1
|
Coppinger GE, Stewart AJ, Borden JA, Strickland JL. Thamnophis sirtalis and their toxic relationship: Testing for intraspecific venom variation in Common Garter Snakes. Toxicon 2025; 253:108185. [PMID: 39615846 DOI: 10.1016/j.toxicon.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
Intraspecific phenotypic variation can be used as a window into the ecological differences among individuals of a species and lead to a better understanding of adaptive evolution. Adaptive traits, such as venom, that play an important ecological role for a species are useful models for understanding the sources of intraspecific variation. Intraspecific studies on front-fanged venomous snakes have offered deeper insights into the diverse mechanisms and adaptations that support the effectiveness of venom across species. Despite the extensive research on front-fanged venomous snakes, rear-fanged snakes, representing two-thirds of all snake species, have been largely overlooked. To test for sex and age-based intraspecific venom variation, we sequenced the messenger RNA from the Duvernoy's gland of 9 male and 10 female Common Garter Snakes, Thamnophis sirtalis, of different sizes from a single location. Our data represent the most venom gland transcriptomes of any venomous snake species from a single location and represent the first Duvernoy's venom gland transcriptomes for Thamnophis sirtalis. We found four toxin families dominate the Thamnophis sirtalis transcriptome: Snake Venom Metalloproteinases (SVMPs), Three-finger toxins (3FTxs), Cysteine-Rich Secretory Proteins (CRISPs), and C-type lectins (CTLs). Thamnophis sirtalis exhibits a unique balance in toxin expression, with approximately 30% each of neurotoxic (3FTx-dominated) and enzymatic (SVMP-dominated) components. No other published RFS Duvernoy's gland transcriptome displays this ratio, rather they are dominated by one or the other. Additionally, venom expression varies with sex and size, with differences in toxin gene expression between males and females as they grow. Our study provides new insights on venom composition in a RFS species and highlights the amount of intraspecific variation possible among individuals from a single population.
Collapse
Affiliation(s)
- Grace E Coppinger
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Aaron J Stewart
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Joel A Borden
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jason L Strickland
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
2
|
Kempson K, Chowdhury A, Violette A, Fourmy R, Soria R, Fry BG. Age Is Just a Number: Ontogenetic Conservation in Activation of Blood Clotting Factors VII, X, and XII by Caucasus Blunt-Nosed Viper ( Macrovipera lebetina obtusa) Venoms. Toxins (Basel) 2024; 16:520. [PMID: 39728778 DOI: 10.3390/toxins16120520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake Macrovipera lebetina obtusa, focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve. Intriguingly, females were more potent than males within each age group, but this requires a larger sample size to confirm. Antivenom neutralization efficacy was equipotent across age groups. The venoms potently activated Factor X (FX) robustly, consistent with previous knowledge of this genus. For the first time, the ability to activate Factors VII (FVII) and XII (FXII) was identified in this genus, with FXII exhibiting particularly strong activation. The study found no significant ontogenetic variation in procoagulant venom potency on human plasma, convergent with the Daboia genus, the other large-bodied lineage within the Palearctic viperid clade. However, the activation of FXII and FVII reveals previously undocumented pathways in the procoagulant activity of these venoms, contributing to the broader understanding of venom evolution and its clinical impacts. These findings have implications for venom biodiscovery and the development of antivenoms, highlighting the complexity of clotting factor activation beyond traditional investigations that have myopically focused upon FX and prothrombin pathways, thereby underscoring the importance of exploring additional clotting factors.
Collapse
Affiliation(s)
- Katrina Kempson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
- Biomedical Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium
| | | | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Jones L, Lay M, Neri-Castro E, Zarzosa V, Hodgson WC, Lewin M, Fry BG. Breaking muscle: neurotoxic and myotoxic effects of Central American snake venoms and the relative efficacies of antivenom and varespladib. BMC Biol 2024; 22:243. [PMID: 39443999 PMCID: PMC11515554 DOI: 10.1186/s12915-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The snake genera Atropoides, Cerrophidion, and Metlapilcoatlus form a clade of neotropical pit vipers distributed across Mexico and Central America. This study evaluated the myotoxic and neurotoxic effects of nine species of Atropoides, Cerrophidion, and Metlapilcoatlus, and the neutralising efficacy of the ICP antivenom from Costa Rica against these effects, in the chick biventer cervicis nerve-muscle preparation. Given the prominence of PLA2s within the venom proteomes of these species, we also aimed to determine the neutralising potency of the PLA2 inhibitor, varespladib. RESULTS All venoms showed myotoxic and potential neurotoxic effects, with differential intra-genera and inter-genera potency. This variation was also seen in the antivenom ability to neutralise the muscle damaging pathophysiological effects observed. Variation was also seen in the relative response to the PLA2 inhibitor varespladib. While the myotoxic effects of M. mexicanus and M. nummifer venoms were effectively neutralised by varespladib, indicating myotoxicity is PLA2 mediated, those of C. godmani and M. olmec venoms were not, revealing that the myotoxicity is driven by non-PLA2 toxin types. CONCLUSIONS This study characterises the myotoxic and neurotoxic venom activity, as well as neutralisation of venom effects from the Atropoides, Cerrophidion, and Metlapilcoatlus clade of American crotalids. Our findings contribute significant clinical and evolutionary knowledge to a clade of poorly researched snakes. In addition, these results provide a platform for future research into the reciprocal interaction between ecological niche specialisation and venom evolution, as well as highlighting the need to test purified toxins to accurately evaluate the potential effects observed in these venoms.
Collapse
Affiliation(s)
- Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mimi Lay
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Investigador Por México, CONAHCYT, Universidad Juárez del Estado de Durango, Avenida Universidad S/N. Fracc. Filadelfia, Gómez Palacio, Dgo.,, C.P. 35010, México
| | - Vanessa Zarzosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Mexico
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | | | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
4
|
Neri-Castro E, Zarzosa V, Lomonte B, Zamudio F, Hernandez-Orihuela L, Olvera-Rodríguez A, Rodríguez-Solís AM, Borja M, García-Vázquez UO, Jones JM, Parkinson CL, Alagón A. Exploring venom diversity in Mixcoatlus browni and Mixcoatlus barbouri: A comparative analysis of two rare Mexican snake species with crotoxin-like presence. Biochimie 2024; 225:81-88. [PMID: 38762000 DOI: 10.1016/j.biochi.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The genus Mixcoatlus is composed of three species: Mixcoatlus barbouri, M. browni, and M. melanurus, of which the venom composition of M. melanurus, the most common species of the three, has only recently been described. However, very little is known about the natural history of M. barbouri and M. browni, and the venom composition of these two species has remained thus far unexplored. In this study we characterize the proteomic profiles and the main biochemical and toxic activities of these two venoms. Proteomic data obtained by shotgun analysis of whole venom identified 12 protein families for M. barbouri, and 13 for M. browni. The latter venom was further characterized by using a quantitative 'venomics' protocol, which revealed that it is mainly composed of 51.1 % phospholipases A2 (PLA2), 25.5 % snake venom serine proteases (SVSP), 4.6 % l-amino oxidases (LAO), and 3.6 % snake venom metalloproteases (SVMP), with lower percentages other six protein families. Both venoms contained homologs of the basic and acidic subunits of crotoxin. However, due to limitations in M. barbouri venom availability, we could only characterize the crotoxin-like protein of M. browni venom, which we have named Mixcoatlutoxin. It exhibited a lethal potency in mice like that described for classical rattlesnake crotoxins. These findings expand knowledge on the distribution of crotoxin-like heterodimeric proteins in viper snake species. Further investigation of the bioactivities of the venom of M. barbouri, on the other hand, remains necessary.
Collapse
Affiliation(s)
- Edgar Neri-Castro
- Investigador por México, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Avenida Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor, Mexico.
| | - Vanessa Zarzosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor, Mexico
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Fernando Zamudio
- Investigador por México, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Avenida Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Lorena Hernandez-Orihuela
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor, Mexico
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor, Mexico
| | - Audrey Michelle Rodríguez-Solís
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor, Mexico
| | - Miguel Borja
- Investigador por México, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Avenida Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Uri O García-Vázquez
- Laboratorio de Sistemática Molecular, Carrera de Biología, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n, Ejército de Oriente, Ciudad de México, 09230, Mexico
| | | | - Chistopher L Parkinson
- Department of Biological Sciences and Department of Forestry, and Environmental Conservation, Clemson University, 190 Collings St. Clemson, SC, 29631, USA
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor, Mexico.
| |
Collapse
|
5
|
Senji Laxme RR, Khochare S, Bhatia S, Martin G, Sunagar K. From birth to bite: the evolutionary ecology of India's medically most important snake venoms. BMC Biol 2024; 22:161. [PMID: 39075553 PMCID: PMC11287890 DOI: 10.1186/s12915-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.
Collapse
Affiliation(s)
- R R Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Siddharth Bhatia
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gerard Martin
- The Liana Trust. Survey, #1418/1419 Rathnapuri, Hunsur, 571189, Karnataka, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
6
|
Gopalan SS, Perry BW, Francioli YZ, Schield DR, Guss HD, Bernstein JM, Ballard K, Smith CF, Saviola AJ, Adams RH, Mackessy SP, Castoe TA. Diverse Gene Regulatory Mechanisms Alter Rattlesnake Venom Gene Expression at Fine Evolutionary Scales. Genome Biol Evol 2024; 16:evae110. [PMID: 38753011 PMCID: PMC11243404 DOI: 10.1093/gbe/evae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.
Collapse
Affiliation(s)
- Siddharth S Gopalan
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yannick Z Francioli
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Drew R Schield
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Hannah D Guss
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Justin M Bernstein
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kaas Ballard
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas Agricultural Experimental Station, University of Arkansas, Fayetteville, AR 72701, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
7
|
Guadarrama-Martínez A, Neri-Castro E, Boyer L, Alagón A. Variability in antivenom neutralization of Mexican viperid snake venoms. PLoS Negl Trop Dis 2024; 18:e0012152. [PMID: 38717980 PMCID: PMC11078402 DOI: 10.1371/journal.pntd.0012152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.
Collapse
Affiliation(s)
- Alid Guadarrama-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Leslie Boyer
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
8
|
Zarzosa V, Lomonte B, Zamudio F, Ponce-López R, Olvera-Rodríguez F, Borja M, Alagón A, Neri-Castro E. Venom of the neotropical rattlesnake, Crotalus culminatus: Intraspecific variation, neutralization by antivenoms, and immunogenicity in rabbits. Biochimie 2024; 216:160-174. [PMID: 37890695 DOI: 10.1016/j.biochi.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Crotalus culminatus is a medically significant species of rattlesnake in Mexico [1]. While the proteomic composition of its venom has been previously reported for both juvenile and adult specimens, there has been limited research into its functional properties, with only a few studies, including one focusing on coagulotoxicity mechanisms. In this study, we aimed to compare the biochemical and biological activities of the venom of juvenile and adult snakes. Additionally, we assessed antibody production using the venoms of juveniles and adults as immunogens in rabbits. Our findings reveal lethality and proteolytic activity differences between the venoms of juveniles and adults. Notably, juvenile venoms exhibited high proportions of crotamine, while adult venoms displayed a reduction of this component. A commercially available antivenom demonstrated effective neutralization of lethality of both juvenile and adult venoms in mice. However, it failed to neutralize the paralytic activity induced by crotamine, which, in contrast, was successfully inhibited by antibodies obtained from hyperimmunized rabbits. These results suggest the potential inclusion of C. culminatus venom from juveniles in commercial antivenom immunization schemes to generate antibodies targeting this small myotoxin.
Collapse
Affiliation(s)
- Vanessa Zarzosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Roberto Ponce-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Felipe Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Avenida Universidad s/n, Fracc, Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico.
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Avenida Universidad s/n, Fracc, Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico.
| |
Collapse
|
9
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
10
|
Borja M, Neri-Castro E, Gutiérrez-Martínez A, Bledsoe R, Zarzosa V, Rodriguez-López B, Strickland JL, Becerra-López J, Valenzuela-Ceballos S, Parkinson CL, Alagón A, Castañeda-Gaytán G. Ontogenetic change in the venom composition of one Mexican black-tailed rattlesnake (Crotalus molossus nigrescens) from Durango, Mexico. Toxicon 2023; 234:107280. [PMID: 37673344 DOI: 10.1016/j.toxicon.2023.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
To corroborate the ontogenetic shift in the venom composition of the Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) previously reported through the census approach, we evaluated the shift in the protein profile, lethality, and proteolytic and phospholipase activities of four venom samples obtained in 2015, 2018, 2019, and 2021 from one C. m. nigrescens individual (CMN06) collected in Durango, Mexico. We demonstrated that the venom of C. m. nigrescens changed from a myotoxin-rich venom to a phospholipase A2 and snake venom metalloproteinase-rich venom. Additionally, the proteolytic and phospholipase activities increased with age, but the lethality decreased approximately three times.
Collapse
Affiliation(s)
- Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Arelí Gutiérrez-Martínez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Richard Bledsoe
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Vanessa Zarzosa
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Bruno Rodriguez-López
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Jason L Strickland
- Department of Biology, University of South Alabama, 5871 USA Dr. N., Mobile, AL, 36688, USA
| | - Jorge Becerra-López
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Sara Valenzuela-Ceballos
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | | | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210, Cuernavaca, Mor., Mexico
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico.
| |
Collapse
|
11
|
Warrell DA, Williams DJ. Clinical aspects of snakebite envenoming and its treatment in low-resource settings. Lancet 2023; 401:1382-1398. [PMID: 36931290 DOI: 10.1016/s0140-6736(23)00002-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/26/2022] [Accepted: 12/18/2022] [Indexed: 03/16/2023]
Abstract
There is increasing recognition of the public health importance of snakebite envenoming. Worldwide annual incidence is likely to be 5 million bites, with mortality exceeding 150 000 deaths, and the resulting physical and psychological morbidity leads to substantial social and economic repercussions. Prevention through community education by trained health workers is the most effective and economically viable strategy for reducing risk of bites and envenoming. Clinical challenges to effective treatment are most substantial in rural areas of low-resource settings, where snakebites are most common. Classic skills of history taking, physical examination, and use of affordable point-of-care tests should be followed by monitoring of evolving local and systemic envenoming. Despite the profusion of new ideas for interventions, hyperimmune equine or ovine plasma-derived antivenoms remain the only specific treatment for snakebite envenoming. The enormous interspecies and intraspecies complexity and diversity of snake venoms, revealed by modern venomics, demands a radical redesign of many current antivenoms.
Collapse
Affiliation(s)
- David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Experimental Medicine Division, John Radcliffe Hospital, Headington, UK.
| | - David J Williams
- Regulation and Prequalification Department, World Health Organization, Geneva, Switzerland
| |
Collapse
|
12
|
Grabowsky ER, Saviola AJ, Alvarado-Díaz J, Mascareñas AQ, Hansen KC, Yates JR, Mackessy SP. Montane Rattlesnakes in México: Venoms of Crotalus tancitarensis and Related Species within the Crotalus intermedius Group. Toxins (Basel) 2023; 15:72. [PMID: 36668891 PMCID: PMC9867100 DOI: 10.3390/toxins15010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Crotalus intermedius group is a clade of rattlesnakes consisting of several species adapted to a high elevation habitat, primarily in México. Crotalus tancitarensis was previously classified as C. intermedius, until individuals occurring on Cerro Tancítaro in Michoacán, México, were reevaluated and classified as a new species (C. tancitarensis) based on scale pattern and geographic location. This study aimed to characterize the venom of C. tancitarensis and compare the venom profile to those of other species within the Crotalus intermedius group using gel electrophoresis, biochemical assays, reverse-phase high performance liquid chromatography, mass spectrometry, and lethal toxicity (LD50) assays. Results show that the venom profiles of species within the Crotalus intermedius group are similar, but with distinct differences in phospholipase A2 (PLA2), metalloproteinase PI (SVMP PI), and kallikrein-like serine proteinase (SVSP) activity and relative abundance. Proteomic analysis indicated that the highland forms produce venoms with 50-60 protein isoforms and a composition typical of type I rattlesnake venoms (abundant SVMPs, lack of presynaptic PLA2-based neurotoxins), as well as a diversity of typical Crotalus venom components such as serine proteinases, PLA2s, C-type lectins, and less abundant toxins (LAAOs, CRiSPs, etc.). The overall venom profile of C. tancitarensis appears most similar to C. transversus, which is consistent with a previous mitochondrial DNA analysis of the Crotalus intermedius group. These rattlesnakes of the Mexican highlands represent a radiation of high elevation specialists, and in spite of divergence of species in these Sky Island habitats, venom composition of species analyzed here has remained relatively conserved. The majority of protein family isoforms are conserved in all members of the clade, and as seen in other more broadly distributed rattlesnake species, differences in their venoms are largely due to relative concentrations of specific components.
Collapse
Affiliation(s)
- Emily R. Grabowsky
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Alvarado-Díaz
- INIRENA (Instituto de Investigaciones sobre los Recursos Naturales), Morelia CP 58330, Michoacán, Mexico
| | | | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John R. Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen P. Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| |
Collapse
|
13
|
Crotoxin B: Heterologous Expression, Protein Folding, Immunogenic Properties, and Irregular Presence in Crotalid Venoms. Toxins (Basel) 2022; 14:toxins14060382. [PMID: 35737043 PMCID: PMC9228539 DOI: 10.3390/toxins14060382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Crotoxin complex CA/CB and crotamine are the main toxins associated with Crotalus envenomation besides the enzymatic activities of phospholipases (PLA2) and proteases. The neutralization at least of the crotoxin complex by neutralizing the subunit B could be a key in the production process of antivenoms against crotalids. Therefore, in this work, a Crotoxin B was recombinantly expressed to evaluate its capacity as an immunogen and its ability to produce neutralizing antibodies against crotalid venoms. A Crotoxin B transcript from Crotalus tzabcan was cloned into a pCR®2.1-TOPO vector (Invitrogen, Waltham, MA, USA) and subsequently expressed heterologously in bacteria. HisrCrotoxin B was extracted from inclusion bodies and refolded in vitro. The secondary structure of HisrCrotoxin B was comparable to the secondary structure of the native Crotoxin B, and it has PLA2 activity as the native Crotoxin B. HisrCrotoxin B was used to immunize rabbits, and the obtained antibodies partially inhibited the activity of PLA2 from C. tzabcan. The anti-HisrCrotoxin B antibodies neutralized the native Crotoxin B and the whole venoms from C. tzabcan, C. s. salvini, and C. mictlantecuhtli. Additionally, anti-HisrCrotoxin B antibodies recognized native Crotoxin B from different Crotalus species, and they could discriminate venom in species with high or low levels of or absence of Crotoxin B.
Collapse
|