1
|
Peng X, Li L, Peng Y, Zhou G, An Z. Bioengineering and omics approaches for Type 1 diabetes practical research: advancements and constraints. Ann Med 2025; 57:2322047. [PMID: 39704022 DOI: 10.1080/07853890.2024.2322047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 12/21/2024] Open
Abstract
Insulin dependency arises from autoimmunity that targets the β cells of the pancreas, resulting in Type 1 diabetes (T1D). Despite the fact that T1D patients require insulin for survival, insulin does not provide a cure for this disease or prevent its complications. Despite extensive genetic, molecular, and cellular research on T1D over the years, the translation of this understanding into effective clinical therapies continues to pose a significant obstacle. It is therefore difficult to develop effective clinical treatment strategies without a thorough understanding of disease pathophysiology. Pancreatic tissue bioengineering models of human T1D offer a valuable approach to examining and controlling islet function while tackling various facets of the condition. And in recent years, due to advances in high-throughput omics analysis, the genotypic and molecular profiles of T1D have become finer tuned. The present article will examine recent progress in these areas, along with their utilization and constraints in the realm of T1D.
Collapse
Affiliation(s)
- Xi Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yihua Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guangju Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Chen J, Li Q, Li H, Lv C, Yu H, Feng Q, Dong H. Injectable acellular matrix microgel assembly with stem cell recruitment and chondrogenic differentiation functions promotes microfracture-based articular cartilage regeneration. Bioact Mater 2025; 44:220-235. [PMID: 39497706 PMCID: PMC11533518 DOI: 10.1016/j.bioactmat.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Articular cartilage repair and regeneration is still a significant challenge despite years of research. Although microfracture techniques are commonly used in clinical practice, the newborn cartilage is usually fibrocartilage rather than hyaline cartilage, which is mainly attributed to the inadequate microenvironment for effectively recruiting, anchoring, and inducing bone marrow mesenchymal stem cells (BMSCs) to differentiate into hyaline cartilage. This paper introduces a novel cartilage acellular matrix (CACM) microgel assembly with excellent microporosity, injectability, tissue adhesion, BMSCs recruitment and chondrogenic differentiation capabilities to improve the microfracture-based articular cartilage regeneration. Specifically, the sustained release of simvastatin (SIM) from the SIM@CACM microgel assembly efficiently recruits BMSCs in the early stage of cartilage regeneration, while the abundant interconnected micropores and high specific area assure the quick adhesion, proliferation and infiltration of BMSCs. Additionally, the active factors within the CACM matrix, appropriate mechanical properties of the microgel assembly, and excellent tissue adhesion provide a conductive environment for the continuous chondrogenic differentiation of BMSCs into hyaline cartilage. Owing to the synergistic effect of the above-mentioned factors, good articular cartilage repair and regeneration is achieved.
Collapse
Affiliation(s)
- Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510641, China
| | - Chuhan Lv
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hongbo Yu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510641, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510641, China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
3
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Wang Q, Huang YX, Liu L, Zhao XH, Sun Y, Mao X, Li SW. Pancreatic islet transplantation: current advances and challenges. Front Immunol 2024; 15:1391504. [PMID: 38887292 PMCID: PMC11180903 DOI: 10.3389/fimmu.2024.1391504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetes is a prevalent chronic disease that traditionally requires severe reliance on medication for treatment. Oral medication and exogenous insulin can only temporarily maintain blood glucose levels and do not cure the disease. Most patients need life-long injections of exogenous insulin. In recent years, advances in islet transplantation have significantly advanced the treatment of diabetes, allowing patients to discontinue exogenous insulin and avoid complications.Long-term follow-up results from recent reports on islet transplantation suggest that they provide significant therapeutic benefit although patients still require immunotherapy, suggesting the importance of future transplantation strategies. Although organ shortage remains the primary obstacle for the development of islet transplantation, new sources of islet cells, such as stem cells and porcine islet cells, have been proposed, and are gradually being incorporated into clinical research. Further research on new transplantation sites, such as the subcutaneous space and mesenteric fat, may eventually replace the traditional portal vein intra-islet cell infusion. Additionally, the immunological rejection reaction in islet transplantation will be resolved through the combined application of immunosuppressant agents, islet encapsulation technology, and the most promising mesenchymal stem cells/regulatory T cell and islet cell combined transplantation cell therapy. This review summarizes the progress achieved in islet transplantation, and discusses the research progress and potential solutions to the challenges faced.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-xi Huang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University, Taizhou, Zhejiang, China
| | - Yi Sun
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
5
|
Rosato L, Lavorini E, Deandrea M. Could Transplantation into the Thyroid Gland Benefit Pancreatic Islet Grafting in Unstable Type 1 Diabetes (T1DM), Complicated Type 2 Diabetes (T2DM), and Patients with Total Pancreatectomy? Stem Cell Rev Rep 2024; 20:839-844. [PMID: 38153636 DOI: 10.1007/s12015-023-10671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Insular allograft for unstable type 1 diabetes and autograft in pancreatectomy patients are nowadays considered established procedures with precise indications and predictable outcomes. The clinical outcome of islet transplantation is similar to that of pancreas transplantation, avoiding the complications associated with organ transplantation. OBJECTIVE We hypothesised that transplantation of islets of Langerhans within an endocrine organ could better promote their engraftment and function. This could help to resolve or ameliorate known pathological conditions such as unstable type 1 diabetes and complicated type 2 diabetes. RATIONALE Pancreatic islet transplantation is currently performed almost exclusively in the liver. The liver provides a sufficiently favourable environment, although not entirely. The hepatic parenchyma has a lower oxygen tension than the pancreatic parenchyma and the vascular structure of the liver is not typical of an exclusively endocrine organ. Moreover, islet transplantation into the liver is not without complications, including hematoma or portal vein thrombosis. PROPOSED PROJECT The thyroid gland is the endocrine gland proposed as a 'container'. In fact, it has all the characteristics of 'physio-compatibility' which can address the objectives assumed. It is indeed an ideal site because it is an easily accessible anatomical site that allows islets to be implanted using ultrasound-guided transcutaneous inoculation technique. Moreover, it has physiological and anatomical endocrine affinities with pancreatic islets and, if necessary, it can be removed, using hormone supplementation or replacement therapy. CONCLUSIONS The thyroid gland may be proposed as an ideal site for islet implantation due to its anatomical and physiocompatibility characteristics.
Collapse
Affiliation(s)
- Lodovico Rosato
- Surgery and Oncology Department, School of Medicine, ASL TO4 Ivrea Hospital, University of Turin, Ivrea, 10015, Italy
| | - Eugenia Lavorini
- Department of General and Emergency Surgery, San Donato Hospital Arezzo, Arezzo, 52100, Italy.
| | - Maurilio Deandrea
- Endocrinology, Diabetes and Metabolism Department, Center for Thyroid Diseases, Ordine Mauriziano Hospital, Turin, 10128, Italy
| |
Collapse
|
6
|
Zhang Z, Dong X, Wan W, Guo H, Sun R, Feng H, Wang M, Wang Z, Jin H, Sun J, Xia Q, Zhao Q, Shen D, Gao Z, Liu Y. Unraveling Intracellular Protein Corona Components of Nanoplastics via Photocatalytic Protein Proximity Labeling. Anal Chem 2024; 96:4978-4986. [PMID: 38471057 DOI: 10.1021/acs.analchem.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Bioaccumulation of nanoplastic particles has drawn increasing attention regarding environmental sustainability and biosafety. How nanoplastic particles interact with the cellular milieu still remains elusive. Herein, we exemplify a general approach to profile the composition of a "protein corona" interacting with nanoparticles via the photocatalytic protein proximity labeling method. To enable photocatalytic proximity labeling of the proteome interacting with particles, iodine-substituted BODIPY (I-BODIPY) is selected as the photosensitizer and covalently conjugated onto amino-polystyrene nanoparticles as a model system. Next, selective proximity labeling of interacting proteins is demonstrated using I-BODIPY-labeled nanoplastic particles in both Escherichia coli lysate and live alpha mouse liver 12 cells. Mechanistic studies reveal that the covalent modifications of proteins by an aminoalkyne substrate are conducted via a reactive oxygen species photosensitization pathway. Further proteomic analysis uncovers that mitochondria-related proteins are intensively involved in the protein corona, indicating substantial interactions between nanoplastic particles and mitochondria. In addition, proteostasis network components are also identified, accompanied by consequent cellular proteome aggregation confirmed by fluorescence imaging. Together, this work exemplifies a general strategy to interrogate the composition of the protein corona of nanomaterials by endowing them with photooxidation properties to enable photocatalytic protein proximity labeling function.
Collapse
Affiliation(s)
- Zhenduo Zhang
- The Second Hospital of Dalian Medical University, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Wang Wan
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hengke Guo
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rui Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mengdie Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhiming Wang
- The Second Hospital of Dalian Medical University, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Jin
- The Second Hospital of Dalian Medical University, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jialu Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiuxuan Xia
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Zhao
- The Second Hospital of Dalian Medical University, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Di Shen
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Li H, He W, Feng Q, Chen J, Xu X, Lv C, Zhu C, Dong H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr Polym 2024; 323:121425. [PMID: 37940297 DOI: 10.1016/j.carbpol.2023.121425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Islet transplantation to restore endogenous insulin secretion is a promising therapy for type 1 diabetes in clinic. However, host immune rejection seriously limits the survival of transplanted islets. Despite of the various encapsulation strategies and materials developed so far to provide immune isolation for transplanted islets, long-term blood glucose regulation is still difficult due to the inherent defects of the encapsulation materials. Herein, a novel islet-encapsulation composite material with low immunogenicity, good biocompatibility and excellent stability is reported. Specifically, chitosan (CS) microgels (diameter: ∼302 μm) are prepared via Michael addition reaction between maleimide grafted chitosan (CS-Mal) and thiol grafted chitosan (CS-NAC) in droplet-based microfluidic device, and then zwitterionic surface layer is constructed on CS microgel surface by covalent binding between maleimide groups on CS and thiol groups on thiol modified carboxymethyl cellulose (CMC-SH). The as-formed carboxymethyl cellulose coated chitosan (CS@CMC) microgels show not only long-term stability in vivo owing to the non-biodegradability of CMC, but also fantastic anti-adsorption and antifibrosis because of the stable zwitterionic surface layer. As a result, islets encapsulated in the CS@CMC microgels exhibit high viability and good insulin secretion function in vivo, and long-term blood glucose regulation is achieved for 180 days in diabetic mice post-transplantation.
Collapse
Affiliation(s)
- Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weijun He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Junlin Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xinbin Xu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuhan Lv
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changchun Zhu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
8
|
Chen QD, Liu L, Zhao XH, Liang JB, Li SW. Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells. Front Immunol 2023; 14:1293762. [PMID: 38111575 PMCID: PMC10725940 DOI: 10.3389/fimmu.2023.1293762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
It is now understood that islet transplantation serves as a β-cell replacement therapy for type 1 diabetes. Many factors impact the survival of transplanted islets, especially those related to the microenvironment. This review explored microenvironmental components, including vascular endothelial cells, inflammatory cytokines, and immune cells, and their profound effects on post-islet transplantation survival rates. Furthermore, it revealed therapeutic strategies aimed at targeting these elements. Current evidence suggests that vascular endothelial cells are pivotal in facilitating vascularization and nutrient supply and establishing a new microcirculation network for transplanted islets. Consequently, preserving the functionality of vascular endothelial cells emerges as a crucial strategy to enhance the survival of islet transplantation. Release of cytokines will lead to activation of immune cells and production and release of further cytokines. While immune cells hold undeniable significance in regulating immune responses, their activation can result in rejection reactions. Thus, establishing immunological tolerance within the recipient's body is essential for sustaining graft functionality. Indeed, future research endeavors should be directed toward developing precise strategies for modulating the microenvironment to achieve higher survival rates and more sustained transplantation outcomes. While acknowledging certain limitations inherent to this review, it provides valuable insights that can guide further exploration in the field of islet transplantation. In conclusion, the microenvironment plays a paramount role in islet transplantation. Importantly, we discuss novel perspectives that could lead to broader clinical applications and improved patient outcomes in islet transplantation.
Collapse
Affiliation(s)
- Qi-dong Chen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University , Taizhou, Zhejiang, China
| | - Jun-bo Liang
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|