1
|
Philips SJ, Danda A, Ansari AZ. Using synthetic genome readers/regulators to interrogate chromatin processes: A brief review. Methods 2024; 225:20-27. [PMID: 38471600 PMCID: PMC11055675 DOI: 10.1016/j.ymeth.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Aberrant gene expression underlies numerous human ailments. Hence, developing small molecules to target and remedy dysfunctional gene regulation has been a long-standing goal at the interface of chemistry and medicine. A major challenge for designing small molecule therapeutics aimed at targeting desired genomic loci is the minimization of widescale disruption of genomic functions. To address this challenge, we rationally design polyamide-based multi-functional molecules, i.e., Synthetic Genome Readers/Regulators (SynGRs), which, by design, target distinct sequences in the genome. Herein, we briefly review how SynGRs access chromatin-bound and chromatin-free genomic sites, then highlight the methods for the study of chromatin processes using SynGRs on positioned nucleosomes in vitro or disease-causing repressive genomic loci in vivo.
Collapse
Affiliation(s)
- Steven J Philips
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adithi Danda
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aseem Z Ansari
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Learte‐Aymamí S, Rodríguez J, Vázquez ME, Mascareñas JL. Assembly of a Ternary Metallopeptide Complex at Specific DNA Sites Mediated by an AT‐Hook Adaptor. Chemistry 2020; 26:8875-8878. [DOI: 10.1002/chem.202001277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Soraya Learte‐Aymamí
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
3
|
Carter EK, Laughlin-Toth S, Dodd T, Wilson WD, Ivanov I. Small molecule binders recognize DNA microstructural variations via an induced fit mechanism. Phys Chem Chem Phys 2019; 21:1841-1851. [PMID: 30629058 PMCID: PMC6497476 DOI: 10.1039/c8cp05537h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Regulation of gene-expression by specific targeting of protein-nucleic acid interactions has been a long-standing goal in medicinal chemistry. Transcription factors are considered "undruggable" because they lack binding sites well suited for binding small-molecules. In order to overcome this obstacle, we are interested in designing small molecules that bind to the corresponding promoter sequences and either prevent or modulate transcription factor association via an allosteric mechanism. To achieve this, we must design small molecules that are both sequence-specific and able to target G/C base pair sites. A thorough understanding of the relationship between binding affinity and the structural aspects of the small molecule-DNA complex would greatly aid in rational design of such compounds. Here we present a comprehensive analysis of sequence-specific DNA association of a synthetic minor groove binder using long timescale molecular dynamics. We show how binding selectivity arises from a combination of structural factors. Our results provide a framework for the rational design and optimization of synthetic small molecules in order to improve site-specific targeting of DNA for therapeutic uses in the design of selective DNA binders targeting transcription regulation.
Collapse
Affiliation(s)
- E. Kathleen Carter
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - Sarah Laughlin-Toth
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - W. David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - Ivaylo Ivanov
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| |
Collapse
|
4
|
Ejlersen M, Christensen NJ, Sørensen KK, Jensen KJ, Wengel J, Lou C. Synergy of Two Highly Specific Biomolecular Recognition Events: Aligning an AT-Hook Peptide in DNA Minor Grooves via Covalent Conjugation to 2'-Amino-LNA. Bioconjug Chem 2018; 29:1025-1029. [PMID: 29505242 DOI: 10.1021/acs.bioconjchem.8b00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two highly specific biomolecular recognition events, nucleic acid duplex hybridization and DNA-peptide recognition in the minor groove, were coalesced in a miniature ensemble for the first time by covalently attaching a natural AT-hook peptide motif to nucleic acid duplexes via a 2'-amino-LNA scaffold. A combination of molecular dynamics simulations and ultraviolet thermal denaturation studies revealed high sequence-specific affinity of the peptide-oligonucleotide conjugates (POCs) when binding to complementary DNA strands, leveraging the bioinformation encrypted in the minor groove of DNA duplexes. The significant cooperative DNA duplex stabilization may pave the way toward further development of POCs with enhanced affinity and selectivity toward target sequences carrying peptide-binding genetic islands.
Collapse
Affiliation(s)
- Maria Ejlersen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| | - Niels Johan Christensen
- Biomolecular Nanoscale Engineering Center, Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Kasper K Sørensen
- Biomolecular Nanoscale Engineering Center, Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Knud J Jensen
- Biomolecular Nanoscale Engineering Center, Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| |
Collapse
|
5
|
Paul A, Kumar A, Nanjunda R, Farahat AA, Boykin DW, Wilson WD. Systematic synthetic and biophysical development of mixed sequence DNA binding agents. Org Biomol Chem 2018; 15:827-835. [PMID: 27995240 DOI: 10.1039/c6ob02390h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now well established that, although only about 5% of the human genome codes for protein, most of the DNA has some function, such as synthesis of specific, functional RNAs and/or control of gene expression. These functional sequences open immense possibilities in both biotechnology and therapeutics for the use of cell-permeable, small molecules that can bind mixed-base pair sequences of DNA for regulation of genomic functions. Unfortunately very few types of modules have been designed to recognize mixed DNA sequences and for progress in targeting specific genes, it is essential to have additional classes of compounds. Compounds that can be rationally designed from established modules and which can bind strongly to mixed base pair DNA sequences are especially attractive. Based on extensive experience in design of minor-groove agents for AT recognition, a small library of compounds with two AT specific binding modules, connected through linkers which can recognize the G·C base pairs, were prepared. The compound-DNA interactions were evaluated with a powerful array of biophysical methods and the results show that some pyridyl-linked compounds bind with the target sequence with sub-nanomolar KD, with very slow dissociation kinetics and 200 times selectivity over the related sequence without a G·C base pair. Interestingly, a set of compounds with AT module connected by different linkers shows cooperative dimer recognition of related sequences. This type of design approach can be expanded to additional modules for recognition of a wide variety of sequences.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA.
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA.
| | - Rupesh Nanjunda
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA. and Janssen Research and Development, 1400 McKean Rd, Spring House, PA 19477, USA
| | - Abdelbasset A Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA. and Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA.
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA.
| |
Collapse
|
6
|
Heiderscheit EA, Eguchi A, Spurgat MC, Ansari AZ. Reprogramming cell fate with artificial transcription factors. FEBS Lett 2018; 592:888-900. [PMID: 29389011 DOI: 10.1002/1873-3468.12993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
Abstract
Transcription factors (TFs) reprogram cell states by exerting control over gene regulatory networks and the epigenetic landscape of a cell. Artificial transcription factors (ATFs) are designer regulatory proteins comprised of modular units that can be customized to overcome challenges faced by natural TFs in establishing and maintaining desired cell states. Decades of research on DNA-binding proteins and synthetic molecules has provided a molecular toolkit for ATF design and the construction of genome-scale libraries of ATFs capable of phenotypic manipulation and reprogramming of cell states. Here, we compare the unique strengths and limitations of different ATF platforms, highlight the advantages of cooperative assembly, and present the potential of ATF libraries in revealing gene regulatory networks that govern cell fate choices.
Collapse
Affiliation(s)
- Evan A Heiderscheit
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Asuka Eguchi
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Mackenzie C Spurgat
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin - Madison, WI, USA.,The Genome Center of Wisconsin, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
7
|
Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proc Natl Acad Sci U S A 2016; 113:E8257-E8266. [PMID: 27930301 DOI: 10.1073/pnas.1611142114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices.
Collapse
|
8
|
Rodríguez J, Mosquera J, Vázquez ME, Mascareñas JL. Nickel-Promoted Recognition of Long DNA Sites by Designed Peptide Derivatives. Chemistry 2016; 22:13474-7. [DOI: 10.1002/chem.201602783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
9
|
Rodríguez J, Mosquera J, García-Fandiño R, Vázquez ME, Mascareñas JL. A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves. Chem Sci 2016; 7:3298-3303. [PMID: 27252825 PMCID: PMC4885664 DOI: 10.1039/c6sc00045b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022] Open
Abstract
We report the rational design of a DNA-binding peptide construct composed of the DNA-contacting regions of two transcription factors (GCN4 and GAGA) linked through an AT-hook DNA anchor. The resulting chimera, which represents a new, non-natural DNA binding motif, binds with high affinity and selectivity to a long composite sequence of 13 base pairs (TCAT-AATT-GAGAG).
Collapse
Affiliation(s)
- Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
15782 Santiago de Compostela
, Spain
.
; Fax: +34 981 595 012
; Tel: +34 981576541-14405
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
15782 Santiago de Compostela
, Spain
.
; Fax: +34 981 595 012
; Tel: +34 981576541-14405
| | - Rebeca García-Fandiño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
15782 Santiago de Compostela
, Spain
.
; Fax: +34 981 595 012
; Tel: +34 981576541-14405
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
15782 Santiago de Compostela
, Spain
.
; Fax: +34 981 595 012
; Tel: +34 981576541-14405
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
15782 Santiago de Compostela
, Spain
.
; Fax: +34 981 595 012
; Tel: +34 981576541-14405
| |
Collapse
|
10
|
Bartolami E, Bouillon C, Dumy P, Ulrich S. Bioactive clusters promoting cell penetration and nucleic acid complexation for drug and gene delivery applications: from designed to self-assembled and responsive systems. Chem Commun (Camb) 2016; 52:4257-73. [DOI: 10.1039/c5cc09715k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
11
|
Rodríguez J, Mosquera J, Couceiro JR, Vázquez ME, Mascareñas JL. The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments. Chem Sci 2015; 6:4767-4771. [PMID: 26290687 PMCID: PMC4538796 DOI: 10.1039/c5sc01415h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022] Open
Abstract
We report the development of chimeric DNA binding peptides comprising a DNA binding fragment of natural transcription factors (the basic region of a bZIP protein or a monomeric zinc finger module) and an AT-Hook peptide motif. The resulting peptide conjugates display high DNA affinity and excellent sequence selectivity. Furthermore, the AT-Hook motif also favors the cell internalization of the conjugates.
Collapse
Affiliation(s)
- Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain . ; Fax: +34 981 595 012 ; Tel: +34 981 576541 ext. 14405
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain . ; Fax: +34 981 595 012 ; Tel: +34 981 576541 ext. 14405
| | - Jose R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain . ; Fax: +34 981 595 012 ; Tel: +34 981 576541 ext. 14405
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain . ; Fax: +34 981 595 012 ; Tel: +34 981 576541 ext. 14405
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain . ; Fax: +34 981 595 012 ; Tel: +34 981 576541 ext. 14405
| |
Collapse
|
12
|
Lesne A, Foray N, Cathala G, Forné T, Wong H, Victor JM. Chromatin fiber allostery and the epigenetic code. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064114. [PMID: 25563208 DOI: 10.1088/0953-8984/27/6/064114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an 'epigenetic code', by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, UPMC Université Paris 06, Sorbonne Universités, F-75005, Paris, France. Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Université de Montpellier, F-34293, Montpellier, France. CNRS GDR 3536, UPMC Université Paris 06, F-75005, Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Mosquera J, Sánchez MI, Valero J, Mendoza JD, Vázquez ME, Mascareñas JL. Sequence-selective DNA binding with cell-permeable oligoguanidinium–peptide conjugates. Chem Commun (Camb) 2015; 51:4811-4. [DOI: 10.1039/c4cc09525a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Conjugation of a short peptide fragment from a bZIP protein to an oligoguanidinium tail results in a DNA-binding miniprotein that selectively interacts with composite sequences containing the peptide-binding site next to an A/T-rich tract.
Collapse
Affiliation(s)
- Jesús Mosquera
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- C/ Jenaro de la Fuente s/n
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Mateo I. Sánchez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- C/ Jenaro de la Fuente s/n
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Julián Valero
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona
- Spain
| | - Javier de Mendoza
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona
- Spain
| | - M. Eugenio Vázquez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- C/ Jenaro de la Fuente s/n
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - José L. Mascareñas
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- C/ Jenaro de la Fuente s/n
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| |
Collapse
|
14
|
Mosquera J, Rodríguez J, Vázquez ME, Mascareñas JL. Selective DNA-binding by designed bisbenzamidine-homeodomain chimeras. Chembiochem 2014; 15:1092-5. [PMID: 24764315 DOI: 10.1002/cbic.201400079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 02/06/2023]
Abstract
We report the construction of conjugates between three variants of the helix 3 region of a Q50K engrailed homeodomain and bisbenzamidine minor-groove DNA binders. The hybrid featuring the sequence of the native protein failed to bind to DNA; however, modifications that increased the α-helical folding propensity of the peptide allowed specific DNA binding by a bipartite (major/minor groove) interaction.
Collapse
Affiliation(s)
- Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente sn, 15782 Santiago de Compostela (Spain)
| | | | | | | |
Collapse
|
15
|
Sánchez MI, Vázquez O, Vázquez ME, Mascareñas JL. Sequence-selective DNA recognition with peptide-bisbenzamidine conjugates. Chemistry 2013; 19:9923-9. [PMID: 23780839 DOI: 10.1002/chem.201300519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 12/15/2022]
Abstract
Transcription factors (TFs) are specialized proteins that play a key role in the regulation of genetic expression. Their mechanism of action involves the interaction with specific DNA sequences, which usually takes place through specialized domains of the protein. However, achieving an efficient binding usually requires the presence of the full protein. This is the case for bZIP and zinc finger TF families, which cannot interact with their target sites when the DNA binding fragments are presented as isolated monomers. Herein it is demonstrated that the DNA binding of these monomeric peptides can be restored when conjugated to aza-bisbenzamidines, which are readily accessible molecules that interact with A/T-rich sites by insertion into their minor groove. Importantly, the fluorogenic properties of the aza-benzamidine unit provide details of the DNA interaction that are eluded in electrophoresis mobility shift assays (EMSA). The hybrids based on the GCN4 bZIP protein preferentially bind to composite sequences containing tandem bisbenzamidine-GCN4 binding sites (TCAT⋅AAATT). Fluorescence reverse titrations show an interesting multiphasic profile consistent with the formation of competitive nonspecific complexes at low DNA/peptide ratios. On the other hand, the conjugate with the DNA binding domain of the zinc finger protein GAGA binds with high affinity (KD≈12 nM) and specificity to a composite AATTT⋅GAGA sequence containing both the bisbenzamidine and the TF consensus binding sites.
Collapse
Affiliation(s)
- Mateo I Sánchez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
16
|
Transcriptional regulation of the purine de novo synthesis gene Prat in Drosophila melanogaster. Gene 2013; 518:280-6. [DOI: 10.1016/j.gene.2013.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/18/2022]
|
17
|
Iancu OD, Oberbeck D, Darakjian P, Kawane S, Erk J, McWeeney S, Hitzemann R. Differential network analysis reveals genetic effects on catalepsy modules. PLoS One 2013; 8:e58951. [PMID: 23555609 PMCID: PMC3605410 DOI: 10.1371/journal.pone.0058951] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/08/2013] [Indexed: 11/19/2022] Open
Abstract
We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS) formed by crossing four inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross (CC). All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lelli KM, Slattery M, Mann RS. Disentangling the many layers of eukaryotic transcriptional regulation. Annu Rev Genet 2012; 46:43-68. [PMID: 22934649 DOI: 10.1146/annurev-genet-110711-155437] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of gene expression in eukaryotes is an extremely complex process. In this review, we break down several critical steps, emphasizing new data and techniques that have expanded current gene regulatory models. We begin at the level of DNA sequence where cis-regulatory modules (CRMs) provide important regulatory information in the form of transcription factor (TF) binding sites. In this respect, CRMs function as instructional platforms for the assembly of gene regulatory complexes. We discuss multiple mechanisms controlling complex assembly, including cooperative DNA binding, combinatorial codes, and CRM architecture. The second section of this review places CRM assembly in the context of nucleosomes and condensed chromatin. We discuss how DNA accessibility and histone modifications contribute to TF function. Lastly, new advances in chromosomal mapping techniques have provided increased understanding of intra- and interchromosomal interactions. We discuss how these topological maps influence gene regulatory models.
Collapse
Affiliation(s)
- Katherine M Lelli
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
19
|
Zampini M, Hayes F. Combinatorial targeting of ribbon-helix-helix artificial transcription factors to chimeric recognition sites. Nucleic Acids Res 2012; 40:6673-82. [PMID: 22492712 PMCID: PMC3413123 DOI: 10.1093/nar/gks314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artificial transcription factors (ATFs) are potent synthetic biology tools for modulating endogenous gene expression and precision genome editing. The ribbon-helix-helix (RHH) superfamily of transcription factors are widespread in bacteria and archaea. The principal DNA binding determinant in this family comprises a two-stranded antiparallel β-sheet (ribbons) in which a pair of eight-residue motifs insert into the major groove. Here, we demonstrate that ribbons of divergent RHH proteins are compact and portable elements that can be grafted into a common α-helical scaffold producing active ATFs. Hybrid proteins cooperatively recognize DNA sites possessing core tetramer boxes whose functional spacing is dictated by interactions between the α-helical backbones. These interactions also promote combinatorial binding of chimeras with different transplanted ribbons, but identical backbones, to synthetic sites bearing cognate boxes for each protein either in vitro or in vivo. The composite assembly of interacting hybrid proteins offers potential advantages associated with combinatorial approaches to DNA recognition compared with ATFs that involve binding of a single protein. Moreover, the new class of RHH ATFs may be utilized to re-engineer transcriptional circuits, or may be enhanced with affinity tags, fluorescent moieties or other elements for targeted genome marking and manipulation in bacteria and archaea.
Collapse
Affiliation(s)
- Massimiliano Zampini
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
20
|
Tietjen JR, Donato LJ, Bhimisaria D, Ansari AZ. Sequence-specificity and energy landscapes of DNA-binding molecules. Methods Enzymol 2011; 497:3-30. [PMID: 21601080 DOI: 10.1016/b978-0-12-385075-1.00001-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A central goal of biology is to understand how transcription factors target and regulate specific genes and networks to control cell fate and function. An equally important goal of synthetic biology, chemical biology, and personalized medicine is to devise molecules that can regulate genes and networks in a programmable manner. To achieve these goals, it is necessary to chart the sequence specificity of natural and engineered DNA-binding molecules. Cognate site identification (CSI) is now achieved via unbiased, high-throughput platforms that interrogate an entire sequence space bound by typical DNA-binding molecules. Analysis of these comprehensive specificity profiles is facilitated through the use of sequence-specificity landscapes (SSLs). SSLs reveal new modes of sequence cognition and overcome the limitations of current approaches that yield amalgamated "consensus" motifs. The landscapes also reveal the impact of nonconserved flanking sequences on binding to cognate sites. SSLs also serve as comprehensive binding energy landscapes that provide insights into the energetic thresholds at which natural and engineered molecules function within cells. Furthermore, applying the CSI binding data to genomic sequence (genomescapes) provides a powerful tool for identification of potential in vivo binding sites of a given DNA ligand, and can provide insight into differential regulation of gene networks. These tools can be directly applied to the design and development of synthetic therapeutic molecules and to expand our knowledge of the basic principles of molecular recognition.
Collapse
Affiliation(s)
- Joshua R Tietjen
- Department of Biochemistry, The Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
21
|
Rodríguez-Martínez JA, Peterson-Kaufman KJ, Ansari AZ. Small-molecule regulators that mimic transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:768-74. [PMID: 20804876 DOI: 10.1016/j.bbagrm.2010.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are responsible for decoding and expressing the information stored in the genome, which dictates cellular function. Creating artificial transcription factors (ATFs) that mimic endogenous TFs is a major goal at the interface of biology, chemistry, and molecular medicine. Such molecular tools will be essential for deciphering and manipulating transcriptional networks that lead to particular cellular states. In this minireview, the framework for the design of functional ATFs is presented and current challenges in the successful implementation of ATFs are discussed.
Collapse
|
22
|
Survey of the year 2008: applications of isothermal titration calorimetry. J Mol Recognit 2010; 23:395-413. [DOI: 10.1002/jmr.1025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Verzele D, Carrette LL, Madder A. Peptide scalpels for site-specific dissection of the DNA-protein interface. DRUG DISCOVERY TODAY. TECHNOLOGIES 2010; 7:e95-e146. [PMID: 24103721 DOI: 10.1016/j.ddtec.2010.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|