1
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
dos Santos FS, de Freitas RP, de Freitas CS, Mendonça DVC, Lage DP, Tavares GDSV, Machado AS, Martins VT, Costa AV, de Queiroz VT, de Oliveira MB, de Oliveira FM, Antinarelli LMR, Coimbra ES, Pilau EJ, da Silva GP, Coelho EAF, Teixeira RR. Synthesis of 1,2,3-Triazole-Containing Methoxylated Cinnamides and Their Antileishmanial Activity against the Leishmania braziliensis Species. Pharmaceuticals (Basel) 2023; 16:1113. [PMID: 37631028 PMCID: PMC10459042 DOI: 10.3390/ph16081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Leishmaniasis is a group of infectious diseases caused by protozoan parasites that belong to the genus Leishmania. Currently, there is no human vaccine, and the available treatments are associated with toxicity, high cost, and the emergence of resistant strains. These factors highlight the need to identify new antileishmanial candidates. In this study, we synthesized twenty-four methoxylated cinnamides containing 1,2,3-triazole fragments and evaluated their antileishmanial activity against the Leishmania braziliensis species, which is the main etiological agent responsible for American Tegumentary Leishmaniasis (ATL). The cinnamides were synthetically prepared using nucleophilic acyl substitution and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. The compounds were characterized using infrared, nuclear magnetic resonance, and high-resolution mass spectrometry techniques. We performed preliminary studies to evaluate the biological activity of these compounds against L. braziliensis promastigotes and axenic amastigotes. Compound 28, N-((1-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-1H-1,2,3-triazole-4-yl) methyl)-3,4-dimethoxy cinnamide, demonstrated relevant antileishmanial activity with low toxicity in murine cells. The selectivity index values for this compound were superior compared with data obtained using amphotericin B. Furthermore, this cinnamide derivative reduced the infection percentage and number of recovered amastigotes in L. braziliensis-infected macrophages. It also induced an increase in reactive oxygen species production, depolarization of the mitochondrial potential, and disruption of the parasite membrane. Taken together, these findings suggest that this synthetic compound holds potential as an antileishmanial candidate and should be considered for future studies in the treatment of ATL.
Collapse
Affiliation(s)
- Fabíola Suelen dos Santos
- Laboratório de Síntese Orgânica (LABSINTO), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.S.d.S.); (R.P.d.F.)
| | - Rossimiriam Pereira de Freitas
- Laboratório de Síntese Orgânica (LABSINTO), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.S.d.S.); (R.P.d.F.)
| | - Camila Simões de Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (C.S.d.F.); (D.V.C.M.); (D.P.L.); (G.d.S.V.T.); (A.S.M.); (V.T.M.); (E.A.F.C.)
| | - Débora Vasconcelos Costa Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (C.S.d.F.); (D.V.C.M.); (D.P.L.); (G.d.S.V.T.); (A.S.M.); (V.T.M.); (E.A.F.C.)
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (C.S.d.F.); (D.V.C.M.); (D.P.L.); (G.d.S.V.T.); (A.S.M.); (V.T.M.); (E.A.F.C.)
| | - Grasiele de Sousa Vieira Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (C.S.d.F.); (D.V.C.M.); (D.P.L.); (G.d.S.V.T.); (A.S.M.); (V.T.M.); (E.A.F.C.)
| | - Amanda Sanchez Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (C.S.d.F.); (D.V.C.M.); (D.P.L.); (G.d.S.V.T.); (A.S.M.); (V.T.M.); (E.A.F.C.)
| | - Vivian Tamieti Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (C.S.d.F.); (D.V.C.M.); (D.P.L.); (G.d.S.V.T.); (A.S.M.); (V.T.M.); (E.A.F.C.)
| | - Adilson Vidal Costa
- Grupo de Estudo Aplicado em Produtos Naturais e Síntese Orgânica (GEAPS), Departamento de Química e Física, Universidade Federal do Espírito Santo, Alegre 29500-000, Espírito Santo, Brazil; (A.V.C.); (V.T.d.Q.); (M.B.d.O.)
| | - Vagner Tebaldi de Queiroz
- Grupo de Estudo Aplicado em Produtos Naturais e Síntese Orgânica (GEAPS), Departamento de Química e Física, Universidade Federal do Espírito Santo, Alegre 29500-000, Espírito Santo, Brazil; (A.V.C.); (V.T.d.Q.); (M.B.d.O.)
| | - Mariana Belizario de Oliveira
- Grupo de Estudo Aplicado em Produtos Naturais e Síntese Orgânica (GEAPS), Departamento de Química e Física, Universidade Federal do Espírito Santo, Alegre 29500-000, Espírito Santo, Brazil; (A.V.C.); (V.T.d.Q.); (M.B.d.O.)
| | | | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (L.M.R.A.); (E.S.C.)
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (L.M.R.A.); (E.S.C.)
| | - Eduardo Jorge Pilau
- Centro de Ciências Exatas, Departamento de Química, Universidade Estadual de Maringá, Maringá 87020-900, Paraná, Brazil; (E.J.P.); (G.P.d.S.)
| | - Geovane Perez da Silva
- Centro de Ciências Exatas, Departamento de Química, Universidade Estadual de Maringá, Maringá 87020-900, Paraná, Brazil; (E.J.P.); (G.P.d.S.)
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (C.S.d.F.); (D.V.C.M.); (D.P.L.); (G.d.S.V.T.); (A.S.M.); (V.T.M.); (E.A.F.C.)
| | - Róbson Ricardo Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
3
|
Santana Filho PC, Brasil da Silva M, Malaquias da Silva BN, Fazolo T, Dorneles GP, Braun de Azeredo J, Alf da Rosa M, Rodrigues Júnior LC, Peres A, Santos Canto RF, Torres Romão PR. Seleno-indoles trigger reactive oxygen species and mitochondrial dysfunction in Leishmania amazonensis. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Law CTY, Nivesvivat T, Xiong Q, Kulkeaw K, Shi L, Ruenchit P, Suwanpakdee D, Suwanpakdee P, Tongkrajang N, Sarasombath PT, Tsui SKW. Mitochondrial genome diversity of Balamuthia mandrillaris revealed by a fatal case of granulomatous amoebic encephalitis. Front Microbiol 2023; 14:1162963. [PMID: 37213512 PMCID: PMC10196457 DOI: 10.3389/fmicb.2023.1162963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Balamuthia (B.) mandrillaris is a free-living amoeba that can cause rare yet fatal granulomatous amoebic encephalitis (GAE). However, efficacious treatment for GAE is currently unavailable, especially when genomic studies on B. mandrillaris are limited. Methods In this study, B. mandrillaris strain KM-20 was isolated from the brain tissue of a GAE patient, and its mitochondrial genome was de novo assembled using high-coverage Nanopore long reads and Illumina short reads. Results and Discussion Phylogenetic and comparative analyses revealed a range of diversification in the mitochondrial genome of KM-20 and nine other B. mandrillaris strains. According to the mitochondrial genome alignment, one of the most variable regions was observed in the ribosomal protein S3 (rps3), which was caused by an array of novel protein tandem repeats. The repeating units in the rps3 protein tandem region present significant copy number variations (CNVs) among B. mandrillaris strains and suggest KM-20 as the most divergent strain for its highly variable sequence and highest copy number in rps3. Moreover, mitochondrial heteroplasmy was observed in strain V039, and two genotypes of rps3 are caused by the CNVs in the tandem repeats. Taken together, the copy number and sequence variations of the protein tandem repeats enable rps3 to be a perfect target for clinical genotyping assay for B. mandrillaris. The mitochondrial genome diversity of B. mandrillaris paves the way to investigate the phylogeny and diversification of pathogenic amoebae.
Collapse
Affiliation(s)
- Cherie Tsz-Yiu Law
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Thirapa Nivesvivat
- Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ling Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Pichet Ruenchit
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Detchvijitr Suwanpakdee
- Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Piradee Suwanpakdee
- Neurology Division, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Nongnat Tongkrajang
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patsharaporn T. Sarasombath
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Patsharaporn T. Sarasombath, ;
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Stephen Kwok-Wing Tsui,
| |
Collapse
|
5
|
San Nicolás-Hernández D, Bethencourt-Estrella CJ, López-Arencibia A, Hernández-Álvarez E, Sifaoui I, Bazzocchi IL, Lorenzo-Morales J, Jiménez IA, Piñero JE. Withaferin A-silyl ether analogs as potential anti-kinetoplastid agents targeting the programmed cell death. Biomed Pharmacother 2023; 157:114012. [PMID: 36399830 DOI: 10.1016/j.biopha.2022.114012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapies of leishmaniasis and Chagas disease, two of the most widespread neglected tropical diseases, have limited efficacy and toxic side effects. In this regard, natural products play an important role in overcoming the current need for new antiparasitic agents. The present study reports the leishmanicidal and trypanocidal activities of twenty-four known silyl-ether derivatives of withaferin A. Eleven compounds from this series (4, 7, 8, 10, 12, 15, 17, 18, 20, 22 and 25) showed a potent dose-dependent inhibitory effect on the proliferation of Leishmania amazonensis promastigotes and Trypanosoma cruzi epimastigotes respectively, even higher than the references drugs, miltefosine and benznidazole. Among them, the most promising compound, derivative 10, exhibited approximately 34-fold higher leishmanicidal activity and 49-fold higher trypanocidal activity compared to the reference drugs, as well as lower cytotoxicity. Moreover, compounds 4, 7, 10, 12 and 15 were more active than the reference drugs against the amastigote forms of L. amazonensis, presenting a high selectivity index. Assays performed to study the ATP levels, mitochondrial membrane potential, plasma membrane permeability, chromatin condensation, reactive oxygen species and autophagy indicated that these withaferin A-silyl analogs appear to induce events characteristic of apoptosis-like and also autophagy leading to programmed cell death. These findings support the therapeutic potential of withaferin A-related steroids as anti-Leishmania and Trypanosoma agents.
Collapse
Affiliation(s)
- Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain.
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain.
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Inst. de Salud Carlos III, Madrid, Spain.
| | - Eduardo Hernández-Álvarez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain.
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Inst. de Salud Carlos III, Madrid, Spain.
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Inst. de Salud Carlos III, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Inst. de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Wu Y, Ying Z, Liu J, Sun Z, Li S, Liu Q. Depletion of Toxoplasma adenine nucleotide translocator leads to defects in mitochondrial morphology. Parasit Vectors 2022; 15:185. [PMID: 35642006 PMCID: PMC9158195 DOI: 10.1186/s13071-022-05295-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Adenine nucleotide translocase (ANT) is a protein that catalyzes the exchange of ADP/ATP across the inner mitochondrial membrane. Beyond this, ANT is closely associated with cell death pathways and mitochondrial dysfunction. It is a potential therapeutic target for many diseases. The function of the ANT in Toxoplasma gondii is poorly understood. Methods The CRISPR/CAS9 gene editing tool was used to identify and study the function of the ANT protein in T. gondii. We constructed T. gondii ANT transgenic parasite lines, including endogenous tag strain, knockout strain and gene complement strain, to clarify the function and location of TgANT. Mitochondrial morphology was observed by immunofluorescence and transmission electron microscopy. Results Toxoplasma gondii was found to encode an ANT protein, which was designated TgANT. TgANT localized to the inner mitochondrial membrane. The proliferation of the Δant strain was significantly reduced. More important, depletion of TgANT resulted in significant changes in the morphology and ultrastructure of mitochondria, abnormal apicoplast division and abnormal cytoskeletal daughter budding. In addition, the pathogenicity of the Δant strain to mice was significantly reduced. Conclusions Altogether, we identified and characterized the ANT protein of T. gondii. Depletion of TgANT inhibited parasite growth and impaired apicoplast and mitochondrial biogenesis, as well as abnormal parasite division, suggesting TgANT is important for parasite growth. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05295-7.
Collapse
Affiliation(s)
- Yihan Wu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhu Ying
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhepeng Sun
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuang Li
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China. .,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Ambaru B, Gangadharan GM, Subramanya HS, Gupta CM. Profilin is involved in G1 to S phase progression and mitotic spindle orientation during Leishmania donovani cell division cycle. PLoS One 2022; 17:e0265692. [PMID: 35316283 PMCID: PMC8939790 DOI: 10.1371/journal.pone.0265692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
Profilin is a multi-ligand binding protein, which is a key regulator of actin dynamics and involved in regulating several cellular functions. It is present in all eukaryotes, including trypanosomatids such as Leishmania. However, not much is known about its functions in these organisms. Our earlier studies have shown that Leishmania parasites express a single homologue of profilin (LdPfn) that binds actin, phosphoinositides and poly- L- proline motives, and depletion of its intracellular pool to 50%of normal levels affects the cell growth and intracellular trafficking. Here, we show, employing affinity pull-down and mass spectroscopy, that LdPfn interacted with a large number of proteins, including those involved in mRNA processing and protein translation initiation, such as eIF4A1. Further, we reveal, using mRNA Seq analysis, that depletion of LdPfn in Leishmania cells (LdPfn+/-) resulted in significantly reduced expression of genes which encode proteins involved in cell cycle regulation, mRNA translation initiation, nucleosides and amino acids transport. In addition, we show that in LdPfn+/- cells, cellular levels of eIF4A1 protein were significantly decreased, and during their cell division cycle, G1-to-S phase progression was delayed and orientation of mitotic spindle altered. These changes were, however, reversed to normal by episomal expression of GFP-LdPfn in LdPfn+/- cells. Taken together, our results indicate that profilin is involved in regulation of G1-to-S phase progression and mitotic spindle orientation in Leishmania cell cycle, perhaps through its interaction with elF4A1 protein.
Collapse
Affiliation(s)
- Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Chhitar M. Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
8
|
das Chagas Almeida A, Meinel RS, Leal YL, Silva TP, Glanzmann N, Mendonça DVC, Perin L, Cunha-Júnior EF, Coelho EAF, Melo RCN, da Silva AD, Coimbra ES. Functionalized 1,2,3-triazolium salts as potential agents against visceral leishmaniasis. Parasitol Res 2022; 121:1389-1406. [PMID: 35169883 DOI: 10.1007/s00436-022-07431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, being fatal if untreated. In search of a more effective treatment for VL, one of the main strategies is the development and screening of new antileishmanial compounds. Here, we reported the synthesis of seven new acetyl functionalized 1,2,3-triazolium salts, together with four 1,2,3-triazole precursors, and investigated their effect against different strains of L. infantum from dogs and humans. The 1,2,3-triazolium salts exhibited better activity than the 1,2,3-triazole derivatives with IC50 range from 0.12 to 8.66 μM and, among them, compound 5 showed significant activity against promastigotes (IC50 from 4.55 to 5.28 μM) and intracellular amastigotes (IC50 from 5.36 to 7.92 μM), with the best selective index (SI ~ 6-9) and reduced toxicity. Our findings, using biochemical and ultrastructural approaches, demonstrated that compound 5 targets the mitochondrion of L. infantum promastigotes, leading to the formation of reactive oxygen species (ROS), increase of the mitochondrial membrane potential, and mitochondrial alteration. Moreover, quantitative transmission electron microscopy (TEM) revealed that compound 5 induces the reduction of promastigote size and cytoplasmic vacuolization. Interestingly, the effect of compound 5 was not associated with apoptosis or necrosis of the parasites but, instead, seems to be mediated through a pathway involving autophagy, with a clear detection of autophagic vacuoles in the cytoplasm by using both a fluorescent marker and TEM. As for the in vivo studies, compound 5 showed activity in a mouse model of VL at 20 mg/kg, reducing the parasite load in both spleen and liver (59.80% and 26.88%, respectively). Finally, this compound did not induce hepatoxicity or nephrotoxicity and was able to normalize the altered biochemical parameters in the infected mice. Thus, our findings support the use of 1,2,3-triazolium salts as potential agents against visceral leishmaniasis.
Collapse
Affiliation(s)
- Ayla das Chagas Almeida
- Núcleo de Pesquisas Em Parasitologia, Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Raíssa Soares Meinel
- SINTBIOMOL, Departamento de Química, I.C.E., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Yasmim Lopes Leal
- SINTBIOMOL, Departamento de Química, I.C.E., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Thiago P Silva
- Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Nícolas Glanzmann
- SINTBIOMOL, Departamento de Química, I.C.E., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Débora Vasconcelos Costa Mendonça
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luísa Perin
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edézio Ferreira Cunha-Júnior
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa Em Produtos Bioativos e Biociências, Universidade Federal Do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rossana C N Melo
- Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Adilson David da Silva
- SINTBIOMOL, Departamento de Química, I.C.E., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine Soares Coimbra
- Núcleo de Pesquisas Em Parasitologia, Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Nunes DCDOS, Costa MS, Bispo-da-Silva LB, Ferro EAV, Zóia MAP, Goulart LR, Rodrigues RS, Rodrigues VDM, Yoneyama KAG. Mitochondrial dysfunction on Leishmania (Leishmania) amazonensis induced by ketoconazole: insights into drug mode of action. Mem Inst Oswaldo Cruz 2022; 117:e210157. [PMID: 35508030 PMCID: PMC9060495 DOI: 10.1590/0074-02760210157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Leishmania parasites cause leishmaniasis that range from self-limiting cutaneous lesions to more serious forms of the disease. The search for potential drug targets focusing on biochemical and metabolic pathways revealed the sterol biosynthesis inhibitors (SBIs) as a promising approach. In this class of inhibitors is found ketoconazole, a classical inhibitor of 14α-methysterol 14-demethylase. OBJECTIVE The present study aimed to better understand the biological response of Leishmania (Leishmania) amazonensis promastigotes at the cellular level after ketoconazole treatment. METHODS Herein, techniques, such as fluorimetry, flow cytometry, fluorescence microscopy, electron and scanning microscopy were used to investigate the cellular structures and to identify organelles affected by ketoconazole treatment. FINDINGS The study demonstrated, for the first time, the effect of ketoconazole on mitochondrion functioning and its probable relationship to cell cycle and death on L. (L.) amazonensis promastigotes (IFLA/BR/67/PH8 strain). MAIN CONCLUSIONS Ketoconazole-induced mitochondrial damages led to hyperpolarisation of this single organelle and autophagic vacuoles formation, as a parasite survival strategy. These damages did not reflect directly on the parasite cell cycle, but drove the parasites to death, making them susceptible to ketoconazole treatment in in vitro models.
Collapse
|
10
|
Pedra-Rezende Y, Bombaça ACS, Menna-Barreto/ RFS. Is the mitochondrion a promising drug target in trypanosomatids? Mem Inst Oswaldo Cruz 2022; 117:e210379. [PMID: 35195164 PMCID: PMC8862782 DOI: 10.1590/0074-02760210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
|
11
|
Berná L, Rego N, Francia ME. The Elusive Mitochondrial Genomes of Apicomplexa: Where Are We Now? Front Microbiol 2021; 12:751775. [PMID: 34721355 PMCID: PMC8554336 DOI: 10.3389/fmicb.2021.751775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are vital organelles of eukaryotic cells, participating in key metabolic pathways such as cellular respiration, thermogenesis, maintenance of cellular redox potential, calcium homeostasis, cell signaling, and cell death. The phylum Apicomplexa is entirely composed of obligate intracellular parasites, causing a plethora of severe diseases in humans, wild and domestic animals. These pathogens include the causative agents of malaria, cryptosporidiosis, neosporosis, East Coast fever and toxoplasmosis, among others. The mitochondria in Apicomplexa has been put forward as a promising source of undiscovered drug targets, and it has been validated as the target of atovaquone, a drug currently used in the clinic to counter malaria. Apicomplexans present a single tubular mitochondria that varies widely both in structure and in genomic content across the phylum. The organelle is characterized by massive gene migrations to the nucleus, sequence rearrangements and drastic functional reductions in some species. Recent third generation sequencing studies have reignited an interest for elucidating the extensive diversity displayed by the mitochondrial genomes of apicomplexans and their intriguing genomic features. The underlying mechanisms of gene transcription and translation are also ill-understood. In this review, we present the state of the art on mitochondrial genome structure, composition and organization in the apicomplexan phylum revisiting topological and biochemical information gathered through classical techniques. We contextualize this in light of the genomic insight gained by second and, more recently, third generation sequencing technologies. We discuss the mitochondrial genomic and mechanistic features found in evolutionarily related alveolates, and discuss the common and distinct origins of the apicomplexan mitochondria peculiarities.
Collapse
Affiliation(s)
- Luisa Berná
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Molecular Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Sección Biomatemática-Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María E Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
Pamukcu S, Cerutti A, Bordat Y, Hem S, Rofidal V, Besteiro S. Differential contribution of two organelles of endosymbiotic origin to iron-sulfur cluster synthesis and overall fitness in Toxoplasma. PLoS Pathog 2021; 17:e1010096. [PMID: 34793583 PMCID: PMC8639094 DOI: 10.1371/journal.ppat.1010096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants. Phenotypic analysis and quantitative proteomics allowed us to highlight notable differences in these mutants. Both Fe-S cluster synthesis pathways are necessary for optimal parasite growth in vitro, but their disruption leads to markedly different fates: impairment of the plastidic pathway leads to a loss of the organelle and to parasite death, while disruption of the mitochondrial pathway trigger differentiation into a stress resistance stage. This highlights that otherwise similar biochemical pathways hosted by different sub-cellular compartments can have very different contributions to the biology of the parasites, which is something to consider when exploring novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
| | - Aude Cerutti
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Yann Bordat
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Sonia Hem
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Valérie Rofidal
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
13
|
Keshav P, Goyal DK, Kaur S. Antileishmanial potential of immunomodulator gallic acid against experimental murine visceral leishmaniasis. Parasite Immunol 2021; 43:e12875. [PMID: 34347892 DOI: 10.1111/pim.12875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
The menace of the enfeebling disease leishmaniasis prevails due to the inaccessibility of effective vaccine and chemotherapy. Hence in the pursuit of finding novel alternative options with reasonable efficacy, immunomodulation, leishmanicidal activity and fewer side effects, screening of compounds from natural sources is needed. This study was focused on in vitro and in vivo antileishmanial screening of gallic acid (GA) against Leishmania donovani infection in BALB/c mice. GA showed in vitro parasiticidal activity and IC50 value of 19.59 ± 0.74 µg/ml and is able to arrest cell cycle at the sub-G0/G1 phase. The therapeutic potential of gallic acid was assessed in the L. donovani-infected BALB/c mice. GA reported a reduction in parasite burden and augmentation of CD4+ and CD8+ T lymphocytes. Also, the polarization of mouse immune status to protective Th1 response was evidenced by increased delayed-type hypersensitivity response and levels of IgG2a, reactive oxygen species and nitric oxide. GA was reported to be safe and non-toxic to human cell line THP-1 and also to the liver and kidney of mice. Hence, the findings of the present study indicate the possible role of GA in the strengthening of host immune system and thus facilitating the clearance of leishmanial infection and conferring protection.
Collapse
Affiliation(s)
- Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, India
| | - Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, India
| |
Collapse
|
14
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Pinto JG, Marcolino LM, Ferreira-Strixino J. Photodynamic activity of Photogem ® in Leishmania promastigotes and infected macrophages. Future Microbiol 2021; 16:95-106. [PMID: 33459574 DOI: 10.2217/fmb-2020-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objectives: This study aimed to evaluate the effect of photodynamic therapy (PDT) with Photogem® in promastigotes of Leishmania braziliensis and Leishmania major, and in infected macrophages. Materials & methods: The following parameters were analyzed: Photogem® internalization, mitochondrial activity, viability, tubulin marking and morphological alterations in promastigotes and viability in infected macrophages. Results: Photogem® accumulated in the cytosol and adhered to the flagellum. Changes were observed in the mitochondrial activity in groups maintained in the dark, with no viability alteration. After PDT, viability decreased up to 80%, and morphology was affected. Conclusion: The results point out that PDT with Photogem® can reduce parasite and macrophage viability.
Collapse
Affiliation(s)
- Juliana G Pinto
- Photobiology Applied to Health, Research & Development Institute, Univap Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Luciana Mc Marcolino
- Photobiology Applied to Health, Research & Development Institute, Univap Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health, Research & Development Institute, Univap Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
16
|
Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N. Drug Resistance in Protozoal Infections. BIOCHEMISTRY OF DRUG RESISTANCE 2021:95-142. [DOI: 10.1007/978-3-030-76320-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Morais LS, Dusi RG, Demarque DP, Silva RL, Albernaz LC, Báo SN, Merten C, Antinarelli LMR, Coimbra ES, Espindola LS. Antileishmanial compounds from Connarus suberosus: Metabolomics, isolation and mechanism of action. PLoS One 2020; 15:e0241855. [PMID: 33156835 PMCID: PMC7647111 DOI: 10.1371/journal.pone.0241855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
Leishmaniasis is a disease impacting public health worldwide due to its high incidence, morbidity and mortality. Available treatments are costly, lengthy and toxic, not to mention the problem of parasite resistance. The development of alternative treatments is warranted and natural products demonstrate promising activity. This study investigated the activity of Connarus suberosus extracts and compounds against Leishmania species. Several C. suberosus extracts were tested against L. amazonensis promastigotes. Active and inactive extracts were analyzed by UHPLC-MS and data evaluated using a metabolomics platform, revealing an unknown neoflavonoid (connarin, 3), isolated together with the pterocarpans: hemileiocarpin (1) and leiocarpin (2). The aforementioned compounds (1-3), together with the benzoquinones: rapanone (4), embelin (5) and suberonone (6) previously isolated by our group from the same species, were tested against: (i) L. amazonensis and L. infantum promastigotes, and (ii) L. amazonensis intracellular amastigotes, with the most active compound (3) also tested against L. infantum amastigotes. Cytotoxicity against murine peritoneal macrophages was also investigated. Compounds 2 and 3 presented an IC50 33.8 μM and 11.4 μM for L. amazonensis promastigotes; and 44.3 μM and 13.3 μM for L. infantum promastigotes, respectively. For L. amazonensis amastigotes, the IC50 of 2 was 20.4 μM with a selectivity index (SI) of 5.7, while the IC50 of 3 was 2.9 μM with an SI of 6.3. For L. infantum amastigotes, the IC50 of 3 was 7.7 μM. Compounds 2 and 3 presented activity comparable with the miltefosine positive control, with compound 3 found to be 2-4 times more active than the positive control, depending on the Leishmania species and form. The extracts and isolated compounds showed moderate toxicity against macrophages. Compounds 2 and 3 altered the mitochondrial membrane potential (ΔΨm) and neutral lipid body accumulation, while 2 also impacted plasma membrane permeabilization, culminating in cellular disorder and parasite death. Transmission electron microscopy of L. amazonensis promastigotes treated with compound 3 confirmed the presence of lipid bodies. Leiocarpin (2) and connarin (3) demonstrated antileishmanial activity. This study provides knowledge of natural products with antileishmanial activity, paving the way for prototype development to fight this neglected tropical disease.
Collapse
Affiliation(s)
- Lais S. Morais
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Renata G. Dusi
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Daniel P. Demarque
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr-Universität Bochum, Bochum, Germany
| | - Raquel L. Silva
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Lorena C. Albernaz
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Sônia N. Báo
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Christian Merten
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr-Universität Bochum, Bochum, Germany
| | - Luciana M. R. Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário Juiz de Fora, Minas Gerais, Brazil
| | - Elaine S. Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário Juiz de Fora, Minas Gerais, Brazil
| | - Laila S. Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| |
Collapse
|
18
|
Upegui Zapata YA, Echeverri F, Quiñones W, Torres F, Nacher M, Rivas LI, Meira CDS, Gedamu L, Escobar G, Archbold R, Vélez ID, Robledo SM. Mode of action of a formulation containing hydrazones and saponins against leishmania spp. Role in mitochondria, proteases and reinfection process. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:94-106. [PMID: 32734890 PMCID: PMC7334304 DOI: 10.1016/j.ijpddr.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.
Collapse
Affiliation(s)
- Yulieth A Upegui Zapata
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia; Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia.
| | - Winston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Fernando Torres
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Montserrat Nacher
- Centro de Investigaciones Biológicas Margarita Salas (C.S.I.C) Ramiro de Maeztu 9, 28007, Madrid, Spain
| | - Luis I Rivas
- Centro de Investigaciones Biológicas Margarita Salas (C.S.I.C) Ramiro de Maeztu 9, 28007, Madrid, Spain
| | - Camila Dos Santos Meira
- Department of Biological Sciences. University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences. University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Gustavo Escobar
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Rosendo Archbold
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Iván D Vélez
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
19
|
Elucidating the possible mechanism of action of some pathogen box compounds against Leishmania donovani. PLoS Negl Trop Dis 2020; 14:e0008188. [PMID: 32275665 PMCID: PMC7176276 DOI: 10.1371/journal.pntd.0008188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/22/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is one of the Neglected Tropical Diseases (NTDs) which is closely associated with poverty and has gained much relevance recently due to its opportunistic coinfection with HIV. It is a protozoan zoonotic disease transmitted by a dipteran Phlebotomus, Lutzomyia/ Sergentomyia sandfly; during blood meals on its vertebrate intermediate hosts. It is a four-faceted disease with its visceral form being more deadly if left untreated. It is endemic across the tropics and sub-tropical regions of the world. It can be considered the third most important NTD after malaria and lymphatic filariasis. Currently, there are numerous drawbacks on the fight against leishmaniasis which includes: non-availability of vaccines, limited availability of drugs, high cost of mainstay drugs and parasite resistance to current treatments. In this study, we screened the antileishmanial activity, selectivity, morphological alterations, cell cycle progression and apoptotic potentials of six Pathogen box compounds from Medicine for Malaria Venture (MMV) against Leishmania donovani promastigotes and amastigotes. From this study, five of the compounds showed great promise as lead chemotherapeutics based on their high selectivity against the Leishmania donovani parasite when tested against the murine mammalian macrophage RAW 264.7 cell line (with a therapeutic index ranging between 19–914 (promastigotes) and 1–453 (amastigotes)). The cell cycle progression showed growth arrest at the G0-G1 phase of mitotic division, with an indication of apoptosis induced by two (2) of the pathogen box compounds tested. Our findings present useful information on the therapeutic potential of these compounds in leishmaniasis. We recommend further in vivo studies on these compounds to substantiate observations made in the in vitro study. There are numerous drawbacks in the fight against leishmaniasis which includes difficulty in drug administration, lengthy time of treatment, high toxicity, adverse side effects, high cost of drugs and increasing parasite resistance to treatment. These have made the search for new antileishmanial chemotherapeutics very essential. The Medicine for Malaria Venture (MMV) with the aim of accelerating drug development for poverty-related diseases has assembled some 400 diverse, drug-like molecules active against neglected diseases called the Pathogen box compounds. Thus, in this study we explored the antileishmanial potency and elucidated some possible mechanisms of action of some of the compounds against the Leishmania donovani parasites. The six compounds studied caused a distortion in the mitochondrion morphology, loss of kinetoplastid DNA and eventual nuclear degeneration upon treatment for 72 hours. Parasites treated with two of the cytocidal compounds MMV676057 (E03C) and MMV688942 (D06A) showed no significant programmed cell death due to apoptosis when compared to the untreated parasites but rather showed a cell cycle growth arrest in the G0-G1 and S-phases.
Collapse
|
20
|
Bombaça ACS, Brunoro GVF, Dias-Lopes G, Ennes-Vidal V, Carvalho PC, Perales J, d'Avila-Levy CM, Valente RH, Menna-Barreto RFS. Glycolytic profile shift and antioxidant triggering in symbiont-free and H 2O 2-resistant Strigomonas culicis. Free Radic Biol Med 2020; 146:392-401. [PMID: 31760093 DOI: 10.1016/j.freeradbiomed.2019.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
During their life cycle, trypanosomatids are exposed to stress conditions and adapt their energy and antioxidant metabolism to colonize their hosts. Strigomonas culicis is a monoxenous protist found in invertebrates with an endosymbiotic bacterium that completes essential biosynthetic pathways for the trypanosomatid. Our research group previously generated a wild-type H2O2-resistant (WTR) strain that showed improved mitochondrial metabolism and antioxidant defenses, which led to higher rates of Aedes aegypti infection. Here, we assess the biological contribution of the S. culicis endosymbiont and reactive oxygen species (ROS) resistance to oxidative and energy metabolism processes. Using high-throughput proteomics, several proteins involved in glycolysis and gluconeogenesis, the pentose phosphate pathway and glutathione metabolism were identified. The results suggest that ROS resistance decreases glucose consumption and indicate that the metabolic products from gluconeogenesis are key to supplying the protist with high-energy and reducing intermediates. Our hypothesis was confirmed by biochemical assays showing opposite profiles for glucose uptake and hexokinase and pyruvate kinase activity levels in the WTR and aposymbiotic strains, while the enzyme glucose-6P 1-dehydrogenase was more active in both strains. Regarding the antioxidant system, ascorbate peroxidase has an important role in H2O2 resistance and may be responsible for the high infection rates previously described for A. aegypti. In conclusion, our data indicate that the energy-related and antioxidant metabolic processes of S. culicis are modulated in response to oxidative stress conditions, providing new perspectives on the biology of the trypanosomatid-insect interaction as well as on the possible impact of resistant parasites in accidental human infection.
Collapse
Affiliation(s)
| | | | - Geovane Dias-Lopes
- Laboratory of Molecular Biology and Endemic Diseases, IOC, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Vitor Ennes-Vidal
- Laboratory of Integrated Studies in Protozoology, IOC, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Paulo Costa Carvalho
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, IOC, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Claudia Masini d'Avila-Levy
- Laboratory of Integrated Studies in Protozoology, IOC, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Richard Hemmi Valente
- Laboratory of Toxinology, IOC, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
21
|
Fuchs P, Rugen N, Carrie C, Elsässer M, Finkemeier I, Giese J, Hildebrandt TM, Kühn K, Maurino VG, Ruberti C, Schallenberg-Rüdinger M, Steinbeck J, Braun HP, Eubel H, Meyer EH, Müller-Schüssele SJ, Schwarzländer M. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:420-441. [PMID: 31520498 DOI: 10.1111/tpj.14534] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 05/14/2023]
Abstract
Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marlene Elsässer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Iris Finkemeier
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Jonas Giese
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Tatjana M Hildebrandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cristina Ruberti
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Janina Steinbeck
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Etienne H Meyer
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Stefanie J Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| |
Collapse
|
22
|
Meinel RS, Almeida ADC, Stroppa PHF, Glanzmann N, Coimbra ES, da Silva AD. Novel functionalized 1,2,3-triazole derivatives exhibit antileishmanial activity, increase in total and mitochondrial-ROS and depolarization of mitochondrial membrane potential of Leishmania amazonensis. Chem Biol Interact 2020; 315:108850. [DOI: 10.1016/j.cbi.2019.108850] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
|
23
|
López-Arencibia A, Reyes-Batlle M, Freijo MB, Sifaoui I, Bethencourt-Estrella CJ, Rizo-Liendo A, Chiboub O, McNaughton-Smith G, Lorenzo-Morales J, Abad-Grillo T, Piñero JE. In vitro activity of 1H-phenalen-1-one derivatives against Leishmania spp. and evidence of programmed cell death. Parasit Vectors 2019; 12:601. [PMID: 31870406 PMCID: PMC6929359 DOI: 10.1186/s13071-019-3854-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 11/12/2022] Open
Abstract
Background The in vitro activity against Leishmania spp. of a novel group of compounds, phenalenone derivatives, is described in this study. Previous studies have shown that some phenalenones present leishmanicidal activity, and induce a decrease in the mitochondrial membrane potential in L. amazonensis parasites, so in order to elucidate the evidence of programmed cell death occurring inside the promastigote stage, different assays were performed in two different species of Leishmania. Methods We focused on the determination of the programmed cell death evidence by detecting the characteristic features of the apoptosis-like process, such as phosphatidylserine exposure, mitochondrial membrane potential, and chromatin condensation among others. Results The results showed that four molecules activated the apoptosis-like process in the parasite. All the signals observed were indicative of the death process that the parasites were undergoing. Conclusions The present results highlight the potential use of phenalenone derivatives against Leishmania species and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.![]()
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain. .,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Mónica B Freijo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Olfa Chiboub
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain.,Laboratoire Matériaux-Molécules et Applications, La Marsa, University of Carthage, Carthage, Tunisia
| | - Grant McNaughton-Smith
- Centro Atlántico del Medicamento S.A (CEAMED S.A.), PCTT, La Laguna, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain.,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Teresa Abad-Grillo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain. .,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
24
|
Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. Eur J Med Chem 2019; 184:111742. [DOI: 10.1016/j.ejmech.2019.111742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
25
|
Quantitative Proteomic Map of the Trypanosomatid Strigomonas culicis: The Biological Contribution of its Endosymbiotic Bacterium. Protist 2019; 170:125698. [PMID: 31760169 DOI: 10.1016/j.protis.2019.125698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
Strigomonas culicis is a kinetoplastid parasite of insects that maintains a mutualistic association with an intracellular symbiotic bacterium, which is highly integrated into the protist metabolism: it furnishes essential compounds and divides in synchrony with the eukaryotic nucleus. The protist, conversely, can be cured of the endosymbiont, producing an aposymbiotic cell line, which presents a diminished ability to colonize the insect host. This obligatory association can represent an intermediate step of the evolution towards the formation of an organelle, therefore representing an interesting model to understand the symbiogenesis theory. Here, we used shotgun proteomics to compare the S. culicis endosymbiont-containing and aposymbiotic strains, revealing a total of 11,305 peptides, and up to 2,213 proteins (2,029 and 1,452 for wild type and aposymbiotic, respectively). Gene ontology associated to comparative analysis between both strains revealed that the biological processes most affected by the elimination of the symbiont were the amino acid synthesis, as well as protein synthesis and folding. This large-scale comparison of the protein expression in S. culicis marks a step forward in the comprehension of the role of endosymbiotic bacteria in monoxenous trypanosomatid biology, particularly because trypanosomatids expression is mostly post-transcriptionally regulated.
Collapse
|
26
|
Mitochondrial proteome profiling of Leishmania tropica. Microb Pathog 2019; 133:103542. [DOI: 10.1016/j.micpath.2019.103542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022]
|
27
|
Melatti C, Pieperhoff M, Lemgruber L, Pohl E, Sheiner L, Meissner M. A unique dynamin-related protein is essential for mitochondrial fission in Toxoplasma gondii. PLoS Pathog 2019; 15:e1007512. [PMID: 30947298 PMCID: PMC6448817 DOI: 10.1371/journal.ppat.1007512] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
The single mitochondrion of apicomplexan protozoa is thought to be critical for all stages of the life cycle, and is a validated drug target against these important human and veterinary parasites. In contrast to other eukaryotes, replication of the mitochondrion is tightly linked to the cell cycle. A key step in mitochondrial segregation is the fission event, which in many eukaryotes occurs by the action of dynamins constricting the outer membrane of the mitochondria from the cytosolic face. To date, none of the components of the apicomplexan fission machinery have been identified and validated. We identify here a highly divergent, dynamin-related protein (TgDrpC), conserved in apicomplexans as essential for mitochondrial biogenesis and potentially for fission in Toxoplasma gondii. We show that TgDrpC is found adjacent to the mitochondrion, and is localised both at its periphery and at its basal part, where fission is expected to occur. We demonstrate that depletion or dominant negative expression of TgDrpC results in interconnected mitochondria and ultimately in drastic changes in mitochondrial morphology, as well as in parasite death. Intriguingly, we find that the canonical adaptor TgFis1 is not required for mitochondrial fission. The identification of an Apicomplexa-specific enzyme required for mitochondrial biogenesis and essential for parasite growth highlights parasite adaptation. This work paves the way for future drug development targeting TgDrpC, and for the analysis of additional partners involved in this crucial step of apicomplexan multiplication.
Collapse
Affiliation(s)
- Carmen Melatti
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Manuela Pieperhoff
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Leandro Lemgruber
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ehmke Pohl
- Department of Biosciences, & Biophysical Sciences Institute, Durham University, Durham, United Kingdom
| | - Lilach Sheiner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
Costa MS, Gonçalves YG, Teixeira SC, Nunes DCDO, Lopes DS, da Silva CV, da Silva MS, Borges BC, Silva MJB, Rodrigues RS, Rodrigues VDM, Von Poelhsitz G, Yoneyama KAG. Increased ROS generation causes apoptosis-like death: Mechanistic insights into the anti-Leishmania activity of a potent ruthenium(II) complex. J Inorg Biochem 2019; 195:1-12. [PMID: 30861423 DOI: 10.1016/j.jinorgbio.2019.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/17/2023]
Abstract
Some metallodrugs that exhibit interesting biological activity contain transition metals such as ruthenium, and have been extensively exploited because of their antiparasitic potential. In previous study, we reported the remarkable anti-Leishmania activity of precursor cis-[RuIICl2(dppm)2], where dppm = bis(diphenylphosphino)methane, and new ruthenium(II) complexes, cis-[RuII(η2-O2CC10H13)(dppm)2]PF6 (bbato), cis-[RuII(η2-O2CC7H7S)(dppm)2]PF6 (mtbato) and cis-[RuII(η2-O2CC7H7O2)(dppm)2]PF6 (hmxbato) against some Leishmania species. In view of the promising activity of the hmxbato complex against Leishmania (Leishmania) amazonensis promastigotes, the present work investigated the possible parasite death mechanism involved in the action of this hmxbato and its precursor. We report, for the first time, that hmxbato and precursor promoted an increase in reactive oxygen species production, depolarization of the mitochondrial membrane, DNA fragmentation, formation of a pre-apoptotic peak, alterations in parasite morphology and formation of autophagic vacuoles. Taken together, our results suggest that these ruthenium complexes cause parasite death by apoptosis. Thus, this work provides relevant knowledge on the activity of ruthenium(II) complexes against L. (L.) amazonensis. Such information will be essential for the exploitation of these complexes as future candidates for cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Mônica Soares Costa
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Samuel Cota Teixeira
- Laboratório de Tripanosomatídeos, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Débora Cristina de Oliveira Nunes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Daiana Silva Lopes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil; Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Brazil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular (LECC), Centro de Toxinas, Resposta imune e Sinalização Celular (CeTICS), Instituto Butantan, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Bruna Cristina Borges
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Renata Santos Rodrigues
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Gustavo Von Poelhsitz
- Instituto de Química, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
29
|
Soyer TG, Mendonça DVC, Tavares GSV, Lage DP, Dias DS, Ribeiro PAF, Perin L, Ludolf F, Coelho VTS, Ferreira ACG, Neves PHAS, Matos GF, Chávez-Fumagalli MA, Coimbra ES, Pereira GR, Coelho EAF, Antinarelli LMR. Evaluation of the in vitro and in vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis. Exp Parasitol 2019; 199:30-37. [PMID: 30817917 DOI: 10.1016/j.exppara.2019.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/09/2019] [Accepted: 02/23/2019] [Indexed: 12/23/2022]
Abstract
The treatment against leishmaniasis presents problems, since the currently used drugs are toxic and/or have high costs. In addition, parasite resistance has increased. As a consequence, in this study, a chloroquinolin derivative, namely 7-chloro-N,N-dimethylquinolin-4-amine or GF1059, was in vitro and in vivo tested against Leishmania parasites. Experiments were performed to evaluate in vitro antileishmanial activity and cytotoxicity, as well as the treatment of infected macrophages and the inhibition of infection using pre-treated parasites. This study also investigated the GF1059 mechanism of action in L. amazonensis. Results showed that the compound was highly effective against L. infantum and L. amazonensis, presenting a selectivity index of 154.6 and 86.4, respectively, against promastigotes and of 137.6 and 74.3, respectively, against amastigotes. GF1059 was also effective in the treatment of infected macrophages and inhibited the infection of these cells when parasites were pre-incubated with it. The molecule also induced changes in the parasites' mitochondrial membrane potential and cell integrity, and caused an increase in the reactive oxygen species production in L. amazonensis. Experiments performed in BALB/c mice, which had been previously infected with L. amazonensis promastigotes, and thus treated with GF1059, showed that these animals presented significant reductions in the parasite load when the infected tissue, spleen, liver, and draining lymph node were evaluated. GF1059-treated mice presented both lower parasitism and low levels of enzymatic markers, as compared to those receiving amphotericin B, which was used as control. In conclusion, data suggested that GF1059 can be considered a possible therapeutic target to be tested against leishmaniasis.
Collapse
Affiliation(s)
- Tauane G Soyer
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia A F Ribeiro
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luisa Perin
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vinicio T S Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andreza C G Ferreira
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H A S Neves
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme F Matos
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Guilherme R Pereira
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Luciana M R Antinarelli
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Hiraiwa PM, de Aguiar AM, Ávila AR. Fluorescence-based assay for accurate measurement of transcriptional activity in trypanosomatid parasites. Cytometry A 2018; 93:727-736. [PMID: 30118574 DOI: 10.1002/cyto.a.23387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 11/05/2022]
Abstract
Trypanosomatid parasites are causative agents of neglected human diseases. Their lineage diverged early from the common eukaryotic ancestor, and they evolved singular mechanisms of gene expression that are crucial for their survival. Studies on unusual and essential molecular pathways lead to new drug targets. In this respect, assays to analyze transcriptional activity will provide useful information to identify essential and specific factors. However, the current methods are laborious and do not provide global and accurate measures. For this purpose, a previously reported radiolabeling in vitro nascent mRNA methodology was used to establish an alternative fluorescent-based assay that is able to precisely quantify nascent mRNA using both flow cytometry and a high-content image system. The method allowed accurate and global measurements in Trypanosoma brucei, a representative species of trypanosomatid parasites. We obtained data demonstrating that approximately 70% of parasites from a population under normal growth conditions displayed mRNA transcriptional activity, whilst the treatment with α-amanitin (75 µg/ml) inhibited the polymerase II activity. The adaptation of the method also allowed the analyses of the transcriptional activity during the cell cycle. Therefore, the methodology described herein contributes to obtaining precise measurements of transcriptional rates using multiparametric analysis. This alternative method can facilitate investigations of genetic and biochemical processes in trypanosome parasites and consequently provide additional information related to new treatment or prophylaxis strategies involving these important human parasites.
Collapse
Affiliation(s)
- Priscila M Hiraiwa
- Flow Cytometry Facility, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil.,Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Alessandra M de Aguiar
- Flow Cytometry Facility, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil.,Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Andréa R Ávila
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| |
Collapse
|
31
|
Gravel J, Schmitzer AR. Imidazolium and benzimidazolium-containing compounds: from simple toxic salts to highly bioactive drugs. Org Biomol Chem 2018; 15:1051-1071. [PMID: 28045182 DOI: 10.1039/c6ob02293f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The toxicity of simple imidazolium and benzimidazolium salts started to be more and more investigated in the last few years and was taken in consideration in the context of microorganisms, plants and more evolved organisms' exposure. However, the toxicity of these salts can be exploited in the development of different biological applications by incorporating them in the structure of compounds that specifically target microorganisms and cancer cells. We highlight in this minireview the way researchers became aware of the inherent problem of the stability and bioaccumulation of imidazolium and benzimidazolium salts and how they found inspiration to exploit their toxicity by incorporating them into new highly potent drugs.
Collapse
Affiliation(s)
- J Gravel
- Département de Chimie- Université de Montréal, 2900 Edouard Montpetit CP 6128 Succursalle Centre Ville Montréal Québec, Canada H3C 3J7.
| | - A R Schmitzer
- Département de Chimie- Université de Montréal, 2900 Edouard Montpetit CP 6128 Succursalle Centre Ville Montréal Québec, Canada H3C 3J7.
| |
Collapse
|
32
|
Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species. Parasitol Res 2017; 117:391-403. [PMID: 29248978 DOI: 10.1007/s00436-017-5713-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Leishmaniasis has become a significant public health issue in several countries in the world. New products have been identified to treat against the disease; however, toxicity and/or high cost is a limitation. The present work evaluated the antileishmanial activity of a new naphthoquinone derivate, Flau-A [2-(2,3,4-tri-O-acetyl-6-deoxy-β-L-galactopyranosyloxy)-1,4-naphthoquinone], against promastigote and amastigote-like stages of Leishmania amazonensis and L. infantum. In addition, the cytotoxicity in murine macrophages and human red cells was also investigated. The mechanism of action of Flau-A was assessed in L. amazonensis as well as its efficacy in treating infected macrophages and inhibiting infection of pretreated parasites. Results showed that Flau-A was effective against promastigotes and amastigote-like forms of both parasite species, as well as showed low toxicity in mammalian cells. Results also highlighted the morphological and biochemical alterations induced by Flau-A in L. amazonensis, including loss of mitochondrial membrane potential, as well as increased reactive oxygen species production, cell shrinkage, and alteration of the plasma membrane integrity. The present study demonstrates for the first time the antileishmanial activity of Flau-A against two Leishmania species and suggests that the mitochondria of the parasites may be the main target organelle. Data shown here encourages the use of this molecule in new studies concerning treatment against Leishmania infection in mammalian hosts.
Collapse
|
33
|
Bombaça ACS, Dias FDA, Ennes-Vidal V, Garcia-Gomes ADS, Sorgine MHF, d'Avila-Levy CM, Menna-Barreto RFS. Hydrogen peroxide resistance in Strigomonas culicis: Effects on mitochondrial functionality and Aedes aegypti interaction. Free Radic Biol Med 2017; 113:255-266. [PMID: 28993269 DOI: 10.1016/j.freeradbiomed.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022]
Abstract
Reactive oxygen species (ROS) are toxic molecules involved in several biological processes such as cellular signaling, proliferation, differentiation and cell death. Adaptations to oxidative environments are crucial for the success of the colonization of insects by protozoa. Strigomonas culicis is a monoxenic trypanosomatid found in the midgut of mosquitoes and presenting a life cycle restricted to the epimastigote form. Among S. culicis peculiarities, there is an endosymbiotic bacterium in the cytoplasm, which completes essential biosynthetic routes of the host cell and may represent an intermediary evolutive step in organelle origin, thus constituting an interesting model for evolutive researches. In this work, we induced ROS resistance in wild type S. culicis epimastigotes by the incubation with increasing concentrations of hydrogen peroxide (H2O2), and compared the oxidative and energetic metabolisms among wild type, wild type-H2O2 resistant and aposymbiotic strains. Resistant protozoa were less sensitive to the oxidative challenge and more dependent on oxidative phosphorylation, which was demonstrated by higher oxygen consumption and mitochondrial membrane potential, increased activity of complexes II-III and IV, increased complex II gene expression and higher ATP production. Furthermore, the wild type-H2O2 resistant strain produced reduced ROS levels and showed lower lipid peroxidation, as well as an increase in gene expression of antioxidant enzymes and thiol-dependent peroxidase activity. On the other hand, the aposymbiotic strain showed impaired mitochondrial function, higher H2O2 production and deficient antioxidant response. The induction of H2O2 resistance also led to a remarkable increase in Aedes aegypti midgut binding in vitro and colonization in vivo, indicating that both the pro-oxidant environment in the mosquito gut and the oxidative stress susceptibility regulate S. culicis population in invertebrates.
Collapse
Affiliation(s)
| | - Felipe de Almeida Dias
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline Dos Santos Garcia-Gomes
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Microbiologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Rio de Janeiro, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Masini d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
34
|
Ulloa JL, Spina R, Casasco A, Petray PB, Martino V, Sosa MA, Frank FM, Muschietti LV. Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi. Parasit Vectors 2017; 10:567. [PMID: 29132413 PMCID: PMC5683217 DOI: 10.1186/s13071-017-2509-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
Background Leishmaniasis and Chagas disease are life-threatening illnesses caused by the protozoan parasites Leishmania spp. and Trypanosoma cruzi, respectively. They are known as “neglected diseases” due to the lack of effective drug treatments and the scarcity of research work devoted to them. Therefore, the development of novel and effective drugs is an important and urgent need. Natural products are an important source of bioactive molecules for the development of new drugs. In this study, we evaluated the activity of enhydrin, uvedalin and polymatin B, three sesquiterpene lactones (STLs) isolated from Smallanthus sonchifolius, on Leishmania mexicana (MNYC/BZ/62/M) and Trypanosoma cruzi (Dm28c). In addition, the in vivo trypanocidal activity of enhydrin and uvedalin and the effects of these STLs on parasites’ ultrastructure were evaluated. Methods The inhibitory effect of the three STLs on the growth of L. mexicana amastigotes and promastigotes as well as T. cruzi epimastigotes was evaluated in vitro. The changes produced by the STLs on the ultrastructure of parasites were examined by transmission electron microscopy (TEM). Enhydrin and uvedalin were also studied in a murine model of acute T. cruzi infection (RA strain). Serum activities of the hepatic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were used as biochemical markers of hepatotoxicity. Results The three compounds exhibited leishmanicidal activity on both parasite forms with IC50 values of 0.42–0.54 μg/ml for promastigotes and 0.85–1.64 μg/ml for intracellular amastigotes. Similar results were observed on T. cruzi epimastigotes (IC50 0.35–0.60 μg/ml). The TEM evaluation showed marked ultrastructural alterations, such as an intense vacuolization and mitochondrial swelling in both L. mexicana promastigotes and T. cruzi epimastigotes exposed to the STLs. In the in vivo study, enhydrin and uvedalin displayed a significant decrease in circulating parasites (50–71%) and no signs of hepatotoxicity were detected. Conclusions Enhydrin, uvedalin and polymatin B possess significant leishmanicidal and trypanocidal activity on different parasite stages. These results show that these compounds may provide valuable leads for the development of new drugs against these neglected parasitic diseases.
Collapse
Affiliation(s)
- Jerónimo L Ulloa
- Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia, IQUIMEFA (UBA-CONICET), Universidad de Buenos Aires, Junín 956 2° F (1113), Buenos Aires, Argentina
| | - Renata Spina
- Instituto de Histología y Embriología "Dr. Mario H. Burgos", Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, (56 5500), Mendoza, CC, Argentina
| | - Agustina Casasco
- CONICET, Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires, Paraguay 2155 13° F (1211), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Farmacia y Bioquímica, Inmunología y Biotecnología, Cátedra de Inmunología, Universidad de Buenos Aires, Junín 956 4° F (1113), Buenos Aires, Argentina
| | - Patricia B Petray
- CONICET, Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires, Paraguay 2155 13° F (1211), Buenos Aires, Argentina
| | - Virginia Martino
- Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia, IQUIMEFA (UBA-CONICET), Universidad de Buenos Aires, Junín 956 2° F (1113), Buenos Aires, Argentina
| | - Miguel A Sosa
- Instituto de Histología y Embriología "Dr. Mario H. Burgos", Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, (56 5500), Mendoza, CC, Argentina
| | - Fernanda M Frank
- CONICET, Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires, Paraguay 2155 13° F (1211), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Farmacia y Bioquímica, Inmunología y Biotecnología, Cátedra de Inmunología, Universidad de Buenos Aires, Junín 956 4° F (1113), Buenos Aires, Argentina
| | - Liliana V Muschietti
- Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia, IQUIMEFA (UBA-CONICET), Universidad de Buenos Aires, Junín 956 2° F (1113), Buenos Aires, Argentina.
| |
Collapse
|
35
|
Cooper C, Thompson RCA, Botero A, Kristancic A, Peacock C, Kirilak Y, Clode PL. A comparative molecular and 3-dimensional structural investigation into cross-continental and novel avian Trypanosoma spp. in Australia. Parasit Vectors 2017; 10:234. [PMID: 28499405 PMCID: PMC5427604 DOI: 10.1186/s13071-017-2173-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Molecular and structural information on avian Trypanosoma spp. throughout Australia is limited despite their intrinsic value in understanding trypanosomatid evolution, diversity, and structural biology. In Western Australia tissue samples (n = 429) extracted from 93 birds in 25 bird species were screened using generic PCR primers to investigate the diversity of Trypanosoma spp. To investigate avian trypanosome structural biology the first 3-dimensional ultrastructural models of a Trypanosoma spp. (Trypanosoma sp. AAT) isolated from a bird (currawong, Strepera spp.) were generated using focussed ion beam milling combined with scanning electron microscopy (FIB-SEM). RESULTS Here, we confirm four intercontinental species of avian trypanosomes in native Australian birds, and identify a new avian Trypanosoma. Trypanosome infection was identified in 18 birds from 13 different bird species (19%). A single new genotype was isolated and found to be closely related to T. culicavium (Trypanosoma sp. CC2016 B002). Other Trypanosoma spp. identified include T. avium, T. culicavium, T. thomasbancrofti, Trypanosoma sp. TL.AQ.22, Trypanosoma sp. AAT, and an uncharacterised Trypanosoma sp. (group C-III sensu Zidková et al. (Infect Genet Evol 12:102-112, 2012)), all previously identified in Australia or other continents. Serially-sectioning Trypanosoma sp. AAT epimastigotes using FIB-SEM revealed the disc-shaped kinetoplast pocket attached perpendicular to the branching mitochondrion. Additionally, the universal minicircle sequence within the kinetoplast DNA and the associated binding protein were determined in Trypanosoma sp. AAT. CONCLUSIONS These results indicate that bird trypanosomes are relatively conserved across continents, while being locally diverse, which supports the hypothesis that bird trypanosomes exist as fewer species than described in the literature. Evidence exists that avian Trypanosoma spp. are infecting mammals and could be transmitted by haemadipsid leeches. Trypanosoma sp. AAT is most likely a separate species currently found only in Australia and the first 3-dimentional ultrastructural analysis of an avian trypanosome provides interesting information on their morphology and organelle arrangement.
Collapse
Affiliation(s)
- Crystal Cooper
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009 Australia
| | - R. C. Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150 Australia
| | - Adriana Botero
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150 Australia
| | - Amanda Kristancic
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150 Australia
| | - Christopher Peacock
- Marshall Centre, School of Pathology and Laboratory and Medical Sciences, University of Western Australia, Crawley, WA 6009 Australia
- Telethon Kids Institute, 100 Roberts Rd, Subiaco, WA 6008 Australia
| | - Yaowanuj Kirilak
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009 Australia
| | - Peta L. Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009 Australia
| |
Collapse
|
36
|
Bruno de Sousa C, Gangadhar KN, Morais TR, Conserva GAA, Vizetto-Duarte C, Pereira H, Laurenti MD, Campino L, Levy D, Uemi M, Barreira L, Custódio L, Passero LFD, Lago JHG, Varela J. Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp Parasitol 2017; 174:1-9. [PMID: 28126391 DOI: 10.1016/j.exppara.2017.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/10/2016] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
Abstract
The development of novel drugs for the treatment of leishmaniases continues to be crucial to overcome the severe impacts of these diseases on human and animal health. Several bioactivities have been described in extracts from macroalgae belonging to the Cystoseira genus. However, none of the studies has reported the chemical compounds responsible for the antileishmanial activity observed upon incubation of the parasite with the aforementioned extracts. Thus, this work aimed to isolate and characterize the molecules present in a hexane extract of Cystoseira baccata that was found to be bioactive against Leishmania infantum in a previous screening effort. A bioactivity-guided fractionation of the C. baccata extract was carried out and the inhibitory potential of the isolated compounds was evaluated via the MTT assay against promastigotes and murine macrophages as well as direct counting against intracellular amastigotes. Moreover, the promastigote ultrastructure, DNA fragmentation and changes in the mitochondrial potential were assessed to unravel their mechanism of action. In this process, two antileishmanial meroditerpenoids, (3R)- and (3S)-tetraprenyltoluquinol (1a/1b) and (3R)- and (3S)-tetraprenyltoluquinone (2a/2b), were isolated. Compounds 1 and 2 inhibited the growth of the L. infantum promastigotes (IC50 = 44.9 ± 4.3 and 94.4 ± 10.1 μM, respectively), inducing cytoplasmic vacuolization and the presence of coiled multilamellar structures in mitochondria as well as an intense disruption of the mitochondrial membrane potential. Compound 1 decreased the intracellular infection index (IC50 = 25.0 ± 4.1 μM), while compound 2 eliminated 50% of the intracellular amastigotes at a concentration > 88.0 μM. This work identified compound 2 as a novel metabolite and compound 1 as a biochemical isolated from Cystoseira algae displaying antileishmanial activity. Compound 1 can thus be an interesting scaffold for the development of novel chemotherapeutic molecules for canine and human visceral leishmaniases studies. This work reinforces the evidence of the marine environment as source of novel molecules.
Collapse
Affiliation(s)
| | - Katkam N Gangadhar
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Thiago R Morais
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Geanne A A Conserva
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Hugo Pereira
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Márcia D Laurenti
- Laboratório de Patologia das Moléstias Infecciosas (LIM-50), Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lenea Campino
- Global Health and Tropical Medicine Centre, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal; Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Debora Levy
- Laboratório de Genética e Hematologia Molecular (LIM-31), Departamento de Clinica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam Uemi
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Luísa Barreira
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Luísa Custódio
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Luiz Felipe D Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | - João Henrique G Lago
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | - João Varela
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
37
|
Shadab M, Jha B, Asad M, Deepthi M, Kamran M, Ali N. Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B. PLoS One 2017; 12:e0171306. [PMID: 28170432 PMCID: PMC5295687 DOI: 10.1371/journal.pone.0171306] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The present study aimed to elucidate the cell death mechanism in Leishmania donovani upon treatment with KalsomeTM10, a new liposomal amphotericin B. METHODOLOGY/PRINCIPAL FINDINGS We studied morphological alterations in promastigotes through phase contrast and scanning electron microscopy. Phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and disruption of mitochondrial integrity was determined by flow cytometry using annexinV-FITC, JC-1 and mitotraker, respectively. For analysing oxidative stress, generation of H2O2 (bioluminescence kit) and mitochondrial superoxide O2- (mitosox) were measured. DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and DNA laddering assay. We found that KalsomeTM10 is more effective then Ambisome against the promastigote as well as intracellular amastigote forms. The mechanistic study showed that KalsomeTM10 induced several morphological alterations in promastigotes typical of apoptosis. KalsomeTM10 treatment showed a dose- and time-dependent exposure of PS in promastigotes. Further, study on mitochondrial pathway revealed loss of mitochondrial membrane potential as well as disruption in mitochondrial integrity with depletion of intracellular pool of ATP. KalsomeTM10 treated promastigotes showed increased ROS production, diminished GSH levels and increased caspase-like activity. DNA fragmentation and cell cycle arrest was observed in KalsomeTM10 treated promastigotes. Apoptotic DNA fragmentation was also observed in KalsomeTM10 treated intracellular amastigotes. KalsomeTM10 induced generation of ROS and nitric oxide leads to the killing of the intracellular parasites. Moreover, endocytosis is indispensable for KalsomeTM10 mediated anti-leishmanial effect in host macrophage. CONCLUSIONS KalsomeTM10 induces apoptotic-like cell death in L. donovani parasites to exhibit its anti-leishmanial function.
Collapse
Affiliation(s)
- Md. Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Baijayanti Jha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Makaraju Deepthi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohd. Kamran
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
38
|
Antinarelli LMR, Souza IDO, Glanzmann N, Almeida ADC, Porcino GN, Vasconcelos EG, da Silva AD, Coimbra ES. Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis. Exp Parasitol 2016; 171:10-16. [DOI: 10.1016/j.exppara.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/08/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
|
39
|
C5 induces different cell death pathways in promastigotes of Leishmania amazonensis. Chem Biol Interact 2016; 256:16-24. [DOI: 10.1016/j.cbi.2016.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022]
|
40
|
Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects. Exp Parasitol 2016; 169:59-68. [PMID: 27480055 DOI: 10.1016/j.exppara.2016.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/04/2016] [Accepted: 07/28/2016] [Indexed: 11/21/2022]
Abstract
The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment.
Collapse
|
41
|
Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 2016; 113:E3012-21. [PMID: 27162331 DOI: 10.1073/pnas.1520693113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Innovative strategies are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. Here we develop a sensitive method, which we term Cosmid Sequencing (or "Cos-Seq"), based on functional cloning coupled to next-generation sequencing. Cos-Seq identified >60 loci in the Leishmania genome that were enriched via drug selection with methotrexate and five major antileishmanials (antimony, miltefosine, paromomycin, amphotericin B, and pentamidine). Functional validation highlighted both known and previously unidentified drug targets and resistance genes, including novel roles for phosphatases in resistance to methotrexate and antimony, for ergosterol and phospholipid metabolism genes in resistance to miltefosine, and for hypothetical proteins in resistance to paromomycin, amphothericin B, and pentamidine. Several genes/loci were also found to confer resistance to two or more antileishmanials. This screening method will expedite the discovery of drug targets and resistance mechanisms and is easily adaptable to other microorganisms.
Collapse
|
42
|
Charvat RA, Arrizabalaga G. Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function. Sci Rep 2016; 6:22997. [PMID: 26976749 PMCID: PMC4792157 DOI: 10.1038/srep22997] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/26/2016] [Indexed: 02/08/2023] Open
Abstract
The ionophore monensin displays potent activities against several coccidian parasites of veterinary and medical importance including the opportunistic pathogen of humans, Toxoplasma gondii. While monensin is used widely in animals, toxicity impedes its use in humans. Nonetheless, given its potency, understanding its mode of action would reveal vulnerable aspects of the parasite that can be exploited for drug development. We previously established that monensin induces Toxoplasma to undergo cell cycle arrest and an autophagy-like cell death. Interestingly, these effects are dependent on the mitochondrion-localized TgMSH-1 protein, suggesting that monensin disrupts mitochondrial function. We demonstrate that monensin treatment results in decreased mitochondrial membrane potential and altered morphology. These effects are mitigated by the antioxidant compound N-acetyl-cysteine suggesting that monensin causes an oxidative stress, which was indeed the case based on direct detection of reactive oxygen species. Moreover, over-expression of the antioxidant proteins glutaredoxin and peroxiredoxin 2 protect Toxoplasma from the deleterious effects of monensin. Thus, our studies show that the effects of monensin on Toxoplasma are due to a disruption of mitochondrial function caused by the induction of an oxidative stress and implicate parasite redox biology as a viable target for the development of drugs against Toxoplasma and related pathogenic parasites.
Collapse
Affiliation(s)
- Robert A Charvat
- Departments of Pharmacology and Toxicology Indiana University School of Medicine, Indianapolis, Indiana 46202, US
| | - Gustavo Arrizabalaga
- Departments of Pharmacology and Toxicology Indiana University School of Medicine, Indianapolis, Indiana 46202, US.,Departments of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, US
| |
Collapse
|
43
|
Masic A, Valencia Hernandez AM, Hazra S, Glaser J, Holzgrabe U, Hazra B, Schurigt U. Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice. PLoS One 2015; 10:e0142386. [PMID: 26554591 PMCID: PMC4640567 DOI: 10.1371/journal.pone.0142386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/21/2015] [Indexed: 12/02/2022] Open
Abstract
Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches.
Collapse
Affiliation(s)
- Anita Masic
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sudipta Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Jan Glaser
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Uta Schurigt
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
44
|
Hashimoto M, Nara T, Enomoto M, Kurebayashi N, Yoshida M, Sakurai T, Mita T, Mikoshiba K. A dominant negative form of inositol 1,4,5-trisphosphate receptor induces metacyclogenesis and increases mitochondrial density in Trypanosoma cruzi. Biochem Biophys Res Commun 2015; 466:475-80. [PMID: 26367178 DOI: 10.1016/j.bbrc.2015.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) is a key regulator of intracellular Ca(2+) concentration that release Ca(2+) from Ca(2+) stores in response to various external stimuli. IP3R also works as a signal hub which form a platform for interacting with various proteins involved in diverse cell signaling. Previously, we have identified an IP3R homolog in the parasitic protist, Trypanosoma cruzi (TcIP3R). Parasites expressing reduced or increased levels of TcIP3R displayed defects in growth, transformation, and infectivity. In the present study, we established parasitic strains expressing a dominant negative form of TcIP3R, named DN-TcIP3R, to further investigate the physiological role(s) of TcIP3R. We found that the growth of epimastigotes expressing DN-TcIP3R was significantly slower than that of parasites with TcIP3R expression levels that were approximately 65% of wild-type levels. The expression of DN-TcIP3R in epimastigotes induced metacyclogenesis even in the normal growth medium. Furthermore, these epimastigotes showed the presence of dense mitochondria under a transmission electron microscope. Our findings confirm that TcIP3R is crucial for epimastigote growth, as previously reported. They also suggest that a strong inhibition of the IP3R-mediated signaling induces metacyclogenesis and that mitochondrial integrity is closely associated with this signaling.
Collapse
Affiliation(s)
- Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Masahiro Enomoto
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan; Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7, Toronto, Ontario, Canada.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Mitsutaka Yoshida
- Laboratoly of Morphology and Image Analysis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Toshihiro Mita
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan; Calcium Oscillation Project, International Cooperative Research Project and Solution-Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
45
|
Lage PS, Chávez-Fumagalli MA, Mesquita JT, Mata LM, Fernandes SOA, Cardoso VN, Soto M, Tavares CAP, Leite JPV, Tempone AG, Coelho EAF. Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum. Parasitol Res 2015; 114:4625-35. [PMID: 26346453 DOI: 10.1007/s00436-015-4708-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
The present study aimed to investigate the in vitro antileishmanial activity of strychnobiflavone flavonoid against Leishmania infantum, as well as its mechanism of action, and evaluate the ex vivo biodistribution profile of the flavonoid in naive BALB/c mice. The antileishmanial activity (IC50 value) of strychnobiflavone against stationary promastigote and amastigote-like stages of the parasites was of 5.4 and 18.9 μM, respectively; with a 50% cytotoxic concentration (CC50) value of 125.0 μM on murine macrophages, resulting in selectivity index (SI) of 23.2 and 6.6, respectively. Amphotericin B, used as a positive control, presented SI values of 7.6 and 3.3 for promastigote and amastigote-like stages of L. infantum, respectively. The strychnobiflavone was also effective in reducing in significant levels the percentage of infected macrophages, as well as the number of amastigotes per macrophage, after the treatment of infected macrophages using the flavonoid. By using different fluorescent probes, we investigated the bioenergetics metabolism of L. infantum promastigotes and demonstrated that the flavonoid caused the depolarization of the mitochondrial membrane potential, without affecting the production of reactive oxygen species. In addition, using SYTOX(®) green as a fluorescent probe, the strychnobiflavone demonstrated no interference in plasma membrane permeability. For the ex vivo biodistribution assays, the flavonoid was labeled with technetium-(99m) and studied in a mouse model by intraperitoneal route. After a single dose administration, the scintigraphic images demonstrated a highest uptake by the liver and spleen of the animals within 60 min, resulting in low concentrations after 24 h. The present study therefore demonstrated, for the first time, the antileishmanial activity of the strychnobiflavone against L. infantum, and suggests that the mitochondria of the parasites may be the possible target organelle. The preferential distribution of this compound into the liver and spleen of the animals could warrant its employ in the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Paula S Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Juliana T Mesquita
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, 01246-902, São Paulo, Brazil
| | - Laís M Mata
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - João P V Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Andre G Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, 01246-902, São Paulo, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil.
- Laboratório de Biotecnologia Aplicada ao Estudo das Leishmanioses, Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
46
|
Bahreini M, Bolorizadeh M, Dabiri S, Sharifi I. Evaluation of Organelle Changes in Promastigotes of Unresponsive Leishmania Tropica to Meglumine Antimoniate in Comparison with Sensitive and Standard Isolates by Electron Microscopy. Indian J Dermatol 2015; 60:321. [PMID: 26120175 PMCID: PMC4458960 DOI: 10.4103/0019-5154.156416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The control of leishmaniasis faces serious challenges because of resistance to the first-line antimonial drugs. We aimed to evaluate the differences in organelle changes of cultivated promastigotes obtained from skin lesions of sensitive and unresponsive isolates to meglumine antimoniate (Glucantime) by electron microscopy. MATERIAL AND METHODS This study was done in Bam city, southeastern Iran, in which the incidence of disease has sharply increased since the earthquake in 2003. The samples were taken from 66 patients who were referred to the cutaneous leishmaniasis (CL) treatment center in Bam. A questionnaire was completed for each individual, recording their demographic characteristics and CL status. The scraping smears provided from the edge of active lesions with sterile blades were fixed with methanol, stained by Giemsa, and examined under a compound light microscope for amastigote form simultaneously. To prepare the specimens for transmission electron imaging, promastigotes were centrifuged and resuspened. RESULTS Transmission electron microscopic study of the cultivated promastigotes revealed that there were alterations in the organelles and structures of sensitive isolates compared with unresponsive and standard ones. Organelles and structures such as mitochondria, kinetoplast, microtubules, cytoplasmic vacuoles, plasma membrane and vesicles were studied. The alterations such as disintegration of kinetoplast into thin filaments and condensation of kinetoplast DNA core, changes in size, number and location of vesicles and microtubules were observed. We noted intense cytoplasmic vacuolization, and considerable swelling of mitochondria. CONCLUSION The significance and relevance of these changes might help understand drug resistance patterns and help localize the best target site for inactivating the organism.
Collapse
Affiliation(s)
| | - Mehdi Bolorizadeh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shahriar Dabiri
- Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
47
|
Mantilla BS, Paes LS, Pral EMF, Martil DE, Thiemann OH, Fernández-Silva P, Bastos EL, Silber AM. Role of Δ1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi. J Biol Chem 2015; 290:7767-90. [PMID: 25623067 PMCID: PMC4367278 DOI: 10.1074/jbc.m114.574525] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/30/2014] [Indexed: 01/03/2023] Open
Abstract
Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which produce reducing equivalents as follows: the conversion of proline to Δ(1)-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ(1)-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusion chromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomeric state composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity, confirming the enzyme's functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infective stages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that this enzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi.
Collapse
Affiliation(s)
- Brian S Mantilla
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Lisvane S Paes
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Elizabeth M F Pral
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daiana E Martil
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Otavio H Thiemann
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Patricio Fernández-Silva
- the Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza Spain
| | - Erick L Bastos
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, 13560-590 São Paulo, Brazil, and
| | - Ariel M Silber
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil,
| |
Collapse
|
48
|
Toxicity and Loss of Mitochondrial Membrane Potential Induced by Alkyl Gallates in Trypanosoma cruzi. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2015; 2015:924670. [PMID: 27347554 PMCID: PMC4897139 DOI: 10.1155/2015/924670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 12/22/2022]
Abstract
American trypanosomiasis or Chagas disease is a debilitating disease representing an important social problem that affects, approximately, 10 million people in the world. The main aggravating factor of this situation is the lack of an effective drug to treat the different stages of this disease. In this context, the search for trypanocidal substances isolated from plants, synthetic or semi synthetic molecules, is an important strategy. Here, the trypanocidal potential of gallates was assayed in epimastigotes forms of T. cruzi and also, the interference of these substances on the mitochondrial membrane potential of the parasites was assessed, allowing the study of the mechanism of action of the gallates in the T. cruzi organisms. Regarding the preliminary structure-activity relationships, the side chain length of gallates plays crucial role for activity. Nonyl, decyl, undecyl, and dodecyl gallates showed potent antitrypanosomal effect (IC50 from 1.46 to 2.90 μM) in contrast with benznidazole (IC50 = 34.0 μM). Heptyl gallate showed a strong synergistic activity with benznidazole, reducing by 105-fold the IC50 of benznidazole. Loss of mitochondrial membrane potential induced by these esters was revealed. Tetradecyl gallate induced a loss of 53% of the mitochondrial membrane potential, at IC50 value.
Collapse
|
49
|
Inacio JDF, Gervazoni L, Canto-Cavalheiro MM, Almeida-Amaral EE. The effect of (-)-epigallocatechin 3-O--gallate in vitro and in vivo in Leishmania braziliensis: involvement of reactive oxygen species as a mechanism of action. PLoS Negl Trop Dis 2014; 8:e3093. [PMID: 25144225 PMCID: PMC4140776 DOI: 10.1371/journal.pntd.0003093] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leishmaniasis is a parasitic disease associated with extensive mortality and morbidity. The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. Natural compounds have been used as novel treatments for parasitic diseases. In this paper, we evaluated the effect of (-)-epigallocatechin 3-O-gallate (EGCG) on Leishmania braziliensis in vitro and in vivo and described the mechanism of EGCG action against L. braziliensis promastigotes and intracellular amastigotes. METHODOLOGY/PRINCIPAL FINDING In vitro activity and reactive oxygen species (ROS) measurements were determined during the promastigote and intracellular amastigote life stages. The effect of EGCG on mitochondrial membrane potential (ΔΨm) was assayed using JC-1, and intracellular ATP concentrations were measured using a luciferin-luciferase system. The in vivo experiments were performed in infected BALB/c mice orally treated with EGCG. EGCG reduced promastigote viability and the infection index in a time- and dose-dependent manner, with IC50 values of 278.8 µM and 3.4 µM, respectively, at 72 h and a selectivity index of 149.5. In addition, EGCG induced ROS production in the promastigote and intracellular amastigote, and the effects were reversed by polyethylene glycol (PEG)-catalase. Additionally, EGCG reduced ΔΨm, thereby decreasing intracellular ATP concentrations in promastigotes. Furthermore, EGCG treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. CONCLUSIONS/SIGNIFICANCE In conclusion, our study demonstrates the leishmanicidal effects of EGCG against the two forms of L. braziliensis, the promastigote and amastigote. In addition, EGCG promotes ROS production as a part of its mechanism of action, resulting in decreased ΔΨm and reduced intracellular ATP concentrations. These actions ultimately culminate in parasite death. Furthermore, our data suggest that EGCG is orally effective in the treatment of L. braziliensis-infected BALB/c mice without altering serological toxicity markers.
Collapse
Affiliation(s)
- Job D. F. Inacio
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Gervazoni
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilene M. Canto-Cavalheiro
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
50
|
Duarte M, Tomás AM. The mitochondrial complex I of trypanosomatids--an overview of current knowledge. J Bioenerg Biomembr 2014; 46:299-311. [PMID: 24961227 DOI: 10.1007/s10863-014-9556-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/17/2014] [Indexed: 01/23/2023]
Abstract
The contribution of trypanosomatid mitochondrial complex I for energy transduction has long been debated. Herein, we summarize current knowledge on the composition and relevance of this enzyme. Bioinformatic and proteomic analyses allowed the identification of many conserved and trypanosomatid-specific subunits of NADH:ubiquinone oxidoreductase, revealing a multifunctional enzyme capable of performing bioenergetic activities and possibly, also of functioning in fatty acid metabolism. A multimeric structure organized in 5 domains of more than 2 MDa is predicted, in contrast to the 1 MDa described for mammalian complex I. The relevance of mitochondrial complex I within the Trypanosomatidae family is quite diverse with its NADH oxidation activity being dispensable for both procyclic and bloodstream Trypanosoma brucei, whereas in Phytomonas serpens the enzyme is the only respiratory complex able to sustain membrane potential. Aside from complex I, trypanosomatid mitochondria contain a type II NADH dehydrogenase and a NADH-dependent fumarate reductase as alternative electron entry points into the respiratory chain and thus, some trypanosomatids may have bypassed the need for complex I. The involvement of each of these enzymes in the maintenance of the mitochondrial redox balance in trypanosomatids is still an open question and requires further investigation.
Collapse
Affiliation(s)
- Margarida Duarte
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal,
| | | |
Collapse
|