1
|
Cirilli I, Orlando P, Hrelia S, Marcheggiani F, Tiano L, Beghelli D, Angeloni C. Endogenous coenzyme Q content and exogenous bioavailability in D. melanogaster. Heliyon 2024; 10:e37854. [PMID: 39315151 PMCID: PMC11417581 DOI: 10.1016/j.heliyon.2024.e37854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/06/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Development and aging significantly impact the cellular levels of Coenzyme Q (CoQ), which is associated with both pathological and physiological conditions. Aim of this study was to describe the CoQ status throughout the lifetime of Drosophila melanogaster, a well-established model in aging studies. CoQ9 and CoQ distribution was analysed across different body segments and various life stages in both male and female flies. The results indicate that CoQ9 is the predominant isoform in every phase of flies' life cycle, with the highest concentrations observed in the thorax. We noted distinct trends in CoQ distribution during aging, which varied according to sex and body segments (head, thorax, and abdomen). Supplementation with two concentrations of CoQ9 and CoQ10 (15 μM and 75 μM) for 2 weeks induced a segment- and sex-specific CoQ uptake. Although 75 μM CoQ10 was more effective in modulating the CoQ status, lifelong treatment with this concentration did not affect the longevity of the flies.
Collapse
Affiliation(s)
- Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921, Rimini, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921, Rimini, Italy
| |
Collapse
|
2
|
Fawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C. Can vitamins improve periodontal wound healing/regeneration? Periodontol 2000 2024; 94:539-602. [PMID: 37592831 DOI: 10.1111/prd.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Periodontitis is a complex inflammatory disorder of the tooth supporting structures, associated with microbial dysbiosis, and linked to a number if systemic conditions. Untreated it can result in an irreversible damage to the periodontal structures and eventually teeth loss. Regeneration of the lost periodontium requires an orchestration of a number of biological events on cellular and molecular level. In this context, a set of vitamins have been advocated, relying their beneficial physiological effects, to endorse the biological regenerative events of the periodontium on cellular and molecular levels. The aim of the present article is to elaborate on the question whether or not vitamins improve wound healing/regeneration, summarizing the current evidence from in vitro, animal and clinical studies, thereby shedding light on the knowledge gap in this field and highlighting future research needs. Although the present review demonstrates the current heterogeneity in the available evidence and knowledge gaps, findings suggest that vitamins, especially A, B, E, and CoQ10, as well as vitamin combinations, could exert positive attributes on the periodontal outcomes in adjunct to surgical or nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Christof Doerfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
3
|
Nyariki JN, Kimani NM, Kibet PS, Kinuthia GK, Isaac AO. Coenzyme Q10 exhibits anti-inflammatory and immune-modulatory thereby decelerating the occurrence of experimental cerebral malaria. Mol Biochem Parasitol 2023; 255:111579. [PMID: 37385350 DOI: 10.1016/j.molbiopara.2023.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cerebral Malaria (CM) is associated with the complex neurological syndrome, whose pathology is mediated by severe inflammatory processes following infection with Plasmodium falciparum. Coenzyme-Q10 (Co-Q10) is a potent anti-inflammatory, anti-oxidant, and anti-apoptotic agent with numerous clinical applications. The aim of this study was to elucidate the role of oral administration of Co-Q10 on the initiation or regulation of inflammatory immune response during experimental cerebral malaria (ECM). For this purpose, the pre-clinical effect of Co-Q10 was evaluated in C57BL/6 J mice infected with Plasmodium berghei ANKA (PbA). Treatment with Co-Q10 resulted in the reduction of infiltrating parasite load, greatly improved the survival rate of PbA-infected mice that occurred independent of parasitaemia and prevented PbA-induced disruption of the blood-brain barrier (BBB) integrity. Exposure to Co-Q10 resulted in the reduction of infiltration of effector CD8 + T cells in the brain and secretion of cytolytic Granzyme B molecules. Notably, Co-Q10-treated mice had reduced levels of CD8 +T cell chemokines CXCR3, CCR2, and CCR5 in the brain following PbA-infection. Brain tissue analysis showed a reduction in the levels of inflammatory mediators TNF- α, CCL3, and RANTES in Co-Q10 administered mice. In addition, Co-Q10 modulated the differentiation and maturation of both splenic and brain dendritic cells and cross-presentation (CD8α+DCs) during ECM. Remarkably, Co-Q10 was very effective in decreasing levels of CD86, MHC-II, and CD40 in macrophages associated with ECM pathology. Exposure to Co-Q10 resulted in increased expression levels of Arginase-1 and Ym1/chitinase 3-like 3, which is linked to ECM protection. Furthermore, Co-Q10 supplementation prevented PbA-induced depletion of Arginase and CD206 mannose receptor levels. Co-Q10 abrogated PbA-driven elevation in pro-inflammatory cytokines IL-1β, IL-18, and IL-6 levels. In conclusion, the oral supplementation with Co-Q10 decelerates the occurrence of ECM by preventing lethal inflammatory immune responses and dampening genes associated with inflammation and immune-pathology during ECM, and offers an inimitable opening for developing an anti-inflammatory agent against cerebral malaria.
Collapse
Affiliation(s)
- James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical of University of Kenya, P.O Box 52428-00200 Nairobi, Kenya.
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, P.O Box 6-60100 Embu, Kenya
| | - Peter Shikuku Kibet
- Department of Pathology, Hematology and Blood Transfusion thematic unit, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Geoffrey K Kinuthia
- Department of Science & Public Health, Daystar University, PO Box 44400-00100, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, School Health Sciences and Biomedical Sciences, Technical University of Kenya, P.O Box 52428-00200 Nairobi, Kenya
| |
Collapse
|
4
|
Guile MD, Jain A, Anderson KA, Clarke CF. New Insights on the Uptake and Trafficking of Coenzyme Q. Antioxidants (Basel) 2023; 12:1391. [PMID: 37507930 PMCID: PMC10376127 DOI: 10.3390/antiox12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.
Collapse
Affiliation(s)
- Michael D Guile
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Akash Jain
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Kyle A Anderson
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| |
Collapse
|
5
|
Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Rashno M, Mojaver A, Komaki A. Neuroprotective effects of coenzyme Q10 on neurological diseases: a review article. Front Neurosci 2023; 17:1188839. [PMID: 37424991 PMCID: PMC10326389 DOI: 10.3389/fnins.2023.1188839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Neurological disorders affect the nervous system. Biochemical, structural, or electrical abnormalities in the spinal cord, brain, or other nerves lead to different symptoms, including muscle weakness, paralysis, poor coordination, seizures, loss of sensation, and pain. There are many recognized neurological diseases, like epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), stroke, autosomal recessive cerebellar ataxia 2 (ARCA2), Leber's hereditary optic neuropathy (LHON), and spinocerebellar ataxia autosomal recessive 9 (SCAR9). Different agents, such as coenzyme Q10 (CoQ10), exert neuroprotective effects against neuronal damage. Online databases, such as Scopus, Google Scholar, Web of Science, and PubMed/MEDLINE were systematically searched until December 2020 using keywords, including review, neurological disorders, and CoQ10. CoQ10 is endogenously produced in the body and also can be found in supplements or foods. CoQ10 has antioxidant and anti-inflammatory effects and plays a role in energy production and mitochondria stabilization, which are mechanisms, by which CoQ10 exerts its neuroprotective effects. Thus, in this review, we discussed the association between CoQ10 and neurological diseases, including AD, depression, MS, epilepsy, PD, LHON, ARCA2, SCAR9, and stroke. In addition, new therapeutic targets were introduced for the next drug discoveries.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology, School of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | - Sahar Saki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Ali Mojaver
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
7
|
Qi X, Jha SK, Jha NK, Dewanjee S, Dey A, Deka R, Pritam P, Ramgopal K, Liu W, Hou K. Antioxidants in brain tumors: current therapeutic significance and future prospects. Mol Cancer 2022; 21:204. [PMID: 36307808 PMCID: PMC9615186 DOI: 10.1186/s12943-022-01668-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Brain cancer is regarded among the deadliest forms of cancer worldwide. The distinct tumor microenvironment and inherent characteristics of brain tumor cells virtually render them resistant to the majority of conventional and advanced therapies. Oxidative stress (OS) is a key disruptor of normal brain homeostasis and is involved in carcinogenesis of different forms of brain cancers. Thus, antioxidants may inhibit tumorigenesis by preventing OS induced by various oncogenic factors. Antioxidants are hypothesized to inhibit cancer initiation by endorsing DNA repair and suppressing cancer progression by creating an energy crisis for preneoplastic cells, resulting in antiproliferative effects. These effects are referred to as chemopreventive effects mediated by an antioxidant mechanism. In addition, antioxidants minimize chemotherapy-induced nonspecific organ toxicity and prolong survival. Antioxidants also support the prooxidant chemistry that demonstrate chemotherapeutic potential, particularly at high or pharmacological doses and trigger OS by promoting free radical production, which is essential for activating cell death pathways. A growing body of evidence also revealed the roles of exogenous antioxidants as adjuvants and their ability to reverse chemoresistance. In this review, we explain the influences of different exogenous and endogenous antioxidants on brain cancers with reference to their chemopreventive and chemotherapeutic roles. The role of antioxidants on metabolic reprogramming and their influence on downstream signaling events induced by tumor suppressor gene mutations are critically discussed. Finally, the review hypothesized that both pro- and antioxidant roles are involved in the anticancer mechanisms of the antioxidant molecules by killing neoplastic cells and inhibiting tumor recurrence followed by conventional cancer treatments. The requirements of pro- and antioxidant effects of exogenous antioxidants in brain tumor treatment under different conditions are critically discussed along with the reasons behind the conflicting outcomes in different reports. Finally, we also mention the influencing factors that regulate the pharmacology of the exogenous antioxidants in brain cancer treatment. In conclusion, to achieve consistent clinical outcomes with antioxidant treatments in brain cancers, rigorous mechanistic studies are required with respect to the types, forms, and stages of brain tumors. The concomitant treatment regimens also need adequate consideration.
Collapse
Affiliation(s)
- Xuchen Qi
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.,Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India. .,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India. .,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700032, India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kritika Ramgopal
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China.
| | - Kaijian Hou
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China. .,School of Public Health, Shantou University, Shantou, 515000, Guangdong, China.
| |
Collapse
|
8
|
Gasmi A, Bjørklund G, Mujawdiya PK, Semenova Y, Piscopo S, Peana M. Coenzyme Q 10 in aging and disease. Crit Rev Food Sci Nutr 2022; 64:3907-3919. [PMID: 36300654 DOI: 10.1080/10408398.2022.2137724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coenzyme Q10 (CoQ10) is an essential component of the electron transport chain. It also acts as an antioxidant in cellular membranes. It can be endogenously produced in all cells by a specialized mitochondrial pathway. CoQ10 deficiency, which can result from aging or insufficient enzyme function, has been considered to increase oxidative stress. Some drugs, including statins and bisphosphonates, often used by older individuals, can interfere with enzymes responsible for endogenous CoQ10 synthesis. Oral supplementation with high doses of CoQ10 can increase both its circulating and intracellular levels and several clinical trials observed that its administration provided beneficial effects on different disorders such as cardiovascular disease and inflammation which have been associated with low CoQ10 levels and high oxidative stress. Moreover, CoQ10 has been suggested as a promising therapeutic agent to prevent and slow the progression of other diseases including metabolic syndrome and type 2 diabetes, neurodegenerative and male infertility. However, there is still a need for further studies and well-designed clinical trials involving a large number of participants undergoing longer treatments to assess the benefits of CoQ10 for these disorders.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | | | - Yuliya Semenova
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
9
|
The Use of the Coenzyme Q 10 as a Food Supplement in the Management of Fibromyalgia: A Critical Review. Antioxidants (Basel) 2022; 11:antiox11101969. [PMID: 36290691 PMCID: PMC9598746 DOI: 10.3390/antiox11101969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The coenzyme Q10 is a naturally occurring benzoquinone derivative widely prescribed as a food supplement for different physical conditions and pathologies. This review aims to sum up the key structural and functional characteristics of Q10, taking stock of its use in people affected by fibromyalgia. A thorough survey has been conducted, using Pubmed, Scifinder, and ClinicalTrials.gov as the reference research applications and registry database, respectively. Original articles, reviews, and editorials published within the last 15 years, as well as open clinical investigations in the field, if any, were analyzed to point out the lights and shadows of this kind of supplementation as they emerge from the literature.
Collapse
|
10
|
Wu YL, Chang JC, Sun HL, Cheng WL, Yen YP, Lin YS, Chao YC, Liu KH, Huang CS, Liu KL, Liu CS. Coenzyme Q10 Supplementation Increases Removal of the ATXN3 Polyglutamine Repeat, Reducing Cerebellar Degeneration and Improving Motor Dysfunction in Murine Spinocerebellar Ataxia Type 3. Nutrients 2022; 14:nu14173593. [PMID: 36079853 PMCID: PMC9459709 DOI: 10.3390/nu14173593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme Q10 (CoQ10), a well-known antioxidant, has been explored as a treatment in several neurodegenerative diseases, but its utility in spinocerebellar ataxia type 3 (SCA3) has not been explored. Herein, the protective effect of CoQ10 was examined using a transgenic mouse model of SCA3 onset. These results demonstrated that a diet supplemented with CoQ10 significantly improved murine locomotion, revealed by rotarod and open-field tests, compared with untreated controls. Additionally, a histological analysis showed the stratification of cerebellar layers indistinguishable from that of wild-type littermates. The increased survival of Purkinje cells was reflected by the reduced abundance of TUNEL-positive nuclei and apoptosis markers of activated p53, as well as lower levels of cleaved caspase 3 and cleaved poly-ADP-ribose polymerase. CoQ10 effects were related to the facilitation of the autophagy-mediated clearance of mutant ataxin-3 protein, as evidenced by the increased expression of heat shock protein 27 and autophagic markers p62, Beclin-1 and LC3II. The expression of antioxidant enzymes heme oxygenase 1 (HO-1), glutathione peroxidase 1 (GPx1) and superoxide dismutase 1 (SOD1) and 2 (SOD2), but not of glutathione peroxidase 2 (GPx2), were restored in 84Q SCA3 mice treated with CoQ10 to levels even higher than those measured in wild-type control mice. Furthermore, CoQ10 treatment also prevented skeletal muscle weight loss and muscle atrophy in diseased mice, revealed by significantly increased muscle fiber area and upregulated muscle protein synthesis pathways. In summary, our results demonstrated biochemical and pharmacological bases for the possible use of CoQ10 in SCA3 therapy.
Collapse
Affiliation(s)
- Yu-Ling Wu
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50091, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Jui-Chih Chang
- Center of Regenerative Medicine and Tissue Repair, Changhua Christian Hospital, Changhua 50091, Taiwan
- General Research Laboratory of Research Department, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Hai-Lun Sun
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Yu-Pei Yen
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Yong-Shiou Lin
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Yi-Chun Chao
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Ko-Hung Liu
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Ching-Shan Huang
- Center of Regenerative Medicine and Tissue Repair, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
- Correspondence: (K.-L.L.); (C.-S.L.); Tel.: +886-4-24730022 (ext. 12136) (K.-L.L.); +886-4-7238595 (ext. 4751) (C.-S.L.)
| | - Chin-San Liu
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50091, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua 50094, Taiwan
- Graduate Institute of Integrated Medicine College of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (K.-L.L.); (C.-S.L.); Tel.: +886-4-24730022 (ext. 12136) (K.-L.L.); +886-4-7238595 (ext. 4751) (C.-S.L.)
| |
Collapse
|
11
|
Coenzyme Q10 + alpha lipoic acid for chronic COVID syndrome. Clin Exp Med 2022:10.1007/s10238-022-00871-8. [PMID: 35994177 PMCID: PMC9395797 DOI: 10.1007/s10238-022-00871-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022]
Abstract
Chronic COVID syndrome is characterized by chronic fatigue, myalgia, depression and sleep disturbances, similar to chronic fatigue syndrome (CFS) and fibromyalgia syndrome. Implementations of mitochondrial nutrients (MNs) with diet are important for the clinical effects antioxidant. We examined if use of an association of coenzyme Q10 and alpha lipoic acid (Requpero®) could reduce chronic covid symptoms. The Requpero study is a prospective observational study in which 174 patients, who had developed chronic-covid syndrome, were divided in two groups: The first one (116 patients) received coenzyme Q10 + alpha lipoic acid, and the second one (58 patients) did not receive any treatment. Primary outcome was reduction in Fatigue Severity Scale (FSS) in treatment group compared with control group. complete FSS response was reached most frequently in treatment group than in control group. A FSS complete response was reached in 62 (53.5%) patients in treatment group and in two (3.5%) patients in control group. A reduction in FSS core < 20% from baseline at T1 (non-response) was observed in 11 patients in the treatment group (9.5%) and in 15 patients in the control group (25.9%) (p < 0.0001). To date, this is the first study that tests the efficacy of coenzyme Q10 and alpha lipoic acid in chronic Covid syndrome. Primary and secondary outcomes were met. These results have to be confirmed through a double blind placebo controlled trial of longer duration.
Collapse
|
12
|
COQ10B Knockdown Modulates Cell Proliferation, Invasion, Migration, and Apoptosis in Esophageal Squamous Cell Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6247824. [PMID: 35911165 PMCID: PMC9334081 DOI: 10.1155/2022/6247824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Objective Esophageal squamous-cell carcinoma (ESCC) is an aggressive malignant tumor, accounting for more than 90% of esophageal cancers. However, treatments such as surgical resection, radiotherapy, and chemotherapy are unable to achieve ideal clinical outcomes. The purpose of this study was to explore the effects of COQ10B on proliferation, apoptosis, migration, and invasion of esophageal squamous-cell carcinoma (ESCC) cells. Methods Quantitative real-time PCR (qRT-PCR) was used to detect the expression of COQ10B in ESCC and normal tissues and in ESCC cell lines (KYSE-150 and TE-1). MTT assay and flow cytometry were applied to investigate the effects of COQ10B shRNA lentivirus (LV-shCOQ10B) on ESCC cell proliferation and apoptosis, respectively. The effect of COQ10B silencing on ESCC cell migration and invasion was determined by wound healing assay and transwell invasion assay, respectively. Results The expression of COQ10B mRNA in ESCC tissues was higher than that in surrounding tissues. The decreased COQ10B level in KYSE-150 and TE-1 cells by LV-shCOQ10B could inhibit cell proliferation, promote cell apoptosis, and reduce the ability of invasion and migration (all P < 0.05). Conclusion COQ10B was highly expressed in human ESCC tissues. COQ10B silencing contributed to the inhibition of proliferation, invasion, and migration of ESCC cells and the promotion of cell apoptosis, suggesting COQ10B may be a potential molecular target for the diagnosis and treatment of ESCC.
Collapse
|
13
|
Zhang Y, Huang X, Liu N, Liu M, Sun C, Qi B, Sun K, Wei X, Ma Y, Zhu L. Discovering the Potential Value of Coenzyme Q10 in Oxidative Stress: Enlightenment From a Synthesis of Clinical Evidence Based on Various Population. Front Pharmacol 2022; 13:936233. [PMID: 35910386 PMCID: PMC9330130 DOI: 10.3389/fphar.2022.936233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Oxidative stress (OS) is associated with ferroptosis. Coenzyme Q10 (CoQ10), as an adjuvant treatment, has shown to be beneficial against OS. However, the efficacy of CoQ10 as a therapeutic agent against OS has not been promptly updated and systematically investigated. Methods: A systematic literature search was performed using the Medline, EMBASE, Web of science, Cochrane Central Register of Controlled Trials, CNKI, CBM, Science direct and clinical trial. gov to identify randomized clinical trials evaluating the efficacy of CoQ10 supplementation on OS parameters. Standard mean differences and 95% confidence intervals were calculated for net changes in OS parameters using a random-effects model. Results: Twenty-one randomized clinical studies met the eligibility criteria to be included in the meta-analysis. Overall, CoQ10 supplementation increased the levels of antioxidant enzymes [including superoxide dismutase (SOD) (SMD = 0.63; 95% CI: 0.38 to 0.88; p < 0.001), catalase (CAT) (SMD = 0.44; 95% CI:0.16 to 0.72; p = 0.002)] significantly and the levels of malondialdehyde (MDA) (SMD = -0.68; 95% CI: 0.93 to -0.43; p < 0.001) was decreased considerably. However, significant associations were not observed between this supplement and total antioxidant capacity (TAC), glutathione peroxidase (GPx) activity. Conclusion: CoQ10 can improve OS as indicated by statistical significance in CAT and MDA concentrations, as well as SOD activity. Future studies focusing on long-term results and specific valuation of OS parameters are required to confirm the efficacy of CoQ10 on OS. We also believe that with the further research on ferroptosis, CoQ10 will gain more attention. Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY2021120123].
Collapse
Affiliation(s)
- Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyi Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmin Liu
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| | - Yong Ma
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| |
Collapse
|
14
|
Inflammation and Oxidative Stress in Seminal Plasma: Search for Biomarkers in Diagnostic Approach to Male Infertility. J Pers Med 2022; 12:jpm12060857. [PMID: 35743642 PMCID: PMC9224911 DOI: 10.3390/jpm12060857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative and inflammatory damage underlie several conditions related to male infertility, including varicocele. Free light chains of immunoglobulins (FLCs) are considered markers of low-grade inflammation in numerous diseases. Coenzyme Q10 (CoQ10), a lipidic antioxidant and anti-inflammatory compound, is involved in spermatozoa energy metabolism and motility. We aimed to evaluate FLCs’ seminal levels in patients with varicocele in comparison to control subjects and to correlate them with CoQ10 and Total Antioxidant Capacity (TAC) in human semen. Sixty-five patients were enrolled. Semen analysis was performed; patients were divided into three groups: controls, 12 normozoospermic patients, aged 34 (33–41) years; varicocele (VAR), 29 patients, aged 33 (26–37) years; and idiopathic, 24 oligo-, astheno- and oligoasthenozoospermic patients aged 37 (33.5–40.5) years. FLCs (κ and λ) were assayed by turbidimetric method; CoQ10 by HPLC; TAC by spectrophotometric method. λ FLCs showed a trend toward higher levels in VAR vs. controls and the idiopathic group. VAR showed a trend toward lower κ FLCs levels vs. the other two groups. When comparing κ/λ ratio, VAR showed significantly lower levels vs. controls and idiopathic. Moreover, CoQ10 seminal levels showed higher levels in VAR and idiopathic compared to controls. Data reported here confirm lower levels of κ/λ ratio in VAR and suggest a possible application in personalized medicine as clinical biomarkers for male infertility.
Collapse
|
15
|
Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia. Antioxidants (Basel) 2022; 11:antiox11040725. [PMID: 35453410 PMCID: PMC9030756 DOI: 10.3390/antiox11040725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to explore the use of coenzyme Q10 and skeletal muscle protein biomarkers in the diagnosis of sarcopenia. Subjects with or without sarcopenia were recruited. The anthropometric, muscle strength and endurance measurements were assessed. Muscle proteins (albumin and creatine kinase), myokines (irisin and myostatin), and the coenzyme Q10 level were measured. Approximately half of the subjects suffered from a low coenzyme Q10 concentration (<0.5 μM). The levels of creatinine kinase and irisin were significantly lower in subjects with sarcopenia (p ≤ 0.05). In receiver operating characteristic analyses, irisin and creatine kinase showed a better prediction capability for sarcopenia (area under the curve, irisin: 0.64 vs. creatinine kinase: 0.61) than other biomarkers. Additionally, a low level of irisin (<118.0 ng/mL, odds ratio, 6.46, p < 0.01), creatine kinase (<69.5 U/L, odds ratio, 3.31, p = 0.04), or coenzyme Q10 (<0.67 μM, odds ratio, 9.79, p < 0.01) may increase the risk for sarcopenia even after adjusting for confounders. Since the levels of coenzyme Q10 and muscle biomarkers, such as irisin and creatine kinase, are associated with sarcopenia, we suggest they could be used as candidate markers to assist in the diagnosis of sarcopenia.
Collapse
|
16
|
Pallotti F, Bergamini C, Lamperti C, Fato R. The Roles of Coenzyme Q in Disease: Direct and Indirect Involvement in Cellular Functions. Int J Mol Sci 2021; 23:128. [PMID: 35008564 PMCID: PMC8745647 DOI: 10.3390/ijms23010128] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found.
Collapse
Affiliation(s)
- Francesco Pallotti
- Dipartimento di Medicina e Chirurgia, Università Degli Studi dell’Insubria, 21100 Varese, Italy
- SSD Laboratorio Analisi-SMEL Specializzato in Citogenetica e Genetica Medica, ASST Settelaghi-Ospedale di Circolo-Fondazione Macchi, 21100 Varese, Italy
| | - Christian Bergamini
- Dipartimento di Farmacia e Biotecnologie, FABIT, Università Degli Studi di Bologna, 40126 Bologna, Italy;
| | - Costanza Lamperti
- UO Genetica Medica e Neurogenetica Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milano, Italy;
| | - Romana Fato
- Dipartimento di Farmacia e Biotecnologie, FABIT, Università Degli Studi di Bologna, 40126 Bologna, Italy;
| |
Collapse
|
17
|
Mine Y, Takahashi T, Okamoto T. Protective effects of coenzyme Q 10 on cell damage induced by hydrogen peroxides in cultured skin fibroblasts. J Clin Biochem Nutr 2021; 69:247-255. [PMID: 34857986 PMCID: PMC8611366 DOI: 10.3164/jcbn.20-185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
Cellular senescence is an intricate and multifactorial phenomenon, which is characterized by an irreversible cellular growth arrest, it is caused in response to irretrievably DNA damage, telomere shorting, activation of oncogene, and oxidative stress. Human diploid fibroblasts are a well-established experimental model for premature senescence-related studies, and exposure of fibroblasts to H2O2 is widely used as a SIPS model. Recently, it has been reported many studies of CoQ10 as to anti-aging effects, however the effect of CoQ10 on H2O2-induced SIPS model of human skin fibroblasts has not been understood. So that, we investigated that human skin fibroblasts were used to investigate the prevention effect of CoQ10 against H2O2-induced SIPS model. We created SIPS model fibroblasts with treatment of 100 μM H2O2 for 2 h. In this study, CoQ10 also increased cell viability and mRNA levels of type I, IV collagen and protein level of type I collagen. Moreover, it is shown that CoQ10 suppressed oxidative stress, degradation of collagen by increasing MMP expression, and decreasing senescence-associated phenotypes (e.g. SA-βgal positive staining and SASP) for preventing skin aging via H2O2-induced SIPS model. These results suggested that CoQ10 has possibility to be contributory for extension of healthy life expectancy in Japan.
Collapse
Affiliation(s)
- Yukitoshi Mine
- Division of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Takayuki Takahashi
- Division of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Tadashi Okamoto
- Division of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
18
|
Afzaal M, Saeed F, Aamir M, Usman I, Ashfaq I, Ikram A, Hussain M, Anjum FM, Waleed M, Suleria H. ENCAPSULATING PROPERTIES OF LEGUME PROTEINS: RECENT UPDATES & PERSPECTIVES. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1987456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Aamir
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ifrah Usman
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Iqra Ashfaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Muhammad Waleed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Hafiz Suleria
- Department of Agriculture and Food Systems, The University of Melbourne, Australia
| |
Collapse
|
19
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
20
|
Kobayashi M, Tsuzuki C, Kobayashi M, Tsuchiya H, Yamashita Y, Ueno K, Onozawa M, Kobayashi M, Kawakami E, Hori T. Effect of supplementation with the reduced form of coenzyme Q10 on semen quality and antioxidant status in dogs with poor semen quality: Three case studies. J Vet Med Sci 2021; 83:1044-1049. [PMID: 34011783 PMCID: PMC8349810 DOI: 10.1292/jvms.21-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress owing to an imbalance between reactive oxygen species and antioxidants, such as coenzyme Q10 (CoQ10), is a major contributor to male
infertility. We investigated the effects of the reduced form of CoQ10 (ubiquinol) supplementation on semen quality in dogs with poor semen quality. Three dogs
received 100 mg of ubiquinol orally once daily for 12 weeks. Semen quality, serum testosterone, and seminal plasma superoxide dismutase (SOD) activity were
examined at 2-week intervals from 2 weeks before ubiquinol supplementation to 4 weeks after the treatment. Ubiquinol improved sperm motility, reduced
morphologically abnormal sperm, and increased seminal plasma SOD activity; however, it had no effect on testosterone level, semen volume, and sperm number.
Ubiquinol supplementation could be used as a non-endocrine therapy for infertile dogs.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Chie Tsuzuki
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Marika Kobayashi
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Hinano Tsuchiya
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yume Yamashita
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Kanako Ueno
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Moe Onozawa
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Masato Kobayashi
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Eiichi Kawakami
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan.,Japan Institute of Small Animal Reproduction (Bio Art), 3-16-9 Uchikanda, Chiyoda-ku, Tokyo 101-0047, Japan
| | - Tatsuya Hori
- Laboratory of Reproduction, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| |
Collapse
|
21
|
Xing X, Zhang J, Zhang J, Wang Y, Wang J, Kang J, Quan F, Su J, Zhang Y. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol 2021; 15:190-203. [PMID: 33881976 DOI: 10.2174/1874467214666210420112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND High-quality of the oocyte is crucial for embryo development and the success of human assisted reproduction. The postovulatory aged oocytes lose the developmental competence with mitochondrial dysfunction and oxidative stress. Coenzyme Q10 (CoQ10) is widely distributed in the membranes of cells, and has an important role in the mitochondrial respiration chain, against oxidative stress and modulation of gene expression. OBJECTIVE To investigate the functions and mechanisms of CoQ10 on delaying postovulatory oocyte aging. METHODS Quantitative real-time PCR and Immunofluorescence staining were used to determine the expression patterns of the biogenesis genes of CoQ10 in postovulatory aged oocytes compared with fresh oocytes. The mitochondrial function, apoptosis, reactive oxygen species (ROS) accumulation and spindle abnormalities were investigated after treatment with 10 μM CoQ10 in aged groups. SIRT4 siRNA or capped RNA was injected into oocytes to investigate the function of SIRT4 on postovulatory oocyte aging and the relationship between CoQ10 and SIRT4. RESULTS Multiple CoQ10 biosynthesis enzymes are insufficient, and supplement of CoQ10 can improve oocyte quality and elevate the development competency of postovulatory aged oocytes. CoQ10 can attenuate the aging-induced abnormalities including mitochondrial dysfunction, ROS accumulation, spindle abnormalities, and apoptosis in postovulatory aged oocytes. Furthermore, SIRT4, which was first found to be up-regulated in postovulatory aged oocytes, decreased following CoQ10 treatment. Finally, knockdown of SIRT4 can rescue aging-induced dysfunction of mitochondria, and the efficiency of CoQ10 rescuing dysfunction of mitochondria can be weakened by SIRT4 overexpression. CONCLUSION Supplement of CoQ10 protects oocytes from postovulatory aging by inhibiting SIRT4increase.
Collapse
Affiliation(s)
- Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinjing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Abiri B, Vafa M. Impact of coenzyme Q10 on inflammatory biomarkers and its role in future therapeutic strategies. Clin Nutr ESPEN 2021; 43:25-30. [PMID: 34024523 DOI: 10.1016/j.clnesp.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022]
Abstract
Coenzyme Q (CoQ) is an important component of the mitochondrial electron transport chain. The finding that multiple chronic diseases show lower levels of CoQ10 has led to the possibility that CoQ10 supplementation could be an effective approach to ameliorate or prevent disease progression. In this review, we discuss the state of the art regarding the role of CoQ10 in health and disease and describe the latest clinical studies which have tested the effects of CoQ10 supplementation in inflammatory diseases. The results of these studies indicate that individuals suffering from inflammation-related diseases show improvement under the CoQ10 supplementation protocol. However, these results have been inconsistent, leading to the need for additional studies at the preclinical and clinical levels, involving a greater number of subjects and different treatment regimes.
Collapse
Affiliation(s)
- Behnaz Abiri
- Nutritional Sciences, Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Nutritional Sciences, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Gueguen N, Baris O, Lenaers G, Reynier P, Spinazzi M. Secondary coenzyme Q deficiency in neurological disorders. Free Radic Biol Med 2021; 165:203-218. [PMID: 33450382 DOI: 10.1016/j.freeradbiomed.2021.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) is a ubiquitous lipid serving essential cellular functions. It is the only component of the mitochondrial respiratory chain that can be exogenously absorbed. Here, we provide an overview of current knowledge, controversies, and open questions about CoQ intracellular and tissue distribution, in particular in brain and skeletal muscle. We discuss human neurological diseases and mouse models associated with secondary CoQ deficiency in these tissues and highlight pharmacokinetic and anatomical challenges in exogenous CoQ biodistribution, recent improvements in CoQ formulations and imaging, as well as alternative therapeutical strategies to CoQ supplementation. The last section proposes possible mechanisms underlying secondary CoQ deficiency in human diseases with emphasis on neurological and neuromuscular disorders.
Collapse
Affiliation(s)
- Naig Gueguen
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Department of Biochemistry and Molecular Biology, CHU Angers, 49933, Angers, France
| | - Olivier Baris
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France
| | - Pascal Reynier
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Department of Biochemistry and Molecular Biology, CHU Angers, 49933, Angers, France
| | - Marco Spinazzi
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Neuromuscular Reference Center, Department of Neurology, CHU Angers, 49933, Angers, France.
| |
Collapse
|
24
|
Stability of Reduced and Oxidized Coenzyme Q10 in Finished Products. Antioxidants (Basel) 2021; 10:antiox10030360. [PMID: 33673604 PMCID: PMC7997171 DOI: 10.3390/antiox10030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The efficiency of coenzyme Q10 (CoQ10) supplements is closely associated with its content and stability in finished products. This study aimed to provide evidence-based information on the quality and stability of CoQ10 in dietary supplements and medicines. Therefore, ubiquinol, ubiquinone, and total CoQ10 contents were determined by a validated HPLC-UV method in 11 commercial products with defined or undefined CoQ10 form. Both forms were detected in almost all tested products, resulting in a total of CoQ10 content between 82% and 166% of the declared. Ubiquinol, ubiquinone, and total CoQ10 stability in these products were evaluated within three months of accelerated stability testing. Ubiquinol, which is recognized as the less stable form, was properly stabilized. Contrarily, ubiquinone degradation and/or reduction were observed during storage in almost all tested products. These reactions were also detected at ambient temperature within the products’ shelf-lives and confirmed in ubiquinone standard solutions. Ubiquinol, generated by ubiquinone reduction with vitamin C during soft-shell capsules’ storage, may lead to higher bioavailability and health outcomes. However, such conversion and inappropriate content in products, which specify ubiquinone, are unacceptable in terms of regulation. Therefore, proper CoQ10 stabilization through final formulations regardless of the used CoQ10 form is needed.
Collapse
|
25
|
López-Lluch G. Coenzyme Q homeostasis in aging: Response to non-genetic interventions. Free Radic Biol Med 2021; 164:285-302. [PMID: 33454314 DOI: 10.1016/j.freeradbiomed.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Coenzyme Q (CoQ) is a key component for many essential metabolic and antioxidant activities in cells in mitochondria and cell membranes. Mitochondrial dysfunction is one of the hallmarks of aging and age-related diseases. Deprivation of CoQ during aging can be the cause or the consequence of this mitochondrial dysfunction. In any case, it seems clear that aging-associated CoQ deprivation accelerates mitochondrial dysfunction in these diseases. Non-genetic prolongevity interventions, including CoQ dietary supplementation, can increase CoQ levels in mitochondria and cell membranes improving mitochondrial activity and delaying cell and tissue deterioration by oxidative damage. In this review, we discuss the importance of CoQ deprivation in aging and age-related diseases and the effect of prolongevity interventions on CoQ levels and synthesis and CoQ-dependent antioxidant activities.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología Del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
26
|
Gharibzahedi SMT, Smith B. Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: A review. Compr Rev Food Sci Food Saf 2021; 20:1250-1279. [PMID: 33506640 DOI: 10.1111/1541-4337.12699] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Encapsulation is a promising technological process enabling the protection of bioactive compounds against harsh storage, processing, and gastrointestinal tract (GIT) conditions. Legume proteins (LPs) are unique carriers that can efficiently encapsulate these unstable and highly reactive ingredients. Stable LPs-based microcapsules loaded with active ingredients can thus develop to be embedded into processed functional foods. The recent advances in micro- and nanoencapsulation process of an extensive span of bioactive health-promoting probiotics and chemical compounds such as marine and plant fatty acid-rich oils, carotenoid pigments, vitamins, flavors, essential oils, phenolic and anthocyanin-rich extracts, iron, and phytase by LPs as single wall materials were highlighted. A technical summary of the use of single LP-based carriers in designing innovative delivery systems for natural bioactive molecules and probiotics was made. The encapsulation mechanisms, encapsulation efficiency, physicochemical and thermal stability, as well as the release and absorption behavior of bioactives were comprehensively discussed. Protein isolates and concentrates of soy and pea were the most common LPs to encapsulate nutraceuticals and probiotics. The microencapsulation of probiotics using LPs improved bacteria survivability, storage stability, and tolerance in the in vitro GIT conditions. Moreover, homogenization and high-pressure pretreatments as well as enzymatic cross-linking of LPs significantly modify their structure and functionality to better encapsulate the bioactive core materials. LPs can be attractive delivery devices for the controlled release and increased bioaccessibility of the main food-grade bioactives.
Collapse
Affiliation(s)
| | - Brennan Smith
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
27
|
Biuomy AR, Oraby FSH, Khalifa EA, El-Sherif HA, Hussein J, Abdel-Latif Y. Hypoxia-induced oxidative stress in high altitude population: impact of coenzyme Q10 supplementation. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:621-626. [PMID: 34592077 DOI: 10.1515/jcim-2020-0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of coenzyme Q10 (CoQ10) supplementation on oxidative stress engendered from hypoxia in population live at high altitude. METHODS This is an intervention study in which 50 females of volunteers population-36 of them who live at high altitude compared with the placebo group (14 from the total population that live at sea level). Blood samples were collected in -anticoagulant tubes from control and high altitude before and after CoQ10 supplementation (150 mg/day for 2, 4 and 8 weeks). Plasma was separated and used for the determination of malondialdehyde (MDA), nitric oxide (NOx), total antioxidant capacity (TAC), paraoxonase (PON1) by spectrophotometer, CoQ10 and vitamin E by high performance liquid chromatography (HPLC). RESULTS Our results appeared that TAC, PON1, vitamin E and CoQ10 concentrations were significantly decreased in population at high altitude at base line compared to placebo group population at sea level. Whereas, administration of CoQ10 attenuated all measured parameters especially after eight weeks of administration. CONCLUSION We concluded that coenzyme Q10 supplement at a dose of 150 mg/day has a powerful effect in oxidative stress parameters and increased antioxidant parameters included vitamin E in population with hypoxia after 4 and 8 weeks. So that supplementation positively affects oxidative stress and is recommended CoQ10 supplementation in population who live at high altitude.
Collapse
Affiliation(s)
- Ayman R Biuomy
- Pharmacology Department, Faculty of Medicine, Taif University, Taif, Saudi Arabia
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - Fatma S H Oraby
- Biochemistry Department, Faculty of Medicine, Taif University, Taif, Saudi Arabia
- Medical Biochemistry Department, National Research Centre, Giza, Egypt
| | - Eman A Khalifa
- Parasitology Department, Faculty of Medicine, Taif University, Taif, Saudi Arabia
- Parasitology Department, Tanta University, Tanta, Egypt
| | - Hanaa A El-Sherif
- Medical Biochemistry Department, National Research Centre, Giza, Egypt
| | - Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Giza, Egypt
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, National Research Centre, Giza, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt
| |
Collapse
|
28
|
Pastor-Maldonado CJ, Suárez-Rivero JM, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Munuera-Cabeza M, Suárez-Carrillo A, Talaverón-Rey M, Sánchez-Alcázar JA. Coenzyme Q 10: Novel Formulations and Medical Trends. Int J Mol Sci 2020; 21:E8432. [PMID: 33182646 PMCID: PMC7697799 DOI: 10.3390/ijms21228432] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to shed light over the most recent advances in Coenzyme Q10 (CoQ10) applications as well as to provide detailed information about the functions of this versatile molecule, which have proven to be of great interest in the medical field. Traditionally, CoQ10 clinical use was based on its antioxidant properties; however, a wide range of highly interesting alternative functions have recently been discovered. In this line, CoQ10 has shown pain-alleviating properties in fibromyalgia patients, a membrane-stabilizing function, immune system enhancing ability, or a fundamental role for insulin sensitivity, apart from potentially beneficial properties for familial hypercholesterolemia patients. In brief, it shows a remarkable amount of functions in addition to those yet to be discovered. Despite its multiple therapeutic applications, CoQ10 is not commonly prescribed as a drug because of its low oral bioavailability, which compromises its efficacy. Hence, several formulations have been developed to face such inconvenience. These were initially designed as lipid nanoparticles for CoQ10 encapsulation and distribution through biological membranes and eventually evolved towards chemical modifications of the molecule to decrease its hydrophobicity. Some of the most promising formulations will also be discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III. Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.J.P.-M.); (J.M.S.-R.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.M.-C.); (A.S.-C.); (M.T.-R.)
| |
Collapse
|
29
|
El Agamy DF, Naguib YM. CoQ10 ameliorates monosodium glutamate-induced alteration in detrusor activity and responsiveness in rats via anti-inflammatory, anti-oxidant and channel inhibiting mechanisms. BMC Urol 2019; 19:103. [PMID: 31660941 PMCID: PMC6819562 DOI: 10.1186/s12894-019-0534-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background Competent detrusor muscles with coordinated contraction and relaxation are crucial for normal urinary bladder storage and emptying functions. Hence, detrusor instability, and subsequently bladder overactivity, may lead to undesirable outcomes including incontinence. Multiple mechanisms may underlie the pathogenesis of detrusor overactivity including inflammation and oxidative stress. Herein, we tested the possibility that CoQ10 may have a potential therapeutic role in detrusor overactivity. Methods Forty adult male Wistar albino rats weighing 100-150 g were used in the present study. Rats were divided (10/group) into control (receiving vehicles), monosodium glutamate (MSG)-treated (receiving 5 mg/kg MSG daily for 15 consecutive days), MSG + OO-treated (receiving concomitantly 5 mg/kg MSG and olive oil for 15 consecutive days), MSG + CoQ10-treated (receiving concomitantly 5 mg/kg MSG and 100 mg/kg CoQ10 daily for 15 consecutive days) groups. Results MSG resulted in significant increase in bladder weight and sensitised the bladder smooth muscles to acetylcholine. MSG has also resulted in significant increase in bladder TNF-α, IL-6, malondialdehyde, nerve growth factor and connexion 43, with significant decrease in the antioxidant enzymes superoxide dismutase and catalase. Olive oil had no effect on MSG induced alterations of different parameters. Treatment with CoQ10 has resulted in a significant restoration of all the altered parameters. Conclusion Taken together, our results suggest that CoQ10 antagonizes the deleterious effects of MSG on detrusor activity. We propose that CoQ10 could be a therapeutic strategy targeting urinary bladder dysfunction.
Collapse
Affiliation(s)
- Dalia F El Agamy
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Yahya M Naguib
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
30
|
Zozina VI, Melnikov ES, Goroshko OA, Krasnykh LM, Kukes VG. Analytical Method Development for Coq10 Determination in Human Plasma Using HPLC-UV and HPLC/MS/MS. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412915666190328215854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:CoQ10 is a very important compound which is found in every tissue of our organism. It participates in the processes of cellular respiration and ATP production. Also, it acts as a strong antioxidant. In an organism, it is represented in two forms: oxidized (ubiquinone) and reduced (ubiquinol). Its low blood level may be a signal for a list of diseases.Materials and Methods:This study developed and compared two methods of CoQ10 determination in order to find the fastest and the most convenient one. The first one involved HPLC-UV with the wavelength of ubiquinone determination equivalent to 290 nm and 275 nm for ubiquinol, respectively. The second one was carried out on an HPLC/MS/MS system utilizing Electrospray Ionization (ESI) and triple quadrupole mass analyzer for quantification in MRM positive mode.Results:Two methods of ubiquinol and ubiquinone determination were developed and validated. HPLC-UV included sample preparation based on liquid-liquid extraction. The LLOQ was 0.50 µg/ml. HPLC-MS/MS method sample preparation was based on protein precipitation. The LLOQ was 0.10 µg/ml.Conclusion:During the investigation, a conclusion was drawn that the HPLC-UV method is too insensitive for simultaneous determination of ubiquinol and ubiquinone. Furthermore, ubiquinol is very unstable and during exogenous factors’ exposure, it rapidly turns into ubiquinone. While, the HPLCMS/ MS method turned out to be sensitive, selective, rapid as it provides an accurate determination of both forms of CoQ10 in spiked human plasma.
Collapse
Affiliation(s)
- Vladlena I. Zozina
- Department of Clinical Pharmacology and Propaedeutics of Internal diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Evgeniy S. Melnikov
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University); Department of Health I. V. Davydovsky Municipal Clinical Hospital, Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medical Products” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Olga A. Goroshko
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medical Products” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Liudmila M. Krasnykh
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medical Products” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Vladimir G. Kukes
- Department of Clinical Pharmacology and Propaedeutics of Internal diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
31
|
Kloer HU, Belardinelli R, Ruchong O, Rosenfeldt F. Combining Ubiquinol With a Statin May Benefit Hypercholesterolaemic Patients With Chronic Heart Failure. Heart Lung Circ 2019; 29:188-195. [PMID: 31668616 DOI: 10.1016/j.hlc.2019.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 07/01/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is one of the most common causes of death in Western society. Recent results underscore the utility of coenzyme Q10 (CoQ10) addition to standard medications in order to reduce mortality and to improve quality of life and functional capacity in chronic heart failure (CHF). The rationale for CoQ10 supplementation in CHF is two-fold. One is the well-known role of CoQ10 in myocardial bioenergetics, and the second is its antioxidant property. Redox balance is also improved by oral supplementation of CoQ10, and this effect contributes to enhanced endothelium-dependent relaxation. Previous reports have shown that CoQ10 concentration is decreased in myocardial tissue in CHF and by statin therapy, and the greater the CoQ10 deficiency the more severe is the cardiocirculatory impairment. In patients with CHF and hypercholesterolaemia being treated with statins, the combination of CoQ10 with a statin may be useful for two reasons: decreasing skeletal muscle injury and improving myocardial function. Ubiquinol, the active reduced form of CoQ10, presents higher bioavailability than the oxidised form ubiquinone, and should be the preferred form to be added to a statin. The combination ezetimibe/simvastatin may have advantages over single statins. Since ezetimibe reduces absorption of cholesterol and does not affect CoQ10 synthesis in the liver, the impact of this combination on CoQ10 tissue levels will be much less than that of high dose statin monotherapy at any target low density lipoprotein-cholesterol (LDL-C) level to be reached. This consideration makes the ezetimibe/statin combination the ideal LDL-lowering agent to be combined with ubiquinol in CHF patients. However, particular caution is advisable with the use of strategies of extreme lowering of cholesterol that may negatively impact on myocardial function. All in all there is a strong case for considering co-administration of ubiquinol with statin therapy in patients with depressed or borderline myocardial function.
Collapse
Affiliation(s)
- Hans-Ulrich Kloer
- Emer, Third Medical Department, UKGM, University of Giessen, Germany
| | | | - Ou Ruchong
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia; Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Vic, Australia
| | - Franklin Rosenfeldt
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia; Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Vic, Australia.
| |
Collapse
|
32
|
Omidi G, Karimi SA, Rezvani-Kamran A, Monsef A, Shahidi S, Komaki A. Effect of coenzyme Q10 supplementation on diabetes induced memory deficits in rats. Metab Brain Dis 2019; 34:833-840. [PMID: 30848472 DOI: 10.1007/s11011-019-00402-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
The main objective of current work was to determine the effects of low and high dose supplementation with coenzyme Q10 (CoQ10) on spatial learning and memory in rats with streptozotocin (STZ)-induced diabetes. Male Wistar rats (weighing 220 ± 10) were randomly divided into six groups: (i) Control (Con, n = 8); (ii) Control+ Low dose of CoQ10 (100 mg/kg) (CLD, n = 10); (iii) Control+ high dose of CoQ10 (600 mg/kg) (CHD, n = 10); (iv) Diabetic (D, n = 10); (v) Diabetic + Low dose of CoQ10 (100 mg/kg) (DLD, n = 10); (vi) Diabetic + high dose of CoQ10 (600 mg/kg) (DHD, n = 10). Diabetes was induced by a single intraperitoneal injection of 50 mg/kg STZ. CoQ10 was administered intragastrically by gavage once a day for 90 days. After 90 days, Morris water maze (MWM) task was used to evaluate the spatial learning and memory in rats. Diabetic animals showed a slower rate of acquisition with respect to the control animals [F (1, 51) = 92.81, P < 0.0001, two-way ANOVA]. High dose (but no low dose) supplementation with CoQ10 could attenuate deteriorative effect of diabetes on memory acquisition. Diabetic animals which received CoQ10 (600 mg/kg) show a considerable decrease in escape latency and traveled distance compared to diabetic animals (p < 0.05, two-way ANOVA,). The present study has shown that low dose supplementation with CoQ10 in diabetic rats failed to improve deficits in cognitive function but high dose supplementation with CoQ10 reversed diabetes-related declines in spatial learning.
Collapse
Affiliation(s)
- Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirreza Monsef
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Neuroscience, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran.
| |
Collapse
|
33
|
Abstract
The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS) production. Oxidative damage to macromolecules including DNA and electron transport proteins likely increases ROS production resulting in further damage. This oxidative theory of cell aging is supported by the fact that diseases associated with the aging process are marked by increased oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and disease or whether it is an inconsequential cellular response to aging. Despite the current lay public interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10 supplementation as an anti-aging anti-oxidant therapy.
Collapse
|
34
|
Nyariki JN, Ochola LA, Jillani NE, Nyamweya NO, Amwayi PE, Yole DS, Azonvide L, Isaac AO. Oral administration of Coenzyme Q 10 protects mice against oxidative stress and neuro-inflammation during experimental cerebral malaria. Parasitol Int 2019; 71:106-120. [PMID: 30981893 DOI: 10.1016/j.parint.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
In animal model of experimental cerebral malaria (ECM), the genesis of neuropathology is associated with oxidative stress and inflammatory mediators. There is limited progress in the development of new approaches to the treatment of cerebral malaria. Here, we tested whether oral supplementation of Coenzyme Q10 (CoQ10) would offer protection against oxidative stress and brain associated inflammation following Plasmodium berghei ANKA (PbA) infection in C57BL/6 J mouse model. For this purpose, one group of C57BL/6 mice was used as control; second group of mice were orally supplemented with 200 mg/kg CoQ10 and then infected with PbA and the third group was PbA infected alone. Clinical, biochemical, immunoblot and immunological features of ECM was monitored. We observed that oral administration of CoQ10 for 1 month and after PbA infection was able to improve survival, significantly reduced oedema, TNF-α and MIP-1β gene expression in brain samples in PbA infected mice. The result also shows the ability of CoQ10 to reduce cholesterol and triglycerides lipids, levels of matrix metalloproteinases-9, angiopoietin-2 and angiopoietin-1 in the brain. In addition, CoQ10 was very effective in decreasing NF-κB phosphorylation. Furthermore, CoQ10 supplementation abrogated Malondialdehyde, and 8-OHDG and restored cellular glutathione. These results constitute the first demonstration that oral supplementation of CoQ10 can protect mice against PbA induced oxidative stress and neuro-inflammation usually observed in ECM. Thus, the need to study CoQ10 as a candidate of antioxidant and immunomodulatory molecule in ECM and testing it in clinical studies either alone or in combination with antimalaria regimens to provide insight into a potential translatable therapy.
Collapse
Affiliation(s)
- James N Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya.
| | - Lucy A Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Ngalla E Jillani
- Department of Non-communicable diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Nemwel O Nyamweya
- Departmwent of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, Kenya
| | - Peris E Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Dorcas S Yole
- School of Biological and Life Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Laurent Azonvide
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alfred Orina Isaac
- School of Health Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| |
Collapse
|
35
|
Modulation of Antioxidant Potential with Coenzyme Q10 Suppressed Invasion of Temozolomide-Resistant Rat Glioma In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3061607. [PMID: 30984333 PMCID: PMC6432727 DOI: 10.1155/2019/3061607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
The main reasons for the inefficiency of standard glioblastoma (GBM) therapy are the occurrence of chemoresistance and the invasion of GBM cells into surrounding brain tissues. New therapeutic approaches obstructing these processes may provide substantial survival improvements. The purpose of this study was to assess the potential of lipophilic antioxidant coenzyme Q10 (CoQ10) as a scavenger of reactive oxygen species (ROS) to increase sensitivity to temozolomide (TMZ) and suppress glioma cell invasion. To that end, we used a previously established TMZ-resistant RC6 rat glioma cell line, characterized by increased production of ROS, altered antioxidative capacity, and high invasion potential. CoQ10 in combination with TMZ exerted a synergistic antiproliferative effect. These results were confirmed in a 3D model of microfluidic devices showing that the CoQ10 and TMZ combination is more cytotoxic to RC6 cells than TMZ monotherapy. In addition, cotreatment with TMZ increased expression of mitochondrial antioxidant enzymes in RC6 cells. The anti-invasive potential of the combined treatment was shown by gelatin degradation, Matrigel invasion, and 3D spheroid invasion assays as well as in animal models. Inhibition of MMP9 gene expression as well as decreased N-cadherin and vimentin protein expression implied that CoQ10 can suppress invasiveness and the epithelial to mesenchymal transition in RC6 cells. Therefore, our data provide evidences in favor of CoQ10 supplementation to standard GBM treatment due to its potential to inhibit GBM invasion through modulation of the antioxidant capacity.
Collapse
|
36
|
Aghaei M, Motallebnezhad M, Ghorghanlu S, Jabbari A, Enayati A, Rajaei M, Pourabouk M, Moradi A, Alizadeh AM, Khori V. Targeting autophagy in cardiac ischemia/reperfusion injury: A novel therapeutic strategy. J Cell Physiol 2019; 234:16768-16778. [PMID: 30807647 DOI: 10.1002/jcp.28345] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of morbidity worldwide. Myocardial reperfusion is known as an effective therapeutic choice against AMI. However, reperfusion of blood flow induces ischemia/reperfusion (I/R) injury through different complex processes including ion accumulation, disruption of mitochondrial membrane potential, the formation of reactive oxygen species, and so forth. One of the processes that gets activated in response to I/R injury is autophagy. Indeed, autophagy acts as a "double-edged sword" in the pathology of myocardial I/R injury and there is a controversy about autophagy being beneficial or detrimental. On the basis of the autophagy effect and regulation on myocardial I/R injury, many studies targeted it as a therapeutic strategy. In this review, we discuss the role of autophagy in I/R injury and its targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Mehrdad Aghaei
- Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Motallebnezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Ghorghanlu
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Jabbari
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Pharmacognosy, Faculty of Pharmacy and Medicinal Plants Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rajaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mona Pourabouk
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Moradi
- Department of Physiology, Medical School, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
37
|
Ramezani M, Sahraei Z, Simani L, Heydari K, Shahidi F. Coenzyme Q10 supplementation in acute ischemic stroke: Is it beneficial in short-term administration? Nutr Neurosci 2018; 23:640-645. [PMID: 30404563 DOI: 10.1080/1028415x.2018.1541269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Backgrounds and aims: Clinical studies demonstrated that the efficacy of Coenzyme Q10 (CoQ10) as an adjuvant therapeutic agent in several neurological diseases such as Parkinson disease (PD), Huntington disease (HD), and migraine. The purpose of this study is to investigate oxidative stress effects, antioxidant enzymes activity, neuroinflammatory markers levels, and neurological outcome in acute ischemic stroke (AIS) patients following administration of CoQ10 (300 mg/day). Methods: Patients with AIS (n = 60) were randomly assigned to a placebo group (wheat starch, n = 30) or CoQ10-supplemented group (300 mg/day, n = 30). The intervention was administered for 4 weeks. Serum CoQ10 concentration, malondialdehyde (MDA), superoxide dismutase (SOD) activity, glial fibrillary acidic protein (GFAP) levels as primary outcomes and National Institute of Health Stroke Scale (NIHSS), Modified Ranking Scale (MRS), and Mini-Mental State Examination (MMSE) as secondary outcome were measured at the both beginning and end of the study. Results: Forty-four subjects with AIS completed the intervention study. A significant increase in CoQ10 level was observed in the supplement-treated group compared with placebo group (mean difference = 26.05 ± 26.63 ng/ml, 14.12 ± 14.69 ng/ml, respectively; P = 0.01), moreover CoQ10 supplementation improved NIHSS and MMSE scores significantly (P = 0.05, P = 0.03 respectively). but there were no statistically significant differences in MRS score, MDA, SOD, and GFAP levels between the two groups. Conclusions: CoQ10 probably due to low dose and short duration of supplementation, no favorable effects on MDA level, SOD activity and GFAP level.
Collapse
Affiliation(s)
- Mahtab Ramezani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sahraei
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Simani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Heydari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shahidi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Orlando P, Silvestri S, Galeazzi R, Antonicelli R, Marcheggiani F, Cirilli I, Bacchetti T, Tiano L. Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes. Redox Rep 2018; 23:136-145. [PMID: 29734881 PMCID: PMC6748686 DOI: 10.1080/13510002.2018.1472924] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives: Physical exercise significantly impacts the biochemistry
of the organism. Ubiquinone is a key component of the mitochondrial respiratory
chain and ubiquinol, its reduced and active form, is an emerging molecule in
sport nutrition. The aim of this study was to evaluate the effect of ubiquinol
supplementation on biochemical and oxidative stress indexes after an intense
bout of exercise. Methods: 21 male young athletes (26 + 5 years of
age) were randomized in two groups according to a double blind cross-over study,
either supplemented with ubiquinol (200 mg/day) or placebo for 1 month.
Blood was withdrawn before and after a single bout of intense exercise (40 min
run at 85% maxHR). Physical performance, hematochemical parameters,
ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS)
level, mitochondrial membrane depolarization, paraoxonase activity and oxidative
DNA damage were analyzed. Results: A single bout of intense exercise produced a significant
increase in most hematochemical indexes, in particular CK and Mb while, on the
contrary, normalized coenzyme Q10 plasma content decreased
significantly in all subjects. Ubiquinol supplementation prevented
exercise-induced CoQ deprivation and decrease in paraoxonase activity. Moreover
at a cellular level, in peripheral blood mononuclear cells, ubiquinol
supplementation was associated with a significant decrease in cytosolic ROS
while mitochondrial membrane potential and oxidative DNA damage remained
unchanged. Discussion: Data highlights a very rapid dynamic of CoQ depletion
following intense exercise underlying an increased demand by the organism.
Ubiquinol supplementation minimized exercise-induced depletion and enhanced
plasma and cellular antioxidant levels but it was not able to improve physical
performance indexes or markers of muscular damage.
Collapse
Affiliation(s)
- Patrick Orlando
- a Department of Life and Environmental Sciences , Polytechnic University of Marche , Ancona , Italy
| | - Sonia Silvestri
- a Department of Life and Environmental Sciences , Polytechnic University of Marche , Ancona , Italy
| | - Roberta Galeazzi
- b Clinical and Molecular Diagnostic Laboratory , INRCA-IRCCS National Institute , Ancona , Italy
| | - Roberto Antonicelli
- c Department of Cardiology , INRCA-IRCCS National Institute , Ancona , Italy
| | - Fabio Marcheggiani
- d Department of Clinical and Dental Sciences , Polytechnic University of Marche , Ancona , Italy
| | - Ilenia Cirilli
- d Department of Clinical and Dental Sciences , Polytechnic University of Marche , Ancona , Italy
| | - Tiziana Bacchetti
- a Department of Life and Environmental Sciences , Polytechnic University of Marche , Ancona , Italy
| | - Luca Tiano
- a Department of Life and Environmental Sciences , Polytechnic University of Marche , Ancona , Italy
| |
Collapse
|
39
|
Age-Dependent Loss of Mitochondrial Function in Epithelial Tissue Can Be Reversed by Coenzyme Q 10. J Aging Res 2018; 2018:6354680. [PMID: 30254763 PMCID: PMC6145312 DOI: 10.1155/2018/6354680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022] Open
Abstract
The process of aging is characterized by the increase of age-associated disorders as well as severe diseases. Due to their role in the oxidative phosphorylation and thus the production of ATP which is crucial for many cellular processes, one reason for this could be found in the mitochondria. The accumulation of reactive oxygen species damaged mitochondrial DNA and proteins can induce mitochondrial dysfunction within the electron transport chain. According to the “mitochondrial theory of aging,” understanding the impact of harmful external influences on mitochondrial function is therefore essential for a better view on aging in general, but the measurement of mitochondrial respiration in skin cells from cell cultures cannot completely reflect the real situation in skin. Here, we describe a new method to measure the mitochondrial respiratory parameters in epithelial tissue derived from human skin biopsies using a XF24 extracellular flux analyzer to evaluate the effect of coenzyme Q10. We observed a decrease in mitochondrial respiration and ATP production with donor age corresponding to the “mitochondrial theory of aging.” For the first time ex vivo in human epidermis, we could show also a regeneration of mitochondrial respiratory parameters if the reduced form of coenzyme Q10, ubiquinol, was administered. In conclusion, an age-related decrease in mitochondrial respiration and ATP production was confirmed. Likewise, an increase in the respiratory parameters by the addition of coenzyme Q10 could also be shown. The fact that there is a significant effect of administered coenzyme Q10 on the respiratory parameters leads to the assumption that this is mainly caused by an increase in the electron transport chain. This method offers the possibility of testing age-dependent effects of various substances and their influence on the mitochondrial respiration parameters in human epithelial tissue.
Collapse
|
40
|
Povarova OV, Balatsky AV, Gusakov VS, Medvedev OS. Effect of Coenzyme Q10 on Expression of UbiAd1 Gene in Rat Model of Local Cerebral Ischemia. Bull Exp Biol Med 2018; 165:69-71. [PMID: 29797120 DOI: 10.1007/s10517-018-4101-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 11/26/2022]
Abstract
The study examined the effect of endogenous lipid-soluble antioxidant coenzyme Q10 on the expression of UbiA gene of prenyltransferase domain-containing protein 1 (UbiAd1) involved in synthesis of vitamin K2 (and probably of coenzyme Q10) on a rat model of ischemic stroke provoked by ligation of the middle cerebral artery in the left hemisphere. Ischemia enhanced expression of mRNA of UbiAd1 gene in both cerebral hemispheres, but the effect was significant only in the contralateral one. The study revealed no effect of intraperitoneal injection of coenzyme Q10 (30 mg/kg) on ischemia-produced elevation of mRNA of UbiAd1 gene. Further studies are needed to assess possible neuroprotective effects of antioxidant coenzyme Q10.
Collapse
Affiliation(s)
- O V Povarova
- Faculty of Fundamental Medicine, Moscow, Russia.
| | - A V Balatsky
- Medical Research and Educational Center, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - V S Gusakov
- Faculty of Fundamental Medicine, Moscow, Russia
| | | |
Collapse
|
41
|
Coenzyme Q10 Regulates Antioxidative Stress and Autophagy in Acute Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9863181. [PMID: 29348792 PMCID: PMC5733971 DOI: 10.1155/2017/9863181] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
Background Oxidative stress and autophagy both play key roles in continuous cardiomyocyte death and cardiac dysfunction after reperfusion therapy for acute myocardial ischemia-reperfusion injury. Coenzyme Q10 (CQ10), which is a fat-soluble quinone antioxidant, is involved in the pathophysiological processes of neurodegenerative diseases, cancer, diabetes, heart failure, and other diseases. Our objective was to determine if, and by what mechanism, CQ10 can ameliorate acute myocardial ischemia-reperfusion injury and improve heart function. Methods and Results Fat-soluble CQ10 in soybean oil solvent was preconditioned in rats with acute myocardial ischemia-reperfusion injury by intraperitoneal injection. Oxidant and antioxidant levels were compared between the preconditioned and control groups. Autophagy was measured by Western blotting analysis of autophagy proteins. Proapoptotic proteins and immunofluorescence were used to assess cell apoptosis. Infarct size was determined by triphenyl tetrazolium chloride (TTC) staining and Evans blue staining and visualized myocardial pathology by tissue staining. Finally, we assessed cardiac function by electrocardiography (ECG) and hemodynamics. Conclusions This study reveals that CQ10 preconditioning regulates antioxidant levels and the oxidant balance, enhances autophagy, reduces myocardial apoptosis and death, and improves cardiac function in rats with acute ischemia-reperfusion injury. These results imply that CQ10 protects against acute myocardial ischemia-reperfusion injury via the antioxidative stress and autophagy pathways.
Collapse
|
42
|
Combination Therapy With Coenzyme Q10 and Trimetazidine in Patients With Acute Viral Myocarditis. J Cardiovasc Pharmacol 2017; 68:150-4. [PMID: 27046339 DOI: 10.1097/fjc.0000000000000396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Acute viral myocarditis is an inflammatory disease with global impact. Although it may resolve spontaneously, its course is not easily predicted, and there is a paucity of specific treatment options available with proven efficacy. Coenzyme Q10 (CQ10) and trimetazidine possess antioxidant and antiinflammatory effects. METHODS We examined the therapeutic efficacy of these agents in acute viral myocarditis both individually and in combination. Patients were blinded and randomized to receive CQ10 (n = 42), trimetazidine (n = 39), or CQ10 + trimetazidine (n = 43) treatment. RESULTS Serum inflammatory and oxidative stress marker and myocardial enzyme levels, and heart function were measured. Both CQ10 and trimetazidine decreased inflammatory and oxidative stress biomarker levels compared with baseline measurements. However, combination therapy with CQ10 and trimetazidine showed a significantly more powerful effect not only on markers of inflammation and oxidative stress, but also on left ventricular systolic function and troponin, compared with either treatment alone. CONCLUSION This study confirmed the beneficial effect of CQ10 and trimetazidine individually, but demonstrated a superior effect of combining the therapies on cardiac left ventricular ejection fraction, and biochemical markers of myocardial damage in acute viral myocarditis.
Collapse
|
43
|
Zheng D, Cui C, Yu M, Li X, Wang L, Chen X, Lin Y. Coenzyme Q10 promotes osteoblast proliferation and differentiation and protects against ovariectomy-induced osteoporosis. Mol Med Rep 2017; 17:400-407. [PMID: 29115467 DOI: 10.3892/mmr.2017.7907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/08/2017] [Indexed: 11/06/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a fat‑soluble vitamin‑like substance used for the treatment of a variety of disorders, including osteoporosis. The exact mechanism underlying CoQ10‑mediated protection against osteoporosis remains to be elucidated. The present study aimed to evaluate the effect of CoQ10 on osteoblastic cell proliferation and differentiation, and therapeutic effects on a rat model of osteoporosis. Following treatment with different concentrations of CoQ10, cell proliferation and differentiation of rat bone marrow stromal cells (BMSCs), and expression of osteoblastogenic markers, were measured. Rats with osteoporosis subjected to ovariectomy (OVX) were treated with different concentrations of CoQ10. Serum levels of estrogen and bone metabolism markers were measured. Micro computed tomography scans were used to analyze morphological changes in bones. In addition, mRNA and protein levels of phosphatidylinositol 3,4,5‑trisphosphate 3‑phosphatase and dual‑specificity protein phosphatase PTEN (PTEN)/phosphatidylinositol 4,5‑bisphosphate 3‑kinase (PI3K)/RAC‑alpha serine/threonine‑protein kinase(AKT), were determined. CoQ10 significantly increased the proliferation and osteogenic differentiation of BMSCs in a dose‑dependent manner, with an increased expression of osteogenic markers. CoQ10 significantly decreased bone resorption but exhibited no effect on serum E2 levels in vivo. CoQ10 markedly enhanced bone formation. Furthermore, the abundance of p‑PI3K and p‑AKT increased while PTEN levels decreased in a dose‑dependent manner following administration of CoQ10. CoQ10 stimulates the proliferation and differentiation of BMSCs and is effective for the treatment of OVX‑induced osteoporosis in rats. The above effects of CoQ10 may be mediated by activation of the PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Delu Zheng
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Chenli Cui
- Department of Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Meng Yu
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiang Li
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Lu Wang
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xinyan Chen
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yichen Lin
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
44
|
The Combination of Physical Exercise with Muscle-Directed Antioxidants to Counteract Sarcopenia: A Biomedical Rationale for Pleiotropic Treatment with Creatine and Coenzyme Q10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7083049. [PMID: 29123615 PMCID: PMC5632475 DOI: 10.1155/2017/7083049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
Sarcopenia represents an increasing public health risk due to the rapid aging of the world's population. It is characterized by both low muscle mass and function and is associated with mobility disorders, increased risk of falls and fractures, loss of independence, disabilities, and increased risk of death. Despite the urgency of the problem, the development of treatments for sarcopenia has lagged. Increased reactive oxygen species (ROS) production and decreased antioxidant (AO) defences seem to be important factors contributing to muscle impairment. Studies have been conducted to verify whether physical exercise and/or AOs could prevent and/or delay sarcopenia through a normalization of the etiologically relevant ROS imbalance. Despite the strong rationale, the results obtained were contradictory, particularly with regard to the effects of the tested AOs. A possible explanation might be that not all the agents included in the general heading of "AOs" could fulfill the requisites to counteract the complex series of events causing/accelerating sarcopenia: the combination of the muscle-directed antioxidants creatine and coenzyme Q10 with physical exercise as a biomedical rationale for pleiotropic prevention and/or treatment of sarcopenia is discussed.
Collapse
|
45
|
Neergheen V, Chalasani A, Wainwright L, Yubero D, Montero R, Artuch R, Hargreaves I. Coenzyme Q10 in the Treatment of Mitochondrial Disease. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817707771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Viruna Neergheen
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Annapurna Chalasani
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Luke Wainwright
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Delia Yubero
- Clinical Biochemistry department, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Raquel Montero
- Clinical Biochemistry department, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry department, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Iain Hargreaves
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
46
|
Zhai J, Bo Y, Lu Y, Liu C, Zhang L. Effects of Coenzyme Q10 on Markers of Inflammation: A Systematic Review and Meta-Analysis. PLoS One 2017; 12:e0170172. [PMID: 28125601 PMCID: PMC5268485 DOI: 10.1371/journal.pone.0170172] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022] Open
Abstract
Background/Objective Chronic inflammation contributes to the onset and development of metabolic diseases. Clinical evidence has suggested that coenzyme Q10 (CoQ10) has some effects on inflammatory markers. However, these results are equivocal. The aim of this systematic review was to assess the effects of CoQ10 on serum levels of inflammatory markers in people with metabolic diseases. Methods Electronic databases were searched up to February 2016 for randomized controlled trials (RCTs). The outcome parameters were related to inflammatory factors, including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and C reactive protein (CRP). RevMan software was used for meta-analysis. Meta-regression analysis, Egger line regression test and Begg rank correlation test were performed by STATA software. Results Nine trials involving 428 subjects were included in this meta-analysis. The results showed that compared with control group, CoQ10 supplementation has significantly improved the serum level of CoQ10 by 1.17μg/ml [MD = 1.17, 95% CI (0.47 to 1.87) μg/ml, I2 = 94%]. Meanwhile, it has significantly decreased TNF-α by 0.45 pg/ml [MD = -0.45, 95% CI (-0.67 to -0.24) pg/ml, I2 = 0%]. No significant difference was observed between CoQ10 and placebo with regard to CRP [MD = -0.21, 95% CI (-0.60 to 0.17) mg/L, I2 = 21%] and IL-6 [MD = -0.89, 95% CI (-1.95 to 0.16) pg/ml, I2 = 84%]. Conclusions CoQ10 supplementation may partly improve the process of inflammatory state. The effects of CoQ10 on inflammation should be further investigated by conducting larger sample size and well-defined trials of long enough duration.
Collapse
Affiliation(s)
- Junya Zhai
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University. Chengdu, China
| | - Yacong Bo
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Lu
- Department of Surgery, Shanghai Ninth People’s Hospital (North), Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunli Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University. Chengdu, China
- * E-mail:
| |
Collapse
|
47
|
Qi F, Zou L, Jiang X, Cai S, Zhang M, Zhao X, Huang J. Integration of heterologous 4-hydroxybenzoic acid transport proteins in Rhodobacter sphaeroides for enhancement of coenzyme Q10production. RSC Adv 2017. [DOI: 10.1039/c7ra02346d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work provides a novel genetic engineering strategy that improves uptake of extracellular 4-hydroxybenzoic acid by heterologously expressing the membrane transport protein PcaK inR. sphaeroidesfor enhancement of CoQ10production.
Collapse
Affiliation(s)
- Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education
- College of Life Sciences
- Fujian Normal University
- Fuzhou 350117
- China
| | - Limei Zou
- Engineering Research Center of Industrial Microbiology of Ministry of Education
- College of Life Sciences
- Fujian Normal University
- Fuzhou 350117
- China
| | - Xianzhang Jiang
- Engineering Research Center of Industrial Microbiology of Ministry of Education
- College of Life Sciences
- Fujian Normal University
- Fuzhou 350117
- China
| | - Shaoli Cai
- Biomedical Research Center of South China
- Fujian Normal University
- Fuzhou 350117
- China
| | - Mingliang Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education
- College of Life Sciences
- Fujian Normal University
- Fuzhou 350117
- China
| | - Xuebing Zhao
- Institute of Applied Chemistry
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education
- College of Life Sciences
- Fujian Normal University
- Fuzhou 350117
- China
| |
Collapse
|
48
|
|
49
|
Özalp B, Elbey H, Aydın H, Tekkesin MS, Uzun H. The effect of coenzyme Q10 on venous ischemia reperfusion injury. J Surg Res 2016; 204:304-310. [DOI: 10.1016/j.jss.2016.04.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 11/15/2022]
|
50
|
Gluba-Brzozka A, Franczyk B, Toth PP, Rysz J, Banach M. Molecular mechanisms of statin intolerance. Arch Med Sci 2016; 12:645-58. [PMID: 27279860 PMCID: PMC4889699 DOI: 10.5114/aoms.2016.59938] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 01/13/2023] Open
Abstract
Statins reduce cardiovascular morbidity and mortality in primary and secondary prevention. Despite their efficacy, many persons are unable to tolerate statins due to adverse events such as hepatotoxicity and myalgia/myopathy. In the case of most patients, it seems that mild-to-moderate abnormalities in liver and muscle enzymes are not serious adverse effects and do not outweigh the benefits of coronary heart disease risk reduction. The risk for mortality or permanent organ damage ascribed to statin use is very small and limited to cases of myopathy and rhabdomyolysis. Statin-induced muscle-related adverse events comprise a highly heterogeneous clinical disorder with numerous, complex etiologies and a variety of genetic backgrounds. Every patient who presents with statin-related side effects cannot undergo the type of exhaustive molecular characterization that would include all of these mechanisms. Frequently the only solution is to either discontinue statin therapy/reduce the dose or attempt intermittent dosing strategies at a low dose.
Collapse
Affiliation(s)
- Anna Gluba-Brzozka
- Department of Nephrology, Hypertension and Family Medicine, WAM University Hospital, Lodz, Poland
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Lodz, Poland
| | - Peter P. Toth
- CGH Medical Center, Sterling, Illinois, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacek Rysz
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|