1
|
Luo Y, Yu P, Liu J. The efficiency of stem cell differentiation into functional beta cells for treating insulin-requiring diabetes: Recent advances and current challenges. Endocrine 2024; 86:1-14. [PMID: 38730069 DOI: 10.1007/s12020-024-03855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
In recent years, the potential of stem cells (SCs) to differentiate into various types of cells, including β-cells, has led to a significant boost in development. The efficiency of this differentiation process and the functionality of the cells post-transplantation are crucial factors for the success of stem cell therapy in diabetes. Herein, this article reviews the current advances and challenges faced by stem cell differentiation into functional β-cells for diabetes treatment. In vitro, researchers have sought to enhance the differentiation efficiency of functional β-cells by mimicking the normal pancreatic development process, using gene manipulation, pharmacological and culture conditions stimulation, three-dimensional (3D) and organoid culture, or sorting for functional β-cells based on mature islet cell markers. Furthermore, in vivo studies have also looked at suitable transplantation sites, the enhancement of the transplantation microenvironment, immune modulation, and vascular function reconstruction to improve the survival rate of functional β-cells, thereby enhancing the treatment of diabetes. Despite these advancements, developing stem cells to produce functional β-cells for efficacious diabetes treatment is a continuous research endeavor requiring significant multidisciplinary collaboration, for the stem-cell-derived beta cells to evolve into an effective cellular therapy.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Chen Z, Shi N, Xing C, Zou Y, Zhang Y, Chen Z, Wu F, Jin H, Chen R, Dai M. A novel clinical model for risk prediction and stratification of new-onset diabetes mellitus after distal pancreatectomy. Hepatobiliary Surg Nutr 2023; 12:868-881. [PMID: 38115946 PMCID: PMC10727825 DOI: 10.21037/hbsn-22-382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/21/2022] [Indexed: 12/21/2023]
Abstract
Background The incidence of new-onset diabetes mellitus (NODM) after distal pancreatectomy (DP) remains high. Few studies have focused on NODM in patients with pancreatic benign or low-grade malignant lesions (PBLML). This study aimed to develop and validate an effective clinical model for risk prediction and stratification of NODM after DP in patients with PBLML. Methods A follow-up survey was conducted to investigate NODM in patients without preoperative DM who underwent DP. Four hundred and forty-eight patients from Peking Union Medical College Hospital (PUMCH) and 178 from Guangdong Provincial People's Hospital (GDPH) met the inclusion criteria. They constituted the training cohort and the validation cohort, respectively. Univariate and multivariate Cox regression, as well as least absolute shrinkage and selection operator (LASSO) analyses, were used to identify the independent risk factors. The nomogram was constructed and verified. Concordance index (C-index), receiver operating characteristic (ROC) curve, calibration curves, and decision curve analysis (DCA) were applied to assess its predictive performance and clinical utility. Accordingly, the optimal cut-off point was determined by maximally selected rank statistics method, and the cumulative risk curves for the high- and low-risk populations were plotted to evaluate the discrimination ability of the nomogram. Results The median follow-up duration was 42.8 months in the PUMCH cohort and 42.9 months in the GDPH cohort. The postoperative cumulative 5-year incidences of DM were 29.1% and 22.1%, respectively. Age, body mass index (BMI), length of pancreatic resection, intraoperative blood loss, and concomitant splenectomy were significant risk factors. The nomogram demonstrated significant predictive utility for post-pancreatectomy DM. The C-indexes of the nomogram were 0.739 and 0.719 in the training and validation cohorts, respectively. ROC curves demonstrated the predictive accuracy of the nomogram, and the calibration curves revealed that prediction results were in general agreement with the actual results. The considerable clinical applicability of the nomogram was certified by DCA. The optimal cut-off point for risk prediction value was 2.88, and the cumulative risk curves of each cohort showed significant differences between the high- and low-risk groups. Conclusions The nomogram could predict and identify the NODM risk population, and provide guidance to physicians in monitoring and controlling blood glucose levels in PBLML patients after DP.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Medical College of Shantou University, Shantou, China
| | - Ning Shi
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng Xing
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Translational Medicine of China, Beijing, China
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiping Zou
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Medical College of Shantou University, Shantou, China
| | - Yuanpeng Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenrong Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Wu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Translational Medicine of China, Beijing, China
| |
Collapse
|
3
|
García Coronado PL, Franco Molina MA, Zárate Triviño DG, Menchaca Arredondo JL, Zapata Benavides P, Rodriguez Padilla C. Putative Wound Healing Induction Functions of Exosomes Isolated from IMMUNEPOTENT CRP. Int J Mol Sci 2023; 24:ijms24108971. [PMID: 37240318 DOI: 10.3390/ijms24108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic wounds in diabetic patients can take months or years to heal, representing a great cost for the healthcare sector and impacts on patients' lifestyles. Therefore, new effective treatment alternatives are needed to accelerate the healing process. Exosomes are nanovesicles involved in the modulation of signaling pathways that can be produced by any cell and can exert functions similar to the cell of origin. For this reason, IMMUNEPOTENT CRP, which is a bovine spleen leukocyte extract, was analyzed to identify the proteins present and is proposed as a source of exosomes. The exosomes were isolated through ultracentrifugation and shape-size, characterized by atomic force microscopy. The protein content in IMMUNEPOTENT CRP was characterized by EV-trap coupled to liquid chromatography. The in silico analyses for biological pathways, tissue specificity, and transcription factor inducement were performed in GOrilla ontology, Panther ontology, Metascape, and Reactome. It was observed that IMMUNEPOTENT CRP contains diverse peptides. The peptide-containing exosomes had an average size of 60 nm, and exomeres of 30 nm. They had biological activity capable of modulating the wound healing process, through inflammation modulation and the activation of signaling pathways such as PIP3-AKT, as well as other pathways activated by FOXE genes related to specificity in the skin tissue.
Collapse
Affiliation(s)
- Paola Leonor García Coronado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Moisés Armides Franco Molina
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Diana Ginette Zárate Triviño
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Jorge Luis Menchaca Arredondo
- Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Pablo Zapata Benavides
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Cristina Rodriguez Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| |
Collapse
|
4
|
Roudsari PP, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Tayanloo-Beik A, Sayahpour FA, Larijani B, Arjmand B. The Outcome of Stem Cell-Based Therapies on the Immune Responses in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:159-186. [PMID: 32926346 DOI: 10.1007/5584_2020_581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Rheumatoid arthritis as a common autoimmune inflammatory disorder with unknown etiology can affect 0.5-1% of adults in developed countries. It involves more than just the patient's joints and can be accompanied by several comorbidities and affect cardiovascular, pulmonary, and some other systems of the human body. Although cytokine-mediated pathways are mentioned to have a central role in RA pathogenesis, adaptive and innate immune systems and intracellular signaling pathways all have important roles in this process. Non-steroidal anti-inflammatory drugs, glucocorticoids, conventional disease-modifying anti-rheumatic drugs, and biological agents are some mentioned medications used for RA. They are accompanied by some adverse effects and treatment failures which elucidates the needing for novel and more powerful therapeutic approaches. Stem cell-based therapies and their beneficial effects on therapeutic processes of different diseases have been founded so far. They can be an alternative and promising therapeutic approach for RA, too; due to their effects on immune responses of the disease. This review, besides some explanations about RA characteristics, addresses the outcome of the stem cell-based therapies including mesenchymal stem cell transplantation and hematopoietic stem cell transplantation for RA and explains their effects on the disease improvement.
Collapse
Affiliation(s)
- Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Rogers R, Ehmann S, Tew WP, Broach V. Isolated splenic high-grade serous carcinoma: A case report. Gynecol Oncol Rep 2021; 37:100818. [PMID: 34258358 PMCID: PMC8253960 DOI: 10.1016/j.gore.2021.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022] Open
Abstract
We present a unique case of high-grade serous carcinoma isolated to the spleen at the time of diagnosis. This isolated splenic high-grade serous carcinoma was confirmed by radiologic, clinical, and pathologic assessment. A multigene tumor panel test revealed somatic PALB2 and ARID1 mutations and a TP53 hotspot mutation.
We present a unique case of high-grade serous carcinoma isolated to the spleen at the time of diagnosis, without any tumor present in the ovary, fallopian tubes, omentum or uterus, which was pathologically consistent with metastatic Mullerian carcinoma. Tumor sequencing with the MSK-IMPACT (Memorial Sloan Kettering–Integrated Mutation Profiling of Actionable Cancer Targets) multigene tumor panel test was performed, which revealed somatic mutations in PALB2 and in ARID1, as well as a TP53 hotspot mutation.
Collapse
Affiliation(s)
- Ralph Rogers
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Obstetrics and Gynecology, Mercer University Memorial Health Medical Center, Savannah, GA, USA
| | - Sarah Ehmann
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William P. Tew
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Vance Broach
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY, USA
- Corresponding author at: Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
6
|
Cayabyab F, Nih LR, Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front Endocrinol (Lausanne) 2021; 12:732431. [PMID: 34589059 PMCID: PMC8473744 DOI: 10.3389/fendo.2021.732431] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a complex disease that affects over 400 million people worldwide. The life-long insulin injections and continuous blood glucose monitoring required in type 1 diabetes (T1D) represent a tremendous clinical and economic burdens that urges the need for a medical solution. Pancreatic islet transplantation holds great promise in the treatment of T1D; however, the difficulty in regulating post-transplantation immune reactions to avoid both allogenic and autoimmune graft rejection represent a bottleneck in the field of islet transplantation. Cell replacement strategies have been performed in hepatic, intramuscular, omentum, and subcutaneous sites, and have been performed in both animal models and human patients. However more optimal transplantation sites and methods of improving islet graft survival are needed to successfully translate these studies to a clinical relevant therapy. In this review, we summarize the current progress in the field as well as methods and sites of islet transplantation, including stem cell-derived functional human islets. We also discuss the contribution of immune cells, vessel formation, extracellular matrix, and nutritional supply on islet graft survival. Developing new transplantation sites with emerging technologies to improve islet graft survival and simplify immune regulation will greatly benefit the future success of islet cell therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Fritz Cayabyab
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Lina R. Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
7
|
Li SC, Kabeer MH. Autologous Splenocyte Reinfusion Improves Antibody-Mediated Immune Response to the 23-Valent Pneumococcal Polysaccharide-Based Vaccine in Splenectomized Mice. Biomolecules 2020; 10:biom10050704. [PMID: 32369978 PMCID: PMC7277809 DOI: 10.3390/biom10050704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Common clinical options, currently, for necessary splenectomy are vaccinations and antibiotic prophylaxis. However, despite these two adjuncts, there still occur numerous cases of overwhelming post-splenectomy infection. To examine whether reperfusion of critical splenic lymphocytes could boost immune response, we harvested splenic lymphocytes, reperfused the autologous lymphocytes, and then administered a pneumococcal vaccine (PNEUMOVAX®23, i.e., PPSV23) in splenectomized mice. We found that splenectomy impaired the immune response in the splenectomized group compared to the non-splenectomized group; the splenectomized group with lymphocyte reinfusion had a higher response to polysaccharide vaccination based on antibody titer than the splenectomized group without lymphocyte reinfusion. The sham group with the native spleen had the most elevated antibody titer against the PPSV23 polysaccharide antigen. This may be additive, resulting from contributions of the splenic structure, along with the phagocytic function of the spleen and its constituent cells affecting the antibody response. Reinfusion of splenic lymphocytes may enhance immunity without the complications associated with splenic fragment autotransplantation, which never gained acceptance. This technique is safe and simple since the splenic lymphocytes are autologous and, therefore, not self-reactive, and very similar to autologous blood transfusion. This concept may be beneficial in cases of unavoidable splenectomy, especially in pediatric cases.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), Center for Neuroscience Research (CNR), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA;
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
8
|
Khademi-Shirvan M, Ghorbaninejad M, Hosseini S, Baghaban Eslaminejad M. The Importance of Stem Cell Senescence in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:87-102. [PMID: 32026416 DOI: 10.1007/5584_2020_489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are an interesting tool in regenerative medicine and a unique cell-based therapy to treat aging-associated diseases. Successful MSC therapy needs a large-scale cell culture, and requires a prolonged in vitro cell culture that subsequently leads to cell senescence. Administration of senescent MSCs results in inefficient cell differentiation in the clinical setting. Therefore, it is of utmost importance to enhance our knowledge about the aging process and methods to detect cell senescence in order to overcome this challenge. Numerous studies have addressed senescence in various aspects. Here, we review the characteristics of MSCs, how aging affects their features, mechanisms involved in aging of MSCs, and potential approaches to detect MSC senescence in vitro.
Collapse
Affiliation(s)
- Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Hirasaki M, Mizuno Y, Ida Y, Murakoshi T, Okuda A, Kotani N. Identification and characterization of splenic adherent cells forming densely-packed colonies. Dev Growth Differ 2019; 61:283-293. [PMID: 30919971 DOI: 10.1111/dgd.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 11/27/2022]
Abstract
It is thought that the spleen contains stem cells that differentiate into somatic cells other than immune cells. We investigated the presence of these hypothetical splenic cells with stem cell characteristics and identified adherent cells forming densely-packed colonies (Splenic Adherent Colony-forming Cell; SACC) in the spleen. Splenic Adherent Colony-forming Cell was positive for alkaline phosphatase staining and stage-specific embryonic antigen (SSEA)-1 antigen. However, the self-renewal properties of SACCs were limited because they stopped cell proliferation once colonies visible to the naked eye were formed. Gene expression analyses by semi-quantitative RT-PCR revealed the significant expression of c-Myc and Klf4, whereas faint or no expression was evident for Nanog, Oct3/4, and Sox2. Global expression analyses by DNA microarray and subsequent gene ontology analyses revealed that the expression levels of genes related to the immune system were significantly lower in SACCs than in control splenic cells. In contrast, genes unrelated to the immune system, such as those involved in cell adhesion and axon guidance, were relatively highly expressed in SACCs compared with control splenic cells. Taken together, we identified a novel cell type residing in the spleen that is different from the hypothetical splenic stem cell, but which bears some, but not all, characteristics that represent an undifferentiated state.
Collapse
Affiliation(s)
- Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka, Saitama, Japan
| | - Yosuke Mizuno
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka, Saitama, Japan
| | - Yui Ida
- Department of Biochemistry, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka, Saitama, Japan
| | - Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| |
Collapse
|
10
|
The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19051391. [PMID: 29735923 PMCID: PMC5983746 DOI: 10.3390/ijms19051391] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023] Open
Abstract
This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.
Collapse
|
11
|
Fang D, Su X, Liu Y, Lee JC, Seuntjens J, Tran SD. Cell extracts from spleen and adipose tissues restore function to irradiation‐injured salivary glands. J Tissue Eng Regen Med 2017; 12:e1289-e1296. [DOI: 10.1002/term.2567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/24/2017] [Accepted: 09/01/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Dongdong Fang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
| | - Xinyun Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
| | - Jin Choon Lee
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
- Department of Otorhinolaryngology‐Head and Neck SurgeryPusan National University School of Medicine Pusan Korea
| | - Jan Seuntjens
- Department of Oncology, Medical Physics UnitMcGill University Montreal Canada
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
| |
Collapse
|
12
|
Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Tear Production in a Mouse Model of Sjögren's Syndrome. Stem Cells Int 2017; 2017:3134543. [PMID: 28348600 PMCID: PMC5352970 DOI: 10.1155/2017/3134543] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022] Open
Abstract
The purpose of the present study was to test the potential of mouse bone marrow-derived mesenchymal stem cells (BD-MSCs) in improving tear production in a mouse model of Sjögren's syndrome dry eye and to investigate the underlying mechanisms involved. NOD mice (n = 20) were randomized to receive i.p. injection of sterile phosphate buffered saline (PBS, control) or murine BD-MSCs (1 × 106 cells). Tears production was measured at baseline and once a week after treatment using phenol red impregnated threads. Cathepsin S activity in the tears was measured at the end of treatment. After 4 weeks, animals were sacrificed and the lacrimal glands were excised and processed for histopathology, immunohistochemistry, and RNA analysis. Following BD-MSC injection, tears production increased over time when compared to both baseline and PBS injected mice. Although the number of lymphocytic foci in the lacrimal glands of treated animals did not change, the size of the foci decreased by 40.5% when compared to control animals. The mRNA level of the water channel aquaporin 5 was significantly increased following delivery of BD-MSCs. We conclude that treatment with BD-MSCs increases tear production in the NOD mouse model of Sjögren's syndrome. This is likely due to decreased inflammation and increased expression of aquaporin 5.
Collapse
|
13
|
Bhattacharya B, Davis KA. Nuances in the Care of Emergent Splenic Injury in the Elderly Patient. CURRENT GERIATRICS REPORTS 2016. [DOI: 10.1007/s13670-016-0153-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Wang L, Yang M, Arias A, Song L, Li F, Tian F, Qin M, Yukht A, Williamson IK, Shah PK, Sharifi BG. Splenocytes seed bone marrow of myeloablated mice: implication for atherosclerosis. PLoS One 2015; 10:e0125961. [PMID: 26038819 PMCID: PMC4454495 DOI: 10.1371/journal.pone.0125961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/28/2015] [Indexed: 01/01/2023] Open
Abstract
Extramedullary hematopoiesis has been shown to contribute to the pathogenesis of a variety of diseases including cardiovascular diseases. In this process, the spleen is seeded with mobilized bone marrow cells that augment its hematopoietic ability. It is unclear whether these immigrant cells that are produced/reprogrammed in spleen are similar or different from those found in the bone marrow. To begin to understand this, we investigated the relative potency of adult splenocytes per se to repopulate bone marrow of lethally-irradiated mice and its functional consequences in atherosclerosis. The splenocytes were harvested from GFP donor mice and transplanted into myeloablated wild type recipient mice without the inclusion of any bone marrow helper cells. We found that adult splenocytes repopulated bone marrow of myeloablated mice and the transplanted cells differentiated into a full repertoire of myeloid cell lineages. The level of monocytes/macrophages in the bone marrow of recipient mice was dependent on the cell origin, i.e., the donor splenocytes gave rise to significantly more monocytes/macrophages than the donor bone marrow cells. This occurred despite a significantly lower number of hematopoietic stem cells being present in the donor splenocytes when compared with donor bone marrow cells. Atherosclerosis studies revealed that donor splenocytes displayed a similar level of atherogenic and atheroprotective activities to those of donor bone marrow cells. Cell culture studies showed that the phenotype of macrophages derived from spleen is different from those of bone marrow. Together, these results demonstrate that splenocytes can seed bone marrow of myeloablated mice and modulate atherosclerosis. In addition, our study shows the potential of splenocytes for therapeutic interventions in inflammatory disease.
Collapse
Affiliation(s)
- Lai Wang
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Mingjie Yang
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Ana Arias
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Lei Song
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Fuqiang Li
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Fang Tian
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Minghui Qin
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Ada Yukht
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Ian K. Williamson
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Behrooz G. Sharifi
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Choi JY, Chun SY, Kim BS, Kim HT, Yoo ES, Shon YH, Lim JO, Yun SJ, Song PH, Chung SK, Yoo JJ, Kwon TG. Pre-clinical efficacy and safety evaluation of human amniotic fluid-derived stem cell injection in a mouse model of urinary incontinence. Yonsei Med J 2015; 56:648-57. [PMID: 25837169 PMCID: PMC4397433 DOI: 10.3349/ymj.2015.56.3.648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Stem cell-based therapies represent new promises for the treatment of urinary incontinence. This study was performed to assess optimized cell passage number, cell dose, therapeutic efficacy, feasibility, toxicity, and cell trafficking for the first step of the pre-clinical evaluation of human amniotic fluid stem cell (hAFSC) therapy in a urinary incontinence animal model. MATERIALS AND METHODS The proper cell passage number was analyzed with hAFSCs at passages 4, 6, and 8 at week 2. The cell dose optimization included 1×10⁴, 1×10⁵, and 1×10⁶ cells at week 2. The in vivo cell toxicity was performed with 0.25×10⁶, 0.5×10⁶, and 1×10⁶ cells at weeks 2 and 4. Cell tracking was performed with 1×10⁶ cells at weeks 2 and 4. RESULTS The selected optimal cell passage number was smaller than 6, and the optimal cell dose was 1×10⁶ for the mouse model. In our pre-clinical study, hAFSC-injected animals showed normal values for several parameters. Moreover, the injected cells were found to be non-toxic and non-tumorigenic. Furthermore, the injected hAFSCs were rarely identified by in vivo cell trafficking in the target organs at week 2. CONCLUSION This study demonstrates for the first time the pre-clinical efficacy and safety of hAFSC injection in the urinary incontinence animal model and provides a basis for future clinical applications.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - So Young Chun
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yun-Hee Shon
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Jeong Ok Lim
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Sung Kwang Chung
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - James J Yoo
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea.; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea.; Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
16
|
Jundzill A, Klimczak A, Brzezicki G. Spleen Transplantation Model. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Wu SC, Fu CY, Muo CH, Chang YJ. Splenectomy in trauma patients is associated with an increased risk of postoperative type II diabetes: a nationwide population-based study. Am J Surg 2014; 208:811-816. [DOI: 10.1016/j.amjsurg.2014.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/19/2013] [Accepted: 03/15/2014] [Indexed: 12/24/2022]
|
18
|
Misuno K, Tran SD, Khalili S, Huang J, Liu Y, Hu S. Quantitative analysis of protein and gene expression in salivary glands of Sjogren's-like disease NOD mice treated by bone marrow soup. PLoS One 2014; 9:e87158. [PMID: 24489858 PMCID: PMC3906116 DOI: 10.1371/journal.pone.0087158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/18/2013] [Indexed: 01/11/2023] Open
Abstract
Background Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Methods Whole BM cells were lysed and soluble intracellular contents (“BM Soup”) were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. Results BM Soup restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. Conclusion BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.
Collapse
Affiliation(s)
- Kaori Misuno
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon D. Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- * E-mail: (SH); (SH)
| | - Saeed Khalili
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Junwei Huang
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Younan Liu
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Shen Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (SH); (SH)
| |
Collapse
|
19
|
Yan XZ, van den Beucken JJJP, Both SK, Yang PS, Jansen JA, Yang F. Biomaterial strategies for stem cell maintenance during in vitro expansion. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:340-54. [PMID: 24168361 DOI: 10.1089/ten.teb.2013.0349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cells, having the potential for self-renewal and multilineage differentiation, are the building blocks for tissue/organ regeneration. Stem cells can be isolated from various sources but are, in general, available in too small numbers to be used directly for clinical purpose without intermediate expansion procedures in vitro. Although this in vitro expansion of undifferentiated stem cells is necessary, stem cells typically diminish their ability to self-renew and proliferate during passaging. Consequently, maintaining the stemness of stem cells has been recognized as a major challenge in stem cell-based research. This review focuses on the latest developments in maintaining the self-renewal ability of stem cells during in vitro expansion by biomaterial strategies. Further, this review highlights what should be the focus for future studies using stem cells for regenerative applications.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- 1 Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Bhonde RR, Sheshadri P, Sharma S, Kumar A. Making surrogate β-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol 2013; 46:90-102. [PMID: 24275096 DOI: 10.1016/j.biocel.2013.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023]
Abstract
Generation of surrogate β-cells is the need of the day to compensate the short supply of islets for transplantation to diabetic patients requiring daily shots of insulin. Over the years several sources of stem cells have been claimed to cater to the need of insulin producing cells. These include human embryonic stem cells, induced pluripotent stem cells, human perinatal tissues such as amnion, placenta, umbilical cord and postnatal tissues involving adipose tissue, bone marrow, blood monocytes, cord blood, dental pulp, endometrium, liver, labia minora dermis-derived fibroblasts and pancreas. Despite the availability of such heterogonous sources, there is no substantial breakthrough in selecting and implementing an ideal source for generating large number of stable insulin producing cells. Although the progress in derivation of β-cell like cells from embryonic stem cells has taken a greater leap, their application is limited due to controversy surrounding the destruction of human embryo and immune rejection. Since multipotent mesenchymal stromal cells are free of ethical and immunological complications, they could provide unprecedented opportunity as starting material to derive insulin secreting cells. The main focus of this review is to discuss the merits and demerits of MSCs obtained from human peri- and post-natal tissue sources to yield abundant glucose responsive insulin producing cells as ideal candidates for prospective stem cell therapy to treat diabetes.
Collapse
Affiliation(s)
- Ramesh R Bhonde
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Preethi Sheshadri
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Shikha Sharma
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India.
| |
Collapse
|
21
|
Effect of Subconjunctival Lacrimal Gland Transplantation in a Rabbit Dry Eye Model. Cornea 2013; 32 Suppl 1:S46-51. [DOI: 10.1097/ico.0b013e3182a1bb21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Sci Rep 2013; 3:1673. [PMID: 23591719 PMCID: PMC3628113 DOI: 10.1038/srep01673] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022] Open
Abstract
Signaling through the thrombospondin-1 receptor CD47 broadly limits cell and tissue survival of stress, but the molecular mechanisms are incompletely understood. We now show that loss of CD47 permits sustained proliferation of primary murine endothelial cells, increases asymmetric division, and enables these cells to spontaneously reprogram to form multipotent embryoid body-like clusters. c-Myc, Klf4, Oct4, and Sox2 expression is elevated in CD47-null endothelial cells, in several tissues of CD47- and thrombospondin-1-null mice, and in a human T cell line lacking CD47. CD47 knockdown acutely increases mRNA levels of c-Myc and other stem cell transcription factors in cells and in vivo, whereas CD47 ligation by thrombospondin-1 suppresses c-Myc expression. The inhibitory effects of increasing CD47 levels can be overcome by maintaining c-Myc expression and are absent in cells with dysregulated c-Myc. Thus, CD47 antagonists enable cell self-renewal and reprogramming by overcoming negative regulation of c-Myc and other stem cell transcription factors.
Collapse
|
23
|
Khalili S, Liu Y, Kornete M, Roescher N, Kodama S, Peterson A, Piccirillo CA, Tran SD. Mesenchymal stromal cells improve salivary function and reduce lymphocytic infiltrates in mice with Sjögren's-like disease. PLoS One 2012; 7:e38615. [PMID: 22685592 PMCID: PMC3369846 DOI: 10.1371/journal.pone.0038615] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 05/07/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Non-obese diabetic (NOD) mice develop Sjögren's-like disease (SS-like) with loss of saliva flow and increased lymphocytic infiltrates in salivary glands (SGs). There are recent reports using multipotent mesenchymal stromal cells (MSCs) as a therapeutic strategy for autoimmune diseases due to their anti-inflammatory and immunomodulatory capabilities. This paper proposed a combined immuno- and cell-based therapy consisting of: A) an injection of complete Freund's adjuvant (CFA) to eradicate autoreactive T lymphocytes, and B) transplantations of MSCs to reselect lymphocytes. The objective of this was to test the effectiveness of CD45(-)/TER119(-) cells (MSCs) in re-establishing salivary function and in reducing the number of lymphocytic infiltrates (foci) in SGs. The second objective was to study if the mechanisms underlying a decrease in inflammation (focus score) was due to CFA, MSCs, or CFA+MSCs combined. METHODOLOGY/PRINCIPAL FINDINGS Donor MSCs were isolated from bones of male transgenic eGFP mice. Eight week-old female NOD mice received one of the following treatments: insulin, CFA, MSC, or CFA+MSC (combined therapy). Mice were followed for 14 weeks post-therapy. CD45(-)/TER119(-) cells demonstrated characteristics of MSCs as they were positive for Sca-1, CD106, CD105, CD73, CD29, CD44, negative for CD45, TER119, CD11b, had high number of CFU-F, and differentiated into osteocytes, chondrocytes and adipocytes. Both MSC and MSC+CFA groups prevented loss of saliva flow and reduced lymphocytic infiltrations in SGs. Moreover, the influx of T and B cells decreased in all foci in MSC and MSC+CFA groups, while the frequency of Foxp3(+) (T(reg)) cell was increased. MSC-therapy alone reduced inflammation (TNF-α, TGF-β), but the combination of MSC+CFA reduced inflammation and increased the regenerative potential of SGs (FGF-2, EGF). CONCLUSIONS/SIGNIFICANCE The combined use of MSC+CFA was effective in both preventing saliva secretion loss and reducing lymphocytic influx in salivary glands.
Collapse
Affiliation(s)
- Saeed Khalili
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Younan Liu
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Mara Kornete
- Department of Microbiology and Immunology, and FOCIS Centre of Excellence, Centre, Montreal, Quebec, Canada
| | - Nienke Roescher
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Alan Peterson
- Molecular Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, and FOCIS Centre of Excellence, Centre, Montreal, Quebec, Canada
| | - Simon D. Tran
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Talebi S, Aleyasin A, Soleimani M, Massumi M. Derivation of islet-like cells from mesenchymal stem cells using PDX1-transducing lentiviruses. Biotechnol Appl Biochem 2012; 59:205-12. [DOI: 10.1002/bab.1013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/17/2012] [Indexed: 12/18/2022]
|
25
|
Tran SD, Sumita Y, Khalili S. Bone marrow-derived cells: A potential approach for the treatment of xerostomia. Int J Biochem Cell Biol 2010; 43:5-9. [PMID: 21035563 DOI: 10.1016/j.biocel.2010.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/21/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
Abstract
Transplantations of bone marrow-derived cells (BMDCs) are traditionally used for hematologic diseases, but there are increasing numbers of clinical trials using BMDC treatments for non-hematologic disorders, including autoimmune diseases. BMDCs are recently reported to improve organ functions. This paper will review available reports supporting the role of BMDCs in reducing xerostomia (i.e. re-establishing salivary gland functions) due to head and neck irradiation for cancer therapies and in Sjögren's syndrome. There are reports that BMDCs provide a beneficial effect on the saliva production. BMDCs positively affect blood vessels stability and regeneration in irradiated salivary glands. Also, BMDCs provide an immunomodulatory activity in mice with Sjögren's-like disease. While the exact mechanisms by which BMDCs improve organ functions remain controversial, there is preliminary evidence that a combination of them (such as cell transdifferentiation, vasculogenesis, and paracrine effect) occur in salivary glands.
Collapse
Affiliation(s)
- Simon D Tran
- McGill University, Faculty of Dentistry, Montreal, Canada.
| | | | | |
Collapse
|