1
|
Bouten CVC, Cheng C, Vermue IM, Gawlitta D, Passier R. Cardiovascular tissue engineering and regeneration: A plead for further knowledge convergence. Tissue Eng Part A 2022; 28:525-541. [PMID: 35382591 DOI: 10.1089/ten.tea.2021.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular tissue engineering and regeneration strive to provide long-term, effective solutions for a growing group of patients in need of myocardial repair, vascular (access) grafts, heart valves, and regeneration of organ microcirculation. In the past two decades, ongoing convergence of disciplines and multidisciplinary collaborations between cardiothoracic surgeons, cardiologists, bioengineers, material scientists, and cell biologists have resulted in better understanding of the problems at hand and novel regenerative approaches. As a side effect, however, the field has become strongly organized and differentiated around topical areas at risk of reinvention of technologies and repetition of approaches and across the areas. A better integration of knowledge and technologies from the individual topical areas and regenerative approaches and technologies may pave the way towards faster and more effective treatments to cure the cardiovascular system. This review summarizes the evolution of research and regenerative approaches in the areas of myocardial regeneration, heart valve and vascular tissue engineering, and regeneration of microcirculations and discusses previous and potential future integration of these individual areas and developed technologies for improved clinical impact. Finally, it provides a perspective on the further integration of research organization, knowledge implementation, and valorization as a contributor to advancing cardiovascular tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ijsbrand M Vermue
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center, Utrecht, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Taghizadeh B, Ghavami L, Derakhshankhah H, Zangene E, Razmi M, Jaymand M, Zarrintaj P, Zarghami N, Jaafari MR, Moallem Shahri M, Moghaddasian A, Tayebi L, Izadi Z. Biomaterials in Valvular Heart Diseases. Front Bioeng Biotechnol 2020; 8:529244. [PMID: 33425862 PMCID: PMC7793990 DOI: 10.3389/fbioe.2020.529244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023] Open
Abstract
Valvular heart disease (VHD) occurs as the result of valvular malfunction, which can greatly reduce patient's quality of life and if left untreated may lead to death. Different treatment regiments are available for management of this defect, which can be helpful in reducing the symptoms. The global commitment to reduce VHD-related mortality rates has enhanced the need for new therapeutic approaches. During the past decade, development of innovative pharmacological and surgical approaches have dramatically improved the quality of life for VHD patients, yet the search for low cost, more effective, and less invasive approaches is ongoing. The gold standard approach for VHD management is to replace or repair the injured valvular tissue with natural or synthetic biomaterials. Application of these biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of this type of heart disease. The focus of the present review is the current use of different types of biomaterials in treatment of valvular heart diseases.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Ghavami
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Moallem Shahri
- Cardiology Department, Taleghani Trauma Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, United States
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
3
|
Chester AH, Grande-Allen KJ. Which Biological Properties of Heart Valves Are Relevant to Tissue Engineering? Front Cardiovasc Med 2020; 7:63. [PMID: 32373630 PMCID: PMC7186395 DOI: 10.3389/fcvm.2020.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Over the last 20 years, the designs of tissue engineered heart valves have evolved considerably. An initial focus on replicating the mechanical and structural features of semilunar valves has expanded to endeavors to mimic the biological behavior of heart valve cells as well. Studies on the biology of heart valves have shown that the function and durability of native valves is underpinned by complex interactions between the valve cells, the extracellular matrix, and the mechanical environment in which heart valves function. The ability of valve interstitial cells to synthesize extracellular matrix proteins and remodeling enzymes and the protective mediators released by endothelial cells are key factors in the homeostasis of valve function. The extracellular matrix provides the mechanical strength and flexibility required for the valve to function, as well as communicating with the cells that are bound within. There are a number of regulatory mechanisms that influence valve function, which include neuronal mechanisms and the tight regulation of growth and angiogenic factors. Together, studies into valve biology have provided a blueprint for what a tissue engineered valve would need to be capable of, in order to truly match the function of the native valve. This review addresses the biological functions of heart valve cells, in addition to the influence of the cells' environment on this behavior and examines how well these functions are addressed within the current strategies for tissue engineering heart valves in vitro, in vivo, and in situ.
Collapse
Affiliation(s)
- Adrian H Chester
- Heart Science Centre, The Magdi Yacoub Institute, Harefield, United Kingdom
| | | |
Collapse
|
4
|
Li RL, Russ J, Paschalides C, Ferrari G, Waisman H, Kysar JW, Kalfa D. Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing. Biomaterials 2019; 225:119493. [PMID: 31569017 PMCID: PMC6948849 DOI: 10.1016/j.biomaterials.2019.119493] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023]
Abstract
The native human heart valve leaflet contains a layered microstructure comprising a hierarchical arrangement of collagen, elastin, proteoglycans and various cell types. Here, we review the various experimental methods that have been employed to probe this intricate microstructure and which attempt to elucidate the mechanisms that govern the leaflet's mechanical properties. These methods include uniaxial, biaxial, and flexural tests, coupled with microstructural characterization techniques such as small angle X-ray scattering (SAXS), small angle light scattering (SALS), and polarized light microscopy. These experiments have revealed complex elastic and viscoelastic mechanisms that are highly directional and dependent upon loading conditions and biochemistry. Of all engineering materials, polymers and polymer-based composites are best able to mimic the tissue-level mechanical behavior of the native leaflet. This similarity to native tissue permits the fabrication of polymeric valves with physiological flow patterns, reducing the risk of thrombosis compared to mechanical valves and in some cases surpassing the in vivo durability of bioprosthetic valves. Earlier work on polymeric valves simply assumed the mechanical properties of the polymer material to be linear elastic, while more recent studies have considered the full hyperelastic stress-strain response. These material models have been incorporated into computational models for the optimization of valve geometry, with the goal of minimizing internal stresses and improving durability. The latter portion of this review recounts these developments in polymeric heart valves, with a focus on mechanical testing of polymers, valve geometry, and manufacturing methods.
Collapse
Affiliation(s)
- Richard L Li
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA; Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA
| | - Jonathan Russ
- Department of Civil Engineering and Engineering Mechanics, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Costas Paschalides
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Giovanni Ferrari
- Department of Surgery and Biomedical Engineering, Columbia University Medical Center, New York, NY, USA
| | - Haim Waisman
- Department of Civil Engineering and Engineering Mechanics, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA; Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, New York, NY, USA.
| | - David Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Blum KM, Drews JD, Breuer CK. Tissue-Engineered Heart Valves: A Call for Mechanistic Studies. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:240-253. [PMID: 29327671 DOI: 10.1089/ten.teb.2017.0425] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart valve disease carries a substantial risk of morbidity and mortality. Outcomes are significantly improved by valve replacement, but currently available mechanical and biological replacement valves are associated with complications of their own. Mechanical valves have a high rate of thromboembolism and require lifelong anticoagulation. Biological prosthetic valves have a much shorter lifespan, and they are prone to tearing and degradation. Both types of valves lack the capacity for growth, making them particularly problematic in pediatric patients. Tissue engineering has the potential to overcome these challenges by creating a neovalve composed of native tissue that is capable of growth and remodeling. The first tissue-engineered heart valve (TEHV) was created more than 20 years ago in an ovine model, and the technology has been advanced to clinical trials in the intervening decades. Some TEHVs have had clinical success, whereas others have failed, with structural degeneration resulting in patient deaths. The etiologies of these complications are poorly understood because much of the research in this field has been performed in large animals and humans, and, therefore, there are few studies of the mechanisms of neotissue formation. This review examines the need for a TEHV to treat pediatric patients with valve disease, the history of TEHVs, and a future that would benefit from extension of the reverse translational trend in this field to include small animal studies.
Collapse
Affiliation(s)
- Kevin M Blum
- 1 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 The Ohio State University College of Medicine , Columbus, Ohio
| | - Joseph D Drews
- 1 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,3 Department of Surgery, The Ohio State University Wexner Medical Center , Columbus, Ohio
| | - Christopher K Breuer
- 1 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,3 Department of Surgery, The Ohio State University Wexner Medical Center , Columbus, Ohio
| |
Collapse
|
6
|
Human interstitial cellular model in therapeutics of heart valve calcification. Amino Acids 2017; 49:1981-1997. [DOI: 10.1007/s00726-017-2432-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022]
|
7
|
Jahnavi S, Saravanan U, Arthi N, Bhuvaneshwar GS, Kumary TV, Rajan S, Verma RS. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:59-71. [PMID: 28183649 DOI: 10.1016/j.msec.2016.11.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44+, αSMA+, Vimentin+ and CD105- human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children.
Collapse
Affiliation(s)
- S Jahnavi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036, India; Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012, India
| | - U Saravanan
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036, India
| | - N Arthi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036, India
| | - G S Bhuvaneshwar
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, TN 600036, India
| | - T V Kumary
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012, India
| | - S Rajan
- Madras Medical Mission, Institute of Cardio-Vascular Diseases, Mogappair, Chennai, Tamil Nadu 600037, India
| | - R S Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036, India.
| |
Collapse
|
8
|
Hasan A, Saliba J, Pezeshgi Modarres H, Bakhaty A, Nasajpour A, Mofrad MRK, Sanati-Nezhad A. Micro and nanotechnologies in heart valve tissue engineering. Biomaterials 2016; 103:278-292. [PMID: 27414719 DOI: 10.1016/j.biomaterials.2016.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - John Saliba
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada; Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Ahmed Bakhaty
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Amir Nasajpour
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
9
|
Rath S, Salinas M, Villegas AG, Ramaswamy S. Differentiation and Distribution of Marrow Stem Cells in Flex-Flow Environments Demonstrate Support of the Valvular Phenotype. PLoS One 2015; 10:e0141802. [PMID: 26536240 PMCID: PMC4633293 DOI: 10.1371/journal.pone.0141802] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/13/2015] [Indexed: 11/18/2022] Open
Abstract
For treatment of critical heart valve diseases, prosthetic valves perform fairly well in most adults; however, for pediatric patients, there is the added requirement that the replacement valve grows with the child, thus extremely limiting current treatment options. Tissue engineered heart valves (TEHV), such as those derived from autologous bone marrow stem cells (BMSCs), have the potential to recapitulate native valve architecture and accommodate somatic growth. However, a fundamental pre-cursor in promoting directed integration with native tissues rather than random, uncontrolled growth requires an understanding of BMSC mechanobiological responses to valve-relevant mechanical environments. Here, we report on the responses of human BMSC-seeded polymer constructs to the valve-relevant stress states of: (i) steady flow alone, (ii) cyclic flexure alone, and (iii) the combination of cyclic flexure and steady flow (flex-flow). BMSCs were seeded onto a PGA: PLLA polymer scaffold and cultured in static culture for 8 days. Subsequently, the aforementioned mechanical conditions, (groups consisting of steady flow alone-850ml/min, cyclic flexure alone-1 Hz, and flex-flow-850ml/min and 1 Hz) were applied for an additional two weeks. We found samples from the flex-flow group exhibited a valve-like distribution of cells that expressed endothelial (preference to the surfaces) and myofibroblast (preference to the intermediate region) phenotypes. We interpret that this was likely due to the presence of both appreciable fluid-induced shear stress magnitudes and oscillatory shear stresses, which were concomitantly imparted onto the samples. These results indicate that flex-flow mechanical environments support directed in vitro differentiation of BMSCs uniquely towards a heart valve phenotype, as evident by cellular distribution and expression of specific gene markers. A priori guidance of BMSC-derived, engineered tissue growth under flex-flow conditions may serve to subsequently promote controlled, engineered to native tissue integration processes in vivo necessary for successful long-term valve remodeling.
Collapse
Affiliation(s)
- Sasmita Rath
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States of America
| | - Manuel Salinas
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States of America
| | - Ana G. Villegas
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States of America
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States of America
| |
Collapse
|
10
|
Characterization of CD133 Antibody-Directed Recellularized Heart Valves. J Cardiovasc Transl Res 2015; 8:411-20. [PMID: 26341225 DOI: 10.1007/s12265-015-9651-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/27/2015] [Indexed: 02/08/2023]
Abstract
CD133mAb conjugation (CD133-C) hastens in vivo recellularization of decellularized porcine heart valve scaffolds when placed in the pulmonary position of sheep. We now characterize this early cellularization process 4 h, 3, 7, 14, 30, or 90 days post-implantation. Quantitative immunohistochemistry identified cell types as well as changes in cell markers and developmental cues. CD133(+)/CD31(-) cells adhered to the leaflet surface of CD133-C leaflets by 3 days and transitioned to native leaflet-like CD133(-)/CD31(+) cells by 30 days. Leaflet interstitium became increasingly populated with both alpha-smooth muscle actin (αSMA) and vimentin(+) cells from 14 to 90 days post-implantation. Wnt3a, and beta-catenin proteins were expressed at early (3-14 days) but not later (30-90 days) time points. In contrast, matrix metalloproteinase-2 and periostin proteins were increasingly expressed over 90 days. Thus, early development of CD133-C constructs includes a fairly rapid transition from a precursor cell adhesion/migration/transdifferentiation phenotype to a more mature cell/native valve-like matrix metabolism phenotype.
Collapse
|
11
|
Marei I, Chester A, Carubelli I, Prodromakis T, Trantidou T, Yacoub MH. Assessment of Parylene C Thin Films for Heart Valve Tissue Engineering. Tissue Eng Part A 2015; 21:2504-14. [PMID: 26101808 DOI: 10.1089/ten.tea.2014.0607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Scaffolds are a key component of tissue-engineered heart valves (TEHVs). Several approaches had been adopted in the design of scaffolds using both natural and synthetic resources. We have investigated the suitability of parylene C (PC), a vapor deposited polymeric material, for the use as a scaffold in TEHV. AIMS To evaluate the adsorption of extracellular matrix components onto plasma-activated PC and study the biocompatibility of PC by measuring cellular adhesion, viability, apoptosis, and phenotypic expression of valve endothelial and interstitial cells. Finally, the mechanical properties of PC were compared with those of native aortic valve cusp tissue. METHODS PC slides were plasma activated and then coated with gelatin, type I collagen, or fibronectin. Porcine pulmonary valve endothelial and interstitial cells were then grown on plasma oxidized PC with different types of coatings and their adhesion was observed after 20 h of incubation. Cell viability was tested using the MTS assay, and apoptosis was estimated using TUNEL staining. The mechanical properties of PC and valve tissue were measured using a Bose Mechanical Tester. Finally, cell-seeded PC films were exposed to pulsatile pressure and aortic shear stress, respectively, to test their durability in a dynamic environment. RESULTS Our findings show that collagen and fibronectin could bind to plasma oxidized PC. Both valve endothelial and interstitial cells adhered to protein-coated ECM. PC had a profile of mechanical stiffness and ultimate tensile strength that were comparable with or in excess of those seen in porcine aortic valve cusps. Cells were still attached to PC films after 3 days of exposure to up to 50 mmHg pulsatile pressure or aortic levels of shear stress. CONCLUSION PC is a promising candidate for use as a scaffold in tissue engineering heart valves. Additional studies are required to determine both the durability and long-term performance of cell-seeded PC when in a similar hemodynamic environment to that of the aortic valve.
Collapse
Affiliation(s)
- Isra Marei
- 1 Heart Science Centre, National Heart and Lung Institute , United Kingdom .,2 Imperial College, London, United Kingdom .,3 Qatar Cardiovascular Research Center , Doha, Qatar
| | - Adrian Chester
- 1 Heart Science Centre, National Heart and Lung Institute , United Kingdom .,2 Imperial College, London, United Kingdom
| | - Ivan Carubelli
- 1 Heart Science Centre, National Heart and Lung Institute , United Kingdom
| | - Themistoklis Prodromakis
- 4 Centre for Bio-Inspired Technology, Institute of Biomedical Engineering , Imperial College London, London, United Kingdom .,5 Nano Group, ECS, University of Southampton , Southampton, United Kingdom
| | - Tatiana Trantidou
- 4 Centre for Bio-Inspired Technology, Institute of Biomedical Engineering , Imperial College London, London, United Kingdom .,5 Nano Group, ECS, University of Southampton , Southampton, United Kingdom
| | - Magdi H Yacoub
- 1 Heart Science Centre, National Heart and Lung Institute , United Kingdom .,2 Imperial College, London, United Kingdom
| |
Collapse
|
12
|
Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech 2014; 47:1949-63. [DOI: 10.1016/j.jbiomech.2013.09.023] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022]
|
13
|
Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. The living aortic valve: From molecules to function. Glob Cardiol Sci Pract 2014; 2014:52-77. [PMID: 25054122 PMCID: PMC4104380 DOI: 10.5339/gcsp.2014.11] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
The aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70–90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability. However, through clinical experience and basic research the aortic valve can now be characterized as a living, dynamic organ with the capacity to adapt to its complex mechanical and biomechanical environment through active and passive communication between its constituent parts. The clinical relevance of a living valve substitute in patients requiring aortic valve replacement has been confirmed. This highlights the importance of using tissue engineering to develop heart valve substitutes containing living cells which have the ability to assume the complex functioning of the native valve.
Collapse
|
14
|
Hulin A, Deroanne C, Lambert C, Defraigne JO, Nusgens B, Radermecker M, Colige A. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data. Cardiovasc Pathol 2012; 22:245-50. [PMID: 23261354 DOI: 10.1016/j.carpath.2012.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/11/2012] [Accepted: 11/07/2012] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Myxomatous mitral valve is one of the most common heart valves diseases in human and has been well characterized at a functional and morphological level. Diseased valves are thickened as a result of extracellular matrix remodeling and proteoglycans accumulation accompanied by the disruption of the stratified structures of the leaflets. METHODS Global transcriptomic analysis was used as a start-up to investigate potential pathogenic mechanisms involved in the development of the human idiopathic myxomatous mitral valve, which have been elusive for many years. RESULTS These prospective analyses have highlighted the potential role of apparently unrelated molecules in myxomatous mitral valve such as members of the transforming growth factor-β superfamily, aggrecanases of the "a disintegrin and metalloprotease with thrombospondin repeats I" family, and a weakening of the protection against oxidative stress. We have integrated, in this review, recent transcriptomic data from our laboratory [A. Hulin, C.F. Deroanne, C.A. Lambert, B. Dumont, V. Castronovo, J.O. Defraigne, et al. Metallothionein-dependent up-regulation of TGF-beta2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc Res 2012;93:480-489] and from the publication of Sainger et al. [R. Sainger, J.B. Grau, E. Branchetti, P. Poggio, W.F. Seefried, B.C. Field, et al. Human myxomatous mitral valve prolapse: role of bone morphogenetic protein 4 in valvular interstitial cell activation. J Cell Physiol 2012;227:2595-2604] with existing literature and information issued from the study of monogenic syndromes and animal models. CONCLUSION Understanding cellular alterations and molecular mechanisms involved in myxomatous mitral valve should help at identifying relevant targets for future effective pharmacological therapy to prevent or reduce its progression.
Collapse
Affiliation(s)
- Alexia Hulin
- Laboratory of Connective Tissues Biology, GIGA, University of Liège, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Martinez C, Rath S, Van Gulden S, Pelaez D, Alfonso A, Fernandez N, Kos L, Cheung H, Ramaswamy S. Periodontal ligament cells cultured under steady-flow environments demonstrate potential for use in heart valve tissue engineering. Tissue Eng Part A 2012; 19:458-66. [PMID: 22958144 DOI: 10.1089/ten.tea.2012.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A major drawback of mechanical and prosthetic heart valves is their inability to permit somatic growth. By contrast, tissue-engineered pulmonary valves potentially have the capacity to remodel and integrate with the patient. For this purpose, adult stem cells may be suitable. Previously, human periodontal ligament cells (PDLs) have been explored as a reliable and robust progenitor cell source for cardiac muscle regeneration (Pelaez, D. Electronic Thesis and Dissertation Database, Coral Gables, FL, May 2011). Here, we investigate the potential of PDLs to support the valve lineage, specifically the concomitant differentiation to both endothelial cell (EC) and smooth muscle cell (SMC) types. We were able to successfully promote PDL differentiation to both SMC and EC phenotypes through a combination of stimulatory approaches using biochemical and mechanical flow conditioning (steady shear stress of 1 dyne/cm(2)), with flow-based mechanical conditioning having a predominant effect on PDL differentiation, particularly to ECs; in addition, strong expression of the marker FZD2 and an absence of the marker MLC1F point toward a unique manifestation of smooth muscle by PDLs after undergoing steady-flow mechanical conditioning alone, possible by only the heart valve and pericardium phenotypes. It was also determined that steady flow (which was performed using a physiologically relevant [for heart valves] magnitude of ~5-6 dynes/cm(2)) augmented the synthesis of the extracellular matrix collagen proteins. We conclude that under steady-flow dynamic culture environments, human PDLs can differentiate to heterogeneous cell populations that are relevant to heart valve tissue engineering. Further exploration of human PDLs for this purpose is thus warranted.
Collapse
Affiliation(s)
- Catalina Martinez
- Tissue Engineering Mechanics, Imaging and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huang Y, Zheng L, Gong X, Jia X, Song W, Liu M, Fan Y. Effect of cyclic strain on cardiomyogenic differentiation of rat bone marrow derived mesenchymal stem cells. PLoS One 2012; 7:e34960. [PMID: 22496879 PMCID: PMC3319595 DOI: 10.1371/journal.pone.0034960] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/11/2012] [Indexed: 11/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a potential source of material for the generation of tissue-engineered cardiac grafts because of their ability to transdifferentiate into cardiomyocytes after chemical treatments or co-culture with cardiomyocytes. Cardiomyocytes in the body are subjected to cyclic strain induced by the rhythmic heart beating. Whether cyclic strain could regulate rat bone marrow derived MSC (rBMSC) differentiation into cardiomyocyte-like lineage was investigated in this study. A stretching device was used to generate the cyclic strain for rBMSCs. Cardiomyogenic differentiation was evaluated using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), immunocytochemistry and western-blotting. The results demonstrated that appropriate cyclic strain treatment alone could induce cardiomyogenic differentiation of rBMSCs, as confirmed by the expression of cardiomyocyte-related markers at both mRNA and protein levels. Furthermore, rBMSCs exposed to the strain stimulation expressed cardiomyocyte-related markers at a higher level than the shear stimulation. In addition, when rBMSCs were exposed to both strain and 5-azacytidine (5-aza), expression levels of cardiomyocyte-related markers significantly increased to a degree suggestive of a synergistic interaction. These results suggest that cyclic strain is an important mechanical stimulus affecting the cardiomyogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lisha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xianghui Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Song
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
The adhering junctions of valvular interstitial cells: molecular composition in fetal and adult hearts and the comings and goings of plakophilin-2 in situ, in cell culture and upon re-association with scaffolds. Cell Tissue Res 2012; 348:295-307. [DOI: 10.1007/s00441-011-1315-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
18
|
Lewinsohn AD, Anssari-Benham A, Lee DA, Taylor PM, Chester AH, Yacoub MH, Screen HRC. Anisotropic strain transfer through the aortic valve and its relevance to the cellular mechanical environment. Proc Inst Mech Eng H 2011; 225:821-30. [PMID: 21922958 DOI: 10.1177/0954411911406340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aortic valve interstitial cells are responsible for maintaining the valve in response to their local mechanical environment. However, the complex organization of the extracellular matrix means cell strains cannot be directly derived from gross strains, and knowledge of tissue structure-function correlations is fundamental towards understanding mechanotransduction. This study investigates strain transfer through the valve, hypothesizing that organization of the valve matrix leads to non-homogenous local strains. Radial and circumferential samples were cut from aortic valve leaflets and subjected to quasi-static mechanical characterization. Further samples were imaged using confocal microscopy, to determine local strains in the matrix. Mechanical data demonstrated that the valve was significantly stronger and stiffer when loaded circumferentially, comparable with previous studies. Micromechanical studies demonstrated that strain transfer through the matrix is anisotropic and indirect, with local strains consistently smaller than applied strains in both orientations. Under radial loading, strains were transferred linearly to cells. However, under circumferential loading, strains were only one-third of applied values, with a less direct relationship between applied and local strains. This may result from matrix reorganization, and be important for preventing cellular damage during normal valve function. These findings should be taken into account when investigating interstitial cell behaviours, such as cell metabolism and mechanotransduction.
Collapse
Affiliation(s)
- A D Lewinsohn
- Medical Engineering Division, School of Engineering and Materials Science, Queen Mary, University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
The mitral valve in hypertrophic cardiomyopathy: old versus new concepts. J Cardiovasc Transl Res 2011; 4:757-66. [PMID: 21909825 DOI: 10.1007/s12265-011-9319-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
Abstract
Elongation and pathological thickening of the mitral valve (MV) is commonly seen in hypertrophic cardiomyopathy (HCM), and its pathogenic basis is poorly understood. Associated features include mal-positioning of the papillary muscles and MV, as well as systolic anterior motion (SAM) of the MV leaflets, which can worsen the turbulence and dynamic left ventricular outflow tract (LVOT) gradient. Coaptation of the MV leaflets depends on both anterior and posterior leaflet length and position, and failure of either to optimally adapt in this setting can result in mitral regurgitation or worsened LVOT obstruction. The cause of MV enlargement in HCM is not currently understood, and several different hypotheses may be relevant. The lack of correlation between MV size and the severity of left ventricular hypertrophy, as well as the early findings in genetically predisposed individuals with sarcomere mutations, suggest that it may be an intrinsic aspect of HCM in certain individuals. Other evidence points to a reactive process in the setting of excess production of paracrine growth factors in diseased myocardium that may influence valve overgrowth. Improved understanding of the responsible adaptive mechanisms will pave the way for studies targeted on the prevention and treatment of MV disease in HCM.
Collapse
|
20
|
Salhiyyah K, Yacoub MH, Chester AH. Cellular mechanisms in mitral valve disease. J Cardiovasc Transl Res 2011; 4:702-9. [PMID: 21892743 DOI: 10.1007/s12265-011-9318-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/15/2011] [Indexed: 01/23/2023]
Abstract
The mitral valve is a living structure comprised of specific structural components which contain a heterogeneous population of cells. The cells include an amalgam of interstitial cells within the valve and a continuous covering of endothelial cells, each of which play a role in responding to the mechanical forces that the valve experiences, to maintain the function and durability of the valve. Attention on the characteristics and function of valve cells has focused mainly on those in the aortic valve, with relatively few studies addressing the role of these cells in the physiological and pathophysiological function of the mitral valve. This article reviews what is known about the function of cells within the mitral valve and how the changes in the physical and chemical environments can affect their function in the different types of mitral valve disease. Investigating the contribution of the cellular components of the mitral valve to valve function in health and disease will aid the understanding of how the durability and function of the valve are regulated, and possibly highlight molecular and pharmacological targets for the development of novel treatments for mitral valve disease.
Collapse
Affiliation(s)
- Kareem Salhiyyah
- Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, UK
| | | | | |
Collapse
|
21
|
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Poly(Glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Eng Part A 2011; 17:1363-73. [PMID: 21247338 DOI: 10.1089/ten.tea.2010.0441] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Heart failure remains the leading cause of death in many industrialized nations owing to the inability of the myocardial tissue to regenerate. The main objective of this work was to develop a cardiac patch that is biocompatible and matches the mechanical properties of the heart muscle for myocardial infarction. The present study was to fabricate poly (glycerol sebacate)/gelatin (PGS/gelatin) core/shell fibers and gelatin fibers alone by electrospinning for cardiac tissue engineering. PGS/gelatin core/shell fibers, PGS used as a core polymer to impart the mechanical properties and gelatin as a shell material to achieve favorable cell adhesion and proliferation. These core/shell fibers were characterized by scanning electron microscopy, contact angle, Fourier transform infrared spectroscopy, and tensile testing. The cell-scaffold interactions were analyzed by cell proliferation, confocal analysis for the expression of marker proteins like actinin, troponin-T, and platelet endothelial cell adhesion molecule, and scanning electron microscopy to analyze cell morphology. Dual immunofluorescent staining was performed to further confirm the cardiogenic differentiation of mesenchymal stem cells by employing mesenchymal stem cell-specific marker protein CD 105 and cardiac-specific marker protein actinin. The results observed that PGS/gelatin core/shell fibers have good potential biocompatibility and mechanical properties for fabricating nanofibrous cardiac patch and would be a prognosticating device for the restoration of myocardium.
Collapse
Affiliation(s)
- Rajeswari Ravichandran
- Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
22
|
Din S, Sarathchandra P, Yacoub MH, Chester AH. Interaction between bone morphogenetic proteins and endothelin-1 in human pulmonary artery smooth muscle. Vascul Pharmacol 2009; 51:344-9. [PMID: 19786120 DOI: 10.1016/j.vph.2009.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 09/10/2009] [Accepted: 09/13/2009] [Indexed: 11/20/2022]
Abstract
Genetic mutations in bone morphogenetic protein receptor 2 (BMPR2) have been shown to occur in patients with familial and idiopathic pulmonary arterial hypertension (PAH). However the interactions between ligands for this receptor and other mediators implicated in heritable PAH have not been investigated. This study examines the regulation of endothelin-1 (ET-1), a potent vasoconstrictor and comitogen that is implicated in the pathogenesis of heritable PAH, by ligands for the BMPR2. Immunohistochemical studies showed that pulmonary artery segments removed from normotensive human lungs express BMPR2 and bone morphogenetic proteins 2, 4 and 7 (BMP2, BMP4 and BMP7). In the presence of BMP7 and BMP4 there was a significant inhibition of ET-1 release, induced by cytokines, from cultured pulmonary artery smooth muscle cells. Fresh ring segments of pulmonary artery were assessed for their response to ET-1 in the presence and absence of BMP2, BMP4 and BMP7. BMP7 inhibited contraction in response to ET-1 in a concentration-dependent manner. BMP2 and BMP4 had no significant effect on the response to ET-1. These results suggest that BMP7 has the ability to regulate the effects of endothelin-1 in the pulmonary circulation. Genetic mutations in BMPR2 may lead to a loss of these regulatory mechanisms and contribute to the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Sarah Din
- Imperial College London, Heart Science Centre, Harefield Hospital, Harefield, Middlesex, UB9 6JH, United Kingdom
| | | | | | | |
Collapse
|
23
|
Yang MC, Wang SS, Chou NK, Chi NH, Huang YY, Chang YL, Shieh MJ, Chung TW. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin–polysaccharide cardiac patches in vitro. Biomaterials 2009; 30:3757-65. [DOI: 10.1016/j.biomaterials.2009.03.057] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/26/2009] [Indexed: 02/05/2023]
|
24
|
Barth M, Schumacher H, Kuhn C, Akhyari P, Lichtenberg A, Franke WW. Cordial connections: molecular ensembles and structures of adhering junctions connecting interstitial cells of cardiac valves in situ and in cell culture. Cell Tissue Res 2009; 337:63-77. [PMID: 19475424 DOI: 10.1007/s00441-009-0806-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/06/2009] [Indexed: 01/19/2023]
Abstract
Remarkable efforts have recently been made in the tissue engineering of heart valves to improve the results of valve transplantations and replacements, including the design of artificial valves. However, knowledge of the cell and molecular biology of valves and, specifically, of valvular interstitial cells (VICs) remains limited. Therefore, our aim has been to determine and localize the molecules forming the adhering junctions (AJs) that connect VICs in situ and in cell culture. Using biochemical and immunolocalization methods at the light- and electron-microscopic levels, we have identified, in man, cow, sheep and rat, the components of VIC-connecting AJs in situ and in cell culture. These AJs contain, in addition to the transmembrane glycoproteins N-cadherin and cadherin-11, the typical plaque proteins alpha- and beta-catenin as well as plakoglobin and p120, together with minor amounts of protein p0071, i.e. a total of five plaque proteins of the armadillo family. While we can exclude the occurrence of desmogleins, desmocollins and desmoplakin, we have noted with surprise that AJs of VICs in cell cultures, but not those growing in the valve tissue, contain substantial amounts of the desmosomal plaque protein, plakophilin-2. Clusters of AJs occur not only on the main VIC cell bodies but are also found widely dispersed on their long filopodia thus forming, in the tissue, a meshwork that, together with filopodial attachments to paracrystalline collagen fiber bundles, establishes a three-dimensional suprastructure, the role of which is discussed with respect to valve formation, regeneration and function.
Collapse
Affiliation(s)
- Mareike Barth
- Helmholtz Group/Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Chester AH, Taylor PM. Molecular and functional characteristics of heart-valve interstitial cells. Philos Trans R Soc Lond B Biol Sci 2007; 362:1437-43. [PMID: 17569642 PMCID: PMC2440406 DOI: 10.1098/rstb.2007.2126] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cells that reside within valve cusps play an integral role in the durability and function of heart valves. There are principally two types of cells found in cusp tissue: the endothelial cells that cover the surface of the cusps and the interstitial cells (ICs) that form a network within the extracellular matrix (ECM) within the body of the cusp. Both cell types exhibit unique functions that are unlike those of other endothelial and ICs found throughout the body. The valve ICs express a complex pattern of cell-surface, cytoskeletal and muscle proteins. They are able to bind to, and communicate with, each other and the ECM. The endothelial cells on the outflow and inflow surfaces of the valve differ from one another. Their individual characteristics and functions reflect the fact that they are exposed to separate patterns of flow and pressure. In addition to providing a structural role in the valve, it is now known that the biological function of valve cells is important in maintaining the integrity of the cusps and the optimum function of the valve. In response to inappropriate stimuli, valve interstitial and endothelial cells may also participate in processes that lead to valve degeneration and calcification. Understanding the complex biology of valve interstitial and endothelial cells is an important requirement in elucidating the mechanisms that regulate valve function in health and disease, as well as setting a benchmark for the function of cells that may be used to tissue engineer a heart valve.
Collapse
Affiliation(s)
- Adrian H Chester
- Department of Cardiothoracic Surgery, Heart Science Centre, Harefield Hospital, NHLI, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK.
| | | |
Collapse
|