1
|
Qian YX, Zhou FF, Chen Q, Dong F, Xu HY, Sun YL, Wang JT, Han T. Arginine alleviates LPS-induced leukocytes inflammation and apoptosis via adjusted NODs signaling. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109985. [PMID: 39461398 DOI: 10.1016/j.fsi.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Arginine plays a key role in regulating the immune function of fish. To evaluate the effect of arginine on the immune response of largemouth bass (Micropterus salmoides), the effects of arginine on cell viability, NADPH oxidase activity, respiratory burst activity, and NO production of leukocytes were analyzed both in vitro and in vivo. In this study, we found that arginine could promote the respiratory burst activity of leucocytes both in vivo and in vitro. By incubating leukocytes with the combination of LPS and arginine, we found that arginine supplementation inhibited the expression of inflammatory genes (tumor necrosis factor-alpha, tnfα; interleukin(il) 8 and il10) and apoptotic genes (caspase 3, caspase 8, and caspase 9) induced by LPS, as well as promoted the arginine metabolism. Arginine supplementation significantly induced (cd4-like) cd4 gene expression after LPS challenge. Further studies showed that LPS could significantly increase nucleotide-binding oligomerization domain containing 1 (nod1) gene expression, but decreased the nod2 gene. The arginine supplementation increased nuclear factor kappa-B (NF-κB) protein level. In conclusion, arginine can alleviate LPS-induced inflammatory response and apoptosis as well as induce cd4 gene expression against LPS challenge via adjusting the expression of NODs signaling.
Collapse
Affiliation(s)
- Yuan-Xin Qian
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Feng-Feng Zhou
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiang Chen
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fen Dong
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Han-Ying Xu
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yu-Long Sun
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ji-Teng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
2
|
Cheng JX, Liu PF, Yang Y, Liu YY, Xia YQ. Functional role of TrIL-1β in Takifugu rubripes defense against Cryptocaryon irritans infection. Int J Biol Macromol 2024; 269:132167. [PMID: 38729479 DOI: 10.1016/j.ijbiomac.2024.132167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The Japanese puffer, Takifugu rubripes, is a commercially important fish species in China that is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. We previously found that interleukin-1β (IL-1β), an important cytokine with a potential role in resistance against pathogens, was one of the most significantly differentially up-regulated proteins in the gills and spleen of T. rubripes infected by the protozoan parasite Cryptocaryon irritans. In this study, we assessed the potential function of T. rubripes IL-1β (TrIL-1β) in fish infected with C. irritans. Phylogenetic analysis indicated that the TrIL-1β protein sequence was most closely related to that of Atlantic salmon (Salmo salar) (67.2 %). The incubation experiments revealed that TrIL-1β may reduce trophont activity by destroying membranes. Immunofluorescence experiments showed that recombinant TrIL-1β promoted the expression of endogenous IL-1β, which penetrated and disrupted the cell membranes of trophonts. Transmission electron microscopy showed that the IL-1β group had less tissue damage compared with control groups of fish. IL-1β-small interfering RNA and IL-1β overexpression experiments were performed in head kidney primary cells, and challenge experiments were performed in vitro. Quantitative RT-PCR results showed that TrIL-1β regulated and activated MyD88/NF-κB and MyD88/MAPK/p38 signaling pathways during C. irritans infection. TrIL-1β also promoted the differential expression of IgM, showing that it was involved in humoral immunity of T. rubripes. The cumulative mortality experiment show that TrIL-1β could protect fish against C. irritans infection. These results enrich current knowledge about the molecular structure of TrIL-1β. They also suggested that recombinant TrIL-1β could be used as an adjuvant in a subunit vaccine against C. irritans infection, which is of profound importance for the prevention and control of parasitic diseases in T. rubripes.
Collapse
Affiliation(s)
- Jian-Xin Cheng
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; Xiangfu Laboratory, Jiashan 314100, China
| | - Peng-Fei Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China.
| | - Yi Yang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China
| | - Yan-Yun Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China
| | - Yu-Qing Xia
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
3
|
Dou M, Zhang Y, Shao Q, Zhu J, Li W, Wang X, Zhang C, Li Y. L-arginine reduces injury from heat stress to bovine intestinal epithelial cells by improving antioxidant and inflammatory response. Anim Biotechnol 2023; 34:1005-1013. [PMID: 34870558 DOI: 10.1080/10495398.2021.2009491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heat stress (HS) has a negative impact on the health and performance of dairy cows, resulting in economic losses. Damage to the intestinal epithelium is the main cause of the adverse effects of heat stress on bovine health. This study investigated the repair capability of L-arginine (L-Arg) in reducing the adverse effects of HS on bovine intestinal epithelial cells (BIECs). BIECs were treated as follows: (1) control cells were cultured at 37 °C continuously and received no L-Arg; (2) cells in HS group were grown at 42 °C for 6 h followed by 12 h at 37 °C; and (3) the L-Arg group was cultured at 42 °C for 6 h, then treated with L-Arg at 37 °C for 12 h. HS disrupted redox homeostasis and reduced viability in BIECs, while treatment with L-Arg (6 mmol/L) for 12 h markedly reduced the negative effects of HS. L-Arg protected cells by preventing HS-induced changes in mitochondrial membrane-potential, inflammation, apoptosis-related gene expression and regulation of antioxidant enzymes. The above results indicated that L-Arg reduced the level of damage from HS in BIECs by lowering oxidant stress and inflammation, suggesting that L-Arg could be an effective dietary addition to protect cows from adverse intestinal effects caused by HS.
Collapse
Affiliation(s)
- Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yao Zhang
- Institute of Agroecology, Fujian Academy of Agriculture Science, Fuzhou, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Jiali Zhu
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Wang Li
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Yi C, Liang H, Huang D, Yu H, Xue C, Gu J, Chen X, Wang Y, Ren M, Zhang L. Phenylalanine Plays Important Roles in Regulating the Capacity of Intestinal Immunity, Antioxidants and Apoptosis in Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2023; 13:2980. [PMID: 37760380 PMCID: PMC10525992 DOI: 10.3390/ani13182980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This experiment was planned to explore the role of dietary phenylalanine levels in intestinal immunity, antioxidant activity and apoptosis in largemouth bass (Micropterus salmoides). Six iso-nitrogen and iso-energy diets with phenylalanine levels of 1.45% (DPHE1), 1.69% (DPHE2), 1.98% (DPHE3), 2.21% (DPHE4), 2.48% (DPHE5) and 2.76% (DPHE6) were designed. Juvenile largemouth bass were fed the experimental diet for 8 weeks. In this study, the DPHE5 group increased the expression of intestinal antioxidant genes in largemouth bass (p < 0.05), and the increase of antioxidant enzyme activities and content of related substances was most concentrated in the DPHE3 and DPHE4 groups (p < 0.05). The results of plasma biochemistry were similar to that of enzyme activity. The expression of genes related to the TOR signalling pathway mainly increased significantly in the DPHE5 group (p < 0.05). Similarly, the expression of inflammatory factors, as well as apoptotic factors, also showed significant increases in the DPHE5 group (p < 0.05). In conclusion, unbalanced phenylalanine in the diet could lead to a decrease in intestinal immune and antioxidant capacity and also cause a decline in the aggravation of intestinal cell apoptosis.
Collapse
Affiliation(s)
- Changguo Yi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongyu Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chunyu Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
5
|
Yang Q, Yang XD, Liu MQ, Zeng C, Zhao HK, Xiang KW, Hou ZS, Wen HS, Li JF. Transcriptome analysis of liver, gill and intestine in rainbow trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108643. [PMID: 36871630 DOI: 10.1016/j.fsi.2023.108643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss), an important economic cold-water fish worldwide, is severely threatened by viruses and bacteria in the farming industry. The vibriosis outbreak has caused a significant setback to aquaculture. Vibrio anguillarum, one of the common disease-causing vibriosis associated with severe lethal vibriosis in aquaculture, infects fish mainly by adsorption and invasion of the skin, gills, lateral line and intestine. To investigate the defense mechanism of rainbow trout against the pathogen after infection with Vibrio anguillarum, trout were intraperitoneally injected by Vibrio anguillarum and divided into symptomatic group (SG) and asymptomatic group (AG) according to the phenotype. RNA-Seq technology was used to evaluate the transcriptional signatures of liver, gill and intestine of trout injected with Vibrio anguillarum (SG and AG) and corresponding control groups (CG(A) and CG(B)). The GO and KEGG enrichment analyses were used to investigate the mechanisms underlying the differences in susceptibility to Vibrio anguillarum. Results showed that in SG, immunomodulatory genes in the cytokine network were activated and tissue function-related genes were down-regulated, while apoptosis mechanisms were activated. However, AG responded to Vibrio anguillarum infection by activating complement related immune defenses, while metabolism and function related genes were up-regulated. Conclusively, a rapid and effective immune and inflammatory response can successfully defend Vibrio anguillarum infection. However, a sustained inflammatory response can lead to tissue and organ damage and cause death. Our results may provide a theoretical basis for breeding rainbow trout for disease resistance.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Kai-Wen Xiang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses. Food Chem 2023; 404:134592. [DOI: 10.1016/j.foodchem.2022.134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
7
|
Molecular Mechanisms of Hyperoxia-Induced Neonatal Intestinal Injury. Int J Mol Sci 2023; 24:ijms24054366. [PMID: 36901800 PMCID: PMC10002283 DOI: 10.3390/ijms24054366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Oxygen therapy is important for newborns. However, hyperoxia can cause intestinal inflammation and injury. Hyperoxia-induced oxidative stress is mediated by multiple molecular factors and leads to intestinal damage. Histological changes include ileal mucosal thickness, intestinal barrier damage, and fewer Paneth cells, goblet cells, and villi, effects which decrease the protection from pathogens and increase the risk of necrotizing enterocolitis (NEC). It also causes vascular changes with microbiota influence. Hyperoxia-induced intestinal injuries are influenced by several molecular factors, including excessive nitric oxide, the nuclear factor-κB (NF-κB) pathway, reactive oxygen species, toll-like receptor-4, CXC motif ligand-1, and interleukin-6. Nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and some antioxidant cytokines or molecules including interleukin-17D, n-acetylcysteine, arginyl-glutamine, deoxyribonucleic acid, cathelicidin, and health microbiota play a role in preventing cell apoptosis and tissue inflammation from oxidative stress. NF-κB and Nrf2 pathways are essential to maintain the balance of oxidative stress and antioxidants and prevent cell apoptosis and tissue inflammation. Intestinal inflammation can lead to intestinal damage and death of the intestinal tissue, such as in NEC. This review focuses on histologic changes and molecular pathways of hyperoxia-induced intestinal injuries to establish a framework for potential interventions.
Collapse
|
8
|
Yuan B, Zhao LM, Zhuang ZX, Wang XR, Fu Q, Huang HB, Huang LX, Qin YX, Yan QP. Transcriptomic and metabolomic insights into the role of the flgK gene in the pathogenicity of Pseudomonas plecoglossicida to orange-spotted grouper ( Epinephelus coioides). Zool Res 2022; 43:952-965. [PMID: 36208122 PMCID: PMC9700492 DOI: 10.24272/j.issn.2095-8137.2022.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 07/24/2023] Open
Abstract
Pseudomonas plecoglossicida is the pathogen responsible for visceral white spot disease in large yellow croaker (Larimichthys crocea) and orange-spotted grouper (Epinephelus coioides). Previously, RNA sequencing showed that P. plecoglossicida flgK gene expression was significantly up-regulated in orange-spotted grouper spleens during infection. To explore the role of flgK in P. plecoglossicida pathogenicity, RNA interference (RNAi) was performed to silence the P. plecoglossicida flgK gene, and the mutant (flgK-RNAi strain) with the best silencing efficiency (89.40%) was chosen for further study. Results showed that flgK gene silencing significantly attenuated P. plecoglossicida motility, adhesion, and biofilm formation. Compared to those fish infected with the wild-type strain of P. plecoglossicida, orange-spotted grouper infected with the flgK-RNAi strain showed a 55% increase in the survival rate and a one-day delay in time of first death, with fewer pathogens in the spleen and fewer white spots on the spleen surface. RNAi of flgK significantly affected the transcriptome and metabolome of the spleen in infected orange-spotted grouper. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the C-type lectin receptor signaling pathway was the most significantly changed immune-related pathway and the mitogen-activated protein kinase (MAPK) signaling pathway was related to multiple immune-related pathways. Furthermore, arginine biosynthesis and glycerophospholipid metabolism were the most significantly changed metabolism-related pathways. These findings suggest that flgK is a virulence gene of P. plecoglossicida. Furthermore, flgK appears to be involved in the regulation of motility, adhesion, and biofilm formation in P. plecoglossicida, as well as in the regulation of inflammatory and immune responses of orange-spotted grouper to P. plecoglossicida infection.
Collapse
Affiliation(s)
- Biao Yuan
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Min Zhao
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Zhi-Xia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Xiao-Ru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Hua-Bin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Li-Xing Huang
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ying-Xue Qin
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Qing-Pi Yan
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China. E-mail:
| |
Collapse
|
9
|
Holen E, Espe M, Larsen AK, Olsvik PA. Dietary chlorpyrifos-methyl exposure impair transcription of immune-, detoxification- and redox signaling genes in leukocytes isolated from cod (Gadus morhua). FISH & SHELLFISH IMMUNOLOGY 2022; 127:549-560. [PMID: 35803506 DOI: 10.1016/j.fsi.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Inclusion of new environmental toxicants increase with the amount of plant ingredients substituting marine proteins and oils in feed for farmed Atlantic salmon (Salma salar). Agricultural pesticides like chlorpyrifos-methyl, present in commercial salmon feeds, may affect salmon immune and detoxification responses. Atlantic cod (Gadus morhua), surrounding the net pens, grazing on feces and uneaten pellets may be affected accordingly. The aim of this study was to analyze transcription responses in Atlantic cod head kidney tissue and isolated leukocytes following dietary chlorpyrifos-methyl inclusions and possible interactions with proinflammatory signals. Head kidney tissues and leukocytes were isolated from cod fed diets contaminated with chlorpyrifos-methyl (0.5 mg/kg, 2.4 mg/kg, 23.2 mg/kg) for 30 days. The isolated leukocytes were further challenged with bacteria (lipopolysaccharide (LPS), virus (polyinosinic acid:polycytidylic acid (PIC) mimic and l-arginine, an immuno-modulating amino acid, in vitro. The LPS-induced transcription of the interleukin genes il-1β, il-6, il-8 increased in leukocytes isolated from cod fed chlorpyrifos-methyl 23.2 mg/kg, compared to cod fed the control diet, indicating increased inflammation. Transcriptional levels of carnitine palmitoyl transferase (cpt1a), aryl hydrogen receptor (ahr) and catalase (cat) were all reduced by dietary inclusions of chlorpyrifos-methyl in the leukocytes. The findings suggests that dietary chlorpyrifos-methyl exposure impair inflammation, detoxification and redox signaling in cod leukocytes.
Collapse
Affiliation(s)
| | - Marit Espe
- Institute of Marine Research (IMR), Bergen, Norway
| | - Anett K Larsen
- Department of Medical Biology, UiT-The Artic University of Norway, Tromsø, Norway
| | - Pål A Olsvik
- Institute of Marine Research (IMR), Bergen, Norway; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
10
|
Yu G, Ou W, Ai Q, Zhang W, Mai K, Zhang Y. In vitro study of sodium butyrate on soyasaponin challenged intestinal epithelial cells of turbot (Scophthalmus maximus L.) refer to inflammation, apoptosis and antioxidant enzymes. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100031. [PMID: 36420502 PMCID: PMC9680047 DOI: 10.1016/j.fsirep.2021.100031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/23/2021] [Indexed: 01/14/2023] Open
Abstract
The study is aimed to investigate the protective effect and potential mechanisms of sodium butyrate (NaBT) on soyasaponins (SA) induced intestinal epithelial cells (IECs) injury in vitro. The primary IECs of turbot were developed and treated with 0.4, 1 and 4 mM NaBT in the presence of 0.4 mg/mL SA for 6 h to explore the protective effects of NaBT. The results showed that the addition of NaBT significantly down-regulated gene expression of inflammatory cytokine TNF-α, IL-1β and IL-8, pro-apoptosis relevant gene BAX, caspase-3, caspase-7 and caspase-9 induced by SA, while up-regulated anti-apoptosis gene Bcl-2. SA stimulation did not induce reactive oxygen species production, but elevated gene expression of antioxidant enzyme heme oxygenase-1 and superoxide dismutase. Moreover, the gene expression of those antioxidant enzyme was further up-regulated in NaBT groups. Furthermore, NaBT supplementation decreased the acid phosphatase and alkaline phosphatase activities and suppressed phosphorylation of p38 and c-Jun N-terminal kinase (JNK). In conclusion, NaBT could mitigate SA-induced inflammation and apoptosis and elevate gene expression of antioxidant enzymes on IECs of turbot and p38 and JNK signaling pathway participated in those processes.
Collapse
|
11
|
Wang Q, Xu Z, Ai Q. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. ACTA ACUST UNITED AC 2021; 7:716-727. [PMID: 34466676 PMCID: PMC8379419 DOI: 10.1016/j.aninu.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Fish have limited ability in endogenous biosynthesis of arginine. Arginine is an indispensable amino acid for fish, and the arginine requirement varies with fish species and fish size. Recent studies on fish have demonstrated that arginine influences nutrient metabolism, stimulates insulin release, is involved in nonspecific immune responses and antioxidant responses, and elevates disease resistance. Specifically, arginine can regulate energy homeostasis via modulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway, and also regulate protein synthesis via activating the target of rapamycin (TOR) signaling pathway. The present article reviews pertinent knowledge of arginine in fish, including dietary quantitative requirements, endogenous anabolism and catabolism, regulation of the endocrine and metabolic systems, and immune-regulatory functions under pathogenic challenge. Our findings showed that further data about the distribution of arginine after intake into specific cells, its sub-cellular sensor to initiate downstream signaling pathways, and its effects on fish mucosal immunity, especially the adaptive immune response against pathogenic infection in different species, are urgently needed.
Collapse
Affiliation(s)
- Qingchao Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Fish TNF and TNF receptors. SCIENCE CHINA-LIFE SCIENCES 2020; 64:196-220. [DOI: 10.1007/s11427-020-1712-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
|
13
|
Abstract
PURPOSE OF REVIEW Because arginine is the substrate for nitric oxide synthesis, which is pivotal to vascular homeostasis and linked to the insulin response, it has long been posited that supplemental arginine could benefit cardiometabolic health. RECENT FINDINGS Recent data have supported the view that supplemental arginine could alleviate the initiation and development of endothelial dysfunction and also shown that it may reduce the risk of type 2 diabetes. One important finding is that these effects may indeed vary as a function of the amount of arginine, its form and notably the metabolic status of the population. Some studies have shown that low doses of slow-release arginine are better used for nitric oxide synthesis and beneficial in individuals with abnormal arginine metabolism/bioavailability. Pathophysiological data in rodents have emphasized the importance of arginase activation during the development of cardiometabolic risk, which lends credence to a potential benefit for arginine supplements. Likewise, epidemiological evidence suggests that alterations to arginine bioavailability are important regarding the cardiometabolic risk. However, other metabolic mechanisms linked to the multiple pathways of arginine metabolism may also play a role. SUMMARY Further studies are needed to confirm and analyze how and when supplemental arginine is beneficial to cardiometabolic health.
Collapse
Affiliation(s)
- François Mariotti
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| |
Collapse
|
14
|
Chen X, Li H, Wang Z, Zhou Q, Chen S, Yang B, Yin D, He H, He M. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHⅡ/eNOS/NO pathway. Eur J Pharmacol 2019; 868:172885. [PMID: 31870832 DOI: 10.1016/j.ejphar.2019.172885] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
The aberrant accumulation of iron causes vascular endothelium damage, which is thought to be associated with excess reactive oxygen species (ROS) generation. Quercetin (Que), as a flavonoid, has a certain ability to scavenge free radicals. Therefore, we aimed to explore the protective mechanism of Que on iron overload induced HUVECs injury focused on ROS/ADMA/DDAHⅡ/eNOS/NO pathway. In this study, HUVECs was treated with 50 μM iron dextran and 20 μM Que for 48 h. We found that Que attenuated the damages induced by iron, as evidenced by decreased ROS generation, increased DDAHⅡexpression and activity, reduced ADMA level, increased NO content and p-eNOS/eNOS ratio, and eventually caused a decrease in apoptosis. After addition of pAD/DDAHⅡ-shRNA, the effects of Que mentioned above were reversed. Meanwhile, iron overload induced mitochondrial oxidative stress, reduced mitochondrial membrane potential and increased mitochondrial permeability transition pores (mPTP) opening, which were also partially alleviated by Que. In addition, L-arginine (L-Arg), a ADMA competition substrate, ciclosporin A (CsA), a mPTP blocking agent, and edaravone (Eda), a free radical scavenger, were used as positive control reagents. The effects of Que were similar to that of L-Arg, CsA and Eda treatment. These results illustrated that Que could attenuate iron overload induced HUVECs mitochondrial dysfunction via ROS/ADMA/DDAHⅡ/eNOS/NO pathway.
Collapse
Affiliation(s)
- Xuepiao Chen
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Zhiqing Wang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Qing Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Shuping Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Bin Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China.
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| |
Collapse
|
15
|
Li S, Guo Q, Li S, Zheng H, Chi S, Xu Z, Wang Q. Glutamine protects against LPS-induced inflammation via adjusted NODs signaling and enhanced immunoglobulins secretion in rainbow trout leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:148-156. [PMID: 31103388 DOI: 10.1016/j.dci.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
To evaluate effects of glutamine (GLN) on fish immune responses, leukocytes were isolated from head kidney of rainbow trout and cultured in GLN-free DMEM media supplemented with different combinations of lipopolysaccharide (LPS) and GLN. LPS significantly increased expression of pro-inflammatory cytokines, while GLN supplementation alleviated LPS-induced inflammation. Leukocytes in +GLN + LPS group showed more active GLN anabolism and catabolism, which signals could be sensed by O-GlcNAcylation, and then affected LPS binding to cell surface (LBP) and adjusted NODs signaling. The mRNA expression of immunoglobulins (Igs) and their receptor (pIgR) was also significantly increased after GLN supplementation. Further analysis showed that GLN increased the percentage of IgM+ B cells and IgT+ B cells, accompanied with the increased IgM and IgT secretion in culture media, which further increased complement C3 expression to perform effector functions. All these results illustrated the regulating mechanism of GLN against LPS-induced inflammation both via adjusted NODs signaling and increased Igs+ B cells to secrete Igs.
Collapse
Affiliation(s)
- Shan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Haid Central Research Institute, Haid Group, Guangzhou, Guangdong, 511400, China
| | - Qian Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuaitong Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Haiou Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuyan Chi
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
16
|
Mu K, Yu S, Kitts DD. The Role of Nitric Oxide in Regulating Intestinal Redox Status and Intestinal Epithelial Cell Functionality. Int J Mol Sci 2019; 20:E1755. [PMID: 30970667 PMCID: PMC6479862 DOI: 10.3390/ijms20071755] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Important functions of intestinal epithelial cells (IECs) include enabling nutrient absorption to occur passively and acting as a defense barrier against potential xenobiotic components and pathogens. A compromise to IEC function can result in the translocation of bacteria, toxins, and allergens that lead to the onset of disease. Thus, the maintenance and optimal function of IECs are critically important to ensure health. Endogenous biosynthesis of nitric oxide (NO) regulates IEC functionality both directly, through free radical activity, and indirectly through cell signaling mechanisms that impact tight junction protein expression. In this paper, we review the current knowledge on factors that regulate inducible nitric oxide synthase (iNOS) and the subsequent roles that NO has on maintaining IECs' intestinal epithelial barrier structure, functions, and associated mechanisms of action. We also summarize important findings on the effects of bioactive dietary food components that interact with NO production and affect downstream intestinal epithelium integrity.
Collapse
Affiliation(s)
- Kaiwen Mu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Shengwu Yu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - David D Kitts
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|