1
|
Zhai W, Gao J, Qin W, Xu Y. Non-coding RNAs Function in Periodontal Ligament Stem Cells. Stem Cell Rev Rep 2024; 20:1521-1531. [PMID: 38848014 DOI: 10.1007/s12015-024-10731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 08/13/2024]
Abstract
Non-coding RNA has many types which has rich functions and plays an important role in the study of basic molecular mechanisms. Many non-coding RNA have important implications for pluripotent stem cells and embryonic stem cells. It has been found to affect the self-renewal and osteogenesis of many types of stem cells. They have also been found to regulate stem cell proliferation and induct bone differentiation. Periodontal ligament stem cells are essential for the regeneration of periodontal tissue. In recent years, in the field of stomatology, studies have found that many non-coding RNA also have significant regulatory effects on the proliferation and differentiation of periodontal stem cells and may become potential therapeutic targets for many common periodontal diseases such as periodontitis, bone/tooth/soft tissue loss and orthodontic treatment. Therefore, we summarized the current research status of non-coding RNA in the field of molecular mechanism of periodontal ligament stem cells and prospected its future progress.
Collapse
Affiliation(s)
- Wei Zhai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Jie Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Wen Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Yuerong Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Giannakakis A, Tsifintaris M, Gouzouasis V, Ow GS, Aau MY, Papp C, Ivshina AV, Kuznetsov VA. KDM7A-DT induces genotoxic stress, tumorigenesis, and progression of p53 missense mutation-associated invasive breast cancer. Front Oncol 2024; 14:1227151. [PMID: 38756663 PMCID: PMC11097164 DOI: 10.3389/fonc.2024.1227151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Stress-induced promoter-associated and antisense lncRNAs (si-paancRNAs) originate from a reservoir of oxidative stress (OS)-specific promoters via RNAPII pausing-mediated divergent antisense transcription. Several studies have shown that the KDM7A divergent transcript gene (KDM7A-DT), which encodes a si-paancRNA, is overexpressed in some cancer types. However, the mechanisms of this overexpression and its corresponding roles in oncogenesis and cancer progression are poorly understood. We found that KDM7A-DT expression is correlated with highly aggressive cancer types and specific inherently determined subtypes (such as ductal invasive breast carcinoma (BRCA) basal subtype). Its regulation is determined by missense TP53 mutations in a subtype-specific context. KDM7A-DT transcribes several intermediate-sized ncRNAs and a full-length transcript, exhibiting distinct expression and localization patterns. Overexpression of KDM7A-DT upregulates TP53 protein expression and H2AX phosphorylation in nonmalignant fibroblasts, while in semi-transformed fibroblasts, OS superinduces KDM7A-DT expression in a TP53-dependent manner. KDM7A-DT knockdown and gene expression profiling in TP53-missense mutated luminal A BRCA variant, where it is abundantly expressed, indicate its significant role in cancer pathways. Endogenous over-expression of KDM7A-DT inhibits DNA damage response/repair (DDR/R) via the TP53BP1-mediated pathway, reducing apoptosis and promoting G2/M checkpoint arrest. Higher KDM7A-DT expression in BRCA is associated with KDM7A-DT locus gain/amplification, higher histologic grade, aneuploidy, hypoxia, immune modulation scores, and activation of the c-myc pathway. Higher KDM7A-DT expression is associated with relatively poor survival outcomes in patients with luminal A or Basal subtypes. In contrast, it is associated with favorable outcomes in patients with HER2+ER- or luminal B subtypes. KDM7A-DT levels are coregulated with critical transcripts and proteins aberrantly expressed in BRCA, including those involved in DNA repair via non-homologous end joining and epithelial-to-mesenchymal transition pathway. In summary, KDM7A-DT and its si-lncRNA exhibit several intrinsic biological and clinical characteristics that suggest important roles in invasive BRCA and its subtypes. KDM7A-DT-defined mRNA and protein subnetworks offer resources for identifying clinically relevant RNA-based signatures and prospective targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Gouzouasis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mei Yee Aau
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Csaba Papp
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Anna V. Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vladimir A. Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
3
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Zhong X, Wang H. LncRNA JHDM1D-AS1 promotes osteogenic differentiation of periodontal ligament cells by targeting miR-532-5p to activate IGF1R signaling. J Periodontal Res 2024; 59:220-230. [PMID: 37950511 DOI: 10.1111/jre.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The aim of this study was to explore the mechanism underlying periodontal ligament cells (PDLCs) osteogenic differentiation. BACKGROUND Periodontitis causes damage to tooth-supporting apparatus and eventually leads to tooth loss. PDLCs hold great promise in periodontal regeneration due to their osteogenic features. METHODS The expression of osteogenic markers, lncRNA JHDM1D-AS1, miR-532-5p and IGF1R was examined. For osteogenic differentiation, primary human PDLCs (hPDLCs) were cultured in an osteogenic medium, and it was assessed by ALP activity and Alizarin Red staining. The interaction between JHDM1D-AS1, miR-532-5p and IGF1R was analyzed via dual luciferase, RIP and RNA pull-down assays. RESULTS JHDM1D-AS1 was up-regulated during osteogenic differentiation and its silencing inhibited hPDLC osteogenic differentiation. JHDM1D-AS1 worked as a miR-532-5p sponge in hPDLCs. miR-532-5p directly targeted IGF1R to suppress its expression, and miR-532-5p knockdown facilitated osteogenic differentiation of hPDLCs. Overexpression of IGF1R promoted osteogenic differentiation of hPDLCs via activating Notch/HES1 signaling in hPDLCs. CONCLUSION JHDM1D-AS1 promotes osteogenic differentiation of hPDLCs via sponging miR-532-5p to facilitate IGF1R expression and activate Notch/HES1 signaling.
Collapse
Affiliation(s)
- Xiaohuan Zhong
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Huixin Wang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
5
|
Zhang L, Sheng M, Cao H, Zhang L, Shao W. Decoding the role of long non-coding RNAs in periodontitis: A comprehensive review. Biomed Pharmacother 2023; 166:115357. [PMID: 37619483 DOI: 10.1016/j.biopha.2023.115357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the pathological loss of alveolar bone and the adjacent periodontal ligament. It is considered a disease that imposes a substantial health burden, with an incidence rate of 20-50%. The etiology of periodontitis is multifactorial, with genetic factors accounting for approximately half of severe cases. Studies have revealed that long non-coding RNAs (lncRNAs) play a pivotal role in periodontitis pathogenesis. Accumulating evidence suggests that lncRNAs have distinct regulatory mechanisms, enabling them to control numerous vital processes in periodontal cells, including osteogenic differentiation, inflammation, proliferation, apoptosis, and autophagy. In this review, we summarize the diverse roles of lncRNAs in the pathogenesis of periodontitis, shedding light on the underlying mechanisms of disease development. By highlighting the potential of lncRNAs as biomarkers and therapeutic targets, this review offers a new perspective on the diagnosis and treatment of periodontitis, paving the way for further investigation into the field of lncRNA-based therapeutics.
Collapse
Affiliation(s)
- Lizhi Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China; First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huake Cao
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Wei Shao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China; Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
6
|
Malmström E, Khan HN, Veer CV‘, Stunnenberg M, Meijer MT, Matsumoto H, Otto NA, Geijtenbeek TBH, de Vos AF, van der Poll T, Scicluna BP. The Long Non-Coding Antisense RNA JHDM1D-AS1 Regulates Inflammatory Responses in Human Monocytes. Front Cell Infect Microbiol 2022; 12:934313. [PMID: 35903199 PMCID: PMC9315269 DOI: 10.3389/fcimb.2022.934313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Monocytes are key players in innate immunity, with their ability to regulate inflammatory responses and combat invading pathogens. There is a growing body of evidence indicating that long non-coding RNA (lncRNA) participate in various cellular biological processes, including the innate immune response. The immunoregulatory properties of numerous lncRNAs discovered in monocytes remain largely unexplored. Here, by RNA sequencing, we identified a lncRNA JHDM1D-AS1, which was upregulated in blood monocytes obtained from patients with sepsis relative to healthy controls. JHDM1D-AS1 expression was induced in primary human monocytes exposed to Toll-like receptor ligands, such as lipopolysaccharide (LPS), or bacteria. The inducibility of JHDM1D-AS1 expression in monocytes depended, at least in part, on nuclear factor-κB activation. JHDM1D-AS1 knockdown experiments in human monocyte-derived macrophages revealed significantly enhanced expression of inflammatory mediators, before and after exposure to LPS, relative to control cells. Specifically, genes involved in inflammatory responses were upregulated (e.g., CXCL2, CXCL8, IL1RN, TREM1, TNF, and IL6), whereas genes involved in anti-inflammatory pathways were downregulated (e.g., SOCS1 and IL10RA). JHDM1D-AS1 overexpression in a pro-monocytic cell line revealed diminished pro-inflammatory responses subsequent to LPS challenge. Collectively, these findings identify JHDM1D-AS1 as a potential anti-inflammatory mediator induced in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Erik Malmström
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Emergency Medicine, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Hina N. Khan
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Clinical Epidemiology and Data Science, University of Amsterdam, Amsterdam, Netherlands
| | - Cornelis van ‘t Veer
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Melissa Stunnenberg
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Experimental Immunology, University of Amsterdam, Amsterdam, Netherlands
| | - Mariska T. Meijer
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Hisatake Matsumoto
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Natasja A. Otto
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Experimental Immunology, University of Amsterdam, Amsterdam, Netherlands
| | - Alex F. de Vos
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Tom van der Poll
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Division of Infectious Diseases, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Brendon P. Scicluna
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Clinical Epidemiology and Data Science, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
7
|
Cheng L, Fan Y, Cheng J, Wang J, Liu Q, Feng Z. Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered 2022; 13:12691-12705. [PMID: 35659193 PMCID: PMC9275892 DOI: 10.1080/21655979.2021.2019876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A large number of studies have manifested long non-coding RNA (lncRNA) is involved in the modulation of the development of periodontitis, but the specific mechanism has not been fully elucidated. The purpose of this study was to explore the biological function and latent molecular mechanism of lncZFY-AS1 in periodontitis. The results clarified lncZFY-AS1 and DEAD-Box Helicase 3 X-Linked (DDX3X) were up-regulated, but microRNA (miR)-129-5p was down-regulated in periodontitis. Knockdown of lncZFY-AS2 or overexpression of miR-129-5p decreased macrophage infiltration and periodontal membrane cell apoptosis, increased cell viability, repressed inflammatory factors and nuclear factor kappa B activation, reduced oxidative stress, but promoted nuclear factor-E2-related factor 2/heme oxygenase 1 expression. LncZFY-AS1 elevation further aggravated periodontitis inflammation, oxidative stress, and apoptosis. LncZFY competitively adsorbed miR-129-5p to mediate DDX3X expression. Knockdown lncZFY’s improvement effect on periodontitis was reversed by depressive miR-129-5p or enhancive DDX3X. In conclusion, these data suggest lncZFY-AS1 promotes inflammatory injury and oxidative stress in periodontitis by competitively binding to miR-129-5p and mediating DDX3X expression. LncZFY-AS1/miR-129-5p/DDX3X may serve as a novel molecular target for treatment of periodontitis in the future.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - YuLing Fan
- Department of Stomatology, School of Stomatology, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Jue Cheng
- Department of Stomatology, The Community Health Service Center of Beijing Jiao Tong University, Beijing City, China
| | - Jun Wang
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - Qingmei Liu
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - ZhiYuan Feng
- Department of Orthodontics, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
8
|
Maruyama SR, Fuzo CA, Oliveira AER, Rogerio LA, Takamiya NT, Pessenda G, de Melo EV, da Silva AM, Jesus AR, Carregaro V, Nakaya HI, Almeida RP, da Silva JS. Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection. Front Immunol 2022; 13:784463. [PMID: 35370994 PMCID: PMC8965071 DOI: 10.3389/fimmu.2022.784463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood transcriptomics allows us to assess the molecular mechanisms involved in the immunopathological processes of several clinical conditions, namely, parasitic diseases. Here, we performed mRNA sequencing of peripheral blood from patients with visceral leishmaniasis during the active phase of the disease and six months after successful treatment, when the patients were considered clinically cured. To strengthen the study, the RNA-seq data analysis included two other non-diseased groups composed of healthy uninfected volunteers and asymptomatic individuals. We identified thousands of differentially expressed genes between VL patients and non-diseased groups. Overall, pathway analysis corroborated the importance of signaling involving interferons, chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of gene expression profiles was able to discriminate cellular subtypes, highlighting the contribution of plasma cells and NK cells in the course of the disease. Beyond the biological processes involved in the immunopathology of VL revealed by the expression of protein coding genes (PCGs), we observed a significant participation of long noncoding RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs expression in VL has never been performed. lncRNAs have been considered key regulators of disease progression, mainly in cancers; however, their pattern regulation may also help to understand the complexity and heterogeneity of host immune responses elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the first time, we present an integrated analysis of PCGs and lncRNAs by exploring the lncRNA–mRNA coexpression profile of VL to provide insights into the regulatory gene network involved in the development of this inflammatory and infectious disease.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology and Food Sciences, Ribeirão Preto School of Pharmaceutics Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Edson R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enaldo Vieira de Melo
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Angela Maria da Silva
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Amélia Ribeiro Jesus
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roque Pacheco Almeida
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Lin Y, Tang Z, Jin L, Yang Y. The Expression and Regulatory Roles of Long Non-Coding RNAs in Periodontal Ligament Cells: A Systematic Review. Biomolecules 2022; 12:biom12020304. [PMID: 35204802 PMCID: PMC8869287 DOI: 10.3390/biom12020304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Periodontal ligament (PDL) cells play a pivotal role in periodontal and bone homeostasis and have promising potential for regenerative medicine and tissue engineering. There is compelling evidence that long non-coding RNAs (lncRNAs) are differentially expressed in PDL cells compared to other cell types and that these lncRNAs are involved in a variety of biological processes. This study systematically reviews the current evidence regarding the expression and regulatory functions of lncRNAs in PDL cells during various biological processes. A systematic search was conducted on PubMed, the Web of Science, Embase, and Google Scholar to include articles published up to 1 July 2021. Original research articles that investigated the expression or regulation of lncRNAs in PDL cells were selected and evaluated for a systematic review. Fifty studies were ultimately included, based on our eligibility criteria. Thirteen of these studies broadly explored the expression profiles of lncRNAs in PDL cells using microarray or RNA sequencing. Nineteen studies investigated the mechanisms by which lncRNAs regulate osteogenic differentiation in PDL cells. The remaining 18 studies investigated the mechanism by which lncRNAs regulate the responses of PDL cells to various stimuli, namely, lipopolysaccharide-induced inflammation, tumor necrosis factor alpha-induced inflammation, mechanical stress, oxidative stress, or hypoxia. We systematically reviewed studies on the expression and regulatory roles of lncRNAs in diverse biological processes in PDL cells, including osteogenic differentiation and cellular responses to inflammation, mechanical stress, and other stimuli. These results provide new insights that may guide the development of lncRNA-based therapeutics for periodontal and bone regeneration.
Collapse
Affiliation(s)
- Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
| | - Zhongyuan Tang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China;
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
- Correspondence:
| |
Collapse
|
10
|
Ghafouri-Fard S, Gholami L, Badrlou E, Sadeghpour S, Nazer N, Shadnoush M, Sayad A, Taheri M. Dysregulation of lncRNAs in circulation of patients with periodontitis: results of a pilot study. BMC Oral Health 2021; 21:471. [PMID: 34563175 PMCID: PMC8466695 DOI: 10.1186/s12903-021-01851-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Periodontitis is a chronic inflammatory disorder with a complex etiology. Long non-coding RNAs (lncRNAs) have been shown to affect pathoetiology of periodontitis. We aimed at identification of expression of five lncRNAs, namely Linc0116, Linc00667, CDK6-AS1, FENDRR and DIRC3 in the circulation and gingival tissues of these patients compared with healthy controls. Methods In a pilot case–control study, we compared expressions of Linc0116, Linc00667, CDK6-AS1, FENDRR and DIRC3 lncRNAs between blood and tissue samples of patients with periodontitis and healthy controls using real time quantitative PCR technique. The present work was performed on samples got from 26 patients with periodontitis and 28 controls. Female/male ratio was 16/10 and 12/16 in cases and controls, respectively. Results There was no significant difference in the expressions of Linc0116, Linc00667, CDK6-AS1, FENDRR and DIRC3 genes between affected and unaffected tissues. However, expressions of Linc0116, Linc00667, CDK6-AS1, FENDRR and DIRC3 genes were significantly lower in the blood samples of patients when compared with control samples (Ratio of mean expression = 0.16, 0.14, 0.13, 0.10 and 0.14, respectively). Subsequently, we compared expressions of these lncRNAs between patients and controls in a sex-based manner. Expressions of Linc00667, FENDRR and DIRC3 genes were significantly lower in female patients compared with female controls (RME = 0.09, 0.07 and 0.10, respectively). Yet, there was no significant difference in expression of any of mentioned lncRNAs among male subgroups. Consistent with the similar levels of Linc0116, Linc00667, CDK6-AS1, FENDRR and DIRC3 in tissue samples of patients and controls, none of them could separate these two sets of samples. However, AUC values for of Linc0116, Linc00667, CDK6-AS1, FENDRR and DIRC3 expression levels in blood samples were 0.66, 0.72, 0.70, 0.72, 0.70 and 0.68, respectively with FENDRR having the best sensitivity value. Conclusion Taken together, lncRNAs might be involved in the pathologic events in the circulation of patients with periodontitis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Gholami
- Department of Periodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Badrlou
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Sadeghpour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Dual topology of co-chaperones at the membrane of the endoplasmic reticulum. Cell Death Discov 2021; 7:203. [PMID: 34354047 PMCID: PMC8342575 DOI: 10.1038/s41420-021-00594-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Dual topologies of proteins at the ER membrane are known for a variety of proteins allowing the same protein to exert different functions according to the topology adopted. A dual topology of the co-chaperone ERdj4, which resides in the endoplasmic reticulum (ER), was proposed recently, a thesis that we found to align all published data and existing controversies into one whole picture. The aim of this review is to reassess all primary data available in the literature on ER-resident Hsp40 co-chaperones with respect to their topology. After careful and critical analyses of all experimental data published so far, we identified, next to ERdj4, two other co-chaperones, ERdj3 and ERdj6, that also display features of a dual topology at the ER membrane. We assume that during cellular stress subpools of some ER-resident J protein can alter their topology so that these proteins can exert different functions in order to adapt to cellular stress.
Collapse
|
12
|
Xu J, Yin Y, Lin Y, Tian M, Liu T, Li X, Chen S. Long non-coding RNAs: Emerging roles in periodontitis. J Periodontal Res 2021; 56:848-862. [PMID: 34296758 DOI: 10.1111/jre.12910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
Periodontitis is a major burden of public health, affecting 20%-50% of the global population. It is a complex inflammatory disease characterized by the destruction of supporting structures of the teeth, leading to tooth loss and the emergence or worsening of systematic diseases. Understanding the molecular mechanisms underlying the physiopathology of periodontitis is beneficial for targeted therapeutics. Long non-coding RNAs (lncRNAs), transcripts made up of more than 200 nucleotides, have emerged as novel regulators of many biological and pathological processes. Recently, an increasing number of dysregulated lncRNAs have been found to be implicated in periodontitis. In this review, an overview of lncRNAs, including their biogenesis, characteristics, function mechanisms and research approaches, is provided. And we summarize recent research reports on the emerging roles of lncRNAs in regulating proliferation, apoptosis, inflammatory responses, and osteogenesis of periodontal cells to elucidate lncRNAs related physiopathology of periodontitis. Furthermore, we have highlighted the underlying mechanisms of lncRNAs in periodontitis pathology by interacting with microRNAs. Finally, the potential clinical applications, current challenges, and prospects of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets for periodontitis disease are discussed.
Collapse
Affiliation(s)
- Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanyuan Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mi Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Zhu L, Xie H, Liu Q, Ma F, Wu H. Klotho inhibits H 2 O 2 -induced oxidative stress and apoptosis in periodontal ligament stem cells by regulating UCP2 expression. Clin Exp Pharmacol Physiol 2021; 48:1412-1420. [PMID: 34174105 DOI: 10.1111/1440-1681.13547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Periodontitis, a human chronic inflammatory disease, has affected the lives of millions of individuals. Periodontal ligament stem cells (PDLSCs), derived from the periodontal ligament, exhibit tissue specificity and impaired differentiation ability and are closely associated with tissue regeneration in periodontitis. Klotho, a single-pass transmembrane protein, has been reported to positively affect H2 O2 -induced oxidative stress and inflammation in PDLSCs. The ultimate damage of oxidative stress stimulation in PDLSCs was cell apoptosis, which was also the major lesion in periodontitis. Thus, the present study aimed to figure out the effect of klotho on H2 O2 -injured PDLSCs and its underlying mechanism to provide new therapeutic targets in periodontitis. The expression of klotho and uncoupling protein 2 (UCP2) was investigated in the gingival tissues, gingival crevicular fluid (GCF), and periodontal ligament stem cells (PDLSCs) in patients with chronic periodontitis. Then, under klotho treatment, oxidative stress was evaluated by measuring SOD and GSH-PX levels. Cell apoptosis and cell necrosis were also detected by measuring the cell death-relevant proteins, including Caspase-3, BAX, Bcl, MLKL, RIP1, and RIP3. Finally, a rescue assay was performed by inhibiting the expression of UCP2. The results showed that klotho and UCP2 were downregulated in patients with chronic periodontitis. In addition, klotho upregulated the production of UCP2 in H2 O2 -treated PDLSCs. Klotho inhibited H2 O2 -induced oxidative stress and cellular loss in PDLSCs, moreover, the rescue assay suggested that UCP2 knockdown suppressed the effects of klotho on PDLSCs. In conclusion, this study showed that klotho inhibits H2 O2 -induced oxidative stress and apoptosis in PDLSCs by regulating UCP2 expression. This novel discovery might provide a potential target for chronic periodontitis treatment.
Collapse
Affiliation(s)
- Lilei Zhu
- Departments of Periodontology, Changsha Stomatological Hospital, Changsha, China
| | - Hui Xie
- Departments of Periodontology, Changsha Stomatological Hospital, Changsha, China
| | - Qingqing Liu
- Departments of Periodontology, Changsha Stomatological Hospital, Changsha, China
| | - Fei Ma
- Departments of Periodontology, Changsha Stomatological Hospital, Changsha, China
| | - Hao Wu
- Departments of Periodontology, Changsha Stomatological Hospital, Changsha, China
| |
Collapse
|
14
|
Wu M, Liu Y, Pu YS, Ma Y, Wang JH, Liu EQ. JHDM1D-AS1 aggravates the development of gastric cancer through miR-450a-2-3p-PRAF2 axis. Life Sci 2020; 265:118805. [PMID: 33245963 DOI: 10.1016/j.lfs.2020.118805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023]
Abstract
AIMS To investigate the molecular function and mechanisms of JHDM1D antisense 1 (JHDM1D-AS1) during gastric cancer (GC) progression. MATERIALS AND METHODS The qPCR assay was used to detect the JHDM1D-AS1 and miR-450a-2-3p expression levels in GC tissues and cell lines. Bioinformatics analysis was used for exploring the lncRNA-microRNA-mRNA interaction network. We performed dual-luciferase reporter assay and qPCR assay in order to validate the direct interactions. We explored the JHDM1D-AS1 and miR-450a-2-3p on GC progression by using JHDM1D-AS1 siRNA and miR-450a-2-3p inhibitor; in vitro CCK-8 assay, colony formation assay, and invasion assay were conducted. Further, in vivo animal experiments were performed, and the expression levels of miR-450a-2-3p and PRAF2 in the tumor tissues were detected using qPCR and western blot analysis. KEY FINDINGS The expression levels of JHDM1D-AS1 and miR-450a-2-3p in GC tissues and cell lines were higher and lower as compared to those in the corresponding normal controls, respectively. Moreover, high levels of JHDM1D-AS1 were closely related with metastasis and the GC TNM stage. Functionally, JHDM1D-AS1 depletion caused an obvious reduction in cell proliferation and invasion both in vitro and in vivo, while the addition of miR-450a-2-3p inhibitor could nullify these effects. Mechanically, JHDM1D-AS1 promoted GC progression via the sponging of miR-450a-2-3p in order to increase PRAF2 expression. SIGNIFICANCE The present results showed that the increased expression of JHDM1D-AS1 was closely associated with tumor progression of GC. JHDM1D-AS1/miR-450a-2-3p/PRAF2 axis may be a promising target for GC treatment.
Collapse
Affiliation(s)
- Min Wu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China; Office of Scientific Research, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Yi Liu
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Yan-Song Pu
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Yu Ma
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jian-Hua Wang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - En-Qi Liu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
| |
Collapse
|
15
|
Upregulation of JHDM1D-AS1 alleviates neuroinflammation and neuronal injury via targeting miR-101-3p-DUSP1 in spinal cord after brachial plexus injury. Int Immunopharmacol 2020; 89:106962. [PMID: 33039970 DOI: 10.1016/j.intimp.2020.106962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neuroinflammation in the spinal cord following acute brachial plexus injury (BPI) remains a vital cause that leads to motor dysfunction and neuropathic pain. In this study, we aim to explore the role of long non-coding RNA JHDM1D antisense 1 (JHDM1D-AS1) in mediating BPI-induced neuroinflammation and neuronal injury. METHODS A total brachial plexus root avulsion (tBPRA) model in adult rats and IL-1β-treated motor neuron-like NSC-34 cells and LPS-treated microglia cell line BV2 were conducted for in vivo and in vitro experiments, respectively. The expressions of JHDM1D-AS1, miR-101-3p and DUSP1, p38, NF-κB, TNF-α, IL-1β, and IL-6 were detected by RT-PCR and western blot seven days after tBPI. Immunohistochemistry (IHC) was used to detect neuronal apoptosis. CCK8 assay, Tunel assay and LDH kit were used for the detection of neuronal injury. The targeted relationships between JHDM1D-AS1 and miR-101-3p, miR-101-3p and DUSP1 were verified by RNA immunoprecipitation (RIP) and dual-luciferase reporter gene assay. RESULTS We found significant downregulated expression of JHDM1D-AS1 and DUSP1 but upregulated expression of miR-101-3p in the spinal cord after tBPI. Overexpression of JHDM1D-AS1 had a prominent neuroprotective effect by suppressing neuronal apoptosis and microglial inflammation through reactivation of DUSP1. Further exploration revealed that JHDM1D-AS1 may act as a competitive endogenous RNA targeting miR-101-3p, which bound on the 3'UTR of DUSP1 mRNA. In addition, overexpression of miR-101-3p could reverse the neuroprotective effects of JHDM1D-AS1 upregulation by blocking DUSP1. CONCLUSIONS JHDM1D-AS1 exerted neuroprotective and anti-inflammatory effects in a rat model of tBPI by regulating miR-101-3p/DUSP1 axis.
Collapse
|
16
|
Sayad A, Mirzajani S, Gholami L, Razzaghi P, Ghafouri-Fard S, Taheri M. Emerging role of long non-coding RNAs in the pathogenesis of periodontitis. Biomed Pharmacother 2020; 129:110362. [PMID: 32563981 DOI: 10.1016/j.biopha.2020.110362] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a bacteria-related chronic immune-associated condition that destructs bone and connective tissues around teeth. With a high incidence rate, it is regarded as a condition that impose substantial health burden. About half of the variance in the severity of periodontitis is attributed to genetic factors. Long non-coding RNAs (lncRNAs) have crucial roles in the development of several disorders such as periodontitis. A number of studies have reported dysregulation of lncRNAs such as UCA1, ANRIL, FGD5-AS1, NEAT1, FAS-AS1, Linc-RAM and NKILA in gingival tissues or blood samples of patients with periodontitis in comparison with healthy subjects. Moreover, several single nucleotide polymorphisms within lncRNAs have been associated with the susceptibility to this disorder. In the current review, we discuss the most recent articles about the role of lncRNAs in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Mirzajani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Gholami
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parnian Razzaghi
- Student Research Committee, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soudeh Ghafouri-Fard
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Guo L, Li Y, Tian Y, Gong S, Chen X, Peng T, Wang A, Jiang Z. eIF2α promotes vascular remodeling via autophagy in monocrotaline-induced pulmonary arterial hypertension rats. Drug Des Devel Ther 2019; 13:2799-2809. [PMID: 31496656 PMCID: PMC6698179 DOI: 10.2147/dddt.s213817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Eukaryotic initiation factor 2α (eIF2α) plays important roles in the proliferation and survival of pulmonary artery smooth muscle cells (PASMCs) in animal hypoxia-induced pulmonary hypertension models. However, the underlying mechanism remains unknown at large. Autophagy has been reported to play a key role in the vascular remodeling in pulmonary arterial hypertension (PAH). The purposes of this study are to determine the functions of eIF2α and autophagy in the vascular remodeling of the monocrotaline-induced PAH rats and to clarify the correlation between eIF2α and autophagy. METHODS We established a rat model of monocrotaline-induced PAH, and we established a cell model of platelet derived growth factor (PDGF)-induced PASMCs proliferation. The vascular morphology and the expression of eIF2α, LC3B, and p62 were assessed in the pulmonary arterial tissue of Sprague-Dawleyrats and PDGF-induced PASMCs. RESULTS Autophagy was significantly active in monocrotaline model group (MCT)-induced PAH rats, which obviously promotes vascular remodeling in MCT-induced PAH rats. Furthermore, the proliferation of PASMCs was induced by PDGF in vitro. The expression of LC3B, eIF2α was increased in the PDGF-induced PASMCs proliferation, and the expression of p62 was reduced in the PDGF-induced PASMCs proliferation. Moreover, eIF2α siRNA downregulated the expression of eIF2α and LC3B, and upregulated the expression of p62 in PDGF-induced PASMCs proliferation. eIF2α siRNA inhibited the PDGF-induced PASMCs proliferation. Finally, chloroquine can upregulate the protein expression of LC3B and p62, it also can inhibit proliferation in PDGF-induced PASMCs. CONCLUSION Based on these observations, we conclude that eIF2α promotes the proliferation of PASMCs and vascular remodeling in monocrotaline-induced PAH rats through accelerating autophagy pathway.
Collapse
Affiliation(s)
- Linya Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou510000, Guangdong, People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou, 510000, Guangdong, People’s Republic of China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang421002, Hunan, People’s Republic of China
- Postdoctoral Research Institute on Basic Medicine, University of South China, Hengyang, 421001, Hunan, People’s Republic of China
| | - Shaoxin Gong
- Department of Pathology, First Affiliated Hospital, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
| | - Aiping Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, Hengyang421001, People’s Republic of China
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang421002, Hunan, People’s Republic of China
- Postdoctoral Research Institute on Basic Medicine, University of South China, Hengyang, 421001, Hunan, People’s Republic of China
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang421001, Hunan, People’s Republic of China
| | - Zhisheng Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang421001, Hunan, People’s Republic of China
| |
Collapse
|