1
|
Sha Q, Zhang Z, Li H, Xu Y, Wang J, Du A. Serum metabolomic profile of myasthenia gravis and potential values as biomarkers in disease monitoring. Clin Chim Acta 2024; 562:119873. [PMID: 39019424 DOI: 10.1016/j.cca.2024.119873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE Serum metabolites from 19 myasthenia gravis (MG) patients and 15 normal controls were analyzed via untargeted metabolomics, including 6 pre/post-treatment paired MG patients, to assess the value of serum metabolites as biomarkers in monitoring MG. METHOD Differential metabolites between MG patients and normal controls were identified through liquid and gas chromatography-mass spectrometry simultaneously. Principal component analysis and orthogonal partial least squares-discriminant analysis were conducted to identify the differential metabolites. Candidate metabolites and pathways associated with MG were selected through a random forest machine learning model. RESULT A total of 310 differential metabolites were identified with a threshold of variable projected importance > 1 and P value < 0.05. Among these, 158 metabolites were upregulated and 152 were downregulated. The random forest machine learning model selected 5 metabolites as potential biomarkers associated with MG: lignoceric acid (AUC=0.944), uridine diphosphate-N-acetylglucosamine (AUC=0.951), arachidonic acid (AUC=0.951), beta-glycerophosphoric acid (AUC=0.933), and L-Asparagine (AUC=0.877). Further analysis using 6 paired MG patients pre- and post-immunosuppression treatment revealed 25 upregulated and 6 downregulated metabolites in post-treatment serum, which might be relevant to disease intervention. The significance remains elusive due to the limited number of patients. CONCLUSION A subset of differential metabolites was identified in the serum of MG patients, some of which changed with immunosuppressive therapy. Small molecule metabolites may serve as valuable biomarkers for disease monitoring in MG.
Collapse
Affiliation(s)
- Qianqian Sha
- Department of Neurology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201699, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Hailong Li
- Department of Neurology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201699, China
| | - Yingchen Xu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jie Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Ailian Du
- Department of Neurology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201699, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
2
|
Yang SH, Kim YJ, Lee H, Seo WD, Kwon EY, Kim JK. Comparative metabolomic analysis of mouse plasma in response to different dietary conditions. Food Sci Biotechnol 2024; 33:2169-2178. [PMID: 39130654 PMCID: PMC11315845 DOI: 10.1007/s10068-023-01479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 08/13/2024] Open
Abstract
Plasma metabolites offer insights into aging processes and aging-related biomarkers. Here, the dietary effects of various functional foods on older adult mice were evaluated using metabolomic techniques. Fifty-week-old mice were divided into four groups (n = 4 each) and fed either a normal diet (AC) or the diets from Triticum aestivum sprout (TA), Schisandra chinensis (SZ), or Pisum sativum sprout (PS) extracts. Additionally, a group of 8-week-old mice fed a normal diet (YC; n = 5) was included for the comparison. The PS group had a significantly lower free fatty acid content and higher ornithine, proline, citric acid, and oxalic acid contents than the AC group. The PS group also showed reduced oxidative stress and muscle damage, suggesting the higher anti-aging efficacy of P. sativum sprouts than the other diets. These findings suggest plasma metabolite profiling is an effective tool to assess the anti-aging effects of functional foods. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01479-8.
Collapse
Affiliation(s)
- So Hwi Yang
- Division of Life Sciences, College of Life Sciences, and Bioengineering, Incheon National University, Inchon, 22012 Republic of Korea
| | - Ye Jin Kim
- Division of Life Sciences, College of Life Sciences, and Bioengineering, Incheon National University, Inchon, 22012 Republic of Korea
| | - HanGyeol Lee
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk 55365 Republic of Korea
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk 55365 Republic of Korea
| | - Eun Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701 Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences, and Bioengineering, Incheon National University, Inchon, 22012 Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Inchon, 22012 Republic of Korea
| |
Collapse
|
3
|
Duan Y, Tao K, Fang Z, Lu Y. Possible-sarcopenic screening with disturbed plasma amino acid profile in the elderly. BMC Geriatr 2023; 23:427. [PMID: 37438737 DOI: 10.1186/s12877-023-04137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The mass and strength of skeletal muscle decline with age, leading to its progressive dysfunction. High-throughput metabolite profiling provides the opportunity to reveal metabolic mechanisms and the identification of biomarkers. However, the role of amino acid metabolism in possible sarcopenia remains unclear. OBJECTIVES The aim of this study included exploring variations in plasma amino acid concentrations in elderly individuals who have possible sarcopenia and further attempting to characterize a distinctive plasma amino acid profile through targeted metabolomics. METHODS A cross-sectional, correlational research design was used for this study. Thirty possible-sarcopenic elderly participants were recruited (n = 30), as determined by the Asian Working Group for Sarcopenia (AWGS). Meanwhile, a reference group of non-sarcopenic (sex-, age-, and Appendicular Skeletal muscle Mass Index (ASMI)-matched non-sarcopenic controls, n = 36) individuals was included to compare the potential differences in metabolic fingerprint of the plasma amino acids associated with sarcopenia. Both groups were conducted the body composition analysis, physical function examination, and plasma amino acid-targeted metabolomics. The amino acids in plasma were measured using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS). Also, orthogonal partial least-squares-discriminant analysis (OPLS-DA) was applied to characterize the plasma amino acid profile. RESULTS With respect to Handgrip Strength (HGS), the Five-Repetition Chair Stand Test (CS-5), the Six-Minute Walking Test (6MWT), the arm curl, the 30 s-Chair Stand Test (CST), the 2-Minute Step Test (2MST), the Timed Up-and-Go Test (TUGT), there was a decline in skeletal muscle function in the possible-sarcopenic group compared to the non-sarcopenic group. The mean plasma concentrations of arginine, asparagine, phenylalanine, serine, lysine, glutamine, and threonine were significantly lower in the possible sarcopenia group, whereas cirulline, proline, serine, and glutamic acid concentrations were higher. According to the multi-analysis, glutamine, serine, lysine, threonine, and proline were determined as the potential markers that indicated possible sarcopenia. CONCLUSIONS The findings characterize significantly altered plasma amino acid metabolisms in the elderly with possible sarcopenia, which aids to screening people who are at a high risk of developing condition, and motivating to design new preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Yushuang Duan
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- College of Rehabilitation, Weifang Medicine University, Weifang, China
| | - Kuan Tao
- School of Sports Engineering, Beijing Sport University, Beijing, China
| | - Zilong Fang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yifan Lu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
4
|
Potter LA, Toro CA, Harlow L, Lavin KM, Cardozo CP, Wende AR, Graham ZA. Assessing the impact of boldine on the gastrocnemius using multiomics profiling at 7 and 28 days post-complete spinal cord injury in young male mice. Physiol Genomics 2023; 55:297-313. [PMID: 37125768 PMCID: PMC10292965 DOI: 10.1152/physiolgenomics.00129.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Spinal cord injury (SCI) results in rapid muscle loss. Exogenous molecular interventions to slow muscle atrophy after SCI have been relatively ineffective and require the search for novel therapeutic targets. Connexin hemichannels (CxHCs) allow nonselective passage of small molecules into and out of the cell. Boldine, a CxHC-inhibiting aporphine found in the boldo tree (Peumus boldus), has shown promising preclinical results in slowing atrophy during sepsis and restoring muscle function in dysferlinopathy. We administered 50 mg/kg/day of boldine to spinal cord transected mice beginning 3 days post-injury. Tissue was collected 7 and 28 days post-SCI and the gastrocnemius was used for multiomics profiling. Boldine did not prevent body or muscle mass loss but attenuated SCI-induced changes in the abundance of the amino acids proline, phenylalanine, leucine and isoleucine, as well as glucose, 7 days post-SCI. SCI resulted in the differential expression of ∼7,700 and ∼2,000 genes at 7 and 28 days, respectively, compared with Sham controls. Pathway enrichment of these genes highlighted ribosome biogenesis at 7 days and translation and oxidative phosphorylation at both timepoints. Boldine altered the expression of ∼150 genes at 7 days and ∼110 genes at 28 days post-SCI. Pathway enrichment of these genes indicated a potential role for boldine in suppressing protein ubiquitination and degradation at the 7-day timepoint. Methylation analyses showed minimal differences between groups. Taken together, boldine is not an efficacious therapy to preserve body and muscle mass after complete SCI, though it attenuated some SCI-induced changes across the metabolome and transcriptome.NEW & NOTEWORTHY This is the first study to describe the multiome of skeletal muscle paralyzed by a spinal cord injury (SCI) in mice across the acute and subacute timeframe after injury. We show large-scale changes in the metabolome and transcriptome at 7 days post-injury compared with 28 days. Furthermore, we show that the alkaloid boldine was able to prevent SCI-induced changes in muscle glucose and free amino acid levels at 7 days, but not 28 days, after SCI.
Collapse
Affiliation(s)
- Luke A Potter
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Carlos A Toro
- Spinal Cord Damage Research Center, Bronx, New York, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Lauren Harlow
- Spinal Cord Damage Research Center, Bronx, New York, United States
| | - Kaleen M Lavin
- Healthspan, Resilience & Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, Bronx, New York, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Medical Service, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zachary A Graham
- Healthspan, Resilience & Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- Research Service, Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Nakajima H, Okada H, Kobayashi A, Takahashi F, Okamura T, Hashimoto Y, Nakanishi N, Senmaru T, Ushigome E, Hamaguchi M, Fukui M. Leucine and Glutamic Acid as a Biomarker of Sarcopenic Risk in Japanese People with Type 2 Diabetes. Nutrients 2023; 15:2400. [PMID: 37242283 PMCID: PMC10222500 DOI: 10.3390/nu15102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to identify the serum metabolites associated with sarcopenic risk in Japanese patients with type 2 diabetes, determine the effect of dietary protein intake on the serum metabolic profile, and examine its association with sarcopenia. Ninety-nine Japanese patients with type 2 diabetes were included, and sarcopenic risk was defined as low muscle mass or strength. Seventeen serum metabolites were quantified after gas chromatography-mass spectrometry analysis. The relationship between dietary protein intake and the metabolites concerning sarcopenia was analyzed, and the factors affecting sarcopenic risk were clarified. Twenty-seven patients were classified as being at risk of sarcopenia, the same as the general risk, which was associated with older age, a longer duration of the disease, and a lower body mass index. Low levels of leucine and glutamic acid were significantly associated with low muscle strength (p = 0.002 and p < 0.001, respectively), and leucine was also associated with muscle mass (p = 0.001). Lower levels of glutamic acid had higher odds of sarcopenic risk after being adjusted for age and HbA1c (adjusted OR 4.27, 95% CI 1.07-17.11, p = 0.041), but not for leucine. Leucine and glutamic acid can serve as useful biomarkers for sarcopenia, highlighting potential targets for its prevention.
Collapse
Affiliation(s)
- Hanako Nakajima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Ayaka Kobayashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Fuyuko Takahashi
- Nutrition Division, Saiseikai Suita Hospital, Osaka 564-0013, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Yoshitaka Hashimoto
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Osaka 570-8540, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| |
Collapse
|
6
|
Calvani R, Picca A, Rodriguez-Mañas L, Tosato M, Coelho-Júnior HJ, Biancolillo A, Laosa O, Gervasoni J, Primiano A, Santucci L, Giampaoli O, Bourdel-Marchasson I, Regueme SC, Sinclair AJ, Urbani A, Landi F, Gambassi G, Marini F, Marzetti E. Amino Acid Profiles in Older Adults with Frailty: Secondary Analysis from MetaboFrail and BIOSPHERE Studies. Metabolites 2023; 13:metabo13040542. [PMID: 37110200 PMCID: PMC10147014 DOI: 10.3390/metabo13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS-DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS-DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Leocadio Rodriguez-Mañas
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red "Fragilidad y Envejecimiento Saludable" (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Olga Laosa
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, 28905 Getafe, Spain
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Isabelle Bourdel-Marchasson
- Clinical Gerontology Department, Bordeaux University Hospital, 33000 Bordeaux, France
- CRMSB, CNRS UMR 5536, Université de Bordeaux, 33000 Bordeaux, France
| | - Sophie C Regueme
- CHU Bordeaux, Pole Gérontologie Clinique, 33000 Bordeaux, France
| | - Alan J Sinclair
- Foundation for Diabetes Research in Older People (fDROP), King's College, London WC2R 2LS, UK
| | - Andrea Urbani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Gambassi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
7
|
Tan Y, Liu X, Yang Y, Li B, Yu F, Zhao W, Fu C, Yu X, Han Z, Cheng M. Metabolomics analysis reveals serum biomarkers in patients with diabetic sarcopenia. Front Endocrinol (Lausanne) 2023; 14:1119782. [PMID: 37033246 PMCID: PMC10073735 DOI: 10.3389/fendo.2023.1119782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION Diabetic sarcopenia (DS) is characterized by muscle atrophy, slower nerve conduction, reduced maximum tension generated by skeletal muscle contraction, and slower contraction rate. Hence, DS can cause limb movement degeneration, slow movement, reduced balance, reduced metabolic rate, falls, fractures, etc. Moreover, the relevant early biological metabolites and their pathophysiological mechanism have yet to be characterized. METHOD The current cross-sectional study employed serum metabolomics analysis to screen potential noninvasive biomarkers in patients with diabetic sarcopenia. A total of 280 diabetic patients were enrolled in the study (n = 39 sarcopenia [DS], n = 241 without sarcopenia [DM]). Ten patients were randomly selected from both groups. Non-targeted metabolomic analysis was performed by ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. RESULTS A total of 632 differential metabolites were identified, including 82 that were significantly differentially abundant (P < 0.05, VIP > 1, FC > 1.2 or FC < 0.8). Compared with the DM group, the contents of pentadecanoic acid, 5'-methylthioadenosine (5'-MTA), N,N-dimethylarginine (asymmetric dimethylarginine, ADMA), and glutamine in the DS group were significantly increased, while that of isoxanthohumol was decreased. DISCUSSION Based on receiver operating characteristic curve analysis, pentadecanoic acid, 5'-MTA, ADMA, and glutamine may serve as potential biomarkers of DS. Moreover, ATP-binding cassette (ABC) transporters and the mammalian target of the rapamycin signaling pathway were found to potentially have important regulatory roles in the occurrence and development of DS (P < 0.05). Collectively, the differential metabolites identified in this study provide new insights into the underlying pathophysiology of DS and serve as a basis for therapeutic interventions.
Collapse
Affiliation(s)
- Yuwei Tan
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xiaosong Liu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Yinping Yang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Aixinzhuoer Medical Laboratory, Jinan, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Zhenxia Han
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
- *Correspondence: Mei Cheng,
| |
Collapse
|
8
|
Shin HE, Won CW, Kim M. Metabolomic profiles to explore biomarkers of severe sarcopenia in older men: A pilot study. Exp Gerontol 2022; 167:111924. [PMID: 35963453 DOI: 10.1016/j.exger.2022.111924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial; however, it has not yet been fully elucidated. Identifying metabolomic profiles may help clarify the mechanisms underlying sarcopenia. OBJECTIVE This pilot study explored potential noninvasive biomarkers of severe sarcopenia through metabolomic analysis in community-dwelling older men. METHODS Twenty older men (mean age: 81.9 ± 2.8 years) were selected from the Korean Frailty and Aging Cohort Study. Participants with severe sarcopenia (n = 10) were compared with non-sarcopenic, age- and body mass index-matched controls (n = 10). Severe sarcopenia was defined as low muscle mass, low muscle strength, and low physical performance using the Asian Working Group for Sarcopenia 2019 criteria. Non-targeted metabolomic profiling of plasma metabolites was performed using capillary electrophoresis time-of-flight mass spectrometry and absolute quantification was performed in target metabolites. RESULTS Among 191 plasma metabolic peaks, the concentrations of 10 metabolites significantly differed between severe sarcopenia group and non-sarcopenic controls. The plasma concentrations of L-alanine, homocitrulline, N-acetylserine, gluconic acid, N-acetylalanine, proline, and sulfotyrosine were higher, while those of 4-methyl-2-oxovaleric acid, 3-methyl-2-oxovaleric acid, and tryptophan were lower in participants with severe sarcopenia than in non-sarcopenic controls (all, p < 0.05). Among the 53 metabolites quantified as target metabolites, L-alanine (area under the receiver operating characteristic curve [AUC] = 0.760; p = 0.049), gluconic acid (AUC = 0.800; p = 0.023), proline (AUC = 0.785; p = 0.031), and tryptophan (AUC = 0.800; p = 0.023) determined the presence of severe sarcopenia. CONCLUSIONS Plasma metabolomic analysis demonstrated that L-alanine, gluconic acid, proline, and tryptophan may be potential biomarkers of severe sarcopenia. The identified metabolites can provide new insights into the underlying pathophysiology of severe sarcopenia and serve as the basis for preventive interventions.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, South Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
9
|
Ren D, Song J, Liu R, Zeng X, Yan X, Zhang Q, Yuan X. Molecular and Biomechanical Adaptations to Mechanical Stretch in Cultured Myotubes. Front Physiol 2021; 12:689492. [PMID: 34408658 PMCID: PMC8365838 DOI: 10.3389/fphys.2021.689492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Myotubes are mature muscle cells that form the basic structural element of skeletal muscle. When stretching skeletal muscles, myotubes are subjected to passive tension as well. This lead to alterations in myotube cytophysiology, which could be related with muscular biomechanics. During the past decades, much progresses have been made in exploring biomechanical properties of myotubes in vitro. In this review, we integrated the studies focusing on cultured myotubes being mechanically stretched, and classified these studies into several categories: amino acid and glucose uptake, protein turnover, myotube hypertrophy and atrophy, maturation, alignment, secretion of cytokines, cytoskeleton adaption, myotube damage, ion channel activation, and oxidative stress in myotubes. These biomechanical adaptions do not occur independently, but interconnect with each other as part of the systematic mechanoresponse of myotubes. The purpose of this review is to broaden our comprehensions of stretch-induced muscular alterations in cellular and molecular scales, and to point out future challenges and directions in investigating myotube biomechanical manifestations.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Thiel CS, Vahlensieck C, Bradley T, Tauber S, Lehmann M, Ullrich O. Metabolic Dynamics in Short- and Long-Term Microgravity in Human Primary Macrophages. Int J Mol Sci 2021; 22:ijms22136752. [PMID: 34201720 PMCID: PMC8269311 DOI: 10.3390/ijms22136752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Microgravity acts on cellular systems on several levels. Cells of the immune system especially react rapidly to changes in gravity. In this study, we performed a correlative metabolomics analysis on short-term and long-term microgravity effects on primary human macrophages. We could detect an increased amino acid concentration after five minutes of altered gravity, that was inverted after 11 days of microgravity. The amino acids that reacted the most to changes in gravity were tightly clustered. The observed effects indicated protein degradation processes in microgravity. Further, glucogenic and ketogenic amino acids were further degraded to Glucose and Ketoleucine. The latter is robustly accumulated in short-term and long-term microgravity but not in hypergravity. We detected highly dynamic and also robust adaptative metabolic changes in altered gravity. Metabolomic studies could contribute significantly to the understanding of gravity-induced integrative effects in human cells.
Collapse
Affiliation(s)
- Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| | - Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
| | - Martin Lehmann
- Biocenter LMU Muenchen, Department of Biology I–Botany, Großhaderner Strasse 2–4, 82152 Planegg-Martinsried, Germany;
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Medicine, Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), 505 Odyssey Way, Exploration Park, FL 32953, USA
- Correspondence: (C.S.T.); (O.U.)
| |
Collapse
|
11
|
Effect of Electrical Muscle Stimulation on Upper and Lower Limb Muscles in Critically Ill Patients: A Two-Center Randomized Controlled Trial. Crit Care Med 2021; 48:e997-e1003. [PMID: 32897665 DOI: 10.1097/ccm.0000000000004522] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Electrical muscle stimulation is widely used to enhance lower limb mobilization. Although upper limb muscle atrophy is common in critically ill patients, electrical muscle stimulation application for the upper limbs has been rarely reported. The purpose of this study was to investigate whether electrical muscle stimulation prevents upper and lower limb muscle atrophy and improves physical function. DESIGN Randomized controlled trial. SETTING Two-center, mixed medical/surgical ICU. PATIENTS Adult patients who were expected to be mechanically ventilated for greater than 48 hours and stay in the ICU for greater than 5 days. INTERVENTIONS Forty-two patients were randomly assigned to the electrical muscle stimulation (n = 17) or control group (n = 19). MEASUREMENTS AND MAIN RESULTS Primary outcomes were change in muscle thickness and cross-sectional area of the biceps brachii and rectus femoris from day 1 to 5. Secondary outcomes included occurrence of ICU-acquired weakness, ICU mobility scale, length of hospitalization, and amino acid levels. The change in biceps brachii muscle thickness was -1.9% versus -11.2% in the electrical muscle stimulation and control (p = 0.007) groups, and the change in cross-sectional area was -2.7% versus -10.0% (p = 0.03). The change in rectus femoris muscle thickness was -0.9% versus -14.7% (p = 0.003) and cross-sectional area was -1.7% versus -10.4% (p = 0.04). No significant difference was found in ICU-acquired weakness (13% vs 40%; p = 0.20) and ICU mobility scale (3 vs 2; p = 0.42) between the groups. The length of hospitalization was shorter in the electrical muscle stimulation group (23 d [19-34 d] vs 40 d [26-64 d]) (p = 0.04). On day 3, the change in the branched-chain amino acid level was lower in the electrical muscle stimulation group (40.5% vs 71.5%; p = 0.04). CONCLUSIONS In critically ill patients, electrical muscle stimulation prevented upper and lower limb muscle atrophy and attenuated proteolysis and decreased the length of hospitalization.
Collapse
|
12
|
Calvani R, Rodriguez-Mañas L, Picca A, Marini F, Biancolillo A, Laosa O, Pedraza L, Gervasoni J, Primiano A, Conta G, Bourdel-Marchasson I, Regueme SC, Bernabei R, Marzetti E, Sinclair AJ, Gambassi G. Identification of a Circulating Amino Acid Signature in Frail Older Persons with Type 2 Diabetes Mellitus: Results from the Metabofrail Study. Nutrients 2020; 12:nu12010199. [PMID: 31940925 PMCID: PMC7019630 DOI: 10.3390/nu12010199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes and frailty are highly prevalent conditions that impact the health status of older adults. Perturbations in protein/amino acid metabolism are associated with both functional impairment and type 2 diabetes mellitus (T2DM). In the present study, we compared the concentrations of a panel of circulating 37 amino acids and derivatives between frail/pre-frail older adults with T2DM and robust non-diabetic controls. Sixty-six functionally impaired older persons aged 70+ with T2DM and 30 age and sex-matched controls were included in the analysis. We applied a partial least squares-discriminant analysis (PLS-DA)-based analytical strategy to characterize the metabotype of study participants. The optimal complexity of the PLS-DA model was found to be two latent variables. The proportion of correct classification was 94.1 ± 1.9% for frail/pre-frail persons with T2DM and 100% for control participants. Functionally impaired older persons with T2DM showed higher levels of 3-methyl histidine, alanine, arginine, glutamic acid, ethanolamine sarcosine, and tryptophan. Control participants had higher levels of ornithine and taurine. These findings indicate that a specific profile of amino acids and derivatives characterizes pre-frail/frail older persons with T2DM. The dissection of these pathways may provide novel insights into the metabolic perturbations involved in the disabling cascade in older persons with T2DM.
Collapse
Affiliation(s)
- Riccardo Calvani
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.C.); (A.P.); (J.G.); (A.P.); (R.B.); (G.G.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | | | - Anna Picca
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.C.); (A.P.); (J.G.); (A.P.); (R.B.); (G.G.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy; (F.M.); (G.C.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, 67100 L’Aquila, Italy;
| | - Olga Laosa
- Foundation for Biomedical Research, Hospital Universitario de Getafe, 28905 Madrid, Spain; (O.L.); (L.P.)
| | - Laura Pedraza
- Foundation for Biomedical Research, Hospital Universitario de Getafe, 28905 Madrid, Spain; (O.L.); (L.P.)
| | - Jacopo Gervasoni
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.C.); (A.P.); (J.G.); (A.P.); (R.B.); (G.G.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Aniello Primiano
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.C.); (A.P.); (J.G.); (A.P.); (R.B.); (G.G.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Giorgia Conta
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy; (F.M.); (G.C.)
| | | | - Sophie C. Regueme
- Centre Hospitalier Universitaire de Bordeaux, 33000 Bordeaux, France; (I.B.-M.); (S.C.R.)
| | - Roberto Bernabei
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.C.); (A.P.); (J.G.); (A.P.); (R.B.); (G.G.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Emanuele Marzetti
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.C.); (A.P.); (J.G.); (A.P.); (R.B.); (G.G.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630155559; Fax: +39-063051911
| | - Alan J. Sinclair
- Foundation for Diabetes Research in Older People, Diabetes Frail Ltd., Luton LU1 3UA, UK;
| | - Giovanni Gambassi
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.C.); (A.P.); (J.G.); (A.P.); (R.B.); (G.G.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | | |
Collapse
|
13
|
Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Coelho-Junior HJ, Bossola M, Urbani A, Landi F, Bernabei R, Marzetti E. A Distinct Pattern of Circulating Amino Acids Characterizes Older Persons with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients 2018; 10:E1691. [PMID: 30404172 PMCID: PMC6265849 DOI: 10.3390/nu10111691] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Physical frailty and sarcopenia (PF&S) are hallmarks of aging that share a common pathogenic background. Perturbations in protein/amino acid metabolism may play a role in the development of PF&S. In this initial report, 68 community-dwellers aged 70 years and older, 38 with PF&S and 30 non-sarcopenic, non-frail controls (nonPF&S), were enrolled as part as the "BIOmarkers associated with Sarcopenia and Physical frailty in EldeRly pErsons" (BIOSPHERE) study. A panel of 37 serum amino acids and derivatives was assayed by UPLC-MS. Partial Least Squares⁻Discriminant Analysis (PLS-DA) was used to characterize the amino acid profile of PF&S. The optimal complexity of the PLS-DA model was found to be three latent variables. The proportion of correct classification was 76.6 ± 3.9% (75.1 ± 4.6% for enrollees with PF&S; 78.5 ± 6.0% for nonPF&S). Older adults with PF&S were characterized by higher levels of asparagine, aspartic acid, citrulline, ethanolamine, glutamic acid, sarcosine, and taurine. The profile of nonPF&S participants was defined by higher concentrations of α-aminobutyric acid and methionine. Distinct profiles of circulating amino acids and derivatives characterize older people with PF&S. The dissection of these patterns may provide novel insights into the role played by protein/amino acid perturbations in the disabling cascade and possible new targets for interventions.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome 00168, Italy.
| | | | - Jacopo Gervasoni
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Silvia Persichilli
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | | | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
- Applied Kinesiology Laboratory⁻LCA, School of Physical Education, University of Campinas, Campinas-SP 13.083-851, Brazil.
| | - Maurizio Bossola
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Andrea Urbani
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Francesco Landi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Roberto Bernabei
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome 00168, Italy.
| |
Collapse
|
14
|
Toyoshima K, Nakamura M, Adachi Y, Imaizumi A, Hakamada T, Abe Y, Kaneko E, Takahashi S, Shimokado K. Increased plasma proline concentrations are associated with sarcopenia in the elderly. PLoS One 2017; 12:e0185206. [PMID: 28934309 PMCID: PMC5608336 DOI: 10.1371/journal.pone.0185206] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background and purpose Metabolome analyses have shown that plasma amino acid profiles reflect various pathological conditions, such as cancer and diabetes mellitus. It remains unclear, however, whether plasma amino acid profiles change in patients with sarcopenia. This study therefore aimed to investigate whether sarcopenia-specific changes occur in plasma amino acid profiles. Methods A total of 153 community-dwelling and seven institutionalized elderly individuals (56 men, 104 women; mean age, 77.7±7.0 years) were recruited for this cross-sectional analysis. We performed a comprehensive geriatric assessment, which included an evaluation of hand grip strength, gait speed, muscle mass and blood chemistry, including the concentration of 18 amino acids. Results Twenty-eight of the 160 participants met the criteria for sarcopenia established by the Asian Working Group on Sarcopenia in Older People. Univariate analysis revealed associations between the presence of sarcopenia and a higher plasma concentration of proline and glutamine, lower concentrations of histidine and tryptophan. Multivariable analysis revealed that a higher concentration of proline was the only variable independently associated with sarcopenia. Conclusions The plasma concentration of proline may be useful for understanding the underlying pathophysiology of sarcopenia.
Collapse
Affiliation(s)
- Kenji Toyoshima
- Department of Geriatric and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
- * E-mail:
| | - Marie Nakamura
- Department of Geriatric and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yusuke Adachi
- Institute for Innovation, Ajinomoto, Corartion, Incprporated, Kawasaki-shi, Kanagawa, Japan
| | - Akira Imaizumi
- Institute for Innovation, Ajinomoto, Corartion, Incprporated, Kawasaki-shi, Kanagawa, Japan
| | - Tomomi Hakamada
- Department of Geriatric and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasuko Abe
- Department of Geriatric and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Eiji Kaneko
- Department of Geriatric and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | - Kentaro Shimokado
- Department of Geriatric and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| |
Collapse
|