1
|
Shang Z, Lai Y, Cheng H. DPP2/7 is a Potential Predictor of Prognosis and Target in Immunotherapy in Colorectal Cancer: An Integrative Multi-omics Analysis. Comb Chem High Throughput Screen 2024; 27:1642-1660. [PMID: 38454764 DOI: 10.2174/0113862073290831240229060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the leading causes of cancerrelated deaths. OBJECTIVE This study aimed to illuminate the relationship between DPP7 (also known as DPP2) and CRC through a combination of bioinformatics and experimental methodologies. METHODS A multi-dimensional bioinformatic analysis on DPP7 was executed, covering its expression, survival implications, clinical associations, functional roles, immune interactions, and drug sensitivities. Experimental validations involved siRNA-mediated DPP7 knockdown and various cellular assays. RESULTS Data from the Cancer Genome Atlas (TCGA) identified high DPP7 expression in solid CRC tumors, with elevated levels adversely affecting patient prognosis. A shift from the N0 to the N2 stage in CRC was associated with increased DPP7 expression. Functional insights indicated the involvement of DPP7 in cancer progression, particularly in extracellular matrix disassembly. Immunological analyses showed its association with immunosuppressive entities, and in vitro experiments in CRC cell lines underscored its oncogenic attributes. CONCLUSION DPP7 could serve as a CRC prognosis marker, functioning as an oncogene and representing a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Zhihao Shang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yueyang Lai
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Haibo Cheng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
2
|
Angeli F, Zappa M, Reboldi G, Gentile G, Trapasso M, Spanevello A, Verdecchia P. The spike effect of acute respiratory syndrome coronavirus 2 and coronavirus disease 2019 vaccines on blood pressure. Eur J Intern Med 2023; 109:12-21. [PMID: 36528504 PMCID: PMC9744686 DOI: 10.1016/j.ejim.2022.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Among the various comorbidities potentially worsening the clinical outcome in patients hospitalized for the acute respiratory syndrome coronavirus-2 (SARS-CoV-2), hypertension is one of the most prevalent. However, the basic mechanisms underlying the development of severe forms of coronavirus disease 2019 (COVID-19) among hypertensive patients remain undefined and the direct association of hypertension with outcome in COVID-19 is still a field of debate. Experimental and clinical data suggest that SARS-CoV-2 infection promotes a rise in blood pressure (BP) during the acute phase of infection. Acute increase in BP and high in-hospital BP variability may be tied with acute organ damage and a worse outcome in patients hospitalized for COVID-19. In this context, the failure of the counter-regulatory renin-angiotensin-system (RAS) axis is a potentially relevant mechanism involved in the raise in BP. It is well recognized that the efficient binding of the Spike (S) protein to angiotensin converting enzyme 2 (ACE2) receptors mediates the virus entry into cells. Internalization of ACE2, downregulation and malfunction predominantly due to viral occupation, dysregulates the protective RAS axis with increased generation and activity of angiotensin (Ang) II and reduced formation of Ang1,7. Thus, the imbalance between Ang II and Ang1-7 can directly contribute to excessively rise BP in the acute phase of SARS-CoV-2 infection. A similar mechanism has been postulated to explain the raise in BP following COVID-19 vaccination ("Spike Effect" similar to that observed during the infection of SARS-CoV-2). S proteins produced upon vaccination have the native-like mimicry of SARS-CoV-2 S protein's receptor binding functionality and prefusion structure and free-floating S proteins released by the destroyed cells previously targeted by vaccines may interact with ACE2 of other cells, thereby promoting ACE2 internalization and degradation, and loss of ACE2 activities.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, 21049, Italy.
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, 06100, Italy
| | - Giorgio Gentile
- College of Medicine and Health. University of Exeter, Exeter, United Kingdom and Department of Nephrology, Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| | - Monica Trapasso
- Dipartimento di Igiene e Prevenzione Sanitaria, PSAL, Sede Territoriale di Varese, ATS Insubria, Varese, 21100, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, 21049, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, and Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, 06100, Italy
| |
Collapse
|
3
|
Angeli F, Reboldi G, Trapasso M, Zappa M, Spanevello A, Verdecchia P. COVID-19, vaccines and deficiency of ACE 2 and other angiotensinases. Closing the loop on the "Spike effect". Eur J Intern Med 2022; 103:23-28. [PMID: 35753869 PMCID: PMC9217159 DOI: 10.1016/j.ejim.2022.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The role of a dysregulated renin-angiotensin system (RAS) in the pathogenesis of COVID-19 is well recognized. The imbalance between angiotensin II (Ang II) and Angiotensin1-7 (Ang1,7) caused by the interaction between SARS-CoV-2 and the angiotensin converting enzyme 2 (ACE2) receptors exerts a pivotal role on the clinical picture and outcome of COVID-19. ACE2 receptors are not the exclusive angiotensinases in nature. Other angiotensinases (PRCP, and POP) have the potential to limit the detrimental effects of the interactions between ACE2 and the Spike proteins. In the cardiovascular disease continuum, ACE2 activity tends to decrease, and POP/PRCP activity to increase, from the health status to advanced deterioration of the cardiovascular system. The failure of the counter-regulatory RAS axis during the acute phase of COVID-19 is characterized by a decrease of ACE2 expression coupled to unchanged activity of other angiotensinases, therefore failing to limit the accumulation of Ang II. COVID-19 vaccines increase the endogenous synthesis of SARS-CoV-2 spike proteins. Once synthetized, the free-floating spike proteins circulate in the blood, interact with ACE2 receptors and resemble the pathological features of SARS-CoV-2 ("Spike effect" of COVID-19 vaccines). It has been noted that an increased catalytic activity of POP/PRCP is typical in elderly individuals with comorbidities or previous cardiovascular events, but not in younger people. Thus, the adverse reactions to COVID-19 vaccination associated with Ang II accumulation are generally more common in younger and healthy subjects. Understanding the relationships between different mechanisms of Ang II cleavage and accumulation offers the opportunity to close the pathophysiological loop between the risk of progression to severe forms of COVID-19 and the potential adverse events of vaccination.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy.
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| | - Monica Trapasso
- Dipartimento di Igiene e Prevenzione Sanitaria, ATS Insubria, PSAL, Sede Territoriale di Varese, Varese, Italy
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria Della Misericordia, Perugia, Italy; Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, Italy
| |
Collapse
|
4
|
Miyazono KI, Kubota K, Takahashi K, Tanokura M. Crystal structure and substrate recognition mechanism of the prolyl endoprotease PEP from Aspergillus niger. Biochem Biophys Res Commun 2022; 591:76-81. [PMID: 34999257 DOI: 10.1016/j.bbrc.2021.12.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/02/2022]
Abstract
Proteases are enzymes that are not only essential for life but also industrially important. Understanding the substrate recognition mechanisms of proteases is important to enhance the use of proteases. The fungus Aspergillus produces a wide variety of proteases, including PEP, which is a prolyl endoprotease from A. niger. Although PEP exhibits amino acid sequence similarity to the serine peptidase family S28 proteins (PRCP and DPP7) that recognize Pro-X bonds in the terminal regions of peptides, PEP recognizes Pro-X bonds not only in peptides but also in proteins. To reveal the structural basis of the prolyl endoprotease activity of PEP, we determined the structure of PEP by X-ray crystallography at a resolution of 1.75 Å. The PEP structure shows that PEP has a wide-open catalytic pocket compared to its homologs. The characteristic catalytic pocket structure of PEP is predicted to be important for the recognition of protein substrates.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keiko Kubota
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan; Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi Hachioji, Tokyo, 192-0392, Japan
| | - Kenji Takahashi
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi Hachioji, Tokyo, 192-0392, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
6
|
Wu Y, Pan X, Jin X. Haplotype-based association study between PRCP gene polymorphisms and essential hypertension in Hani minority group from a remote region of China. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320981316. [PMID: 33319614 PMCID: PMC7745576 DOI: 10.1177/1470320320981316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: Prolylcarboxypeptidase (PRCP) is both involved in the Kallikrein-Kinin system (KKS) and renin-angiotensin-aldosterone system (RAAS). This study aimed to determine the genetic impact of PRCP gene polymorphisms on essential hypertension (EH) in an isolated population from a remote region of China. Methods: A haplotype-based study was investigated in 346 EH patients and 346 normal subjects and all samples were Hani minority residents in Southwest China. A total of 11 tag single nucleotide polymorphisms (SNPs) in PRCP gene were tested by polymerase chain reaction-restriction fragment length polymorphism method. Results: Single site analysis found that PRCP gene 3′UTR SNP rs3750931 was associated with EH. The minor allele G of rs3750931 was more prevalent in the EH patients compared to control subjects after Bonferroni correction (p < 0.05). Moreover, the rs3750931 G allele carriers showed higher average blood pressure (BP) level among the subjects. The H2 (GAGCACTAACA) haplotype without rs3750931 G allele showed the protective effect for EH (OR = 0.68, 95 CI 0.54–0.85, p = 0.001). Conclusion: The present study indicated PRCP gene rs3750931 was associated with the risk of EH. This SNP G allele could be considered as one of risk markers for EH in Hani population.
Collapse
Affiliation(s)
- Yanrui Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, P. R. China
| | - Xingming Pan
- Human Resources Department of Kunming Medical University, Kunming, Yunnan Province, P. R. China
| | - Xiaoxiao Jin
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, P. R. China
| |
Collapse
|
7
|
Hao P, Liu Y, Guo H, Zhang Z, Chen Q, Hao G, Zhang C, Zhang Y. Prolylcarboxypeptidase Mitigates Myocardial Ischemia/Reperfusion Injury by Stabilizing Mitophagy. Front Cell Dev Biol 2020; 8:584933. [PMID: 33195231 PMCID: PMC7642202 DOI: 10.3389/fcell.2020.584933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The role of prolylcarboxypeptidase (PRCP) in myocardial ischemia/reperfusion (I/R) injury is unclear. Herein, we aimed to evaluate the protective effect of the PRCP-angiotensin-(1-7) [Ang-(1-7)]/bradykinin-(1-9) [BK-(1-9)] axis on myocardial I/R injury and identify the mechanisms involved. Plasma PRCP level and activity, as well as Ang-(1-7) and BK-(1-9) levels, were compared in healthy subjects, patients with unstable angina, and those with ST-segment-elevated acute myocardial infarction (AMI). Thereafter, the effects of PRCP overexpression and knockdown on left ventricular function, mitophagy, and levels of Ang-(1-7) and BK-(1-9) were examined in rats during myocardial I/R. Finally, the effects of Ang-(1-7) and BK-(1-9) on I/R-induced mitophagy and the signaling pathways involved were investigated in vitro in rat cardiomyocytes. AMI patients showed increased plasma level and activity of PRCP and levels of Ang-(1-7) and BK-(1-9) as compared with healthy subjects and those with unstable angina. PRCP protected against myocardial I/R injury in rats by paradoxical regulation of cardiomyocyte mitophagy during the ischemia and reperfusion phases, which was mediated by downstream Ang-(1-7) and BK-(1-9). We further depicted a possible role of activation of AMPK in mitophagy induction during ischemia and activation of Akt in mitophagy inhibition during reperfusion in the beneficial effects of Ang-(1-7) and BK-(1-9). Thus, the PRCP-Ang-(1-7)/BK-(1-9) axis may protect against myocardial I/R injury by paradoxical regulation of cardiomyocyte mitophagy during ischemia and reperfusion phases.
Collapse
Affiliation(s)
- Panpan Hao
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanping Liu
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Haipeng Guo
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Shandong University, Jinan, China
| | - Qingjie Chen
- First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Guoxiang Hao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Cheng Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online 2020; 22:19. [PMID: 32774178 PMCID: PMC7402395 DOI: 10.1186/s12575-020-00128-2] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
In December 2019, a novel coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or (2019-nCoV) with unknown origin spread in Hubei province of China. The epidemic disease caused by SARS-CoV-2 called coronavirus disease-19 (COVID-19). The presence of COVID-19 was manifested by several symptoms, ranging from asymptomatic/mild symptoms to severe illness and death. The viral infection expanded internationally and WHO announced a Public Health Emergency of International Concern. To quickly diagnose and control such a highly infectious disease, suspicious individuals were isolated and diagnostic/treatment procedures were developed through patients' epidemiological and clinical data. Early in the COVID-19 outbreak, WHO invited hundreds of researchers from around the world to develop a rapid quality diagnosis, treatment and vaccines, but so far no specific antiviral treatment or vaccine has been approved by the FDA. At present, COVID-19 is managed by available antiviral drugs to improve the symptoms, and in severe cases, supportive care including oxygen and mechanical ventilation is used for infected patients. However, due to the worldwide spread of the virus, COVID-19 has become a serious concern in the medical community. According to the current data of WHO, the number of infected and dead cases has increased to 8,708,008 and 461,715, respectively (Dec 2019 -June 2020). Given the high mortality rate and economic damage to various communities to date, great efforts must be made to produce successful drugs and vaccines against 2019-nCoV infection. For this reason, first of all, the characteristics of the virus, its pathogenicity, and its infectious pathways must be well known. Thus, the main purpose of this review is to provide an overview of this epidemic disease based on the current evidence.
Collapse
Affiliation(s)
- Hanie Esakandari
- Department of Biology, Science and research branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological science, Tarbiat Modares University, Tehran, Iran
| | - Javad Fakkari-Afjadi
- Department of biology, Ashkezar branch, Islamic Azad University of Yazd, Ashkezar, Yazd Iran
| | - Navid Farahmandian
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | | | - Elham Bahreini
- Department of biology, Ashkezar branch, Islamic Azad University of Yazd, Ashkezar, Yazd Iran
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| |
Collapse
|
9
|
Wu Y, Yang H, Xiao C. Genetic association study of prolylcarboxypeptidase polymorphisms with susceptibility to essential hypertension in the Yi minority of China: A case-control study based on an isolated population. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320919586. [PMID: 32448049 PMCID: PMC7249571 DOI: 10.1177/1470320320919586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: Prolylcarboxypeptidase (PRCP) is a negative regulator of the pressor actions of the renin–angiotensin–aldosterone system. It is also involved in the kallikrein–kinin system. This gene has an important role in blood pressure (BP) regulation. Methods: A case–control study was performed for 615 Yi participants (303 cases and 312 controls) from a remote mountainous area in Yunnan Province of China. For the PRCP gene, 11 tag single-nucleotide polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method. Results: The PRCP gene rs12290550 was associated with the occurrence of essential hypertension (EH) and BP traits. Logistic regression analysis indicated that the rs12290550 T allele was significantly linked to the risk of EH (odds ratio (OR) = 1.85, 95% confidence interval (CI) 1.44–2.39, p = 0.2 × 10−5). Under Bonferroni correction, the H7 TAGCACTAACA haplotype containing the risk allele rs12290550 T increased the risk of EH (OR = 4.53, 95% CI 2.29–8.93, p = 0.2×10−5). Conclusions: The findings of this study demonstrate the strong association of the PRCP gene with EH. rs12290550 may be a useful genetic predictor of EH in the Yi minority.
Collapse
Affiliation(s)
- Yanrui Wu
- Cell Biology and Genetics Department, Kunming Medical University, China.,School of Medicine, Yunnan University, China
| | - Hongju Yang
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, China
| | | |
Collapse
|
10
|
Santiago PB, de Araújo CN, Charneau S, Bastos IMD, Assumpção TCF, Queiroz RML, Praça YR, Cordeiro TDM, Garcia CHS, da Silva IG, Raiol T, Motta FN, de Araújo Oliveira JV, de Sousa MV, Ribeiro JMC, de Santana JM. Exploring the molecular complexity of Triatoma dimidiata sialome. J Proteomics 2017; 174:47-60. [PMID: 29288089 DOI: 10.1016/j.jprot.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023]
Abstract
Triatoma dimidiata, a Chagas disease vector widely distributed along Central America, has great capability for domestic adaptation as the majority of specimens caught inside human dwellings or in peridomestic areas fed human blood. Exploring the salivary compounds that overcome host haemostatic and immune responses is of great scientific interest. Here, we provide a deeper insight into its salivary gland molecules. We used high-throughput RNA sequencing to examine in depth the T. dimidiata salivary gland transcriptome. From >51 million reads assembled, 92.21% are related to putative secreted proteins. Lipocalin is the most abundant gene family, confirming it is an expanded family in Triatoma genus salivary repertoire. Other putatively secreted members include phosphatases, odorant binding protein, hemolysin, proteases, protease inhibitors, antigen-5 and antimicrobial peptides. This work expands the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI from 388 to 3815. Additionally, we complemented the salivary analysis through proteomics (available data via ProteomeXchange with identifier PXD008510), disclosing the set complexity of 119 secreted proteins and validating the transcriptomic results. Our large-scale approach enriches the pharmacologically active molecules database and improves our knowledge about the complexity of salivary compounds from haematophagous vectors and their biological interactions. SIGNIFICANCE Several haematophagous triatomine species can transmit Trypanosoma cruzi, the etiological agent of Chagas disease. Due to the reemergence of this disease, new drugs for its prevention and treatment are considered priorities. For this reason, the knowledge of vector saliva emerges as relevant biological finding, contributing to the design of different strategies for vector control and disease transmission. Here we report the transcriptomic and proteomic compositions of the salivary glands (sialome) of the reduviid bug Triatoma dimidiata, a relevant Chagas disease vector in Central America. Our results are robust and disclosed unprecedented insights into the notable diversity of its salivary glands content, revealing relevant anti-haemostatic salivary gene families. Our work expands almost ten times the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI. Moreover, using an integrated transcriptomic and proteomic approach, we showed a correlation pattern of transcription and translation processes for the main gene families found, an important contribution to the research of triatomine sialomes. Furthermore, data generated here reinforces the secreted proteins encountered can greatly contribute for haematophagic habit, Trypanosoma cruzi transmission and development of therapeutic agent studies.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil
| | - Carla Nunes de Araújo
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil; Faculty of Ceilândia, The University of Brasília, Brasília, Brazil.
| | - Sébastien Charneau
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | - Teresa Cristina F Assumpção
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, United States
| | | | - Yanna Reis Praça
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil
| | | | | | | | - Tainá Raiol
- Department of Cell Biology, The University of Brasília, Brasília, Brazil; Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Manaus, AM, Brazil
| | | | | | | | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, United States
| | - Jaime Martins de Santana
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil; Department of Cell Biology, The University of Brasília, Brasília, Brazil
| |
Collapse
|
11
|
Graham TH. Prolylcarboxypeptidase (PrCP) inhibitors and the therapeutic uses thereof: a patent review. Expert Opin Ther Pat 2017; 27:1077-1088. [PMID: 28699813 DOI: 10.1080/13543776.2017.1349104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Prolylcarboxypeptidase (PrCP) is a serine protease that produces or degrades signaling proteins in several important pathways including the renin-angiotensin system (RAS), kallikrein-kinin system (KKS) and pro-opiomelanocortin (POMC) system. PrCP has the potential to be a therapeutic target for cardiovascular, inflammatory and metabolic diseases. Numerous classes of PrCP inhibitors have been developed by rational drug design and from high-throughput screening hits. These inhibitors have been tested in mouse models to assess their potential as new therapeutics. Areas Covered: This review covers the relevant studies that support PrCP as a target for drug discovery. All the significant patent applications and primary literature concerning the development of PrCP inhibitors are discussed. Expert Opinion: The pathways where PrCP is known to operate are complex and many aspects remain to be characterized. Many potent inhibitors of PrCP have been tested in vivo. The variable results obtained from in vivo studies with PrCP inhibitors suggest that additional understanding of the biochemistry and the required therapeutic inhibitor levels is necessary. Additional fundamental research into the signaling pathways is likely required before the true therapeutic potential of PrCP inhibition will be realized.
Collapse
Affiliation(s)
- Thomas H Graham
- a Merck Research Laboratories , Merck & Co., Inc ., Kenilworth , NJ , USA
| |
Collapse
|
12
|
Wheelock KM, Cai J, Looker HC, Merchant ML, Nelson RG, Fufaa GD, Weil EJ, Feldman HI, Vasan RS, Kimmel PL, Rovin BH, Mauer M, Klein JB. Plasma bradykinin and early diabetic nephropathy lesions in type 1 diabetes mellitus. PLoS One 2017; 12:e0180964. [PMID: 28700653 PMCID: PMC5507314 DOI: 10.1371/journal.pone.0180964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
Objective To examine the association of bradykinin and related peptides with the development of diabetic nephropathy lesions in 243 participants with type 1 diabetes (T1D) from the Renin-Angiotensin System Study who, at baseline, were normoalbuminuric, normotensive and had normal or increased glomerular filtration rate (GFR). Design Plasma concentrations of bradykinin and related peptides were measured at baseline by quantitative mass spectrometry. All participants were randomly assigned at baseline to receive placebo, enalapril or losartan during the 5 years between kidney biopsies. Kidney morphometric data were available from kidney biopsies at baseline and after 5 years. Relationships of peptides with changes in morphometric variables were assessed using multiple linear regression after adjustment for age, sex, diabetes duration, HbA1c, mean arterial pressure, treatment assignment and, for longitudinal analyses, baseline structure. Results Baseline median albumin excretion rate of study participants was 5.0 μg/min, and mean GFR was 128 mL/min/1.73 m2. After multivariable adjustment, higher plasma concentration of bradykinin (1–8) was associated with greater glomerular volume (partial r = 0.191, P = 0.019) and total filtration surface area (partial r = 0.211, P = 0.010), and higher bradykinin (1–7) and hyp3-bradykinin (1–7) were associated with lower cortical interstitial fractional volume (partial r = -0.189, P = 0.011; partial r = -0.164, P = 0.027 respectively). In longitudinal analyses, higher bradykinin was associated with preservation of surface density of the peripheral glomerular basement membrane (partial r = 0.162, P = 0.013), and for participants randomized to losartan, higher hyp3-bradykinin (1–8) was associated with more limited increase in cortical interstitial fractional volume (partial r = -0.291, P = 0.033). Conclusions Higher plasma bradykinin and related peptide concentrations measured before clinical onset of diabetic nephropathy in persons with T1D were associated with preservation of glomerular structures, suggesting that elevations of these kinin concentrations may reflect adaptive responses to early renal structural changes in diabetic nephropathy.
Collapse
Affiliation(s)
- Kevin M. Wheelock
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, United States of America
| | - Jian Cai
- University of Louisville, Louisville, Kentucky, United States of America
| | - Helen C. Looker
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, United States of America
| | | | - Robert G. Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, United States of America
- * E-mail:
| | - Gudeta D. Fufaa
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, United States of America
| | - E. Jennifer Weil
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, United States of America
| | - Harold I. Feldman
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Paul L. Kimmel
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Brad H. Rovin
- Ohio State University, Columbus, Ohio, United States of America
| | - Michael Mauer
- University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jon B. Klein
- University of Louisville, Louisville, Kentucky, United States of America
| | | |
Collapse
|
13
|
Kovarik JJ, Kopecky C, Antlanger M, Domenig O, Kaltenecker CC, Werzowa J, Hecking M, Mahr S, Grömmer M, Wallner C, Aumayr K, Kain R, Zuckermann A, Poglitsch M, Säemann MD. Effects of angiotensin-converting-enzyme inhibitor therapy on the regulation of the plasma and cardiac tissue renin-angiotensin system in heart transplant patients. J Heart Lung Transplant 2016; 36:355-365. [PMID: 27773450 DOI: 10.1016/j.healun.2016.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/28/2016] [Accepted: 08/31/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) inhibitors (ACEis) are beneficial in patients with heart failure, yet their role after heart transplantation (HTx) remains ambiguous. Particularly, the effects of ACEis on plasma and cardiac metabolites of the "classical" and "alternative" renin-angiotensin system (RAS) in HTx patients are unknown. METHODS This cross-sectional study used a novel mass spectrometry-based approach to analyze plasma and tissue RAS regulation in homogenates of heart biopsy specimens from 10 stable HTx patients without RAS blockade and in 15 patients with ACEi therapy. Angiotensin (Ang) levels in plasma and Ang formation rates in biopsy tissue homogenates were measured. RESULTS Plasma Ang II formation is exclusively ACE dependent, whereas cardiac Ang II formation is primarily chymase dependent in HTx patients. ACEi therapy substantially increased plasma Ang-(1-7), the key effector of the alternative RAS, leaving plasma Ang II largely intact. Importantly, neprilysin and prolyl-carboxypeptidase but not angiotensin converting enzyme 2 are essential for cardiac tissue Ang-(1-7) formation. CONCLUSION ACE is the key enzyme for the generation of plasma Ang II, whereas chymase is responsible for cardiac tissue production of Ang II. Furthermore, our findings reveal that neprilysin and prolyl-carboxypeptidase are the essential cardiac enzymes for the alternative RAS after HTx. These novel insights into the versatile regulation of the RAS in HTx patients might affect future therapeutic avenues, such as chymase and neprilysin inhibition, beyond classical Ang II blockade.
Collapse
Affiliation(s)
- Johannes J Kovarik
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Chantal Kopecky
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Marlies Antlanger
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Oliver Domenig
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Christopher C Kaltenecker
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Johannes Werzowa
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Manfred Hecking
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Stephane Mahr
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Martina Grömmer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Wallner
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Klaus Aumayr
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Marcus D Säemann
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Kehoe K, Van Elzen R, Verkerk R, Sim Y, Van der Veken P, Lambeir AM, De Meester I. Prolyl carboxypeptidase purified from human placenta: its characterization and identification as an apelin-cleaving enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1481-8. [PMID: 27449720 DOI: 10.1016/j.bbapap.2016.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yani Sim
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
15
|
Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in North Central Region, Sri Lanka. Environ Health Prev Med 2015. [PMID: 26108971 DOI: 10.1007/s12199‐015‐0475‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. METHODS Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. RESULTS Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. CONCLUSION Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.
Collapse
|
16
|
Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in North Central Region, Sri Lanka. Environ Health Prev Med 2015; 20:354-9. [PMID: 26108971 DOI: 10.1007/s12199-015-0475-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/05/2015] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. METHODS Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. RESULTS Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. CONCLUSION Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.
Collapse
|
17
|
Prolyl carboxypeptidase activity decline correlates with severity and short-term outcome in acute ischemic stroke. Neurochem Res 2014; 40:81-8. [PMID: 25370794 DOI: 10.1007/s11064-014-1468-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022]
Abstract
Prolyl carboxypeptidase (PRCP) is an enzyme associated with cerebrovascular risk factors such as hypertension, diabetes mellitus, obesity and hyperlipidemia. We aim to evaluate the relation between serum PRCP activity and severity, evolution and outcome of acute ischemic stroke. We used a specific RP-HPLC activity assay to measure PRCP activity in serum of 50 stroke patients at admission, and at 24 h, 72 h and 7 days after stroke onset to assess correlations with stroke severity based on the National Institutes of Health Stroke scale score (NIHSS), infarct volume on brain MRI scan, stroke outcome based on the modified Rankin scale (mRS) and mortality at 3 months after stroke. The average PRCP activity in serum decreased significantly the first 24 h after stroke onset and returned to baseline values at day 7. High NIHSS scores and infarct volumes at admission were related with a more pronounced decrease of PRCP in the first 24 h after stroke (ΔPRCP24, r = 0.31, P < 0.05; r = 0.30, P < 0.05). In addition, patients who displayed a more pronounced decrease in PRCP levels during the first 24 h after stroke were more likely to be institutionalized upon discharge (n = 21) (ΔPRCP24 ± SD, 0.05 ± 0.10 U/L vs. 0.17 ± 0.14 U/L, P = 0.001). The decrease in PRCP levels in the first 24 h after stroke onset is associated with stroke severity and an unfavourable short-term stroke outcome.
Collapse
|
18
|
Bachovchin DA, Koblan LW, Wu W, Liu Y, Li Y, Zhao P, Woznica I, Shu Y, Lai JH, Poplawski SE, Kiritsy CP, Healey SE, DiMare M, Sanford DG, Munford RS, Bachovchin WW, Golub TR. A high-throughput, multiplexed assay for superfamily-wide profiling of enzyme activity. Nat Chem Biol 2014; 10:656-63. [PMID: 24997602 PMCID: PMC5953424 DOI: 10.1038/nchembio.1578] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
The selectivity of an enzyme inhibitor is a key determinant of its usefulness as a tool compound or its safety as a drug. Yet selectivity is never assessed comprehensively in the early stages of the drug discovery process, and only rarely in the later stages, because technical limitations prohibit doing otherwise. Here, we report EnPlex, an efficient, high-throughput method for simultaneously assessing inhibitor potency and specificity, and pilot its application to 96 serine hydrolases. EnPlex analysis of widely used serine hydrolase inhibitors revealed numerous previously unrecognized off-target interactions, some of which may help to explain previously confounding adverse effects. In addition, EnPlex screening of a hydrolase-directed library of boronic acid- and nitrile-containing compounds provided structure-activity relationships in both potency and selectivity dimensions from which lead candidates could be more effectively prioritized. Follow-up of a series of dipeptidyl peptidase 4 inhibitors showed that EnPlex indeed predicted efficacy and safety in animal models. These results demonstrate the feasibility and value of high-throughput, superfamily-wide selectivity profiling and suggest that such profiling can be incorporated into the earliest stages of drug discovery.
Collapse
Affiliation(s)
| | - Luke W. Koblan
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Wengen Wu
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Yuxin Liu
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Youhua Li
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Peng Zhao
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Iwona Woznica
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Ying Shu
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Jack H. Lai
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Sarah E. Poplawski
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | | | - Sarah E. Healey
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Matthew DiMare
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - David G. Sanford
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Robert S. Munford
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William W. Bachovchin
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
- Arisaph Pharmaceuticals, 100 High Street, Boston, MA 02110, USA
| | - Todd R. Golub
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115 USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
19
|
Pyrazoles as non-classical bioisosteres in prolylcarboxypeptidase (PrCP) inhibitors. Bioorg Med Chem Lett 2014; 24:1657-60. [PMID: 24636945 DOI: 10.1016/j.bmcl.2014.02.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 01/28/2023]
Abstract
Bioisosteres are integral components of modern pharmaceutical research that allow structural optimization to maximize in vivo efficacy and minimize adverse effects by selectively modifying pharmacodynamic, pharmacokinetic and physicochemical properties. A recent medicinal chemistry campaign focused on identifying small molecule inhibitors of prolylcarboxypeptidase (PrCP) initiated an investigation into the use of pyrazoles as bioisosteres for amides. The results indicate that pyrazoles are suitable bioisosteric replacements of amide functional groups. The study is an example of managing bioisosteric replacement by incorporating subsequent structural modifications to maintain potency against the selected target. A heuristic model for an embedded pharmacophore is also described.
Collapse
|
20
|
Debenham JS, Graham TH, Verras A, Zhang Y, Clements MJ, Kuethe JT, Madsen-Duggan C, Liu W, Bhatt UR, Chen D, Chen Q, Garcia-Calvo M, Geissler WM, He H, Li X, Lisnock J, Shen Z, Tong X, Tung EC, Wiltsie J, Xu S, Hale JJ, Pinto S, Shen DM. Discovery and optimization of orally active cyclohexane-based prolylcarboxypeptidase (PrCP) inhibitors. Bioorg Med Chem Lett 2013; 23:6228-33. [PMID: 24157366 DOI: 10.1016/j.bmcl.2013.09.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
The synthesis, SAR, binding affinities and pharmacokinetic profiles are described for a series of cyclohexane-based prolylcarboxypeptidase (PrCP) inhibitors discovered by high throughput screening. Compounds show high levels of ex vivo target engagement in mouse plasma 20 h post oral dose.
Collapse
Affiliation(s)
- John S Debenham
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kehoe K, Verkerk R, Sim Y, Waumans Y, Van der Veken P, Lambeir AM, De Meester I. Validation of a specific prolylcarboxypeptidase activity assay and its suitability for plasma and serum measurements. Anal Biochem 2013; 443:232-9. [PMID: 24036038 DOI: 10.1016/j.ab.2013.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 01/17/2023]
Abstract
Prolylcarboxypeptidase (PRCP, EC 3.4.16.2), a lysosomal carboxypeptidase, was discovered 45 years ago. However, research has been hampered by a lack of well-validated assays that are needed to measure low activities in biological samples. Two reversed-phase high-performance liquid chromatography (RP-HPLC) methods for quantifying PRCP activity in crude homogenates and plasma samples were optimized and validated. PRCP activity was determined by measuring the hydrolysis of N-benzyloxycarbonyl-l-proline (Z-Pro)-Phe. The enzymatically formed Z-Pro and Phe were measured independently under different HPLC conditions. The in-house methods showed good precision, linearity, accuracy, and specificity. Based on Michaelis-Menten constants, Z-Pro-Phe was chosen over Z-Pro-Ala as the substrate of preference. Cross-reactivity studies with dipeptidyl peptidases (DPPs) 2, 4, and 9 and prolyl oligopeptidase (PREP) confirmed the specificity of the PRCP activity assay. The average PRCP activity in plasma and serum of 32 healthy individuals was found to be 0.65 ± 0.02 and 0.72 ± 0.03 U/L, respectively. Both methods can be used to measure PRCP activity specifically in different biological samples and are well suited to evaluate PRCP inhibitors. These well-validated methods are valuable tools for studying PRCP's role in cardiovascular diseases, stroke, inflammation, and metabolic syndrome.
Collapse
Affiliation(s)
- Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Goptar IA, Shagin DA, Shagina IA, Mudrik ES, Smirnova YA, Zhuzhikov DP, Belozersky MA, Dunaevsky YE, Oppert B, Filippova IY, Elpidina EN. A digestive prolyl carboxypeptidase in Tenebrio molitor larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:501-509. [PMID: 23499933 DOI: 10.1016/j.ibmb.2013.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 06/01/2023]
Abstract
Prolyl carboxypeptidase (PRCP) is a lysosomal proline specific serine peptidase that also plays a vital role in the regulation of physiological processes in mammals. In this report, we isolate and characterize the first PRCP in an insect. PRCP was purified from the anterior midgut of larvae of a stored product pest, Tenebrio molitor, using a three-step chromatography strategy, and it was determined that the purified enzyme was a dimer. The cDNA of PRCP was cloned and sequenced, and the predicted protein was identical to the proteomic sequences of the purified enzyme. The substrate specificity and kinetic parameters of the enzyme were determined. The T. molitor PRCP participates in the hydrolysis of the insect's major dietary proteins, gliadins, and is the first PRCP to be ascribed a digestive function. Our collective data suggest that the evolutionary enrichment of the digestive peptidase complex in insects with an area of acidic to neutral pH in the midgut is a result of the incorporation of lysosomal peptidases, including PRCP.
Collapse
Affiliation(s)
- Irina A Goptar
- Chemical Faculty, Moscow State University, Moscow 119991, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jeong JK, Diano S. Prolyl carboxypeptidase and its inhibitors in metabolism. Trends Endocrinol Metab 2013; 24:61-7. [PMID: 23245768 PMCID: PMC3893043 DOI: 10.1016/j.tem.2012.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/30/2012] [Accepted: 11/04/2012] [Indexed: 01/09/2023]
Abstract
Proopiomelanocortin (POMC)-expressing neurons in the hypothalamus integrate a variety of central and peripheral metabolic inputs, and regulate energy homeostasis by controlling energy expenditure and food intake. To accomplish this, a precise balance of production and degradation of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide and product of the POMC gene, in the hypothalamus, is crucial. Prolyl carboxypeptidase (PRCP) is a key enzyme that degrades α-MSH to an inactive form unable to inhibit food intake. Because it represents a new therapeutic target for the treatment of metabolic disorders, such as obesity and diabetes, efforts have been made to generate potent, brain-penetrant PRCP inhibitors. Here, we discuss the role of PRCP on energy metabolism and the development of PRCP inhibitors.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
24
|
Wu Y, Yang H, Yang B, Yang K, Xiao C. Association of polymorphisms in prolylcarboxypeptidase and chymase genes with essential hypertension in the Chinese Han population. J Renin Angiotensin Aldosterone Syst 2012; 14:263-70. [PMID: 22679278 DOI: 10.1177/1470320312448949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The prolylcarboxypeptidase (PRCP) gene encodes a membrane protein that acts on angiotensin II (Ang II) and kallikrein to release vasoactive peptides. The chymase (CMA1) gene is important for Ang II generation. Therefore, the two genes might be involved in the pathogenesis of essential hypertension (EH). MATERIALS AND METHODS Eleven tag single nucleotide polymorphisms (SNPs) in the PRCP gene and four tag SNPs and G-1903A (rs1800875) polymorphism in the CMA1 gene were genotyped in the Chinese Han population (n=1020) using a polymerase chain reaction-restriction fragment length polymorphism method. RESULTS In the PRCP gene, single site analyses indicated that the rs7104980 G allele was a susceptible factor for EH (adjusted odds ratio (OR)=1.98, 95% confidence interval (CI) 1.62-2.43, p=0.3×10(-10)). The protective effect of Hap3 GAGCACTAACA was observed without carrying the susceptible rs7104908 G allele (OR=0.67, 95% CI 0.56-0.81, p=0.3×10(-4)) by haplotype analyses. In the case of the CMA1 gene, no associations with EH were found through single site analyses. However, haplotype analyses showed that Hap16 TTTA significantly increased the risk of EH with OR=3.15 (p=0.0002) which may be driven by interaction with a nearby SNP combination. CONCLUSIONS The present results indicated PRCP rs7104980 can be considered as a marker for EH and Hap3 GAGCACTAACA (PRCP) and Hap16 TTTA (CMA1) might be associated with EH in Chinese Han population.
Collapse
Affiliation(s)
- Yanrui Wu
- Cell Biology and Genetics Department, Kunming Medical University, China
| | | | | | | | | |
Collapse
|
25
|
Xu S, Lind L, Zhao L, Lindahl B, Venge P. Plasma prolylcarboxypeptidase (angiotensinase C) is increased in obesity and diabetes mellitus and related to cardiovascular dysfunction. Clin Chem 2012; 58:1110-5. [PMID: 22539806 DOI: 10.1373/clinchem.2011.179291] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prolylcarboxypeptidase (PRCP) (angiotensinase C) has 3 major targets, angiotensin II, prekallikrein, and α-melanocyte stimulating hormone(1-13). The truncation of the latter leads to loss in appetite regulation and obesity in experimental animals. The objectives of this study were to purify PRCP from a native source, establish a sensitive immunoassay for PRCP, and relate plasma PRCP concentrations to signs and symptoms of obesity, diabetes mellitus, and cardiovascular dysfunction. METHODS Purification of PRCP from human neutrophils and establishment of a sensitive ELISA was carried out with the use of samples from study participants. Three cohorts were studied: healthy individuals (n = 40); a chest pain cohort (Fast Assessment of Thoracic Pain by Neural Networks) (n = 165); and a community-based cohort [Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS)] (n = 1004). RESULTS PRCP was purified to homogeneity. Mean (SD) plasma concentrations in healthy individuals were 12.9 (3.2) μg/L and were increased in patients with chest pain and in patients with obesity and/or diabetes mellitus (P < 0.0001). In the PIVUS cohort the concentrations were related to several measures of arterial plaque formation, thickness of arterial intima media and posterior wall of the heart (P = 0.04-0.000005); the Framingham score (r = 0.14, P < 0.0001); and concentrations of C-reactive protein (r = 0.16, P < 0.0001) and N-terminal pro B-type natriuretic peptide (r = -0.13, P < 0.0001). CONCLUSIONS Plasma concentrations of PRCP may be used to reflect metabolic conditions in individuals with obesity and diabetes mellitus. The associations of PRCP concentrations with signs of cardiovascular dysfunction and cardiovascular abnormalities suggest a pivotal role of the enzyme in disease.
Collapse
Affiliation(s)
- Shengyuan Xu
- Section of Clinical Chemistry, Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
26
|
Zhu L, Carretero OA, Xu J, Wang L, Harding P, Rhaleb NE, Yang JJ, Sumners C, Yang XP. Angiotensin II type 2 receptor-stimulated activation of plasma prekallikrein and bradykinin release: role of SHP-1. Am J Physiol Heart Circ Physiol 2012; 302:H2553-9. [PMID: 22523247 DOI: 10.1152/ajpheart.01157.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ANG II type 2 receptors (AT(2)R) elicit cardioprotective effects in part by stimulating the release of kinins; however, the mechanism(s) responsible have not been fully explored. We demonstrated previously that overexpression of AT(2)R increased expression of prolylcarboxypeptidase (PRCP; a plasma prekallikrein activator) and release of bradykinin by mouse coronary artery endothelial cells (ECs). In the present study we hypothesized that the AT(2)R-stimulated increase in PRCP is mediated by the tyrosine phosphatase SHP-1, which in turn activates the PRCP-dependent prekallikrein-kallikrein pathway and releases bradykinin. We found that activation of AT(2)R using the specific agonist CGP42112A increased SHP-1 activity in ECs, which was blocked by the AT(2)R antagonist PD123319. Activation of AT(2)R also enhanced conversion of plasma prekallikrein to kallikrein, and this effect was blunted by a small interfering RNA (siRNA) to SHP-1 and abolished by the tyrosine phosphatase inhibitor sodium orthovanadate. Treating cells with a siRNA to PRCP also blunted AT(2)R-stimulated prekallikrein activation and bradykinin release. Furthermore, blocking plasma kallikrein with soybean trypsin inhibitor (SBTI) abolished AT(2)R-stimulated bradykinin release. These findings support our hypothesis that stimulation of AT(2)R activates a PRCP-dependent plasma prekallikrein pathway, releasing bradykinin. Activation of SHP-1 may also play an important role in AT(2)R-induced PRCP activation.
Collapse
Affiliation(s)
- Liping Zhu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202-2689, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Graham TH, Liu W, Verras A, Reibarkh M, Bleasby K, Bhatt UR, Chen Q, Garcia-Calvo M, Geissler WM, Gorski JN, He H, Lassman ME, Lisnock J, Li X, Shen Z, Tong X, Tung EC, Wiltsie J, Xie D, Xu S, Xiao J, Hale JJ, Pinto S, Shen DM. A new class of prolylcarboxypeptidase inhibitors, part 2: the aminocyclopentanes. Bioorg Med Chem Lett 2012; 22:2818-22. [PMID: 22444685 DOI: 10.1016/j.bmcl.2012.02.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 01/17/2023]
Abstract
A series of potent inhibitors of prolylcarboxypeptidase (PrCP) was developed by modifying a lead structure that was discovered by high-throughput screening. The tert-butyl pyrrolidine was replaced by an aminocyclopentane to reduce the metabolic liabilities of the original lead. The compounds demonstrated sub-nanomolar in vitro IC(50) values, minimal activity shifts in pure plasma and improved pharmacokinetics. Complete ex vivo plasma target engagement was achieved with low brain exposure at the 20 h time point following p.o. dosing in a mouse. The results indicate that the aminocyclopentanes are useful tools for studying the therapeutic potential of peripheral (non-CNS) PrCP inhibition.
Collapse
Affiliation(s)
- Thomas H Graham
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Graham TH, Liu W, Verras A, Sebhat IK, Xiong Y, Bleasby K, Bhatt UR, Chen Q, Garcia-Calvo M, Geissler WM, Gorski JN, He H, Lassman ME, Lisnock J, Li X, Shen Z, Tong X, Tung EC, Wiltsie J, Xiao J, Xie D, Xu S, Hale JJ, Pinto S, Shen DM. A new class of prolylcarboxypeptidase inhibitors, part 1: discovery and evaluation. Bioorg Med Chem Lett 2012; 22:2811-7. [PMID: 22444683 DOI: 10.1016/j.bmcl.2012.02.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 01/22/2023]
Abstract
A new structural class of potent prolylcarboxypeptidase (PrCP) inhibitors was discovered by high-throughput screening. The series possesses a tractable SAR profile with sub-nanomolar in vitro IC(50) values. Compared to prior inhibitors, the new series demonstrated minimal activity shifts in pure plasma and complete ex vivo plasma target engagement in mouse plasma at the 20 h post-dose time point (po). In addition, the in vivo level of CNS and non-CNS drug exposure was measured.
Collapse
Affiliation(s)
- Thomas H Graham
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shen HC, Ding FX, Jiang J, Verras A, Chabin RM, Xu S, Tong X, Chen Q, Xie D, Lassman ME, Bhatt UR, Garcia-Calvo MM, Geissler W, Shen Z, Murphy BA, Gorski JN, Wiltsie J, SinhaRoy R, Hale JJ, Pinto S, Shen DM. Discovery of benzodihydroisofurans as novel, potent, bioavailable and brain-penetrant prolylcarboxypeptidase inhibitors. Bioorg Med Chem Lett 2012; 22:1550-6. [DOI: 10.1016/j.bmcl.2012.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 11/25/2022]
|
30
|
Wu Z, Yang C, Graham TH, Verras A, Chabin RM, Xu S, Tong X, Xie D, Lassman ME, Bhatt UR, Garcia-Calvo MM, Shen Z, Chen Q, Bleasby K, Sinharoy R, Hale JJ, Tata JR, Pinto S, Colletti SL, Shen DM. Discovery of aminoheterocycles as potent and brain penetrant prolylcarboxypeptidase inhibitors. Bioorg Med Chem Lett 2012; 22:1727-30. [PMID: 22290078 DOI: 10.1016/j.bmcl.2011.12.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 11/29/2022]
Abstract
Efforts were dedicated to develop potent and brain penetrant prolylcarboxypeptidase (PrCP) inhibitors by replacing the amide group of original leads 1 and 2 with heterocycles. Aminopyrimidines including compound 32a were identified to display good PrCP inhibitory activity (32a, IC(50)=43 nM) and impressive ability to penetrate brain in mice (brain/plasma ratio: 1.4).
Collapse
Affiliation(s)
- Zhicai Wu
- Department of Discovery Chemistry, Merck Research Laboratories, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bachovchin DA, Cravatt BF. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat Rev Drug Discov 2012; 11:52-68. [PMID: 22212679 PMCID: PMC3665514 DOI: 10.1038/nrd3620] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are targets of approved drugs for indications such as type 2 diabetes, Alzheimer's disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation.
Collapse
Affiliation(s)
- Daniel A Bachovchin
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
32
|
Benton CS, Miller BH, Skwerer S, Suzuki O, Schultz LE, Cameron MD, Marron JS, Pletcher MT, Wiltshire T. Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. Psychopharmacology (Berl) 2012; 221:297-315. [PMID: 22113448 PMCID: PMC3337404 DOI: 10.1007/s00213-011-2574-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/03/2011] [Indexed: 02/03/2023]
Abstract
RATIONALE Identification of biomarkers that establish diagnosis or treatment response is critical to the advancement of research and management of patients with depression. OBJECTIVE Our goal was to identify biomarkers that can potentially assess fluoxetine response and risk to poor treatment outcome. METHODS We measured behavior, gene expression, and the levels of 36 neurobiochemical analytes across a panel of genetically diverse mouse inbred lines after chronic treatment with water or fluoxetine. RESULTS Glyoxylase 1 (GLO1) and guanine nucleotide-binding protein 1 (GNB1) mostly account for baseline anxiety-like and depressive-like behavior, indicating a common biological link between depression and anxiety. Fluoxetine-induced biochemical alterations discriminated positive responders, while baseline neurobiochemical differences differentiated negative responders (p < 0.006). Results show that glial fibrillary acidic protein, S100 beta protein, GLO1, and histone deacetylase 5 contributed most to fluoxetine response. These proteins are linked within a cellular growth/proliferation pathway, suggesting the involvement of cellular genesis in fluoxetine response. Furthermore, a candidate genetic locus that associates with baseline depressive-like behavior contains a gene that encodes for cellular proliferation/adhesion molecule (Cadm1), supporting a genetic basis for the role of neuro/gliogenesis in depression. CONCLUSION We provided a comprehensive analysis of behavioral, neurobiochemical, and transcriptome data across 30 mouse inbred strains that has not been accomplished before. We identified biomarkers that influence fluoxetine response, which, altogether, implicate the importance of cellular genesis in fluoxetine treatment. More broadly, this approach can be used to assess a wide range of drug response phenotypes that are challenging to address in human samples.
Collapse
Affiliation(s)
- Cristina S. Benton
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Brooke H. Miller
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, FL USA
| | - Sean Skwerer
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Oscar Suzuki
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Laura E. Schultz
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, FL USA
| | - Michael D. Cameron
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, FL USA
| | - J. S. Marron
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mathew T. Pletcher
- Orphan and Genetic Diseases Research Unit, Pfizer Global Research and Development, 200 Cambridge Park Drive, Cambridge, MA 02140 USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| |
Collapse
|
33
|
Discovery of a new class of potent prolylcarboxypeptidase inhibitors derived from alanine. Bioorg Med Chem Lett 2011; 22:1774-8. [PMID: 22248857 DOI: 10.1016/j.bmcl.2011.12.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 11/24/2022]
Abstract
Efforts to modify the central proline portion of lead compound 4 lead to the discovery of novel prolylcarboxypeptidase (PrCP) inhibitors. Especially, replacement with alanine afforded compound 19 displaying more potent human and mouse PrCP inhibitory activity than 4 and an overall comparable profile.
Collapse
|
34
|
Graham TH, Shen HC, Liu W, Xiong Y, Verras A, Bleasby K, Bhatt UR, Chabin RM, Chen D, Chen Q, Garcia-Calvo M, Geissler WM, He H, Lassman ME, Shen Z, Tong X, Tung EC, Xie D, Xu S, Colletti SL, Tata JR, Hale JJ, Pinto S, Shen DM. The discovery of non-benzimidazole and brain-penetrant prolylcarboxypeptidase inhibitors. Bioorg Med Chem Lett 2011; 22:658-65. [PMID: 22079761 DOI: 10.1016/j.bmcl.2011.10.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/18/2023]
Abstract
Novel prolylcarboxypeptidase (PrCP) inhibitors with nanomolar IC(50) values were prepared by replacing the previously described dichlorobenzimidazole-substituted pyrrolidine amides with a variety of substituted benzylamine amides. In contrast to prior series, the compounds demonstrated minimal inhibition shift in whole serum and minimal recognition by P-glycoprotein (P-gp) efflux transporters. The compounds were also cell permeable and demonstrated in vivo brain exposure. The in vivo effect of compound (S)-6e on weight loss in an established diet-induced obesity (eDIO) mouse model was studied.
Collapse
Affiliation(s)
- Thomas H Graham
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Discovery of benzimidazole pyrrolidinyl amides as prolylcarboxypeptidase inhibitors. Bioorg Med Chem Lett 2011; 21:1299-305. [PMID: 21315588 DOI: 10.1016/j.bmcl.2011.01.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/21/2022]
Abstract
A series of benzimidazole pyrrolidinyl amides containing a piperidinyl group were discovered as novel prolylcarboxypeptidase (PrCP) inhibitors. Low-nanomolar IC(50)'s were achieved for several analogs, of which compound 9b displayed modest ex vivo target engagement in eDIO mouse plasma. Compound 9b was also studied in vivo for its effect on weight loss and food intake in an eDIO mouse model and the results will be discussed.
Collapse
|
36
|
Chajkowski SM, Mallela J, Watson DE, Wang J, McCurdy CR, Rimoldi JM, Shariat-Madar Z. Highly selective hydrolysis of kinins by recombinant prolylcarboxypeptidase. Biochem Biophys Res Commun 2010; 405:338-43. [PMID: 21167814 DOI: 10.1016/j.bbrc.2010.12.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022]
Abstract
We have previously cloned a cDNA encoding human prolylcarboxypeptidase (PRCP) and expressed the cDNA in the Schneider 2 (S2) drosophila cell line. Here, we further characterized this recombinant enzyme. Investigations were performed to determine whether recombinant PRCP (rPRCP) metabolizes kinins (BK 1-9 and BK 1-8). The metabolites of these kinins were identified by LC/MS. rPRCP metabolized BK 1-8 to BK 1-7, whereas rPRCP was ineffective in metabolizing BK 1-9. The hydrolysis of BK 1-8 by rPRCP was dose- and time-dependent. A homology model of PRCP was developed based upon the sequence of dipeptidyl-peptidase 7 (DPP7, PDB ID: 3JYH), and providentially, the structure of PRCP (PDB ID: 3N2Z) was characterized during the course of our investigation. Docking studies of bradykinin oligopeptides were performed both from the homology model, and from the crystal structure of PRCP. These docking studies may provide a better understanding of the contribution of specific residues involved in substrate selectivity of human PRCP.
Collapse
Affiliation(s)
- S M Chajkowski
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhou C, Garcia-Calvo M, Pinto S, Lombardo M, Feng Z, Bender K, Pryor KD, Bhatt UR, Chabin RM, Geissler WM, Shen Z, Tong X, Zhang Z, Wong KK, Roy RS, Chapman KT, Yang L, Xiong Y. Design and synthesis of prolylcarboxypeptidase (PrCP) inhibitors to validate PrCP as a potential target for obesity. J Med Chem 2010; 53:7251-63. [PMID: 20857914 DOI: 10.1021/jm101013m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prolylcarboxypeptidase (PrCP) is a serine protease that may have a role in metabolism regulation. A class of reversible, potent, and selective PrCP inhibitors was developed starting from a mechanism based design for inhibiting this serine protease. Compound 8o inhibits human and mouse PrCP at IC(50) values of 1 and 2 nM and is not active (IC(50) > 25 μM) against a panel of closely related proteases. It has lower serum binding than its close analogues and is bioavailable in mouse. Subchronic dosing of 8o in PrCP(-/-) and WT mice at 100 mg/kg for 5 days resulted in a 5% reduction in body weight in WT mice and a 1% reduction in PrCP KO mice.
Collapse
Affiliation(s)
- Changyou Zhou
- Department of Medicinal Chemistry, Merck Research Laboratories,Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
MacKenzie JA, Roosa KA, Gump BB, Dumas AK, Bendinskas KG. Plasma prekallikrein levels are positively associated with circulating lipid levels and the metabolic syndrome in children. Appl Physiol Nutr Metab 2010; 35:518-25. [PMID: 20725119 DOI: 10.1139/h10-039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plasma prekallikrein (PK) has been shown to be associated with cardiovascular disease (CVD) and its risk factors, but these associations have not been investigated in children. The present study examined PK activity in relation to well-established cardiovascular risk factors in a cohort of children aged 9-11 years (N=97). We found a significant and positive association between PK and fasting levels of total cholesterol (p<0.01), non-high-density lipoprotein cholesterol (p<0.01), and triglycerides (p<0.001). In addition, there was a significant association between PK activity and the metabolic syndrome, a clustering of risk factors considered to have an impact on atherosclerosis and CVD mortality. Finally, we found that children with a family history of CVD had significantly elevated PK activity. These novel findings warrant further investigations into the relationship between circulating PK levels and CVD risk factors because PK may be involved in the progression of the disease state.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, State University of New York College at Oswego, Oswego, NY 13126, USA.
| | | | | | | | | |
Collapse
|
39
|
Kozarich JW. S28 peptidases: lessons from a seemingly 'dysfunctional' family of two. BMC Biol 2010; 8:87. [PMID: 20598110 PMCID: PMC2893137 DOI: 10.1186/1741-7007-8-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/21/2010] [Indexed: 11/29/2022] Open
Abstract
Abstract A recent paper in BMC Structural Biology reports the crystal structure of human prolylcarboxypeptidase (PRCP), one of the two members of the S28 peptidase family. Comparison of the substrate-binding site of PRCP with that of its family partner, dipeptidyl dipeptidase 7 (DPP7), helps to explain the different enzymatic activities of these structurally similar proteins, and also reveals a novel apparent charge-relay system in PRCP involving the active-site catalytic histidine. See research article: http://www.biomedcentral.com/1472-6807/10/16/ Commentary The S28 serine peptidase family is something of an enzymatic odd couple. While showing low sequence similarity to all proteins except each other, the two known family members appear to be at odds functionally; one, prolylcarboxypeptidase (PRCP), is a carboxypeptidase that cleaves single hydrophobic residues from the carboxyl termini of proteins that end with a Pro-X motif (where X is any hydrophobic amino acid), while the other, human dipeptidyl peptidase (DPP7), is an aminopeptidase that cleaves amino-terminal X-Pro dipeptides. The structural basis of this orthogonal specificity would undoubtedly be interesting, and a recent report in BMC Structural Biology from the Merck Global Structural Biology group (Soisson et al. [1]) has now met that expectation. In addition they reveal a new wrinkle to the iconic catalytic triad common to most serine hydrolases. The practical pharmaceutical interest in both these enzymes as potential drug targets is at present speculative. PRCP can inactivate a number of peptide hormones, such as angiotensin II, III and prekallikrein, implicating a role for the enzyme in hypertension, tissue proliferation and smooth-muscle growth. These properties suggest that this enzyme may well be a useful target for hypertension and anti-inflammatory therapy [2]. Another (non-S28 family) dipeptidyl dipeptidase (DPP4) is a major drug target in type 2 diabetes, and Merck has already developed a successful inhibitor of DPP4, the anti-hyperglycemic drug sitagliptin, for the treatment of type 2 diabetes. The DPP enzymes are rich in biological functions and other drug targets emerging from the group are possible [3].
Collapse
|
40
|
Soisson SM, Patel SB, Abeywickrema PD, Byrne NJ, Diehl RE, Hall DL, Ford RE, Reid JC, Rickert KW, Shipman JM, Sharma S, Lumb KJ. Structural definition and substrate specificity of the S28 protease family: the crystal structure of human prolylcarboxypeptidase. BMC STRUCTURAL BIOLOGY 2010; 10:16. [PMID: 20540760 PMCID: PMC2893456 DOI: 10.1186/1472-6807-10-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 06/11/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The unique S28 family of proteases is comprised of the carboxypeptidase PRCP and the aminopeptidase DPP7. The structural basis of the different substrate specificities of the two enzymes is not understood nor has the structure of the S28 fold been described. RESULTS The experimentally phased 2.8 A crystal structure is presented for human PRCP. PRCP contains an alpha/beta hydrolase domain harboring the catalytic Asp-His-Ser triad and a novel helical structural domain that caps the active site. Structural comparisons with prolylendopeptidase and DPP4 identify the S1 proline binding site of PRCP. A structure-based alignment with the previously undescribed structure of DPP7 illuminates the mechanism of orthogonal substrate specificity of PRCP and DPP7. PRCP has an extended active-site cleft that can accommodate proline substrates with multiple N-terminal residues. In contrast, the substrate binding groove of DPP7 is occluded by a short amino-acid insertion unique to DPP7 that creates a truncated active site selective for dipeptidyl proteolysis of N-terminal substrates. CONCLUSION The results define the structure of the S28 family of proteases, provide the structural basis of PRCP and DPP7 substrate specificity and enable the rational design of selective PRCP modulators.
Collapse
Affiliation(s)
- Stephen M Soisson
- Global Structural Biology, Merck Research Laboratories, P,O, Box 4, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhao X, Southwick K, Cardasis HL, Du Y, Lassman ME, Xie D, El-Sherbeini M, Geissler WM, Pryor KD, Verras A, Garcia-Calvo M, Shen DM, Yates NA, Pinto S, Hendrickon RC. Peptidomic profiling of human cerebrospinal fluid identifies YPRPIHPA as a novel substrate for prolylcarboxypeptidase. Proteomics 2010; 10:2882-6. [DOI: 10.1002/pmic.201000145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Abeywickrema PD, Patel SB, Byrne NJ, Diehl RE, Hall DL, Ford RE, Rickert KW, Reid JC, Shipman JM, Geissler WM, Pryor KD, SinhaRoy R, Soisson SM, Lumb KJ, Sharma S. Expression, purification and crystallization of human prolylcarboxypeptidase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:702-5. [PMID: 20516604 DOI: 10.1107/s1744309110014041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/15/2010] [Indexed: 11/10/2022]
Abstract
Prolylcarboxypeptidase (PrCP) is a lysosomal serine carboxypeptidase that cleaves a variety of C-terminal amino acids adjacent to proline and has been implicated in diseases such as hypertension and obesity. Here, the robust production, purification and crystallization of glycosylated human PrCP from stably transformed CHO cells is described. Purified PrCP yielded crystals belonging to space group R32, with unit-cell parameters a = b = 181.14, c = 240.13 A, that diffracted to better than 2.8 A resolution.
Collapse
|
43
|
Shariat-Madar B, Kolte D, Verlangieri A, Shariat-Madar Z. Prolylcarboxypeptidase (PRCP) as a new target for obesity treatment. Diabetes Metab Syndr Obes 2010; 3:67-78. [PMID: 20694162 PMCID: PMC2916657 DOI: 10.2147/dmsott.s7290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recently, we serendipitously discovered that mice with the deficiency of the enzyme prolylcarboxypeptidase (PRCP) have elevated alpha-melanocyte-stimulating hormone (alpha-MSH) levels which lead to decreased food intake and weight loss. This suggests that PRCP is an endogenous inactivator of alpha-MSH and an appetite stimulant. Since a modest weight loss can have the most profound influence on reducing cardiovascular risk factors, the inhibitors of PRCP would be emerging as a possible alternative for pharmacotherapy in high-risk patients with obesity and obesity-related disorders. The discovery of a new biological activity of PRCP in the PRCP-deficient mice and studies of alpha-MSH function indicate the importance and complexity of the hypothalamic pro-opiomelanocortin (POMC) system in altering food intake. Identifying a role for PRCP in regulating alpha-MSH in the brain may be a critical step in enhancing our understanding of how the brain controls food intake and body weight. In light of recent findings, the potential role of PRCP in regulating fuel homeostasis is critically evaluated. Further studies of the role of PRCP in obesity are much needed.
Collapse
Affiliation(s)
- B Shariat-Madar
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor MI, USA
| | - D Kolte
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
| | - A Verlangieri
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
| | - Z Shariat-Madar
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
- Correspondence: Zia Shariat-Madar, University of Mississippi, 219 B, Faser Hall, University, MS 38677–1848, USA, Tel +662 915 5150, Fax +662 915 5148, Email
| |
Collapse
|
44
|
Ngo ML, Mahdi F, Kolte D, Shariat-Madar Z. Upregulation of prolylcarboxypeptidase (PRCP) in lipopolysaccharide (LPS) treated endothelium promotes inflammation. JOURNAL OF INFLAMMATION-LONDON 2009; 6:3. [PMID: 19171072 PMCID: PMC2639534 DOI: 10.1186/1476-9255-6-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 01/27/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prolylcarboxypeptidase (Prcp) gene, along with altered PRCP and kallikrein levels, have been implicated in inflammation pathogenesis. PRCP regulates angiotensin 1-7 (Ang 1-7) - and bradykinin (BK) - stimulated nitric oxide production in endothelial cells. The mechanism through which kallikrein expression is altered during infection is not fully understood. Investigations were performed to determine the association between PRCP and kallikrein levels as a function of the upregulation of PRCP expression and the link between PRCP and inflammation risk in lipopolysaccharide (LPS)-induced endothelium activation. METHODS The Prcp transcript expression in LPS-induced human umbilical vein endothelial cells (HUVEC) activation was determined by RT-PCR for mRNA. PRCP-dependent kallikrein pathway was determined either by Enzyme Linked ImmunoSorbent Assay (ELISA) or by biochemical assay. RESULTS We report that PRCP is critical to the maintenance of the endothelial cells, and its upregulation contributes to the risk of developing inflammation. Significant elevation in kallikrein was seen on LPS-treated HUVECs. The conversion of PK to kallikrein was blocked by the inhibitor of PRCP, suggesting that PRCP might be a risk factor for inflammation. CONCLUSION The increased PRCP lead to a sustained production of bradykinin in endothelium following LPS treatment. This amplification may be an additional mechanism whereby PRCP promotes a sustained inflammatory response. A better appreciation of the role of PRCP in endothelium may contribute to a better understanding of inflammatory vascular disorders and to the development of a novel treatment.
Collapse
Affiliation(s)
- My-Linh Ngo
- School of Pharmacy, Department of Pharmacology, University of Mississippi, Oxford, MS, USA.
| | | | | | | |
Collapse
|
45
|
Mallela J, Perkins R, Yang J, Pedigo S, Rimoldi JM, Shariat-Madar Z. The functional importance of the N-terminal region of human prolylcarboxypeptidase. Biochem Biophys Res Commun 2008; 374:635-40. [PMID: 18656443 DOI: 10.1016/j.bbrc.2008.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 12/12/2022]
Abstract
The renin-angiotensin-system cascade pathway generates the vasopressor and prothrombotic hormones, angiotensin II (Ang II) and angiotensin III (Ang III) from angiotensinogen. One of the key enzymes for the generation of angiotensin 1-7 (Ang 1-7) and angiotensin 2-7 (Ang 2-7) from Ang II and III, respectively, is prolylcarboxypeptidase (PRCP). To understand the contribution of the N-terminal region to catalysis, an N-terminal truncated form, lacking 179 N-terminal residues of PRCP (rPRCP(40)) was constructed. The circular dichroism (CD) spectrum of rPRCP(40) illustrated that it was structured with significant helical content as indicated by local minima at approximately 220 and 208nm. The main products of Ang III metabolized by rPRCP(40) were Ang 2-7 plus phenylalanine as determined by LC-MS. Angiotensin I (Ang I) blocked the metabolism of Ang III by rPRCP(40). These investigations showed that the C-terminal region of the rPRCP(40) contributes to PRCP's catalytic function, and provided additional experimental evidence for this suggestion.
Collapse
Affiliation(s)
- J Mallela
- Department of Pharmacology, University of Mississippi, 317 Faser Hall, University, MS 38677-1848, USA
| | | | | | | | | | | |
Collapse
|