1
|
Suh J, Liu Y, Smith J, Watanabe M, Rollins AM, Jenkins MW. A Simple and Fast Optical Clearing Method for Whole-Mount Fluorescence In Situ Hybridization (FISH) Imaging. JOURNAL OF BIOPHOTONICS 2024:e202400258. [PMID: 39389582 DOI: 10.1002/jbio.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
We report a single-step optical clearing method that is compatible with RNA fluorescence in situ hybridization (FISH) imaging. We previously demonstrated microscopy imaging with immunohistochemistry and genetic reporters using a technique called lipid-preserving refractive index matching for prolonged imaging depth (LIMPID). Our protocol reliably produces high-resolution three-dimensional (3D) images with minimal aberrations using high magnification objectives, captures large field-of-view images of whole-mount tissues, and supports co-labeling with antibody and FISH probes. We also custom-designed FISH probes for quail embryos, demonstrating the ease of fabricating probes for use with less common animal models. Furthermore, we show high-quality 3D images using a conventional fluorescence microscope, without using more advanced depth sectioning instruments such as confocal or light-sheet microscopy. For broader adoption, we simplified and optimized 3D-LIMPID-FISH to minimize the barrier to entry, and we provide a detailed protocol to aid users with navigating the thick and thin of 3D microscopy.
Collapse
Affiliation(s)
- Junwoo Suh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jordan Smith
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Park JM, Choi SH, Lee ES, Gum SI, Hong S, Kim DS, Han MH, Lee SH, Oh JW. High-Speed Clearing and High-Resolution Staining for Analysis of Various Markers for Neurons and Vessels. Tissue Eng Regen Med 2024; 21:1037-1048. [PMID: 38955906 PMCID: PMC11416450 DOI: 10.1007/s13770-024-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Tissue clearing enables deep imaging in various tissues by increasing the transparency of tissues, but there were limitations of immunostaining of the large-volume tissues such as the whole brain. METHODS Here, we cleared and immune-stained whole mouse brain tissues using a novel clearing technique termed high-speed clearing and high-resolution staining (HCHS). We observed neural structures within the cleared brains using both a confocal microscope and a light-sheet fluorescence microscope (LSFM). The reconstructed 3D images were analyzed using a computational reconstruction algorithm. RESULTS Various neural structures were well observed in three-dimensional (3D) images of the cleared brains from Gad-green fluorescent protein (GFP) mice and Thy 1-yellow fluorescent protein (YFP) mice. The intrinsic fluorescence signals of both transgenic mice were preserved after HCHS. In addition, large-scale 3D imaging of brains, immune-stained by the HCHS method using a mild detergent-based solution, allowed for the global topological analysis of several neuronal markers such as c-Fos, neuronal nuclear protein (NeuN), Microtubule-associated protein 2 (Map2), Tuj1, glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) in various anatomical regions in the whole mouse brain tissues. Finally, through comparisons with various existing tissue clearing methodologies such as CUBIC, Visikol, and 3DISCO, it was confirmed that the HCHS methodology results in relatively less tissue deformation and higher fluorescence retention. CONCLUSION In conclusion, the development of 3D imaging based on novel tissue-clearing techniques (HCHS) will enable detailed spatial analysis of neural and vascular networks present within the brain.
Collapse
Affiliation(s)
- Jung Min Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seock Hwan Choi
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Shil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu, Republic of Korea
| | | | - Sungkuk Hong
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Binaree, Inc., Daegu, Republic of Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man-Hoon Han
- Bio-Medical Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Soung-Hoon Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Weiss KR, Huisken J, Khanjani N, Bakalov V, Engle ML, Krzyzanowski MC, Madden T, Maiese DR, Waterfield JR, Williams DN, Wood L, Wu X, Hamilton CM, Huggins W. T-CLEARE: a pilot community-driven tissue clearing protocol repository. Front Bioeng Biotechnol 2024; 12:1304622. [PMID: 39351064 PMCID: PMC11439823 DOI: 10.3389/fbioe.2024.1304622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024] Open
Abstract
Selecting and implementing a tissue clearing protocol is challenging. Established more than 100 years ago, tissue clearing is still a rapidly evolving field of research. There are currently many published protocols to choose from, and each performs better or worse across a range of key evaluation factors (e.g., speed, cost, tissue stability, fluorescence quenching). Additionally, tissue clearing protocols are often optimized for specific experimental contexts, and applying an existing protocol to a new problem can require a lengthy period of adaptation by trial and error. Although the primary literature and review articles provide a useful starting point for optimization, there is growing recognition that results can vary dramatically with changes to tissue type or antibody used. To help address this issue, we have developed a novel, freely available repository of tissue clearing protocols named T-CLEARE (Tissue CLEAring protocol REpository; https://doryworkspace.org/doryviz). T-CLEARE incorporates community responses to an open survey designed to capture details not commonly found in the scientific literature, including modifications to published protocols required for specific use cases and instances when tissue clearing protocols did not perform well (negative results). The goal of T-CLEARE is to help the community share evaluations and modifications of tissue clearing protocols for various tissue types and potentially identify best-in-class methods for a given application.
Collapse
Affiliation(s)
- Kurt R. Weiss
- Morgridge Institute for Research, Madison, WI, United States
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, United States
| | - Neda Khanjani
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Vesselina Bakalov
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Michelle L. Engle
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | | | - Tom Madden
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Deborah R. Maiese
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Justin R. Waterfield
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - David N. Williams
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Lauren Wood
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Xin Wu
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Carol M. Hamilton
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Wayne Huggins
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| |
Collapse
|
4
|
Feng R, Xie J, Gao L. EDTP enhances and protects the fluorescent signal of GFP in cleared and expanded tissues. Sci Rep 2024; 14:15279. [PMID: 38961181 PMCID: PMC11222453 DOI: 10.1038/s41598-024-66398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Advanced 3D high-resolution imaging techniques are essential for investigating biological challenges, such as neural circuit analysis and tumor microenvironment in intact tissues. However, the fluorescence signal emitted by endogenous fluorescent proteins in cleared or expanded biological samples gradually diminishes with repeated irradiation and prolonged imaging, compromising its ability to accurately depict the underlying scientific problem. We have developed a strategy to preserve fluorescence in cleared and expanded tissue samples during prolonged high-resolution three-dimensional imaging. We evaluated various compounds at different concentrations to determine their ability to enhance fluorescence intensity and resistance to photobleaching while maintaining the structural integrity of the tissue. Specifically, we investigated the impact of EDTP utilization on GFP, as it has been observed to significantly improve fluorescence intensity, resistance to photobleaching, and maintain fluorescence during extended room temperature storage. This breakthrough will facilitate extended hydrophilic and hydrogel-based clearing and expansion methods for achieving long-term high-resolution 3D imaging of cleared biological tissues by effectively safeguarding fluorescent proteins within the tissue.
Collapse
Affiliation(s)
- Ruili Feng
- Fudan University, Shanghai, 200433, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| | - Jiongfang Xie
- Fudan University, Shanghai, 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Liang Gao
- Fudan University, Shanghai, 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
5
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
6
|
Folts L, Martinez AS, McKey J. Tissue clearing and imaging approaches for in toto analysis of the reproductive system†. Biol Reprod 2024; 110:1041-1054. [PMID: 38159104 PMCID: PMC11180619 DOI: 10.1093/biolre/ioad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
New microscopy techniques in combination with tissue clearing protocols and emerging analytical approaches have presented researchers with the tools to understand dynamic biological processes in a three-dimensional context. This paves the road for the exploration of new research questions in reproductive biology, for which previous techniques have provided only approximate resolution. These new methodologies now allow for contextualized analysis of far-larger volumes than was previously possible. Tissue optical clearing and three-dimensional imaging techniques posit the bridging of molecular mechanisms, macroscopic morphogenic development, and maintenance of reproductive function into one cohesive and comprehensive understanding of the biology of the reproductive system. In this review, we present a survey of the various tissue clearing techniques and imaging systems, as they have been applied to the developing and adult reproductive system. We provide an overview of tools available for analysis of experimental data, giving particular attention to the emergence of artificial intelligence-assisted methods and their applicability to image analysis. We conclude with an evaluation of how novel image analysis approaches that have been applied to other organ systems could be incorporated into future experimental evaluation of reproductive biology.
Collapse
Affiliation(s)
- Lillian Folts
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Anthony S Martinez
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Jennifer McKey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
7
|
Barsanti S, Viana JF, Veiga A, Machado JL, Abreu DS, Dias JD, Monteiro S, Silva NA, Pinto L, Oliveira JF. Assessing Different Histological Preparations for Reconstruction of Astrocyte Tridimensional Structure. Cells 2024; 13:969. [PMID: 38891101 PMCID: PMC11171983 DOI: 10.3390/cells13110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Astrocytes are ubiquitous in the brain and spinal cord and display a complex morphology important for the local interactions with neighboring cells, resulting in the modulation of circuit function. Thus, studies focusing on astrocyte physiology in the healthy and diseased brain generally present analyses of astrocytic structure. The labeling method used to visualize the astrocytic structure defines the morphological level to observe and may vary depending on the anatomical sub-regions. The method choice may significantly affect our understanding of their structural diversity. The main goal of this work was to identify a straightforward and efficient protocol for labeling and reconstructing a detailed astrocytic structure to apply and validate in different brain tissue preparations across laboratories. For that, we explored different tissue processing protocols before GFAP labeling to determine the most effective method for reconstructing astrocytic backbones in the mouse hippocampus. Our results show that the reconstruction of astrocytic structure in vibratome sections labeled by free-floating immunofluorescence protocol provides a more practical method to achieve a higher level of detail and arbor complexity in astrocyte backbone reconstruction. Free-floating immunofluorescence labeling is the most reliable method for obtaining better antibody penetration and more detailed astrocyte structure. Finally, we also show that introducing an antigen retrieval step appears useful for visualizing more complete structural details.
Collapse
Affiliation(s)
- Sara Barsanti
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Alexandra Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Luís Machado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Daniela Sofia Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - José Duarte Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (S.B.); (J.F.V.); (A.V.); (J.L.M.); (D.S.A.); (J.D.D.); (S.M.); (N.A.S.); (L.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Applied Artificial Intelligence Laboratory, Polytechnic Institute of Cávado and Ave, Campus of IPCA, 4750-810 Barcelos, Portugal
| |
Collapse
|
8
|
Kim KW. Clearing techniques for deeper imaging of plants and plant-microbe interactions. Appl Microsc 2024; 54:5. [PMID: 38816666 PMCID: PMC11139840 DOI: 10.1186/s42649-024-00098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Plant cells are uniquely characterized by exhibiting cell walls, pigments, and phenolic compounds, which can impede microscopic observations by absorbing and scattering light. The concept of clearing was first proposed in the late nineteenth century to address this issue, aiming to render plant specimens transparent using chloral hydrate. Clearing techniques involve chemical procedures that render biological specimens transparent, enabling deep imaging without physical sectioning. Drawing inspiration from clearing techniques for animal specimens, various protocols have been adapted for plant research. These procedures include (i) hydrophobic methods (e.g., Visikol™), (ii) hydrophilic methods (ScaleP and ClearSee), and (iii) hydrogel-based methods (PEA-CLARITY). Initially, clearing techniques for plants were mainly utilized for deep imaging of seeds and leaves of herbaceous plants such as Arabidopsis thaliana and rice. Utilizing cell wall-specific fluorescent dyes for plants and fungi, researchers have documented the post-penetration behavior of plant pathogenic fungi within hosts. State-of-the-art plant clearing techniques, coupled with microbe-specific labeling and high-throughput imaging methods, offer the potential to advance the in planta characterization of plant microbiomes.
Collapse
Affiliation(s)
- Ki Woo Kim
- Department of Forest Ecology and Protection, Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
9
|
Almasian M, Saberigarakani A, Zhang X, Lee B, Ding Y. Light-Sheet Imaging to Reveal Cardiac Structure in Rodent Hearts. J Vis Exp 2024:10.3791/66707. [PMID: 38619234 PMCID: PMC11027943 DOI: 10.3791/66707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Light-sheet microscopy (LSM) plays a pivotal role in comprehending the intricate three-dimensional (3D) structure of the heart, providing crucial insights into fundamental cardiac physiology and pathologic responses. We hereby delve into the development and implementation of the LSM technique to elucidate the micro-architecture of the heart in mouse models. The methodology integrates a customized LSM system with tissue clearing techniques, mitigating light scattering within cardiac tissues for volumetric imaging. The combination of conventional LSM with image stitching and multiview deconvolution approaches allows for the capture of the entire heart. To address the inherent trade-off between axial resolution and field of view (FOV), we further introduce an axially swept light-sheet microscopy (ASLM) method to minimize out-of-focus light and uniformly illuminate the heart across the propagation direction. In the meanwhile, tissue clearing methods such as iDISCO enhance light penetration, facilitating the visualization of deep structures and ensuring a comprehensive examination of the myocardium throughout the entire heart. The combination of the proposed LSM and tissue clearing methods presents a promising platform for researchers in resolving cardiac structures in rodent hearts, holding great potential for the understanding of cardiac morphogenesis and remodeling.
Collapse
Affiliation(s)
- Milad Almasian
- Department of Bioengineering, The University of Texas at Dallas
| | | | - Xinyuan Zhang
- Department of Bioengineering, The University of Texas at Dallas
| | - Brian Lee
- Department of Bioengineering, The University of Texas at Dallas
| | - Yichen Ding
- Department of Bioengineering, The University of Texas at Dallas; Center for Imaging and Surgical Innovation, The University of Texas at Dallas; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center;
| |
Collapse
|
10
|
Nuernberg E, Bruch R, Hafner M, Rudolf R, Vitacolonna M. Quantitative Analysis of Whole-Mount Fluorescence-Stained Tumor Spheroids in Phenotypic Drug Screens. Methods Mol Biol 2024; 2764:311-334. [PMID: 38393603 DOI: 10.1007/978-1-0716-3674-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Three-dimensional cell cultures, such as spheroids or organoids, serve as important models for drug screening purposes. Optical tissue clearing (OTC) enhances the visualization of fluorescence stainings and enables in toto microscopy of 3D cell culture models. Furthermore, subsequent automated image analysis tools convert qualitative confocal image sets into quantitative data. In this chapter, we describe a detailed protocol for preparation of HT29 cancer spheroids, 3D in toto immunostaining, glycerol-based OTC, whole-mount imaging, and semi-automated downstream image processing and segmentation for nuclear image analysis using open-source software.
Collapse
Affiliation(s)
- Elina Nuernberg
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Ruediger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mario Vitacolonna
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.
| |
Collapse
|
11
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
12
|
Delage E, Guilbert T, Yates F. Successful 3D imaging of cleared biological samples with light sheet fluorescence microscopy. J Cell Biol 2023; 222:e202307143. [PMID: 37847528 PMCID: PMC10583220 DOI: 10.1083/jcb.202307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
In parallel with the development of tissue-clearing methods, over the last decade, light sheet fluorescence microscopy has contributed to major advances in various fields, such as cell and developmental biology and neuroscience. While biologists are increasingly integrating three-dimensional imaging into their research projects, their experience with the technique is not always up to their expectations. In response to a survey of specific challenges associated with sample clearing and labeling, image acquisition, and data analysis, we have critically assessed the recent literature to characterize the difficulties inherent to light sheet fluorescence microscopy applied to cleared biological samples and to propose solutions to overcome them. This review aims to provide biologists interested in light sheet fluorescence microscopy with a primer for the development of their imaging pipeline, from sample preparation to image analysis. Importantly, we believe that issues could be avoided with better anticipation of image analysis requirements, which should be kept in mind while optimizing sample preparation and acquisition parameters.
Collapse
Affiliation(s)
- Elise Delage
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| | - Thomas Guilbert
- Institut Cochin, Institut national de la santé et de la recherche médicale (U1016), Centre National de la Recherche Scientifique (UMR 8104), Université de Paris (UMR-S1016), Paris, France
| | - Frank Yates
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
13
|
Yanina IY, Genin VD, Genina EA, Mudrak DA, Navolokin NA, Bucharskaya AB, Kistenev YV, Tuchin VV. Multimodal Diagnostics of Changes in Rat Lungs after Vaping. Diagnostics (Basel) 2023; 13:3340. [PMID: 37958237 PMCID: PMC10650729 DOI: 10.3390/diagnostics13213340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: The use of electronic cigarettes has become widespread in recent years. The use of e-cigarettes leads to milder pathological conditions compared to traditional cigarette smoking. Nevertheless, e-liquid vaping can cause morphological changes in lung tissue, which affects and impairs gas exchange. This work studied the changes in morphological and optical properties of lung tissue under the action of an e-liquid aerosol. To do this, we implemented the "passive smoking" model and created the specified concentration of aerosol of the glycerol/propylene glycol mixture in the chamber with the animal. (2) Methods: In ex vivo studies, the lungs of Wistar rats are placed in the e-liquid for 1 h. For in vivo studies, Wistar rats were exposed to the e-liquid vapor in an aerosol administration chamber. After that, lung tissue samples were examined ex vivo using optical coherence tomography (OCT) and spectrometry with an integrating sphere. Absorption and reduced scattering coefficients were estimated for the control and experimental groups. Histological sections were made according to the standard protocol, followed by hematoxylin and eosin staining. (3) Results: Exposure to e-liquid in ex vivo and aerosol in in vivo studies was found to result in the optical clearing of lung tissue. Histological examination of the lung samples showed areas of emphysematous expansion of the alveoli, thickening of the alveolar septa, and the phenomenon of plasma permeation, which is less pronounced in in vivo studies than for the exposure of e-liquid ex vivo. E-liquid aerosol application allows for an increased resolution and improved imaging of lung tissues using OCT. Spectral studies showed significant differences between the control group and the ex vivo group in the spectral range of water absorption. It can be associated with dehydration of lung tissue owing to the hyperosmotic properties of glycerol and propylene glycol, which are the main components of e-liquids. (4) Conclusions: A decrease in the volume of air in lung tissue and higher packing of its structure under e-liquid vaping causes a better contrast of OCT images compared to intact lung tissue.
Collapse
Affiliation(s)
- Irina Yu. Yanina
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
| | - Vadim D. Genin
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Elina A. Genina
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Dmitry A. Mudrak
- Department of Pathological Anatomy, Saratov State Medical University, 410012 Saratov, Russia; (D.A.M.); (N.A.N.)
| | - Nikita A. Navolokin
- Department of Pathological Anatomy, Saratov State Medical University, 410012 Saratov, Russia; (D.A.M.); (N.A.N.)
- Experimental Department, Center for Collective Use of Experimental Oncology, Saratov State Medical University, 410012 Saratov, Russia
- State Healthcare Institution, Saratov City Clinical Hospital No. 1 Named after Yu.Ya. Gordeev, 410017 Saratov, Russia
| | - Alla B. Bucharskaya
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
- Department of Pathological Anatomy, Saratov State Medical University, 410012 Saratov, Russia; (D.A.M.); (N.A.N.)
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
| | - Valery V. Tuchin
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 410028 Saratov, Russia
| |
Collapse
|
14
|
Gu Q, Sarkar S, Raymick B, Kanungo J. Combining tissue clearing and Fluoro-Jade C labeling for neurotoxicity assessments. Exp Biol Med (Maywood) 2023; 248:605-611. [PMID: 37208909 PMCID: PMC10350804 DOI: 10.1177/15353702231165009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023] Open
Abstract
Tissue clearing refers to laboratory methods that make tissue transparent by chemical means. This approach allows the labeling, visualization, and analysis of specific targets without cutting the tissue into sections, thereby maintaining three-dimensional architecture. More than two dozen tissue-clearing methods have been developed by different research teams to date. While tissue clearing has been successfully applied in several studies concerning basic science or diseases, little is known about the utilization of tissue clearing for neurotoxicity evaluation. In this study, several tissue-clearing methods were combined with Fluoro-Jade C (FJ-C), a standard marker of neurodegeneration. The results suggest that some but not all tissue-clearing media are compatible with the FJ-C fluorophore. By utilizing a neurotoxicity animal model, the results further suggest that FJ-C labeling can be combined with tissue clearing for neurotoxicity assessments. This approach has the potential to be expanded further by combining multicolor labeling of molecular targets involved in the development and/or mechanisms of neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bryan Raymick
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
15
|
Weiss K, Huisken J, Bakalov V, Engle M, Gridley L, Krzyzanowski MC, Madden T, Maiese D, Waterfield J, Williams D, Wu X, Hamilton CM, Huggins W. T-CLEARE: A Pilot Community-Driven Tissue-Clearing Protocol Repository. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531970. [PMID: 36945489 PMCID: PMC10028991 DOI: 10.1101/2023.03.09.531970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Selecting and implementing a tissue-clearing protocol is challenging. Established more than 100 years ago, tissue clearing is still a rapidly evolving field of research. There are currently many published protocols to choose from, and each performs better or worse across a range of key evaluation factors (e.g., speed, cost, tissue stability, fluorescence quenching). Additionally, tissue-clearing protocols are often optimized for specific experimental contexts, and applying an existing protocol to a new problem can require a lengthy period of adaptation by trial and error. Although the primary literature and review articles provide a useful starting point for optimization, there is growing recognition that many articles do not provide sufficient detail to replicate or reproduce experimental results. To help address this issue, we have developed a novel, freely available repository of tissue-clearing protocols named T-CLEARE (Tissue CLEAring protocol REpository; https://doryworkspace.org/doryviz). T-CLEARE incorporates community responses to an open survey designed to capture details not commonly found in the scientific literature, including modifications to published protocols required for specific use cases and instances when tissue-clearing protocols did not perform well (negative results). The goal of T-CLEARE is to provide a forum for the community to share evaluations and modifications of tissue-clearing protocols for various tissue types and potentially identify best-in-class methods for a given application.
Collapse
Affiliation(s)
- Kurt Weiss
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Jan Huisken
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Vesselina Bakalov
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Michelle Engle
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Lauren Gridley
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Michelle C Krzyzanowski
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Tom Madden
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Deborah Maiese
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Justin Waterfield
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - David Williams
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Xin Wu
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Carol M Hamilton
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Wayne Huggins
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
16
|
Decotret LR, Shi R, Thomas KN, Hsu M, Pallen CJ, Bennewith KL. Development and validation of an advanced ex vivo brain slice invasion assay to model glioblastoma cell invasion into the complex brain microenvironment. Front Oncol 2023; 13:976945. [PMID: 36793608 PMCID: PMC9923402 DOI: 10.3389/fonc.2023.976945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Organotypic cultures of murine brain slices are well-established tools in neuroscience research, including electrophysiology studies, modeling neurodegeneration, and cancer research. Here, we present an optimized ex vivo brain slice invasion assay that models glioblastoma multiforme (GBM) cell invasion into organotypic brain slices. Using this model, human GBM spheroids can be implanted with precision onto murine brain slices and cultured ex vivo to allow tumour cell invasion into the brain tissue. Traditional top-down confocal microscopy allows for imaging of GBM cell migration along the top of the brain slice, but there is limited resolution of tumour cell invasion into the slice. Our novel imaging and quantification technique involves embedding stained brain slices into an agar block, re-sectioning the slice in the Z-direction onto slides, and then using confocal microscopy to image cellular invasion into the brain tissue. This imaging technique allows for the visualization of invasive structures beneath the spheroid that would otherwise go undetected using traditional microscopy approaches. Our ImageJ macro (BraInZ) allows for the quantification of GBM brain slice invasion in the Z-direction. Importantly, we note striking differences in the modes of motility observed when GBM cells invade into Matrigel in vitro versus into brain tissue ex vivo highlighting the importance of incorporating the brain microenvironment when studying GBM invasion. In summary, our version of the ex vivo brain slice invasion assay improves upon previously published models by more clearly differentiating between migration along the top of the brain slice versus invasion into the slice.
Collapse
Affiliation(s)
- Lisa R Decotret
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Kiersten N Thomas
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Manchi Hsu
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Catherine J Pallen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Kiemen AL, Damanakis AI, Braxton AM, He J, Laheru D, Fishman EK, Chames P, Pérez CA, Wu PH, Wirtz D, Wood LD, Hruban RH. Tissue clearing and 3D reconstruction of digitized, serially sectioned slides provide novel insights into pancreatic cancer. MED 2023; 4:75-91. [PMID: 36773599 PMCID: PMC9922376 DOI: 10.1016/j.medj.2022.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 11/23/2022] [Indexed: 01/26/2023]
Abstract
Pancreatic cancer is currently the third leading cause of cancer death in the United States. The clinical hallmarks of this disease include abdominal pain that radiates to the back, the presence of a hypoenhancing intrapancreatic lesion on imaging, and widespread liver metastases. Technologies such as tissue clearing and three-dimensional (3D) reconstruction of digitized serially sectioned hematoxylin and eosin-stained slides can be used to visualize large (up to 2- to 3-centimeter cube) tissues at cellular resolution. When applied to human pancreatic cancers, these 3D visualization techniques have provided novel insights into the basis of a number of the clinical characteristics of this disease. Here, we describe the clinical features of pancreatic cancer, review techniques for clearing and the 3D reconstruction of digitized microscope slides, and provide examples that illustrate how 3D visualization of human pancreatic cancer at the microscopic level has revealed features not apparent in 2D microscopy and, in so doing, has closed the gap between bench and bedside. Compared with animal models and 2D microscopy, studies of human tissues in 3D can reveal the difference between what can happen and what does happen in human cancers.
Collapse
Affiliation(s)
- Ashley L Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Alexander Ioannis Damanakis
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Alicia M Braxton
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrick Chames
- Antibody Therapeutics and Immunotargeting Team, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Cristina Almagro Pérez
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, Osl F, Wolf AK, Arellano-Viera E, Shaikh H, Sauer M, Rosenwald A, Herting F, Umaña P, Colombetti S, Pöschinger T, Beilhack A. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol 2023; 14:1034032. [PMID: 36845124 PMCID: PMC9945347 DOI: 10.3389/fimmu.2023.1034032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric ex vivo imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research. Therefore, we developed a simple and harmonized protocol for processing, clearing and imaging of all mouse organs and even entire mouse bodies. Applying this Rapid Optical Clearing Kit for Enhanced Tissue Scanning (ROCKETS) in combination with LSFM allowed us to comprehensively study the in vivo biodistribution of an antibody targeting Epithelial Cell Adhesion Molecule (EpCAM) in 3D. Quantitative high-resolution scans of whole organs did not only reveal known EpCAM expression patterns but, importantly, uncovered several new EpCAM-binding sites. We identified gustatory papillae of the tongue, choroid plexi in the brain and duodenal papillae as previously unanticipated locations of high EpCAM expression. Subsequently, we confirmed high EpCAM expression also in human tongue and duodenal specimens. Choroid plexi and duodenal papillae may be considered as particularly sensitive sites due to their importance for liquor production or as critical junctions draining bile and digestive pancreatic enzymes into the small bowel, respectively. These newly gained insights appear highly relevant for clinical translation of EpCAM-addressing immunotherapies. Thus, ROCKETS in combination with LSFM may help to set new standards for preclinical evaluation of immunotherapeutic strategies. In conclusion, we propose ROCKETS as an ideal platform for a broader application of LSFM in immunological research optimally suited for quantitative co-localization studies of immunotherapeutic drugs and defined cell populations in the microanatomical context of organs or even whole mice.
Collapse
Affiliation(s)
- Joerg P. J. Mueller
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Dobosz
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nils O’Brien
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nassri Abdoush
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Martin Lechmann
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Franz Osl
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Katrin Wolf
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Estibaliz Arellano-Viera
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Frank Herting
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Thomas Pöschinger
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
19
|
Nelson MS, Liu Y, Wilson HM, Li B, Rosado-Mendez IM, Rogers JD, Block WF, Eliceiri KW. Multiscale Label-Free Imaging of Fibrillar Collagen in the Tumor Microenvironment. Methods Mol Biol 2023; 2614:187-235. [PMID: 36587127 DOI: 10.1007/978-1-0716-2914-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.
Collapse
Affiliation(s)
- Michael S Nelson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Helen M Wilson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Bin Li
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Ivan M Rosado-Mendez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy D Rogers
- Morgridge Institute for Research, Madison, WI, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. .,Morgridge Institute for Research, Madison, WI, USA. .,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA. .,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Shi J, Hu Y, Shao G, Zhu Y, Zhao Z, Xu Y, Zhang Z, Wu H. Quantifying Podocyte Number in a Small Sample Size of Glomeruli with CUBIC to Evaluate Podocyte Depletion of db/db Mice. J Diabetes Res 2023; 2023:1901105. [PMID: 36776229 PMCID: PMC9908347 DOI: 10.1155/2023/1901105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
The loss of podocyte is crucial for diagnosis and prognosis of diabetic kidney disease, whereas commonly two-dimensional methods for quantifying podocyte number existed with issues of low fidelity and accuracy. In this study, clear, unobstructed brain imaging cocktails and computational analysis (CUBIC), one of three-dimensional optical clearing approaches, was used which combines tissue clearing, immunolabeling, and a light-sheet microscope to image and evaluate podocytes in C57BL/6 (C57) and db/db mice. We discovered that 77 podocytes per glomerulus were in C57 mice. On the subject of db/db mice, there were 74 podocytes by the age of 8 w, 72 podocytes by the age of 12 w, and 66 podocytes by the age of 16 w, compared with 76 podocytes in the control group, suggesting that there was a significant decrease in podocyte number in db/db mice with the age of 16 w, showing a trend which positively correlated to the deterioration of kidney function. Sample size estimation using the PASS software revealed that taking 5%, 7.5%, and 10% of the mean podocyte number per glomerulus as the statistical allowable error and 95% as total confidence interval, 33, 15, and 9 glomeruli were independently needed to be sampled in C57 mice to represent the overall glomeruli to calculate podocyte number. Furthermore, in the control group of db/db mice, 36, 18, and 11 glomeruli were needed, compared with 46, 24, and 14 glomeruli in db/db mice by the age of 8 w, 43, 21, and 12 glomeruli by the age of 12 w, and 52, 27, and 16 by the age of 16 w. These findings indicated that precise quantification of podocyte number could judge the progression of diabetic kidney disease. In addition, a small number of glomeruli could be actually representative of the whole sample size, which indicated apparent practicability of CUBIC for clinical use.
Collapse
Affiliation(s)
- Jiaoyu Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuan Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangze Shao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yanyong Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
White SL, Lam AT, Buck HD. 3D Imaging for Cleared Tissues and Thicker Samples on Confocal and Light-Sheet Microscopes. Methods Mol Biol 2022; 2593:143-161. [PMID: 36513929 DOI: 10.1007/978-1-0716-2811-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in fluorescence microscopy, specifically the development of confocal and light-sheet microscopes, have enabled researchers to harness tissue clearing techniques to image-stained intact tissue samples in 3D. Using these techniques, tissue structure and biomarker distributions in 3D structures are preserved, thus allowing researchers to gain a wealth of spatial information about their tissue of interest. However, the execution of imaging these larger tissue samples can be challenging. Broadly speaking, tissue clearing techniques unify the refractive indices inside tissue samples, thus enabling deep tissue imaging on a confocal or light-sheet microscope. Here, we provide an overview to tissue clearing and 3D immunohistochemistry staining in general and discuss some difficulties that researchers may encounter when using these techniques. We then focus on imaging CLARITY-processed samples with both confocal and light-sheet microscopes and optimizing the acquisition parameters, before noting potential issues that may come up in imaging.
Collapse
Affiliation(s)
| | - Amy T Lam
- ClearLight Biotechnologies, Inc., Sunnyvale, CA, USA
| | - Hannah D Buck
- ClearLight Biotechnologies, Inc., Sunnyvale, CA, USA
| |
Collapse
|
22
|
Pichardo AH, Amadeo F, Wilm B, Lévy R, Ressel L, Murray P, Sée V. Optical Tissue Clearing to Study the Intra-Pulmonary Biodistribution of Intravenously Delivered Mesenchymal Stromal Cells and Their Interactions with Host Lung Cells. Int J Mol Sci 2022; 23:14171. [PMID: 36430651 PMCID: PMC9699424 DOI: 10.3390/ijms232214171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) injected intravenously are trapped in the capillaries of the lungs and die within the first 24 h. Studying the biodistribution and fate of labelled therapeutic cells in the 3D pulmonary context is important to understand their function in this organ and gain insights into their mechanisms of action. Optical tissue clearing enables volumetric cell tracking at single-cell resolution. Thus, we compared three optical tissue-clearing protocols (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis (CUBIC), modified stabilised 3D imaging of solvent-cleared organs (s-DISCO) and ethyl cinnamate (ECi)) to evaluate their potential to track the biodistribution of human umbilical cord MSCs expressing the tdTomato fluorescence reporter and investigate how they interact with host cells in the mouse lung. The results showed that although CUBIC clearing is the only method that enables direct imaging of fluorescently labelled MSCs, combining s-DISCO or ECi with immunofluorescence or dye labelling allows the interaction of MSCs with endothelial and immune cells to be studied. Overall, this comparative study offers guidance on selecting an optical tissue-clearing method for cell tracking applications.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Centre for Preclinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Francesco Amadeo
- Department of Molecular Physiology and Cell Signalling, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Centre for Preclinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Centre for Preclinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Raphaël Lévy
- INSERM, LVTS, Université Sorbonne Paris Nord, F-75018 Paris, France
| | - Lorenzo Ressel
- Department of Veterinary Anatomy Physiology and Pathology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Centre for Preclinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Violaine Sée
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), University Claude Bernard Lyon1, 69007 Lyon, France
| |
Collapse
|
23
|
Hsu CW, Cerda J, Kirk JM, Turner WD, Rasmussen TL, Flores Suarez CP, Dickinson ME, Wythe JD. EZ Clear for simple, rapid, and robust mouse whole organ clearing. eLife 2022; 11:e77419. [PMID: 36218247 PMCID: PMC9555867 DOI: 10.7554/elife.77419] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue clearing for whole organ cell profiling has revolutionized biology and imaging for exploration of organs in three-dimensional space without compromising tissue architecture. But complicated, laborious procedures, or expensive equipment, as well as the use of hazardous, organic solvents prevent the widespread adoption of these methods. Here, we report a simple and rapid tissue clearing method, EZ Clear, that can clear whole adult mouse organs in 48 hr in just three simple steps. Samples stay at room temperature and remain hydrated throughout the clearing process, preserving endogenous and synthetic fluorescence, without altering sample size. After wholemount clearing and imaging, samples processed with EZ Clear can be subjected to downstream applications, such as tissue embedding and cryosectioning followed by standard histology or immunofluorescent staining without loss of fluorescence signal from endogenous or synthetic reporters. Furthermore, we demonstrate that wholemount adult mouse brains processed with EZ Clear can be successfully immunolabeled for fluorescent imaging while still retaining signal from endogenous fluorescent reporters. Overall, the simplicity, speed, and flexibility of EZ Clear make it easy to adapt and implement in diverse imaging modalities in biomedical research.
Collapse
Affiliation(s)
- Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- Optical Imaging and Vital Microscopy Core, Advance Technology Cores, Baylor College of MedicineHoustonUnited States
- Department of Education, Innovation and Technology, Baylor College of MedicineHoustonUnited States
- Cardiovascular Research Institute, Baylor College of MedicineHoustonUnited States
| | - Juan Cerda
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Jason M Kirk
- Optical Imaging and Vital Microscopy Core, Advance Technology Cores, Baylor College of MedicineHoustonUnited States
| | - Williamson D Turner
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Tara L Rasmussen
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- Cardiovascular Research Institute, Baylor College of MedicineHoustonUnited States
| | | | - Mary E Dickinson
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- Optical Imaging and Vital Microscopy Core, Advance Technology Cores, Baylor College of MedicineHoustonUnited States
- Cardiovascular Research Institute, Baylor College of MedicineHoustonUnited States
| | - Joshua D Wythe
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- Cardiovascular Research Institute, Baylor College of MedicineHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
24
|
Ritschar S, Hüftlein F, Schell LM, Brehm J, Laforsch C. Taking advantage of transparency: A proof-of-principle for the analysis of the uptake of labeled microplastic particles by organisms of different functional feeding guilds using an adapted CUBIC protocol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154922. [PMID: 35364168 DOI: 10.1016/j.scitotenv.2022.154922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The analysis of the ingestion of microplastics (MP) by biota is frequently performed through invasive procedures such as chemical digestion protocols or by histological analysis of thin sections. Different, promising approaches for the observation of ingested MP particles pose so called tissue clearing methods. They are currently applied to organs, tissue samples, or whole organisms, rendering the sample transparent and enable to look inside an otherwise opaque environment. To date, there is a lack of methods to detect labeled MP inside an opaque organism's digestive tract without interfering with the sample's integrity. Therefore, our goal was to adapt the CUBIC tissue clearing protocol (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational Analysis) for aquatic and terrestrial organisms of various functional feeding groups for the analysis of the uptake of fluorescent labeled microplastic (MP) particles. We included the buff-tailed bumblebee Bombus terrestris, the compost worm Eisenia fetida, the woodlouse Porcellio scaber, the freshwater shrimp Gammarus roeselii, and the quagga mussel Dreissena bugensis in the analysis. The adapted CUBIC method has led to transparency in all normally opaque organisms. It further offers a simple way of locating fluorescent labeled MP inside the digestive system of the different organisms while leaving them intact.
Collapse
Affiliation(s)
- Sven Ritschar
- Department of Animal Ecology I, University of Bayreuth, Germany
| | | | | | - Julian Brehm
- Department of Animal Ecology I, University of Bayreuth, Germany
| | - Christian Laforsch
- Department of Animal Ecology I, University of Bayreuth, Germany; BayCEER, University of Bayreuth, Germany.
| |
Collapse
|
25
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
26
|
Three-dimensional imaging for the quantification of spatial patterns in microbiota of the intestinal mucosa. Proc Natl Acad Sci U S A 2022; 119:e2118483119. [PMID: 35476531 PMCID: PMC9171773 DOI: 10.1073/pnas.2118483119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many human diseases are causally linked to the gut microbiota, yet the field still lacks mechanistic understanding of the underlying complex interactions, because existing tools cannot simultaneously quantify microbial communities and their native context. In this work, we provide an approach to tissue clearing and preservation that enables 3D visualization of the biogeography of the host–microbiota interface. We combine this tool with sequencing and multiplexed microbial labeling to provide the field with a platform on which to discover patterns in the spatial distribution of microbes. We validated this platform by quantifying bacterial distribution in cecal mucosa at different stages of antibiotic exposure. This approach may enable researchers to formulate and test new hypotheses about host–microbe and microbe–microbe interactions. Improving our understanding of host–microbe relationships in the gut requires the ability to both visualize and quantify the spatial organization of microbial communities in their native orientation with the host tissue. We developed a systematic procedure to quantify the three-dimensional (3D) spatial structure of the native mucosal microbiota in any part of the intestines with taxonomic and high spatial resolution. We performed a 3D biogeographical analysis of the microbiota of mouse cecal crypts at different stages of antibiotic exposure. By tracking eubacteria and four dominant bacterial taxa, we found that the colonization of crypts by native bacteria is a dynamic and spatially organized process. Ciprofloxacin treatment drastically reduced bacterial loads and eliminated Muribaculaceae (or all Bacteroidetes entirely) even 10 d after recovery when overall bacterial loads returned to preantibiotic levels. Our 3D quantitative imaging approach revealed that the bacterial colonization of crypts is organized in a spatial pattern that consists of clusters of adjacent colonized crypts that are surrounded by unoccupied crypts, and that this spatial pattern is resistant to the elimination of Muribaculaceae or of all Bacteroidetes by ciprofloxacin. Our approach also revealed that the composition of cecal crypt communities is diverse and that Lactobacilli were found closer to the lumen than Bacteroidetes, Ruminococcaceae, and Lachnospiraceae, regardless of antibiotic exposure. Finally, we found that crypts communities with similar taxonomic composition were physically closer to each other than communities that were taxonomically different.
Collapse
|
27
|
Eliat F, Sohn R, Renner H, Kagermeier T, Volkery S, Brinkmann H, Kirschnick N, Kiefer F, Grabos M, Becker K, Bedzhov I, Schöler HR, Bruder JM. Tissue clearing may alter emission and absorption properties of common fluorophores. Sci Rep 2022; 12:5551. [PMID: 35365729 PMCID: PMC8975997 DOI: 10.1038/s41598-022-09303-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, 3D cell culture has been gaining a more widespread following across many fields of biology. Tissue clearing enables optical analysis of intact 3D samples and investigation of molecular and structural mechanisms by homogenizing the refractive indices of tissues to make them nearly transparent. Here, we describe and quantify that common clearing solutions including benzyl alcohol/benzyl benzoate (BABB), PEG-associated solvent system (PEGASOS), immunolabeling-enabled imaging of solvent-cleared organs (iDISCO), clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC), and ScaleS4 alter the emission spectra of Alexa Fluor fluorophores and fluorescent dyes. Clearing modifies not only the emitted light intensity but also alters the absorption and emission peaks, at times to several tens of nanometers. The resulting shifts depend on the interplay of solvent, fluorophore, and the presence of cells. For biological applications, this increases the risk for unexpected channel crosstalk, as filter sets are usually not optimized for altered fluorophore emission spectra in clearing solutions. This becomes especially problematic in high throughput/high content campaigns, which often rely on multiband excitation to increase acquisition speed. Consequently, researchers relying on clearing in quantitative multiband excitation experiments should crosscheck their fluorescent signal after clearing in order to inform the proper selection of filter sets and fluorophores for analysis.
Collapse
Affiliation(s)
- Farsam Eliat
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.,University of Münster, Schlossplatz 2, 48143, Münster, Germany
| | - Rebecca Sohn
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Henrik Renner
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Theresa Kagermeier
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.,University of Münster, Schlossplatz 2, 48143, Münster, Germany
| | - Stefan Volkery
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Nils Kirschnick
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.,University of Münster, European Institute for Molecular Imaging, Waldeyerstraße 15, 48149, Münster, Germany
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.,University of Münster, European Institute for Molecular Imaging, Waldeyerstraße 15, 48149, Münster, Germany
| | - Martha Grabos
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Katharina Becker
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.,University of Münster, Schlossplatz 2, 48143, Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Jan M Bruder
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.
| |
Collapse
|
28
|
Sun T, Li Y, Förstera B, Stanic K, Lu S, Steffens S, Yin C, Ertürk A, Megens RTA, Weber C, Habenicht A, Mohanta SK. Tissue Clearing Approaches in Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:747-763. [PMID: 35237999 DOI: 10.1007/978-1-0716-1924-7_45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in cardiovascular research have led to a more comprehensive understanding of molecular mechanisms of atherosclerosis. It has become apparent that the disease involves three layers of the arterial wall: the intima, the media, and a connective tissue coat termed the adventitia. It is also now appreciated that arteries are surrounded by adipose and neuronal tissues. In addition, adjacent to and within the adventitia, arteries are embedded in a loose connective tissue containing blood vessels (vasa vasora) and lymph vessels, artery-draining lymph nodes and components of the peripheral nervous system, including periarterial nerves and ganglia. During atherogenesis, each of these tissues undergoes marked structural and cellular alterations. We propose that a better understanding of these cell-cell and cell-tissue interactions may considerably advance our understanding of cardiovascular disease pathogenesis. Methods to acquire subcellular optical access to the intact tissues surrounding healthy and diseased arteries are urgently needed to achieve these aims. Tissue clearing is a landmark next-generation, three-dimensional (3D) microscopy technique that allows to image large-scale hitherto inaccessible intact deep tissue compartments. It allows for detailed reconstructions of arteries by a combination of labelling, clearing, advanced microscopies and other imaging and data-analysis tools. Here, we describe two distinct tissue clearing protocols; solvent-based modified three-dimensional imaging of solvent-cleared organs (3DISCO) clearing and another using aqueous-based 2,2'-thiodiethanol (TDE) clearing, both of which complement each other.
Collapse
Affiliation(s)
- Ting Sun
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Yuanfang Li
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Benjamin Förstera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Karen Stanic
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Shu Lu
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Changjun Yin
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Sarajo K Mohanta
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilians-University (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany. .,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
29
|
Brenna C, Simioni C, Varano G, Conti I, Costanzi E, Melloni M, Neri LM. Optical tissue clearing associated with 3D imaging: application in preclinical and clinical studies. Histochem Cell Biol 2022; 157:497-511. [PMID: 35235045 PMCID: PMC9114043 DOI: 10.1007/s00418-022-02081-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Understanding the inner morphology of intact tissues is one of the most competitive challenges in modern biology. Since the beginning of the twentieth century, optical tissue clearing (OTC) has provided solutions for volumetric imaging, allowing the microscopic visualization of thick sections of tissue, organoids, up to whole organs and organisms (for example, mouse or rat). Recently, tissue clearing has also been introduced in clinical settings to achieve a more accurate diagnosis with the support of 3D imaging. This review aims to give an overview of the most recent developments in OTC and 3D imaging and to illustrate their role in the field of medical diagnosis, with a specific focus on clinical applications.
Collapse
Affiliation(s)
- Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.,Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy.,LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy. .,LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
30
|
Liu L, Xia X, Xiang F, Gao Y, Li X, Li H, Zheng W. F-CUBIC: a rapid optical clearing method optimized by quantitative evaluation. BIOMEDICAL OPTICS EXPRESS 2022; 13:237-251. [PMID: 35154867 PMCID: PMC8803013 DOI: 10.1364/boe.442976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
In recent decades, various powerful optical clearing methods have emerged to facilitate deep-tissue imaging. However, a rapid and safe protocol for millimeter-thick specimens is still desired. In this study, we propose a simple and economical chemical screening method that uses porcine small intestine tissue as the testing sample to quantify the clearing speed of different optical clearing reagents. By screening with this method, we developed a fast and versatile clearing protocol, termed F-CUBIC (adding formamide to CUBIC). F-CUBIC allows easy clearing of millimeter-thick tissues within 2-20 min by one-step immersion at room temperature. It introduces negligible tissue distortion and shows high compatibility with various fluorescent labeling techniques. Based on endoscopic human colon specimens, we successfully demonstrated the potential of F-CUBIC for nondestructive three-dimensional (3D) biopsy in combination with two-photon microscopy. This study would substantially benefit rapid 3D tissue mapping in biomedical research and clinics, such as instant histopathological examinations.
Collapse
Affiliation(s)
- Lina Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Authors contributed equally to this work
| | - Xianyuan Xia
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Authors contributed equally to this work
| | - Feng Xiang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yufeng Gao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Hui Li
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
31
|
Jalufka FL, Min SW, Platt ME, Pritchard AL, Margo TE, Vernino AO, Kirchhoff MA, Massopust RT, McCreedy DA. Hydrophobic and Hydrogel-Based Methods for Passive Tissue Clearing. Methods Mol Biol 2022; 2440:197-209. [PMID: 35218541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical tissue clearing enables the precise imaging of cellular and subcellular structures in whole organs and tissues without the need for physical tissue sectioning. By combining tissue clearing with confocal or lightsheet microscopy, 3D images can be generated of entire specimens for visualization and large-scale data analysis. Here we demonstrate two different passive tissue clearing techniques that are compatible with immunofluorescent staining and lightsheet microscopy: PACT, an aqueous hydrogel-based clearing method, and iDISCO+, an organic solvent-based clearing method.
Collapse
Affiliation(s)
- Frank L Jalufka
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sun Won Min
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Madison E Platt
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Anna L Pritchard
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Theodore E Margo
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Megan A Kirchhoff
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ryan T Massopust
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Dylan A McCreedy
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
32
|
Muto Y, Humphreys BD. Recent advances in lineage tracing for the kidney. Kidney Int 2021; 100:1179-1184. [PMID: 34217781 PMCID: PMC8608712 DOI: 10.1016/j.kint.2021.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022]
Abstract
Lineage tracing was originally developed by developmental biologists to identify all progeny of a single cell during morphogenesis. More recently this approach has been applied to other fields, including organ homeostasis and recovery from injury. Modern lineage tracing techniques typically rely on reporter gene expression induced by cell-specific DNA recombination. There have been important scientific advances in the last 10 years that have impacted lineage tracing approaches, including intersectional genetics, optical clearing techniques, and the use of sequencing-based genomic lineage tracing. The latter combines CRISPR-Cas9-based genetic scarring with single-cell RNA-sequencing that, in theory, could allow comprehensive reconstruction of a lineage tree for an entire organism. This review summarizes recent advances in lineage tracing technologies and outlines potential applications for kidney research.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
33
|
Kosmidis S, Negrean A, Dranovsky A, Losonczy A, Kandel ER. A fast, aqueous, reversible three-day tissue clearing method for adult and embryonic mouse brain and whole body. CELL REPORTS METHODS 2021; 1:100090. [PMID: 34966901 PMCID: PMC8713566 DOI: 10.1016/j.crmeth.2021.100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Optical clearing methods serve as powerful tools to study intact organs and neuronal circuits. We developed an aqueous clearing protocol, Fast 3D Clear, that relies on tetrahydrofuran for tissue delipidation and iohexol for clearing, such that tissues can be imaged under immersion oil in light-sheet imaging systems. Fast 3D Clear requires 3 days to achieve high transparency of adult and embryonic mouse tissues while maintaining their anatomical integrity and preserving a vast array of transgenic and viral/dye fluorophores. A unique advantage of Fast 3D Clear is its complete reversibility and thus compatibility with tissue sectioning and immunohistochemistry. Fast 3D Clear can be easily and quickly applied to a wide range of biomedical studies, facilitating the acquisition of high-resolution two- and three-dimensional images.
Collapse
Affiliation(s)
- Stylianos Kosmidis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Adrian Negrean
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Alex Dranovsky
- New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Attila Losonczy
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Eric R. Kandel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
34
|
Ren M, Tian J, Sun Q, Chen S, Luo T, Jia X, Jiang T, Luo Q, Gong H, Li X. Plastic embedding for precise imaging of large-scale biological tissues labeled with multiple fluorescent dyes and proteins. BIOMEDICAL OPTICS EXPRESS 2021; 12:6730-6745. [PMID: 34858677 PMCID: PMC8606158 DOI: 10.1364/boe.435120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Resin embedding of multi-color labeled whole organs is the primary step to preserve structural information for visualization of fine structures in three dimensions. It is essential to study the morphological characteristics, spatial and positional relationships of the millions of neurons, and the intricate network of blood vessels with fluorescent labels in the brain. However, the current resin embedding method is inadequate because of incompatibilities with fluorescent dyes, making it difficult to reconstruct a variety of structures for the interpretation of their complex spatial relationships. We modified the resin embedding method for large biological tissues labeled with multiple fluorescent dyes and proteins through different labeling strategies. With TrueBlack as the background fluorescence inhibitor in the glycol methacrylate (GMA) embedding, we referred to the method as GMA-T (Glycol methacrylate with TB). In the GMA-T embedded mouse brains, structures labeled with fluorescent proteins and dyes were visualized in millimeter-scale networks with sub-cellular resolution, allowing quantitative analysis of different anatomical structures in the same brain, including neurons and blood vessels. In combination with high-resolution whole-brain imaging, it is possible to obtain a variety of fluorescence labeled structures in just a few days. We quantified the distribution and morphology of the tdTomato-labeled vasoactive intestinal polypeptide (VIP) neurons and the BSA-FITC labeled blood vessels in the same brain. These results demonstrated that VIP neurons and blood vessels have their own unique distribution patterns and morphological characteristics among cortical regions and different layers in cerebral cortex, and there was no significant correlation between VIP neurons and vessels. This approach provides a novel approach to study the interaction among different anatomical structures within large-volume biological samples labeled with multiple fluorescent dyes and proteins, which helps elucidating the complex anatomical characteristics of biological organs.
Collapse
Affiliation(s)
- Miao Ren
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- These authors contributed equally to this paper
| | - Jiaojiao Tian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contributed equally to this paper
| | - Qingtao Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siqi Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ting Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| |
Collapse
|
35
|
Abstract
Tissue clearing increases the transparency of late developmental stages and enables deep imaging in fixed organisms. Successful implementation of these methodologies requires a good grasp of sample processing, imaging and the possibilities offered by image analysis. In this Primer, we highlight how tissue clearing can revolutionize the histological analysis of developmental processes and we advise on how to implement effective clearing protocols, imaging strategies and analysis methods for developmental biology.
Collapse
Affiliation(s)
| | - Nicolas Renier
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| |
Collapse
|
36
|
Hahn M, Nord C, Eriksson M, Morini F, Alanentalo T, Korsgren O, Ahlgren U. 3D imaging of human organs with micrometer resolution - applied to the endocrine pancreas. Commun Biol 2021; 4:1063. [PMID: 34508173 PMCID: PMC8433206 DOI: 10.1038/s42003-021-02589-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/23/2021] [Indexed: 12/05/2022] Open
Abstract
The possibility to quantitatively study specific molecular/cellular features of complete human organs with preserved spatial 3D context would have widespread implications for pre-clinical and clinical medicine. Whereas optical 3D imaging approaches have experienced a formidable revolution, they have remained limited due to current incapacities in obtaining specific labelling within large tissue volumes. We present a simple approach enabling reconstruction of antibody labeled cells within entire human organs with preserved organ context. We demonstrate the utility of the approach by providing volumetric data and 3D distribution of hundreds of thousands of islets of Langerhans within the human pancreas. By assessments of pancreata from non-diabetic and type 2 diabetic individuals, we display previously unrecognized features of the human islet mass distribution and pathology. As such, this method may contribute not only in unraveling new information of the pancreatic anatomy/pathophysiology, but it may be translated to essentially any antibody marker or organ system.
Collapse
Affiliation(s)
- Max Hahn
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Christoffer Nord
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Maria Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Federico Morini
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Tomas Alanentalo
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
37
|
Larsen NY, Li X, Tan X, Ji G, Lin J, Rajkowska G, Møller J, Vihrs N, Sporring J, Sun F, Nyengaard JR. Cellular 3D-reconstruction and analysis in the human cerebral cortex using automatic serial sections. Commun Biol 2021; 4:1030. [PMID: 34475516 PMCID: PMC8413324 DOI: 10.1038/s42003-021-02548-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Techniques involving three-dimensional (3D) tissue structure reconstruction and analysis provide a better understanding of changes in molecules and function. We have developed AutoCUTS-LM, an automated system that allows the latest advances in 3D tissue reconstruction and cellular analysis developments using light microscopy on various tissues, including archived tissue. The workflow in this paper involved advanced tissue sampling methods of the human cerebral cortex, an automated serial section collection system, digital tissue library, cell detection using convolution neural network, 3D cell reconstruction, and advanced analysis. Our results demonstrated the detailed structure of pyramidal cells (number, volume, diameter, sphericity and orientation) and their 3D spatial organization are arranged in a columnar structure. The pipeline of these combined techniques provides a detailed analysis of tissues and cells in biology and pathology. Nick Larsen et al. developed a pipeline to collect and image serial sections from fixed human cortex, then apply deep learning to detect pyramidal cells from 3D reconstructions of these sections. Their results reiterate that cortical pyramidal cells are organized in a columnar structure and highlight the potential of this method, which is universally applicable to characterize cells for various tissues.
Collapse
Affiliation(s)
- Nick Y Larsen
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark. .,Centre for Stochastic Geometry and Advanced Bioimaging, Aalborg University, Aarhus University and University of Copenhagen, Aalborg, Aarhus and Copenhagen, Denmark. .,Sino-Danish Center for Education and Research, Aarhus, Denmark. .,University of the Chinese Academy of Sciences, Beijing, China.
| | - Xixia Li
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xueke Tan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Gang Ji
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Lin
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jesper Møller
- Centre for Stochastic Geometry and Advanced Bioimaging, Aalborg University, Aarhus University and University of Copenhagen, Aalborg, Aarhus and Copenhagen, Denmark.,Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Ninna Vihrs
- Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Jon Sporring
- Centre for Stochastic Geometry and Advanced Bioimaging, Aalborg University, Aarhus University and University of Copenhagen, Aalborg, Aarhus and Copenhagen, Denmark.,Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Fei Sun
- Sino-Danish Center for Education and Research, Aarhus, Denmark.,University of the Chinese Academy of Sciences, Beijing, China.,National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jens R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging, Aalborg University, Aarhus University and University of Copenhagen, Aalborg, Aarhus and Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Aarhus, Denmark.,Department of Pathology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Li C, Moatti A, Zhang X, Troy Ghashghaei H, Greenabum A. Deep learning-based autofocus method enhances image quality in light-sheet fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:5214-5226. [PMID: 34513252 PMCID: PMC8407817 DOI: 10.1364/boe.427099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 05/23/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) is a minimally invasive and high throughput imaging technique ideal for capturing large volumes of tissue with sub-cellular resolution. A fundamental requirement for LSFM is a seamless overlap of the light-sheet that excites a selective plane in the specimen, with the focal plane of the objective lens. However, spatial heterogeneity in the refractive index of the specimen often results in violation of this requirement when imaging deep in the tissue. To address this issue, autofocus methods are commonly used to refocus the focal plane of the objective-lens on the light-sheet. Yet, autofocus techniques are slow since they require capturing a stack of images and tend to fail in the presence of spherical aberrations that dominate volume imaging. To address these issues, we present a deep learning-based autofocus framework that can estimate the position of the objective-lens focal plane relative to the light-sheet, based on two defocused images. This approach outperforms or provides comparable results with the best traditional autofocus method on small and large image patches respectively. When the trained network is integrated with a custom-built LSFM, a certainty measure is used to further refine the network's prediction. The network performance is demonstrated in real-time on cleared genetically labeled mouse forebrain and pig cochleae samples. Our study provides a framework that could improve light-sheet microscopy and its application toward imaging large 3D specimens with high spatial resolution.
Collapse
Affiliation(s)
- Chen Li
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Adele Moatti
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Xuying Zhang
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - H. Troy Ghashghaei
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Alon Greenabum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
39
|
Sands GB, Ashton JL, Trew ML, Baddeley D, Walton RD, Benoist D, Efimov IR, Smith NP, Bernus O, Smaill BH. It's clearly the heart! Optical transparency, cardiac tissue imaging, and computer modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 168:18-32. [PMID: 34126113 DOI: 10.1016/j.pbiomolbio.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Recent developments in clearing and microscopy enable 3D imaging with cellular resolution up to the whole organ level. These methods have been used extensively in neurobiology, but their uptake in other fields has been much more limited. Application of this approach to the human heart and effective use of the data acquired present challenges of scale and complexity. Four interlinked issues need to be addressed: 1) efficient clearing and labelling of heart tissue, 2) fast microscopic imaging of human-scale samples, 3) handling and processing of multi-terabyte 3D images, and 4) extraction of structural information in computationally tractable structure-based models of cardiac function. Preliminary studies show that each of these requirements can be achieved with the appropriate application and development of existing technologies.
Collapse
Affiliation(s)
- Gregory B Sands
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Jesse L Ashton
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mark L Trew
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - David Baddeley
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Cell Biology, Yale University, New Haven CT, 06520, USA
| | - Richard D Walton
- IHU Liryc, Fondation Bordeaux Université, Bordeaux, France; Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, U1045, 33000, Bordeaux, France
| | - David Benoist
- IHU Liryc, Fondation Bordeaux Université, Bordeaux, France; Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, U1045, 33000, Bordeaux, France
| | - Igor R Efimov
- IHU Liryc, Fondation Bordeaux Université, Bordeaux, France; Department of Biomedical Engineering, The George Washington University, Washington DC, 20052, USA
| | - Nicolas P Smith
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Queensland University of Technology, Brisbane 4000, Australia
| | - Olivier Bernus
- IHU Liryc, Fondation Bordeaux Université, Bordeaux, France; Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, U1045, 33000, Bordeaux, France
| | - Bruce H Smaill
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Yu T, Li D, Zhu D. Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:217-255. [PMID: 34053030 DOI: 10.1007/978-981-15-7627-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This chapter firstly gives a brief introduction to mechanisms of tissue optical clearing techniques, from the physical mechanism to chemical mechanism, which is the most important foundation to develop tissue optical clearing methods. During the past years, in vitro and in vivo tissue optical clearing methods were developed. In vitro tissue optical clearing techniques, including the solvent-based clearing methods and the hydrophilic reagents-based clearing methods, combined with labeling technique and advanced microscopy, can be applied to image 3D microstructure of tissue blocks or whole organs such as brain and spinal cord with high resolution. In vivo skin or skull optical clearing, promise various optical imaging techniques to detect cutaneous or cortical cell and vascular structure and function without surgical window.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
41
|
Development of an Optimized Clearing Protocol to Examine Adipocyte Subpopulations in White Adipose Tissue. Methods Protoc 2021; 4:mps4020039. [PMID: 34199437 PMCID: PMC8293430 DOI: 10.3390/mps4020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
Organic solvent dibenzyl ether (DBE)-based protocols have been widely used in adipose tissue clearing. However, benzyl alcohol/benzyl benzoate (BABB)-based clearing has been shown to offer better transparency in other tissues. The addition of diphenyl ether (DPE) to BABB (BABB-D4) is often included to preserve fluorescent signals, but its effects on adipose tissue transparency and shrinkage have not been explored. Distinct adipocyte subpopulations contribute to its cellular composition and biological activity. Here, we compared clearing solvents to create an optimized clearing methodology for the study of adipocyte subpopulations. Adipose tissues were cleared with BABB, BABB-D4, and DBE, and post-clearing transparency and tissue shrinkage were measured. An optimized protocol, including BABB-D4 clearing, delipidation, and extensive immunofluorescence blocking steps, was created to examine the spatial distribution of Wt-1 positive progenitor-derived (Type-1) adipocytes in intact mesenteric fat. Both BABB and BABB-D4 lead to significantly increased tissue transparency with reduced tissue shrinkage compared to DBE-cleared adipose tissue. Type-1 adipocytes are found in a clustered distribution with predominant residence in fat associated with the ileum and colon. This paper details an optimized clearing methodology for adipose tissue with increased tissue transparency and reduced shrinkage, and therefore will be a useful tool for investigating adipose tissue biology.
Collapse
|
42
|
Weiss KR, Voigt FF, Shepherd DP, Huisken J. Tutorial: practical considerations for tissue clearing and imaging. Nat Protoc 2021; 16:2732-2748. [PMID: 34021294 PMCID: PMC10542857 DOI: 10.1038/s41596-021-00502-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Tissue clearing has become a powerful technique for studying anatomy and morphology at scales ranging from entire organisms to subcellular features. With the recent proliferation of tissue-clearing methods and imaging options, it can be challenging to determine the best clearing protocol for a particular tissue and experimental question. The fact that so many clearing protocols exist suggests there is no one-size-fits-all approach to tissue clearing and imaging. Even in cases where a basic level of clearing has been achieved, there are many factors to consider, including signal retention, staining (labeling), uniformity of transparency, image acquisition and analysis. Despite reviews citing features of clearing protocols, it is often unknown a priori whether a protocol will work for a given experiment, and thus some optimization is required by the end user. In addition, the capabilities of available imaging setups often dictate how the sample needs to be prepared. After imaging, careful evaluation of volumetric image data is required for each combination of clearing protocol, tissue type, biological marker, imaging modality and biological question. Rather than providing a direct comparison of the many clearing methods and applications available, in this tutorial we address common pitfalls and provide guidelines for designing, optimizing and imaging in a successful tissue-clearing experiment with a focus on light-sheet fluorescence microscopy (LSFM).
Collapse
Affiliation(s)
- Kurt R Weiss
- Morgridge Institute for Research, Madison, WI, USA
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Douglas P Shepherd
- Department of Physics, Arizona State University, Tempe, AZ, USA
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
43
|
Ellman DG, Slaiman IM, Mathiesen SB, Andersen KS, Hofmeister W, Ober EA, Andersen DC. Apex Resection in Zebrafish ( Danio rerio) as a Model of Heart Regeneration: A Video-Assisted Guide. Int J Mol Sci 2021; 22:5865. [PMID: 34070781 PMCID: PMC8199168 DOI: 10.3390/ijms22115865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic heart disease is one of the leading causes of deaths worldwide. A major hindrance to resolving this challenge lies in the mammalian hearts inability to regenerate after injury. In contrast, zebrafish retain a regenerative capacity of the heart throughout their lifetimes. Apex resection (AR) is a popular zebrafish model for studying heart regeneration, and entails resecting 10-20% of the heart in the apex region, whereafter the regeneration process is monitored until the heart is fully regenerated within 60 days. Despite this popularity, video tutorials describing this technique in detail are lacking. In this paper we visualize and describe the entire AR procedure including anaesthesia, surgery, and recovery. In addition, we show that the concentration and duration of anaesthesia are important parameters to consider, to balance sufficient levels of sedation and minimizing mortality. Moreover, we provide examples of how zebrafish heart regeneration can be assessed both in 2D (immunohistochemistry of heart sections) and 3D (analyses of whole, tissue cleared hearts using multiphoton imaging). In summary, this paper aims to aid beginners in establishing and conducting the AR model in their laboratory, but also to spur further interest in improving the model and its evaluation.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ibrahim Mohamad Slaiman
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Sabrina Bech Mathiesen
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Kristian Skriver Andersen
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Wolfgang Hofmeister
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
- Faculty of Health and Medical Sciences, DanStem (Novo Nordisk Foundation Center for Stem Cell Biology), Blegdamsvej 3B, 2200 København H, Denmark;
| | - Elke Annette Ober
- Faculty of Health and Medical Sciences, DanStem (Novo Nordisk Foundation Center for Stem Cell Biology), Blegdamsvej 3B, 2200 København H, Denmark;
| | - Ditte Caroline Andersen
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| |
Collapse
|
44
|
Kolesová H, Olejníčková V, Kvasilová A, Gregorovičová M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. iScience 2021; 24:102387. [PMID: 33981974 PMCID: PMC8086021 DOI: 10.1016/j.isci.2021.102387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue imaging in 3D using visible light is limited and various clearing techniques were developed to increase imaging depth, but none provides universal solution for all tissues at all developmental stages. In this review, we focus on different tissue clearing methods for 3D imaging of heart and vasculature, based on chemical composition (solvent-based, simple immersion, hyperhydration, and hydrogel embedding techniques). We discuss in detail compatibility of various tissue clearing techniques with visualization methods: fluorescence preservation, immunohistochemistry, nuclear staining, and fluorescent dyes vascular perfusion. We also discuss myocardium visualization using autofluorescence, tissue shrinking, and expansion. Then we overview imaging methods used to study cardiovascular system and live imaging. We discuss heart and vessels segmentation methods and image analysis. The review covers the whole process of cardiovascular system 3D imaging, starting from tissue clearing and its compatibility with various visualization methods to the types of imaging methods and resulting image analysis.
Collapse
Affiliation(s)
- Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Alena Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Gregorovičová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
45
|
Borile G, Sandrin D, Filippi A, Anderson KI, Romanato F. Label-Free Multiphoton Microscopy: Much More Than Fancy Images. Int J Mol Sci 2021; 22:2657. [PMID: 33800802 PMCID: PMC7961783 DOI: 10.3390/ijms22052657] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment. Afterwards, we provide a detailed review analysis of the main quantitative methods to extract important information and parameters from acquired images using second harmonic generation. Lastly, we discuss advantages, limitations, and future perspectives in label-free multiphoton microscopy.
Collapse
Affiliation(s)
- Giulia Borile
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Deborah Sandrin
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| | - Andrea Filippi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Kurt I. Anderson
- Crick Advanced Light Microscopy Facility (CALM), The Francis Crick Institute, London NW1 1AT, UK;
| | - Filippo Romanato
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| |
Collapse
|
46
|
Hofmann J, Gadjalova I, Mishra R, Ruland J, Keppler SJ. Efficient Tissue Clearing and Multi-Organ Volumetric Imaging Enable Quantitative Visualization of Sparse Immune Cell Populations During Inflammation. Front Immunol 2021; 11:599495. [PMID: 33569052 PMCID: PMC7869862 DOI: 10.3389/fimmu.2020.599495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Spatial information of cells in their tissue microenvironment is necessary to understand the complexity of pathophysiological processes. Volumetric imaging of cleared organs provides this information; however, current protocols are often elaborate, expensive, and organ specific. We developed a simplified, cost-effective, non-hazardous approach for efficient tissue clearing and multi-organ volumetric imaging (EMOVI). EMOVI enabled multiplexed antibody-based immunolabeling, provided adequate tissue transparency, maintained cellular morphology and preserved fluorochromes. Exemplarily, EMOVI allowed the detection and quantification of scarce cell populations during pneumonitis. EMOVI also permitted histo-cytometric analysis of MHC-II expressing cells, revealing distinct populations surrounding or infiltrating glomeruli of nephritic kidneys. Using EMOVI, we found widefield microscopy with real-time computational clearing as a valuable option for rapid image acquisition and detection of rare cellular events in cleared organs. EMOVI has the potential to make tissue clearing and volumetric imaging of immune cells applicable for a broad audience by facilitating flexibility in organ, fluorochrome and microscopy usage.
Collapse
Affiliation(s)
- Julian Hofmann
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| | - Iana Gadjalova
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| | - Ritu Mishra
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| | - Jürgen Ruland
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| | - Selina J Keppler
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| |
Collapse
|
47
|
Zhao J, Lai HM, Qi Y, He D, Sun H. Current Status of Tissue Clearing and the Path Forward in Neuroscience. ACS Chem Neurosci 2021; 12:5-29. [PMID: 33326739 DOI: 10.1021/acschemneuro.0c00563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to the complexity and limited availability of human brain tissues, for decades, pathologists have sought to maximize information gained from individual samples, based on which (patho)physiological processes could be inferred. Recently, new understandings of chemical and physical properties of biological tissues and multiple chemical profiling have given rise to the development of scalable tissue clearing methods allowing superior optical clearing of across-the-scale samples. In the past decade, tissue clearing techniques, molecular labeling methods, advanced laser scanning microscopes, and data visualization and analysis have become commonplace. Combined, they have made 3D visualization of brain tissues with unprecedented resolution and depth widely accessible. To facilitate further advancements and applications, here we provide a critical appraisal of these techniques. We propose a classification system of current tissue clearing and expansion methods that allows users to judge the applicability of individual ones to their questions, followed by a review of the current progress in molecular labeling, optical imaging, and data processing to demonstrate the whole 3D imaging pipeline based on tissue clearing and downstream techniques for visualizing the brain. We also raise the path forward of tissue-clearing-based imaging technology, that is, integrating with state-of-the-art techniques, such as multiplexing protein imaging, in situ signal amplification, RNA detection and sequencing, super-resolution imaging techniques, multiomics studies, and deep learning, for drawing the complete atlas of the human brain and building a 3D pathology platform for central nervous system disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yuwei Qi
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Dian He
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Haitao Sun
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
48
|
Alanentalo T, Hahn M, Willekens SMA, Ahlgren U. Mesoscopic Optical Imaging of the Pancreas-Revisiting Pancreatic Anatomy and Pathophysiology. Front Endocrinol (Lausanne) 2021; 12:633063. [PMID: 33746904 PMCID: PMC7969990 DOI: 10.3389/fendo.2021.633063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022] Open
Abstract
The exocrine-endocrine multipart organization of the pancreas makes it an exceedingly challenging organ to analyze, quantitatively and spatially. Both in rodents and humans, estimates of the pancreatic cellular composition, including beta-cell mass, has been largely relying on the extrapolation of 2D stereological data originating from limited sample volumes. Alternatively, they have been obtained by low resolution non-invasive imaging techniques providing little detail regarding the anatomical organization of the pancreas and its cellular and/or molecular make up. In this mini-review, the state of the art and the future potential of currently existing and emerging high-resolution optical imaging techniques working in the mm-cm range with μm resolution, here referred to as mesoscopic imaging approaches, will be discussed regarding their contribution toward a better understanding of pancreatic anatomy both in normal conditions and in the diabetic setting. In particular, optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) imaging of the pancreas and their associated tissue processing and computational analysis protocols will be discussed in the light of their current capabilities and future potential to obtain more detailed 3D-spatial, quantitative, and molecular information of the pancreas.
Collapse
|
49
|
Campbell-Thompson M, Tang SC. Pancreas Optical Clearing and 3-D Microscopy in Health and Diabetes. Front Endocrinol (Lausanne) 2021; 12:644826. [PMID: 33981285 PMCID: PMC8108133 DOI: 10.3389/fendo.2021.644826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Although first described over a hundred years ago, tissue optical clearing is undergoing renewed interest due to numerous advances in optical clearing methods, microscopy systems, and three-dimensional (3-D) image analysis programs. These advances are advantageous for intact mouse tissues or pieces of human tissues because samples sized several millimeters can be studied. Optical clearing methods are particularly useful for studies of the neuroanatomy of the central and peripheral nervous systems and tissue vasculature or lymphatic system. Using examples from solvent- and aqueous-based optical clearing methods, the mouse and human pancreatic structures and networks will be reviewed in 3-D for neuro-insular complexes, parasympathetic ganglia, and adipocyte infiltration as well as lymphatics in diabetes. Optical clearing with multiplex immunofluorescence microscopy provides new opportunities to examine the role of the nervous and circulatory systems in pancreatic and islet functions by defining their neurovascular anatomy in health and diabetes.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Martha Campbell-Thompson, ; Shiue-Cheng Tang,
| | - Shiue-Cheng Tang
- Department of Medical Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Martha Campbell-Thompson, ; Shiue-Cheng Tang,
| |
Collapse
|
50
|
Bekkouche BMB, Fritz HKM, Rigosi E, O'Carroll DC. Comparison of Transparency and Shrinkage During Clearing of Insect Brains Using Media With Tunable Refractive Index. Front Neuroanat 2020; 14:599282. [PMID: 33328907 PMCID: PMC7714936 DOI: 10.3389/fnana.2020.599282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022] Open
Abstract
Improvement of imaging quality has the potential to visualize previously unseen building blocks of the brain and is therefore one of the great challenges in neuroscience. Rapid development of new tissue clearing techniques in recent years have attempted to solve imaging compromises in thick brain samples, particularly for high resolution optical microscopy, where the clearing medium needs to match the high refractive index of the objective immersion medium. These problems are exacerbated in insect tissue, where numerous (initially air-filled) tracheal tubes branching throughout the brain increase the scattering of light. To date, surprisingly few studies have systematically quantified the benefits of such clearing methods using objective transparency and tissue shrinkage measurements. In this study we compare a traditional and widely used insect clearing medium, methyl salicylate combined with permanent mounting in Permount (“MS/P”) with several more recently applied clearing media that offer tunable refractive index (n): 2,2′-thiodiethanol (TDE), “SeeDB2” (in variants SeeDB2S and SeeDB2G matched to oil and glycerol immersion, n = 1.52 and 1.47, respectively) and Rapiclear (also with n = 1.52 and 1.47). We measured transparency and tissue shrinkage by comparing freshly dissected brains with cleared brains from dipteran flies, with or without addition of vacuum or ethanol pre-treatments (dehydration and rehydration) to evacuate air from the tracheal system. The results show that ethanol pre-treatment is very effective for improving transparency, regardless of the subsequent clearing medium, while vacuum treatment offers little measurable benefit. Ethanol pre-treated SeeDB2G and Rapiclear brains show much less shrinkage than using the traditional MS/P method. Furthermore, at lower refractive index, closer to that of glycerol immersion, these recently developed media offer outstanding transparency compared to TDE and MS/P. Rapiclear protocols were less laborious compared to SeeDB2, but both offer sufficient transparency and refractive index tunability to permit super-resolution imaging of local volumes in whole mount brains from large insects, and even light-sheet microscopy. Although long-term permanency of Rapiclear stored samples remains to be established, our samples still showed good preservation of fluorescence after storage for more than a year at room temperature.
Collapse
Affiliation(s)
| | | | - Elisa Rigosi
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|