1
|
Peris-Díaz M, Guran R, Domene C, de los Rios V, Zitka O, Adam V, Krężel A. An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species. J Am Chem Soc 2021; 143:16486-16501. [PMID: 34477370 PMCID: PMC8517974 DOI: 10.1021/jacs.1c05495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/16/2022]
Abstract
Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and β-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 μs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.
Collapse
Affiliation(s)
- Manuel
David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Vivian de los Rios
- Functional
Proteomics, Department of Cellular and Molecular Medicine and Proteomic
Facility, Centro de Investigaciones Biológicas
(CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ondrej Zitka
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Ryzhkov NV, Nikolaev KG, Ivanov AS, Skorb EV. Infochemistry and the Future of Chemical Information Processing. Annu Rev Chem Biomol Eng 2021; 12:63-95. [PMID: 33909470 DOI: 10.1146/annurev-chembioeng-122120-023514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays, information processing is based on semiconductor (e.g., silicon) devices. Unfortunately, the performance of such devices has natural limitations owing to the physics of semiconductors. Therefore, the problem of finding new strategies for storing and processing an ever-increasing amount of diverse data is very urgent. To solve this problem, scientists have found inspiration in nature, because living organisms have developed uniquely productive and efficient mechanisms for processing and storing information. We address several biological aspects of information and artificial models mimicking corresponding bioprocesses. For instance, we review the formation of synchronization patterns and the emergence of order out of chaos in model chemical systems. We also consider molecular logic and ion fluxes as information carriers. Finally, we consider recent progress in infochemistry, a new direction at the interface of chemistry, biology, and computer science, considering unconventional methods of information processing.
Collapse
Affiliation(s)
- Nikolay V Ryzhkov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Artemii S Ivanov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| |
Collapse
|
3
|
Peris-Díaz M, Guran R, Zitka O, Adam V, Krężel A. Metal- and Affinity-Specific Dual Labeling of Cysteine-Rich Proteins for Identification of Metal-Binding Sites. Anal Chem 2020; 92:12950-12958. [PMID: 32786475 PMCID: PMC7547867 DOI: 10.1021/acs.analchem.0c01604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Here, using human metallothionein (MT2) as an example, we describe an improved strategy based on differential alkylation coupled to MS, assisted by zinc probe monitoring, for identification of cysteine-rich binding sites with nanomolar and picomolar metal affinity utilizing iodoacetamide (IAM) and N-ethylmaleimide reagents. We concluded that an SN2 reaction provided by IAM is more suitable to label free Cys residues, avoiding nonspecific metal dissociation. Afterward, metal-bound Cys can be easily labeled in a nucleophilic addition reaction after separation by reverse-phase C18 at acidic pH. Finally, we evaluated the efficiency of the method by mapping metal-binding sites of Zn7-xMT species using a bottom-up MS approach with respect to metal-to-protein affinity and element(al) resolution. The methodology presented might be applied not only for MT2 but to identify metal-binding sites in other Cys-containing proteins.
Collapse
Affiliation(s)
- Manuel
David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Peris-Díaz MD, Guran R, Zitka O, Adam V, Krężel A. Mass Spectrometry-Based Structural Analysis of Cysteine-Rich Metal-Binding Sites in Proteins with MetaOdysseus R Software. J Proteome Res 2020; 20:776-785. [PMID: 32924499 PMCID: PMC7786378 DOI: 10.1021/acs.jproteome.0c00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Identification
of metal-binding sites in proteins and understanding
metal-coupled protein folding mechanisms are aspects of high importance
for the structure-to-function relationship. Mass spectrometry (MS)
has brought a powerful adjunct perspective to structural biology,
obtaining from metal-to-protein stoichiometry to quaternary structure
information. Currently, the different experimental and/or instrumental
setups usually require the use of multiple data analysis software,
and in some cases, they lack some of the main data analysis steps
(MS processing, scoring, identification). Here, we present a comprehensive
data analysis pipeline that addresses charge-state deconvolution,
statistical scoring, and mass assignment for native MS, bottom-up,
and native top-down with emphasis on metal–protein complexes.
We have evaluated all of the approaches using assemblies of increasing
complexity, including free and chemically labeled proteins, from low-
to high-resolution MS. In all cases, the results have been compared
with common software and proved how MetaOdysseus outperformed them.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|