1
|
An Y, Hu J, Hao H, Zhao W, Zhang X, Shao J, Wang C, Li X, Liu C, He J, Zhao Y, Zhang H, Du X. The transmembrane channel-like 6 (TMC6) in primary sensory neurons involving thermal sensation via modulating M channels. Front Pharmacol 2024; 15:1330167. [PMID: 38440182 PMCID: PMC10909837 DOI: 10.3389/fphar.2024.1330167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: The transmembrane channel-like (TMC) protein family contains eight members, TMC1-TMC8. Among these members, only TMC1 and TMC2 have been intensively studied. They are expressed in cochlear hair cells and are crucial for auditory sensations. TMC6 and TMC8 contribute to epidermodysplasia verruciformis, and predispose individuals to human papilloma virus. However, the impact of TMC on peripheral sensation pain has not been previously investigated. Methods: RNAscope was employed to detect the distribution of TMC6 mRNA in DRG neurons. Electrophysiological recordings were conducted to investigate the effects of TMC6 on neuronal characteristics and M channel activity. Zn2+ indicators were utilized to detect the zinc concentration in DRG tissues and dissociated neurons. A series of behavioural tests were performed to assess thermal and mechanical sensation in mice under both physiological and pathological conditions. Results and Discussion: We demonstrated that TMC6 is mainly expressed in small and medium dorsal root ganglion (DRG) neurons and is involved in peripheral heat nociception. Deletion of TMC6 in DRG neurons hyperpolarizes the resting membrane potential and inhibits neuronal excitability. Additionally, the function of the M channel is enhanced in TMC6 deletion DRG neurons owing to the increased quantity of free zinc in neurons. Indeed, heat and mechanical hyperalgesia in chronic pain are alleviated in TMC6 knockout mice, particularly in the case of heat hyperalgesia. This suggests that TMC6 in the small and medium DRG neurons may be a potential target for chronic pain treatment.
Collapse
Affiliation(s)
- Yating An
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingyi Hu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weixin Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jicheng Shao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixue Wang
- The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Liu
- The Key Laboratory of Experimental Animal, Department of Animal Care, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinsha He
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiwen Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Qin J, Cui Z, Zhou J, Zhang B, Lu R, Ding Y, Hu H, Cai J. IGF2BP3 drives gallbladder cancer progression by m6A-modified CLDN4 and inducing macrophage immunosuppressive polarization. Transl Oncol 2023; 37:101764. [PMID: 37643553 PMCID: PMC10472310 DOI: 10.1016/j.tranon.2023.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION N6-methyladenosine (m6A) is an emerging epigenetic modification, which plays a crucial role in the development of cancer. Nevertheless, the underlying mechanism of m6A-associated proteins and m6A modification in gallbladder cancer remains largely unknown. MATERIALS AND METHODS The Gene Expression Omnibus database and tissue microarray were used to identify the key m6A-related gene in gallbladder cancer. The function and mechanism of IGF2BP3 were further investigated by knockdown and overexpression techniques in vitro and in vivo. RESULTS We found that IGF2BP3 was elevated and correlated with poor prognosis in gallbladder cancer, which can be used as an independent prognostic factor for gallbladder cancer. IGF2BP3 accelerated the proliferation, invasion and migration of gallbladder cancer cells in vitro and in vivo. Mechanistically, IGF2BP3 interacted with and augmented the stability of CLDN4 mRNA by m6A modification. Enhancement of CLDN4 reversed the inhibitory effect of IGF2BP3 deficiency on gallbladder cancer. Furthermore, we demonstrated that IGF2BP3 promotes the activation of NF-κB signaling pathway by up-regulation of CLDN4. Overexpression of IGF2BP3 in gallbladder cancer cells obviously promoted the polarization of immunosuppressive phenotype in macrophages. Besides, Gallbladder cancer cells-derived IGF2BP3 up-regulated the levels of STAT3 in M2 macrophages, and promoted M2 polarization. CONCLUSIONS We manifested IGF2BP3 promotes the aggressive phenotype of gallbladder cancer by stabilizing CLDN4 mRNA in an m6A-dependent manner and induces macrophage immunosuppressive polarization, which might offer a new theoretical basis for against gallbladder cancer.
Collapse
Affiliation(s)
- Jian Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Zheng Cui
- Department of Ultrasonic Medicine, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingyi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Bosen Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Ruiqi Lu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Youcheng Ding
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Hai Hu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingli Cai
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
3
|
Tang W, Shi Z, Zhu Y, Shan Z, Jiang A, Wang A, Chen M, Bao Y, Ju G, Xu W, Wang J. Comprehensive analysis of the prognosis and immune infiltration of TMC family members in renal clear cell carcinoma. Sci Rep 2023; 13:11668. [PMID: 37468683 DOI: 10.1038/s41598-023-38914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Renal cancer is a common malignancy of the urinary system, and renal clear cell carcinoma (RCCC) is the most common pathological type. Transmembrane channel-like (TMC) protein is an evolutionarily conserved gene family containing 8 members, however there is still a lack of comprehensive analysis about TMC family members in RCCC. In this study, we analyzed the expression of TMC family members in RCCC from TCGA and investigated the prognosis values and immune infiltration of TMC family members in RCCC. We found that TMC2, TMC3, TMC5, TMC7 and TMC8 were significantly related with overall survival (OS) of RCCC patients. TMC3, TMC6, and TMC8 was positively correlated with the degree of immune infiltration in RCCC. TMC2, TMC6, TMC7, and TMC8 were positively correlated with immune checkpoint genes, whereas TMC4 was negative. According to KEGG and GO analysis, almost all TMCs except TMC4 were involved in the immune response. Thus, we may regard the TMC family members as novel biomarkers to predict potential prognosis and immunotherapeutic response in RCCC patients.
Collapse
Affiliation(s)
- Wenbin Tang
- Department of Urology, Changzheng Hospital, Naval Medical University, NO. 415 Fengyang Road, Shanghai, 200003, China
| | - Zhiyuan Shi
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, NO. 4221 Xiang'an South Road, Xiamen, 361101, Fujian Province, China
| | - Yasheng Zhu
- Department of Urology, Changzheng Hospital, Naval Medical University, NO. 415 Fengyang Road, Shanghai, 200003, China
| | - Zhengda Shan
- School of Medicine, Sun Yat-Sen University, NO. 66 Gongchang Road, Shenzhen, 518107, Guangdong Province, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, NO. 168 Changhai Road, Shanghai, 200082, China
| | - Anbang Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, NO. 415 Fengyang Road, Shanghai, 200003, China
| | - Ming Chen
- Department of Urology, Changzheng Hospital, Naval Medical University, NO. 415 Fengyang Road, Shanghai, 200003, China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, Naval Medical University, NO. 415 Fengyang Road, Shanghai, 200003, China
| | - Guanqun Ju
- Department of Urology, Changzheng Hospital, Naval Medical University, NO. 415 Fengyang Road, Shanghai, 200003, China
| | - Weidong Xu
- Department of Urology, Changzheng Hospital, Naval Medical University, NO. 415 Fengyang Road, Shanghai, 200003, China.
| | - Junkai Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, NO. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
4
|
Wei Z, Wang S, Xu Y, Wang W, Soares F, Ahmed M, Su P, Wang T, Orouji E, Xu X, Zeng Y, Chen S, Liu X, Jia T, Liu Z, Du L, Wang Y, Chen S, Wang C, He HH, Guo H. MYC reshapes CTCF-mediated chromatin architecture in prostate cancer. Nat Commun 2023; 14:1787. [PMID: 36997534 PMCID: PMC10063626 DOI: 10.1038/s41467-023-37544-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
MYC is a well characterized oncogenic transcription factor in prostate cancer, and CTCF is the main architectural protein of three-dimensional genome organization. However, the functional link between the two master regulators has not been reported. In this study, we find that MYC rewires prostate cancer chromatin architecture by interacting with CTCF protein. Through combining the H3K27ac, AR and CTCF HiChIP profiles with CRISPR deletion of a CTCF site upstream of MYC gene, we show that MYC activation leads to profound changes of CTCF-mediated chromatin looping. Mechanistically, MYC colocalizes with CTCF at a subset of genomic sites, and enhances CTCF occupancy at these loci. Consequently, the CTCF-mediated chromatin looping is potentiated by MYC activation, resulting in the disruption of enhancer-promoter looping at neuroendocrine lineage plasticity genes. Collectively, our findings define the function of MYC as a CTCF co-factor in three-dimensional genome organization.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Song Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Yaning Xu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Wenzheng Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Fraser Soares
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Ping Su
- National Administration of Health Data, Jinan, 250000, China
| | - Tingting Wang
- Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Elias Orouji
- Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON, Canada
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Xu
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Yong Zeng
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Sujun Chen
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Xiaoyu Liu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Tianwei Jia
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lutao Du
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Chuanxin Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Housheng Hansen He
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada.
| | - Haiyang Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China.
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China.
| |
Collapse
|
5
|
Karska J, Kowalski S, Saczko J, Moisescu MG, Kulbacka J. Mechanosensitive Ion Channels and Their Role in Cancer Cells. MEMBRANES 2023; 13:167. [PMID: 36837670 PMCID: PMC9965697 DOI: 10.3390/membranes13020167] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.
Collapse
Affiliation(s)
- Julia Karska
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mihaela G. Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
6
|
Role of Up-Regulated Transmembrane Channel-Like Protein 5 in Pancreatic Adenocarcinoma. Dig Dis Sci 2022; 68:1894-1912. [PMID: 36459296 DOI: 10.1007/s10620-022-07771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a malignant tumor responsible for a heavy disease burden. Previously, only one pan-cancer study of Transmembrane channel-like protein 5 (TMC5) showed that TMC5 was highly expressed in PAAD, but the results lacked comprehensive verification, and the mechanism of TMC5 in PAAD was still unclear. METHODS For exploring the expression and clinical value of TMC5 in PAAD better, we adopted a comprehensive evaluation method, using internal immunohistochemistry (IHC) data combined with microarray and RNA-sequencing data collected from public databases. The single cell RNA-sequencing (scRNA-seq) data were exploited to explore the TMC5 expression in cell populations and intercellular communication. The potential mechanism of TMC5 in PAAD was analyzed from the aspects of immune infiltration, transcriptional regulation, function and pathway enrichment. RESULTS Our IHC data includes 148 PAAD samples and 19 non-PAAD samples, along with the available microarray and RNA-sequencing data (1166 PAAD samples, 704 non-PAAD samples). The comprehensive evaluation results showed that TMC5 was evidently up-regulated in PAAD (SMD = 1.17). Further analysis showed that TMC5 was over-expressed in cancerous epithelial cells. Furthermore, TMC5 was up-regulated in more advanced tumor T and N stages. Interestingly, we found that STAT3 as an immune marker of Th17 cells was not only positively correlated with TMC5 and up-regulated in PAAD tissues, but also the major predicted TMC5 transcription regulator. Moreover, STAT3 was involved in cancer pathway of PAAD. CONCLUSION Up-regulated TMC5 indicates advanced tumor stage in PAAD patients, and its role in promoting PAAD development may be regulated by STAT3.
Collapse
|
7
|
Kasahara Y, Narukawa M, Takeuchi A, Tominaga M, Abe K, Asakura T. Molecular logic of salt taste reception in special reference to transmembrane channel-like 4 (TMC4). J Physiol Sci 2022; 72:31. [DOI: 10.1186/s12576-022-00856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
AbstractThe taste is biologically of intrinsic importance. It almost momentarily perceives environmental stimuli for better survival. In the early 2000s, research into taste reception was greatly developed with discovery of the receptors. However, the mechanism of salt taste reception is not fully elucidated yet and many questions still remain. At present, next-generation sequencing and genome-editing technologies are available which would become pivotal tools to elucidate the remaining issues. Here we review current mechanisms of salt taste reception in particular and characterize the properties of transmembrane channel-like 4 as a novel salt taste-related molecule that we found using these sophisticated tools.
Collapse
|
8
|
Zhang H, Zhang X, Xu W, Wang J. TMC5 is Highly Expressed in Human Cancers and Corelates to Prognosis and Immune Cell Infiltration: A Comprehensive Bioinformatics Analysis. Front Mol Biosci 2022; 8:810864. [PMID: 35096973 PMCID: PMC8792843 DOI: 10.3389/fmolb.2021.810864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Background: The oncological role of TMC5 in human cancers has only been revealed partially. We performed integrated bioinformatics analysis to provide a thorough and detailed insight of associations between TMC5 and tumorigenesis, cancer progression, and prognosis. Methods: With reference to the accessible online databases, the TMC5 expressions in tumor tissues and corresponding normal tissues, different pathological stages, and various cancer cells were analyzed, while the protein levels of TMC5 in different cancers were also inspected. Meanwhile, the prognostic value of TMC5 expression in multiple cancers as well as in advanced-stage patients was investigated. Furthermore, the mutational data of TMC5 and its correlation with cancer prognosis were assessed. Moreover, the association between the TMC5 level and immune cell infiltration was evaluated. Next, TMC5-related pathway alterations and drug responses were summarized. Finally, the TMC5 based protein network was generated, and relevant enrichment was performed. Results: In our study, the expression level of TMC5 was significantly higher in the tumor tissue than that of the normal tissues in most cancer types. Fluctuations of TMC5 levels were also observed among different pathological stages. In the meantime, the protein level elevated in the tumor tissue in the cancers enrolled. Moreover, the expression of TMC5 was not only prognostic for overall survival (OS) or recurrence free survival (RFS) in various types of cancers but also correlated to OS in patients with more advanced cancers. Additionally, the mutational status of TMC5 is also associated with prognosis in cancer patients. It is worth noting that the TMC5 level was closely related to immune cell infiltrations, especially in ESCA, TGCT, and USC. The TMC5 expression was also identified as an activator for pathways including PI3K/AKT, RAS/MAPK, and TSC/mTOR, proved to be associated with multiple drug responses and assessed to be interactive with the TMEM family. Conclusion: TMC5 might function as a potential marker for cancer survival and immune responses.
Collapse
|
9
|
Song J, Tang Y, Luo X, Shi X, Song F, Ran L. Pan-Cancer Analysis Reveals the Signature of TMC Family of Genes as a Promising Biomarker for Prognosis and Immunotherapeutic Response. Front Immunol 2021; 12:715508. [PMID: 34899684 PMCID: PMC8660091 DOI: 10.3389/fimmu.2021.715508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Transmembrane Channel-like (TMC) genes are critical in the carcinogenesis, proliferation, and cell cycle of human cancers. However, the multi-omics features of TMCs and their role in the prognosis and immunotherapeutic response of human cancer have not been explored. We discovered that TMCs 4-8 were commonly deregulated and correlated with patient survival in a variety of cancers. For example, TMC5 and TMC8 were correlated with the relapse and overall survival rates of breast cancer and skin melanoma, respectively. These results were validated by multiple independent cohorts. TMCs were regulated by DNA methylation and somatic alterations, such as TMC5 amplification in breast cancer (523/1062, 49.2%). Six algorithms concordantly uncovered the critical role of TMCs in the tumor microenvironment, potentially regulating immune cell toxicity and lymphocytes infiltration. Moreover, TMCs 4-8 were correlated with tumor mutation burden and expression of PD-1/PD-L1/CTLA4 in 33 cancers. Thus, we established an immunotherapy response prediction (IRP) score based on the signature of TMCs 4-8. Patients with higher IRP scores showed higher immunotherapeutic responses in five cohorts of skin melanoma (area under curve [AUC] = 0.90 in the training cohort, AUCs range from 0.70 to 0.83 in the validation cohorts). Together, our study highlights the great potential of TMCs as biomarkers for prognosis and immunotherapeutic response, which can pave the way for further investigation of the tumor-infiltrating mechanisms and therapeutic potentials of TMCs in cancer.
Collapse
Affiliation(s)
- Jing Song
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, China.,Molecular and Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Yongyao Tang
- Molecular and Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Xiaoyong Luo
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Xinpeng Shi
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Fangzhou Song
- Molecular and Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Longke Ran
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, China.,Forensic Laboratory, The Basic Medical School of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Liao J, Song Q, Li J, Du K, Chen Y, Zou C, Mo Z. Carcinogenic effect of adenylosuccinate lyase (ADSL) in prostate cancer development and progression through the cell cycle pathway. Cancer Cell Int 2021; 21:467. [PMID: 34488772 PMCID: PMC8419980 DOI: 10.1186/s12935-021-02174-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background Prostate cancer (PCa) is still a serious male malignant disease across the world. However, no exact pathogenesis had been explained. Although adenylosuccinate lyase (ADSL) gene was identified to be important in PCa early in 1987, its comprehensive functions for PCa have not been presented. Methods The cBioPortal for Cancer Genomics, Oncomine and GEO database were retrieved to investigate the associations between of the ADSL gene and PCa. Then, the PC-3, DU145 and C4-2B cell lines were applied in vitro experiments. RNA sequencing and further western blot (WB) were applied to explore the potential mechanisms of ADSL gene in PCa. Results Based on PCa clinical datasets, we firstly found ADSL gene highly expressed in PCa tissues. Moreover, its transcript level increased in the metastatic PCa further. Elevated ADSL gene expression indicated a poor prognosis of PCa. While inhibiting the expression of ADSL with siRNA, the ability of cell proliferation and migration all declined markedly, with increased cell apoptosis inversely. Most of cells were blocked in the G0/G1 phase. Additionally, RNA sequencing also discovered the inactivity of cell cycle pathway after ADSL knockdown, which had also confirmed on the proteins levels. Conclusions Our study identified the ADSL as an oncogene of PCa through regulating the cell cycle pathway firstly, with explicit cell and clinical phenotypes. Further mechanisms were needed to confirm its carcinogenic effect. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02174-6.
Collapse
Affiliation(s)
- Jinling Liao
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, No. 22 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qiong Song
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Preclinical Medicine, Guangxi Medical University, No. 22 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jie Li
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530218, China
| | - Kechen Du
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Preclinical Medicine, Guangxi Medical University, No. 22 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, No. 22 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China. .,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Chunlin Zou
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Preclinical Medicine, Guangxi Medical University, No. 22 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, No. 22 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China. .,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
11
|
Kasahara Y, Narukawa M, Ishimaru Y, Kanda S, Umatani C, Takayama Y, Tominaga M, Oka Y, Kondo K, Kondo T, Takeuchi A, Misaka T, Abe K, Asakura T. TMC4 is a novel chloride channel involved in high-concentration salt taste sensation. J Physiol Sci 2021; 71:23. [PMID: 34429071 PMCID: PMC10717410 DOI: 10.1186/s12576-021-00807-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/27/2022]
Abstract
"Salty taste" sensation is evoked when sodium and chloride ions are present together in the oral cavity. The presence of an epithelial cation channel that receives Na+ has previously been reported. However, no molecular entity involving Cl- receptors has been elucidated. We report the strong expression of transmembrane channel-like 4 (TMC4) in the circumvallate and foliate papillae projected to the glossopharyngeal nerve, mediating a high-concentration of NaCl. Electrophysiological analysis using HEK293T cells revealed that TMC4 was a voltage-dependent Cl- channel and the consequent currents were completely inhibited by NPPB, an anion channel blocker. TMC4 allowed permeation of organic anions including gluconate, but their current amplitudes at positive potentials were less than that of Cl-. Tmc4-deficient mice showed significantly weaker glossopharyngeal nerve response to high-concentration of NaCl than the wild-type littermates. These results indicated that TMC4 is a novel chloride channel that responds to high-concentration of NaCl.
Collapse
Affiliation(s)
- Yoichi Kasahara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Food and Nutrition, Kyoto Women's University, 35 Kitahiyoshicho Imakumano Higashiyama, Kyoto, 605-8501, Japan
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaijicho, Okazaki, Aichi, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaijicho, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Research Group, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaijicho, Okazaki, Aichi, 444-8787, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kaori Kondo
- Laboratory for Developmental Genetics, RIKEN-IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN-IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, and Life Science Innovation Center, University of Fukui, Fukui, 910-1193, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), LiSE 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
12
|
Dobson JS, Harris RJ, Zdenek CN, Huynh T, Hodgson WC, Bosmans F, Fourmy R, Violette A, Fry BG. The Dragon's Paralysing Spell: Evidence of Sodium and Calcium Ion Channel Binding Neurotoxins in Helodermatid and Varanid Lizard Venoms. Toxins (Basel) 2021; 13:toxins13080549. [PMID: 34437420 PMCID: PMC8402328 DOI: 10.3390/toxins13080549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Bites from helodermatid lizards can cause pain, paresthesia, paralysis, and tachycardia, as well as other symptoms consistent with neurotoxicity. Furthermore, in vitro studies have shown that Heloderma horridum venom inhibits ion flux and blocks the electrical stimulation of skeletal muscles. Helodermatids have long been considered the only venomous lizards, but a large body of robust evidence has demonstrated venom to be a basal trait of Anguimorpha. This clade includes varanid lizards, whose bites have been reported to cause anticoagulation, pain, and occasionally paralysis and tachycardia. Despite the evolutionary novelty of these lizard venoms, their neuromuscular targets have yet to be identified, even for the iconic helodermatid lizards. Therefore, to fill this knowledge gap, the venoms of three Heloderma species (H. exasperatum, H. horridum and H. suspectum) and two Varanus species (V. salvadorii and V. varius) were investigated using Gallus gallus chick biventer cervicis nerve–muscle preparations and biolayer interferometry assays for binding to mammalian ion channels. Incubation with Heloderma venoms caused the reduction in nerve-mediated muscle twitches post initial response of avian skeletal muscle tissue preparation assays suggesting voltage-gated sodium (NaV) channel binding. Congruent with the flaccid paralysis inducing blockage of electrical stimulation in the skeletal muscle preparations, the biolayer interferometry tests with Heloderma suspectum venom revealed binding to the S3–S4 loop within voltage-sensing domain IV of the skeletal muscle channel subtype, NaV1.4. Consistent with tachycardia reported in clinical cases, the venom also bound to voltage-sensing domain IV of the cardiac smooth muscle calcium channel, CaV1.2. While Varanus varius venom did not have discernable effects in the avian tissue preparation assay at the concentration tested, in the biointerferometry assay both V. varius and V. salvadorii bound to voltage-sensing domain IV of both NaV1.4 and CaV1.2, similar to H. suspectum venom. The ability of varanid venoms to bind to mammalian ion channels but not to the avian tissue preparation suggests prey-selective actions, as did the differential potency within the Heloderma venoms for avian versus mammalian pathophysiological targets. This study thus presents the detailed characterization of Heloderma venom ion channel neurotoxicity and offers the first evidence of varanid lizard venom neurotoxicity. In addition, the data not only provide information useful to understanding the clinical effects produced by envenomations, but also reveal their utility as physiological probes, and underscore the potential utility of neglected venomous lineages in the drug design and development pipeline.
Collapse
Affiliation(s)
- James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Tam Huynh
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (T.H.); (W.C.H.)
| | - Wayne C. Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (T.H.); (W.C.H.)
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (R.F.); (A.V.)
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (R.F.); (A.V.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
- Correspondence: ; Tel.: +61-7-336-58515
| |
Collapse
|
13
|
Guo H, Zhang Z, Wang Y, Xue S. Identification of crucial genes and pathways associated with prostate cancer in multiple databases. J Int Med Res 2021; 49:3000605211016624. [PMID: 34082608 PMCID: PMC8182368 DOI: 10.1177/03000605211016624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Prostate cancer (PCa) is a malignant neoplasm of the urinary system. This study aimed to use bioinformatics to screen for core genes and biological pathways related to PCa. METHODS The GSE5957 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were constructed by R language. Furthermore, protein-protein interaction (PPI) networks were generated to predict core genes. The expression levels of core genes were examined in the Tumor Immune Estimation Resource (TIMER) and Oncomine databases. The cBioPortal tool was used to study the co-expression and prognostic factors of the core genes. Finally, the core genes of signaling pathways were determined using gene set enrichment analysis (GSEA). RESULTS Overall, 874 DEGs were identified. Hierarchical clustering analysis revealed that these 24 core genes have significant association with carcinogenesis and development. LONRF1, CDK1, RPS18, GNB2L1 (RACK1), RPL30, and SEC61A1 directly related to the recurrence and prognosis of PCa. CONCLUSIONS This study identified the core genes and pathways in PCa and provides candidate targets for diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Hanxu Guo
- School of Clinical Medicine, Bengbu Medical College, Bengbu,
China
| | - Zhichao Zhang
- School of Clinical Medicine, Bengbu Medical College, Bengbu,
China
| | - Yuhang Wang
- School of Clinical Medicine, Bengbu Medical College, Bengbu,
China
| | - Sheng Xue
- Department of Urology, The First Affiliated Hospital of Bengbu
Medical College, Bengbu, China
| |
Collapse
|
14
|
Bahreyni A, Luo H. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer. Cancers (Basel) 2020; 12:E3619. [PMID: 33287240 PMCID: PMC7761674 DOI: 10.3390/cancers12123619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer treatment in light of their ability to specifically target and silence cancer-associated genes. In recent years, numerous studies focus on determining genes that actively participate in tumor formation, invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses on recent findings in cancer-associated genes and the application of siRNAs to successfully silence them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|