisms in bone homeostasis and bone-related diseases are also discussed. Furthermore, we reveal obstacles to current research and future challenges in the practical application of exosomes, and we provide potential strategies for more effective application of exosomes for the regulation of bone homeostasis and the treatment of bone-related diseases. Video Abstract.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
23
|
Zhai Z, Cui T, Chen J, Mao X, Zhang T. Advancements in engineered mesenchymal stem cell exosomes for chronic lung disease treatment. J Transl Med 2023; 21:895. [PMID: 38071321 PMCID: PMC10709966 DOI: 10.1186/s12967-023-04729-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic lung diseases include an array of conditions that impact airways and lung structures, leading to considerable societal burdens. Mesenchymal stem cells (MSCs) and their exosomes (MSC-exos) can be used for cell therapy and exhibit a diverse spectrum of anti-inflammatory, antifibrotic, and immunomodulatory properties. Engineered MSC-exos possesses enhanced capabilities for targeted drug delivery, resulting in more potent targeting effects. Through various engineering modifications, these exosomes can exert many biological effects, resulting in specific therapeutic outcomes for many diseases. Moreover, engineered stem cell exosomes may exhibit an increased capacity to traverse physiological barriers and infiltrate protected lesions, thereby exerting their therapeutic effects. These characteristics render them a promising therapeutic agent for chronic pulmonary diseases. This article discusses and reviews the strategies and mechanisms of engineered MSC-exos in the treatment of chronic respiratory diseases based on many studies to provide new solutions for these diseases.
Collapse
Affiliation(s)
- Zhengyao Zhai
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tairong Cui
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jialiang Chen
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xulong Mao
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
24
|
Wu M, Zhao Y, Tao M, Fu M, Wang Y, Liu Q, Lu Z, Guo J. Malate-Based Biodegradable Scaffolds Activate Cellular Energetic Metabolism for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50836-50853. [PMID: 37903387 DOI: 10.1021/acsami.3c09394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The latest advancements in cellular bioenergetics have revealed the potential of transferring chemical energy to biological energy for therapeutic applications. Despite efforts, a three-dimensional (3D) scaffold that can induce long-term bioenergetic effects and facilitate tissue regeneration remains a big challenge. Herein, the cellular energetic metabolism promotion ability of l-malate, an important intermediate of the tricarboxylic acid (TCA) cycle, was proved, and a series of bioenergetic porous scaffolds were fabricated by synthesizing poly(diol l-malate) (PDoM) prepolymers via a facial one-pot polycondensation of l-malic acid and aliphatic diols, followed by scaffold fabrication and thermal-cross-linking. The degradation products of the developed PDoM scaffolds can regulate the metabolic microenvironment by entering mitochondria and participating in the TCA cycle to elevate intracellular adenosine triphosphate (ATP) levels, thus promoting the cellular biosynthesis, including the production of collagen type I (Col1a1), fibronectin 1 (Fn1), and actin alpha 2 (Acta2/α-Sma). The porous PDoM scaffold was demonstrated to support the growth of the cocultured mesenchymal stem cells (MSCs) and promote their secretion of bioactive molecules [such as vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and basic fibroblast growth factor (bFGF)], and this stem cells-laden scaffold architecture was proved to accelerate wound healing in a critical full-thickness skin defect model on rats.
Collapse
Affiliation(s)
- Min Wu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meihan Tao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yue Wang
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qi Liu
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
25
|
Zhu Y, Wang W, Chen Q, Ren T, Yang J, Li G, Qi Y, Yuan C, Wang P. Bioprinted PDLSCs with high-concentration GelMA hydrogels exhibit enhanced osteogenic differentiation in vitro and promote bone regeneration in vivo. Clin Oral Investig 2023; 27:5153-5170. [PMID: 37428274 DOI: 10.1007/s00784-023-05135-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES We aimed to explore the osteogenic potential of periodontal ligament stem cells (PDLSCs) in bioprinted methacrylate gelatine (GelMA) hydrogels in vitro and in vivo. MATERIALS AND METHODS PDLSCs in GelMA hydrogels at various concentrations (3%, 5%, and 10%) were bioprinted. The mechanical properties (stiffness, nanostructure, swelling, and degradation properties) of bioprinted constructs and the biological properties (cell viability, proliferation, spreading, osteogenic differentiation, and cell survival in vivo) of PDLSCs in bioprinted constructs were evaluated. Then, the effect of bioprinted constructs on bone regeneration was investigated using a mouse cranial defect model. RESULTS Ten percent GelMA printed constructs had a higher compression modulus, smaller porosity, lower swelling rate, and lower degradation rate than 3% GelMA. PDLSCs in bioprinted 10% GelMA bioprinted constructs showed lower cell viability, less cell spreading, upregulated osteogenic differentiation in vitro, and lower cell survival in vivo. Moreover, upregulated expression of ephrinB2 and EphB4 protein and their phosphorylated forms were found in PDLSCs in 10% GelMA bioprinted constructs, and inhibition of eprhinB2/EphB4 signalling reversed the enhanced osteogenic differentiation of PDLSCs in 10% GelMA. The in vivo experiment showed that 10% GelMA bioprinted constructs with PDLSCs contributed to more new bone formation than 10% GelMA constructs without PDLSCs and constructs with lower GelMA concentrations. CONCLUSIONS Bioprinted PDLSCs with high-concentrated GelMA hydrogels exhibited enhanced osteogenic differentiation partially through upregulated ephrinB2/EphB4 signalling in vitro and promoted bone regeneration in vivo, which might be more appropriate for future bone regeneration applications. CLINICAL RELEVANCE Bone defects are a common clinical oral problem. Our results provide a promising strategy for bone regeneration through bioprinting PDLSCs in GelMA hydrogels.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen Wang
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Qiyu Chen
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tianshui Ren
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jianguang Yang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Gan Li
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Yanbin Qi
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|