1
|
Heidarzadehpilehrood R, Pirhoushiaran M, Osman MB, Ling KH, Hamid HA. A high-throughput RNA sequency of peripheral blood mononuclear cells reveals on inflammatory state in women with PCOS. Arch Med Res 2024; 56:103129. [PMID: 39647252 DOI: 10.1016/j.arcmed.2024.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine and reproductive condition affecting women of reproductive age, although its expression profiles and molecular pathways are not fully understood. AIMS To identify the transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in women with PCOS and controls. To investigate noninvasive diagnostic biomarkers and potential treatment targets to improve women's fertility. METHODS RNA sequencing (RNA-Seq) was conducted on PBMC samples from six patients with PCOS and six healthy controls. qRT-PCR validation was carried out in 68 subjects. Multivariate logistic regression was performed to assess the combined impact of biomarkers. RESULTS A total of 186 differentially expressed genes (DEG) were found between patients and controls (log2FC >1, p < 0.05). Enrichment analysis revealed cytokine-mediated signaling pathways, cytokine activity, and cytokine-cytokine receptor interaction. RNA sequencing showed consistency with qRT-PCR. Women with PCOS had significantly higher levels of AQP9 (p < 0.001), PROK2 (p = 0.001), and S100A12 (p < 0.001) expression compared to controls. AQP9 (AUC = 0.77), PROK2 (AUC = 0.71), and S100A12 (AUC = 0.82) adequately discriminated women with PCOS from healthy controls. In addition, multiple logistic regression on biomarkers resulted in a significant diagnostic power with an AUC = 0.89, 95 % CI: 0.81-0.97, p < 0.0001. Further associations were analyzed between relative gene expression and clinical, anthropometric, hormonal, and ultrasonographic data. CONCLUSIONS Dysregulated RNA expression in PBMCs may contribute to an increased risk of PCOS and serve as a potential diagnostic biomarker. The involvement of inflammatory and cytokine-related pathways supports the notion that PCOS is a chronic inflammatory condition.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Malaysian Research Institution on Ageing, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Yilmaz U, Tanbek K. Intracerebroventricular prokineticin 2 infusion may play a role on the hypothalamus-pituitary-thyroid axis and energy metabolism. Physiol Behav 2024; 283:114601. [PMID: 38838800 DOI: 10.1016/j.physbeh.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
AIM The hypothesis of this study is to determine the effects of intracerebroventricular (icv) prokineticin 2 infusion on food consumption and body weight and to elucidate whether it has effects on energy expenditure via the hypothalamus-pituitary-thyroid (HPT) axis in adipose tissue. MATERIAL AND METHODS A total of 40 rats were used in the study and 4 groups were established: Control, Sham, Prokineticin 1.5 and Prokineticin 4.5 (n=10). Except for the Control group, rats were treated intracerebroventricularly via osmotic minipumps, the Sham group was infused with aCSF (vehicle), and the Prokineticin 1.5 and Prokineticin 4.5 groups were infused with 1.5 nMol and 4.5 nMol prokineticin 2, respectively. Food and water consumption and body weight were monitored during 7-day infusion in all groups. At the end of the infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined by ELISA. In addition, PGC-1α and UCP1 gene expression levels in white adipose tissue (WAT) and brown adipose tissue (BAT), TRH from rat hypothalamic tissue were determined by real-time PCR. RESULTS Icv prokineticin 2 (4.5 nMol) infusion had no effect on water consumption but reduced daily food consumption and body weight (p<0.05). Icv prokineticin 2 (4.5 nMol) infusion significantly increased serum TSH, fT4 and fT3 levels when compared to Control and Sham groups (p<0.05). Also, icv prokineticin 2 (4.5 nMol) infusion increased the expression of TRH in the hypothalamus tissue and expression of PGC-1α UCP1 in the WAT and BAT (p<0.05). CONCLUSION Icv prokineticin 2 (4.5 nMol) infusion may suppress food consumption via its receptors in the hypothalamus and reduce body weight by stimulating energy expenditure and thermogenesis in adipose tissue through the HPT axis.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
3
|
Fullone MR, Maftei D, Vincenzi M, Lattanzi R, Miele R. MRAP2a Binds and Modulates Activity and Localisation of Prokineticin Receptor 1 in Zebrafish. Int J Mol Sci 2024; 25:7816. [PMID: 39063058 PMCID: PMC11277097 DOI: 10.3390/ijms25147816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The prokineticin system plays a role in hypothalamic neurons in the control of energy homeostasis. Prokineticin receptors (PKR1 and PKR2), like other G-protein-coupled receptors (GPCRs) are involved in the regulation of energy intake and expenditure and are modulated by the accessory membrane protein 2 of the melanocortin receptor (MRAP2). The aim of this work is to characterise the interaction and regulation of the non-melanocortin receptor PKR1 by MRAP2a in zebrafish (zMRAP2a) in order to use zebrafish as a model for the development of drugs targeting accessory proteins that can alter the localisation and activity of GPCRs. To this end, we first showed that zebrafish PKR1 (zPKR1) is able to interact with both zMRAP2a and human MRAP2 (hMRAP2). This interaction occurs between the N-terminal region of zPKR1 and the C-terminal domain of zMRAP2a, which shows high sequence identity with hMRAP2 and a similar propensity for dimer formation. Moreover, we demonstrated that in Chinese hamster ovary (CHO) cells, zMRAP2a or hMRAP2 are able to modulate zPKR1 activation induced by zebrafish PK2 (zPK2) resulting in an impaired ERK and STAT3 activation.
Collapse
Affiliation(s)
- Maria Rosaria Fullone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.M.); (M.V.)
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.M.); (M.V.)
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.M.); (M.V.)
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
4
|
Lattanzi R, Casella I, Fullone MR, Maftei D, Vincenzi M, Miele R. MRAP2 Inhibits β-Arrestin-2 Recruitment to the Prokineticin Receptor 2. Curr Issues Mol Biol 2024; 46:1607-1620. [PMID: 38392222 PMCID: PMC10887741 DOI: 10.3390/cimb46020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Melanocortin receptor accessory protein 2 (MRAP2) is a membrane protein that binds multiple G protein-coupled receptors (GPCRs) involved in the control of energy homeostasis, including prokineticin receptors. These GPCRs are expressed both centrally and peripherally, and their endogenous ligands are prokineticin 1 (PK1) and prokineticin 2 (PK2). PKRs couple all G-protein subtypes, such as Gαq/11, Gαs, and Gαi, and recruit β-arrestins upon PK2 stimulation, although the interaction between PKR2 and β-arrestins does not trigger receptor internalisation. MRAP2 inhibits the anorexigenic effect of PK2 by binding PKR1 and PKR2. The aim of this work was to elucidate the role of MRAP2 in modulating PKR2-induced β-arrestin-2 recruitment and β-arrestin-mediated signalling. This study could allow the identification of new specific targets for potential new drugs useful for the treatment of the various pathologies correlated with prokineticin, in particular, obesity.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.L.); (D.M.); (M.V.)
| | - Ida Casella
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.L.); (D.M.); (M.V.)
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.L.); (D.M.); (M.V.)
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
5
|
Yang J, Shin Y, Kim HJ, Kim HE, Chun JS. Prokineticin 2 is a catabolic regulator of osteoarthritic cartilage destruction in mouse. Arthritis Res Ther 2023; 25:236. [PMID: 38057865 PMCID: PMC10699050 DOI: 10.1186/s13075-023-03206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Our preliminary study indicates that the multi-functional protein, prokineticin 2 (Prok2), is upregulated in osteoarthritic (OA) chondrocytes as a target of the hypoxia-inducible factor (HIF)-2α. This study aims to elucidate the potential roles of Prok2 in OA. METHODS Prok2 expression was assessed through microarray analysis in chondrocytes and confirmed via immunostaining in OA cartilage. Experimental OA was induced through destabilization of the medial meniscus (DMM). Functions of Prok2 were assessed by adenoviral overexpression, intra-articular (IA) injection of recombinant Prok2 (rProk2), and knockdown of Prok2 in joint tissues. We also explored the potential utility of Prok2 as an OA biomarker using enzyme-linked immunosorbent assay (ELISA). RESULTS HIF-2α upregulated Prok2, one of the prokineticin signaling components, in OA chondrocytes of mice and humans. Adenoviral overexpression of Prok2 in chondrocytes and cartilage explants, as well as the application of rProk2, led to an upregulation of matrix metalloproteinase (MMP)3 and MMP13. Consistently, the overexpression of Prok2 in joint tissues or IA injection of rProk2 exacerbated cartilage destruction and hindpaw mechanical allodynia induced by DMM. However, the knockdown of Prok2 in joint tissues did not significantly affect DMM-induced cartilage destruction. Additionally, despite being a secreted protein, the serum levels of Prok2 in OA mice and human OA patients were found to be below the range detected by ELISA. CONCLUSION The upregulation of Prok2 exacerbates OA cartilage destruction and hindpaw mechanical allodynia. However, its knockdown is not sufficient to inhibit experimental OA and Prok2 is not a potential candidate serum biomarker of OA.
Collapse
Affiliation(s)
- Jiye Yang
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Youngnim Shin
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hwee-Jin Kim
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyo-Eun Kim
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
6
|
Çiftci N, Akıncı A, Akbulut E, Çamtosun E, Dündar İ, Doğan M, Kayaş L. Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. J Clin Res Pediatr Endocrinol 2023; 15:160-171. [PMID: 36700485 PMCID: PMC10234052 DOI: 10.4274/jcrpe.galenos.2023.2022-10-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Objective Idiopathic hypogonadotropic hypogonadism (IHH) is classified into two groups-Kalman syndrome and normosmic IHH (nIHH). Half of all cases can be explained by mutations in >50 genes. Targeted gene panel testing with nexrt generation sequencing (NGS) is required for patients without typical phenotypic findings. The aim was to determine the genetic etiologies of patients with IHH using NGS, including 54 IHH-associated genes, and to present protein homology modeling and protein stability analyzes of the detected variations. Methods Clinical and demographic data of 16 patients (eight female), aged between 11.6-17.8 years, from different families were assessed. All patients were followed up for a diagnosis of nIHH, had normal cranial imaging, were without anterior pituitary hormone deficiency other than gonadotropins, had no sex chromosome anomaly, had no additional disease, and underwent genetic analysis with NGS between the years 2008-2021. Rare variants were classified according to the variant interpretation framework of the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology. Changes in protein structure caused by variations were modeled using RoseTTAFold and changes in protein stability resulting from variation were analyzed. Results Half of the 16 had no detectable variation. Three (18.75%) had a homozygous (pathogenic) variant in the GNRHR gene, one (6.25%) had a compound heterozygous [likely pathogenic-variants of uncertain significance (VUS)] variant in PROK2 and four (25%) each had a heterozygous (VUS) variant in HESX1, FGF8, FLRT3 and DMXL2. Protein models showed that variants interpreted as VUS according to ACMG could account for the clinical IHH. Conclusion The frequency of variation detection was similar to the literature. Modelling showed that the variant in five different genes, interpreted as VUS according to ACMG, could explain the clinical IHH.
Collapse
Affiliation(s)
- Nurdan Çiftci
- İnönü University Faculty of Medicine, Department of Pediatric Endocrinology, Malatya, Turkey
| | - Ayşehan Akıncı
- İnönü University Faculty of Medicine, Department of Pediatric Endocrinology, Malatya, Turkey
| | - Ekrem Akbulut
- Turgut Özal University Faculty of Biomedical Engineering, Malatya, Turkey
| | - Emine Çamtosun
- İnönü University Faculty of Medicine, Department of Pediatric Endocrinology, Malatya, Turkey
| | - İsmail Dündar
- İnönü University Faculty of Medicine, Department of Pediatric Endocrinology, Malatya, Turkey
| | - Mustafa Doğan
- University of Health Sciences Turkey, Başakşehir Çam and Sakura City Hospital, Clinic of Medical Genetics, İstanbul, Turkey
| | - Leman Kayaş
- İnönü University Faculty of Medicine, Department of Pediatric Endocrinology, Malatya, Turkey
| |
Collapse
|