1
|
da Silva FFB, Moura TDA, Siqueira-Silva T, Gutiérrez JM, Martinez PA. Predicting the drivers of Bothrops snakebite incidence across Brazil: A Spatial Analysis. Toxicon 2024; 250:108107. [PMID: 39343148 DOI: 10.1016/j.toxicon.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Snakebite envenoming poses a significant public health challenge on a global basis, affecting millions of people annually and leading to complications that may result in fatalities. Brazil stands as one of the countries most impacted by snakebite envenoming, with snakes of the Bothrops genus being responsible for most bites. The current study aimed to identify the determinants of Bothrops snakebite incidence across different regions of Brazil. An ecological study was conducted using municipality-aggregated data, with snakebite incidence as the dependent variable. The study period comprised the years 2015-2021. We constructed Species Distribution Models (SDMs) for Bothrops species, and information was collected on precipitation, runoff, maximum and minimum temperatures, native forest, historical forest loss, agriculture, and pasture in each Brazilian municipality. These data were employed to assess the association between snakebite incidence and biotic, climatic, and landscape factors. The data were analyzed using Generalized Least Squares (GLS) regression. The SDMs demonstrated good performance. The average annual snakebite incidence during the study period ranged from zero to 428.89 per 100,000 inhabitants, depending on the municipality. Higher incidence rates were concentrated primarily in municipalities in the northern region of the country. In this study, we found that nationwide, areas with extensive native forests and those that have historically experienced significant loss of forest cover exhibited higher snakebite incidence rates. Additionally, areas with higher temperatures and precipitation levels, as well as greater climatic suitability for the species B. jararaca, showed significantly higher snakebite incidence rates in the South and Southeast of Brazil, respectively. These associations may be linked to increased snake abundance and active behavior, as well as to engagement in activities favoring human-snake contact in these areas. The findings of this study can contribute to the improvement of prevention and control strategies for this public health issue in Brazil.
Collapse
Affiliation(s)
| | | | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
2
|
Passos JGR, Gomes JAS, Xavier-Santos JB, Yamashita FO, Cavalcanti-Cruz JV, Siqueira EMS, Garcia VB, Zucolotto SM, de Araujo-Junior RF, Ferreira LS, Silva-Junior AA, Félix-Silva J, Fernandes-Pedrosa MF. Anti-inflammatory, healing and antiophidic potential of Jatropha mollissima (Pohl) Baill. (Euphorbiaceae): From popular use to pharmaceutical formulation in gel. Biomed Pharmacother 2024; 173:116290. [PMID: 38458010 DOI: 10.1016/j.biopha.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024] Open
Abstract
Jatropha mollissima (Pohl) Baill. (Euphorbiaceae) is widely used in traditional medicine to treat inflammatory disorders. So, a topical gel containing the hydroethanolic extract of its leaves was developed and evaluated for its anti-inflammatory, wound healing, and antiophidic properties in mice. First, the chemical profile of different parts of the plant was characterized by liquid chromatography coupled to mass spectrometry (LC-MS) using molecular networking. In the leaf extract, 11 compounds were characterized, with a particular emphasis on the identification of flavonoids. The gel efficiently inhibited carrageenan-induced paw edema, as well as acute and chronic croton oil-induced ear edema models, thereby reducing inflammatory and oxidative parameters in inflamed tissues. Besides anti-inflammatory activity, the herbal gel showed significant wound healing activity. The edematogenic, hemorrhagic and dermonecrotic activities induced by Bothrops jararaca snake venom were effectively inhibited by the treatment with J. mollissima gel. The association with the herbal gel improved in up to 90% the efficacy of commercial snake antivenom in reduce venom-induced edema. Additionally, while antivenom was not able to inhibit venom-induced dermonecrosis, treatment with herbal gel reduced in 55% the dermonocrotic halo produced. These results demonstrate the pharmacological potential of the herbal gel containing J. mollissima extract, which could be a strong candidate for the development of herbal products that can be used to complement the current antivenom therapy against snake venom local toxicity.
Collapse
Affiliation(s)
- Júlia G R Passos
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Jacyra A S Gomes
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Jacinthia B Xavier-Santos
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Fabiana O Yamashita
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Joelly V Cavalcanti-Cruz
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Emerson M S Siqueira
- Laboratory of Pharmacognosy (PNBio), Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Vinícius Barreto Garcia
- Cancer and Inflammatory Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 3000, Lagoa Nova, Natal 59078-970, Brazil.
| | - Silvana M Zucolotto
- Laboratory of Pharmacognosy (PNBio), Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Raimundo Fernandes de Araujo-Junior
- Cancer and Inflammatory Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 3000, Lagoa Nova, Natal 59078-970, Brazil.
| | - Leandro S Ferreira
- Laboratory of Quality Control, Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Arnóbio A Silva-Junior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Juliana Félix-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil; Laboratory of Clinical Haematology, Faculty of Pharmacy, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| |
Collapse
|
3
|
Uko SO, Malami I, Ibrahim KG, Lawal N, Bello MB, Abubakar MB, Imam MU. Revolutionizing snakebite care with novel antivenoms: Breakthroughs and barriers. Heliyon 2024; 10:e25531. [PMID: 38333815 PMCID: PMC10850593 DOI: 10.1016/j.heliyon.2024.e25531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Snakebite envenoming (SBE) is a global public health concern, primarily due to the lack of effective antivenom for treating snakebites inflicted by medically significant venomous snakes prevalent across various geographic locations. The rising demand for safe, cost-effective, and potent snakebite treatments highlights the urgent need to develop alternative therapeutics targeting relevant toxins. This development could provide promising discoveries to create novel recombinant solutions, leveraging human monoclonal antibodies, synthetic peptides and nanobodies. Such technologies as recombinant DNA, peptide and epitope mapping phage display etc) have the potential to exceed the traditional use of equine polyclonal antibodies, which have long been used in antivenom production. Recombinant antivenom can be engineered to target certain toxins that play a critical role in snakebite pathology. This approach has the potential to produce antivenom with improved efficacy and safety profiles. However, there are limitations and challenges associated with these emerging technologies. Therefore, identifying the limitations is critical for overcoming the associated challenges and optimizing the development of recombinant antivenoms. This review is aimed at presenting a thorough overview of diverse technologies used in the development of recombinant antivenom, emphasizing their limitations and offering insights into prospects for advancing recombinant antivenoms.
Collapse
Affiliation(s)
- Samuel Odo Uko
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciecnes, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P. O. Box 2000, Zarqa, 13110, Jordan
| | - Nafiu Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| |
Collapse
|
4
|
Gabriel V, Zdyrski C, Sahoo DK, Ralston A, Wickham H, Bourgois-Mochel A, Ahmed B, Merodio MM, Paukner K, Piñeyro P, Kopper J, Rowe EW, Smith JD, Meyerholz D, Kol A, Viall A, Elbadawy M, Mochel JP, Allenspach K. Adult Animal Stem Cell-Derived Organoids in Biomedical Research and the One Health Paradigm. Int J Mol Sci 2024; 25:701. [PMID: 38255775 PMCID: PMC10815683 DOI: 10.3390/ijms25020701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.
Collapse
Affiliation(s)
- Vojtech Gabriel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | | | - Dipak K. Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Abigail Ralston
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Hannah Wickham
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Basant Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Maria M. Merodio
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Karel Paukner
- Atherosclerosis Research Laboratory, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Eric W. Rowe
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Jodi D. Smith
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Amir Kol
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Austin Viall
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Mohamed Elbadawy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| | - Karin Allenspach
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| |
Collapse
|
5
|
Lopez GL, Van de Velde A, Hernández D, Bustillo S, Leiva L, Fusco LS. Potential low-impact immunogen for the production of anti-bothropic serum: Bothrops alternatus venom treated with Na 2EDTA. Toxicon 2024; 237:107351. [PMID: 37984681 DOI: 10.1016/j.toxicon.2023.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
This study proposes an alternative method using Na2EDTA to neutralize B. alternatus venom and using it as an immunogen from the start of inoculation to minimize side effects and enhance antivenom production. To achieve this, 1.8 mg/mL of B. alternatus venom (B.aV) was treated with Na2EDTA, and any extra chelate was eliminated by filtering the resulting solution through a Sephadex G-25 column. Two groups of BALB/c mice were immunized subcutaneously on days 1, 15 and 30 with B.aV/Na2EDTA (45, 90, 135 μg/mouse) or B.aV (15, 30, 45 μg/mouse), respectively. Both formulations were emulsified with Freund's adjuvant (complete first and incomplete-booster). Blood samples were collected from each mouse on days 14, 29, 41, and 50 post-first immunization, and serum was separated for antibody detection. Animals were then sacrificed and lungs removed for histological analysis (hematoxylin-eosin). Immunoblotting analysis revealed that the sera from mice inoculated with B.aV/Na2EDTA (anti-B.aV/Na2EDTA) recognized the major venom proteins (20-66 kDa) similarly to the sera from mice inoculated with B.aV (anti-B.aV). The enzyme-linked immunosorbent assay results indicated that the anti-B.aV/Na2EDTA had a higher titer (5.76 × 104) than those the anti-B.aV (1.92 × 104). Additionally, sera from animals immunized with B.aV/Na2EDTA significantly neutralized proteolytic, indirect hemolytic and coagulant activity (p < 0.05). Finally, histological examination of the lungs of mice inoculated with B.aV/Na2EDTA showed normal appearance, while animals inoculated with B.aV showed interstitial lung injury (p < 0.05). In conclusion, the B.aV/Na2EDTA formulation, free of excess Na2EDTA, proved to be a promising candidate as an immunogen for antivenom production.
Collapse
Affiliation(s)
- Gisela Lumila Lopez
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (CONICET; UNNE), Corrientes, Argentina
| | - Andrea Van de Velde
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (CONICET; UNNE), Corrientes, Argentina
| | - David Hernández
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral N° 2139, Corrientes, Argentina
| | - Soledad Bustillo
- Grupo de Investigaciones Biológicas y Moleculares (GIBYM), IQUIBA-NEA (CONICET; UNNE), Corrientes, Argentina; Facultad de Ciencias Exactas Naturales y Agrimensura (FaCENA-UNNE), Av. Liberta, 5470, Corrientes, Argentina
| | - Laura Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (CONICET; UNNE), Corrientes, Argentina; Facultad de Ciencias Exactas Naturales y Agrimensura (FaCENA-UNNE), Av. Liberta, 5470, Corrientes, Argentina
| | - Luciano Sebastian Fusco
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (CONICET; UNNE), Corrientes, Argentina; Facultad de Ciencias Exactas Naturales y Agrimensura (FaCENA-UNNE), Av. Liberta, 5470, Corrientes, Argentina.
| |
Collapse
|
6
|
Duque BR, Bruno SF, Ferreira V, Guedes TB, Machado C, Hamdan B. Venomous snakes of medical importance in the Brazilian state of Rio de Janeiro: habitat and taxonomy against ophidism. BRAZ J BIOL 2023; 83:e272811. [PMID: 37909585 DOI: 10.1590/1519-6984.272811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/19/2023] [Indexed: 11/03/2023] Open
Abstract
Snakebite envenoming is a major global health problem that kills or disables half a million people in the world's poorest countries. Identifying the biting snake and its habitat use is key to understanding snakebite eco-epidemiology and optimizing its clinical management. To prevent and combat the neglected snakebite disease, we characterize the morphology, geographic distribution, habitat use, and snakebites of medically important venomous snakes in the state of Rio de Janeiro (Brazil). Despite Philodryas spp. not being considered of medical importance by the Brazilian Ministry of Health, we also explore their data once the bites may require medical intervention, may cause death, and their consequences are underestimated. Methods: We assessed taxonomy and geographic data from specimens housed in scientific collections, the literature, and the Notifiable Diseases Information System. Our data revealed fragility in the morphological characters recommended to distinguish Bothrops jararaca from B. jararacussu, identify the subspecies of Crotalus durissus and distinguish the species of Philodryas. To help identify these species, we present an identification key to the venomous snake species from Rio de Janeiro based on the morphological data collected. We record the genera Bothrops and Micrurus in all mesoregions of the state. Here, we provide the first record of C. durissus in the Serrana region, supporting the hypothesis of geographic expansion of the species in the state. The crotalic antivenom must not be missing in Médio Paraíba, Centro-Sul Fluminense, and Serrana, where the rattlesnake C. durissus occurs. Bothrops bilineatus and Lachesis muta have historical records presented for the first time herein. However, these species are likely endangered or extinct in the state. There were 7,483 snakebites reported between 2001 and 2019, with an annual average of 393.8 cases. The Bothrops genus is responsible for the majority of accidents. The highest number of cases occurred in the Serrana region, the largest pole of family agriculture in Rio de Janeiro. We improve the identification of venomous snake species, better delimit their distribution, and update the number of cases of snakebites, thus providing greater precision in the attention to this problem in Rio de Janeiro. We emphasize the importance of clinical studies to test using bothropic-crotalic antivenom and heparin in all mesoregions to treat B. jararacussu envenomation; and mechanical ventilation, atropine, and anticholinesterases in the emergency health centers in the Metropolitana and Norte Fluminense regions due to the occurrence of the coral M. lemniscatus in these areas.
Collapse
Affiliation(s)
- B R Duque
- Instituto Vital Brazil - IVB, Laboratório de Coleções Biológicas e Biodiversidade, Diretoria Científica, Niterói, RJ, Brasil
- Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Programa de Pós-graduação em Ecoturismo e Conservação, Rio de Janeiro, RJ, Brasil
| | - S F Bruno
- Universidade Federal Fluminense - UFF, Faculdade de Veterinária, Niterói, RJ, Brasil
| | - V Ferreira
- Instituto Vital Brazil - IVB, Laboratório de Coleções Biológicas e Biodiversidade, Diretoria Científica, Niterói, RJ, Brasil
| | - T B Guedes
- Universidade Estadual de Campinas - UNICAMP, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
- University of Gothenburg, Gothenburg Global Biodiversity Center - GGBC, Department of Biological and Environmental Sciences, Göteborg, Sweden
| | - C Machado
- Instituto Vital Brazil - IVB, Laboratório de Coleções Biológicas e Biodiversidade, Diretoria Científica, Niterói, RJ, Brasil
| | - B Hamdan
- Instituto Vital Brazil - IVB, Laboratório de Coleções Biológicas e Biodiversidade, Diretoria Científica, Niterói, RJ, Brasil
- Universidade Federal do Rio de Janeiro - UFRJ, Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Hemostase e Venenos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
7
|
Guile L, Lee A, Gutiérrez JM. Factors associated with mortality after snakebite envenoming in children: a scoping review. Trans R Soc Trop Med Hyg 2023; 117:617-627. [PMID: 37264929 PMCID: PMC10472879 DOI: 10.1093/trstmh/trad031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Snakebite envenoming is an important public health issue in many tropical and subtropical countries, where the burden of morbidity and mortality falls particularly on impoverished rural communities. Children are an especially vulnerable group. This scoping review provides an overview of the extent, type and content of peer-reviewed evidence regarding factors associated with mortality in snakebite-envenomed children. A comprehensive literature search of MEDLINE and the Global Index Medicus yielded 623 articles, of which 15 met the criteria for inclusion; 67% of studies were conducted in India, with the remaining studies taking place in Papua New Guinea, Morocco and The Gambia. There was a notable scarcity of eligible studies from sub-Saharan Africa and Latin America despite the high burden of envenoming in these regions. The risk factors for mortality that were identified by the greatest number of studies were younger patient age (n=4), delay in administration of antivenom (n=4) and acute kidney injury (n=3). Identification of poor prognostic factors can assist clinicians in making timely referrals to centres with paediatric critical care capability. Future research must address the lack of studies from key geographical regions so that evidence-based improvements to the care of this vulnerable group can be implemented.
Collapse
Affiliation(s)
- Lucy Guile
- Peninsula Medical School, University of Plymouth, Plymouth PL6 8BU, UK
- Department of Anaesthesia, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK
| | - Adrienne Lee
- Peninsula Medical School, University of Plymouth, Plymouth PL6 8BU, UK
- Department of Anaesthesia, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK
| | - José María Gutiérrez
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
8
|
Cañas CA, Castaño-Valencia S, Castro-Herrera F. The Colombian bushmasters Lachesis acrochorda (García, 1896) and Lachesis muta (Linnaeus, 1766): Snake species, venoms, envenomation, and its management. Toxicon 2023; 230:107152. [PMID: 37178796 DOI: 10.1016/j.toxicon.2023.107152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In Colombia, there are two species of bushmaster snakes, Lachesis acrochorda, which is distributed mainly in the west of the country (in the Choco region), and Lachesis muta in the southeast (in the Amazon and Orinoquia region), whose presence has been reduced due to the destruction of their habitats. Captive maintenance is challenging, making it difficult to obtain their venom for study and antivenom manufacturing. They are the largest vipers in the world. The occurrence of human envenomation is quite rare, but when it occurs, it is associated with high mortality. Bushmaster venom is necrotizing, hemorrhagic, myotoxic, hemolytic, and cardiovascular depressant. Due to the presence of bradycardia, hypotension, emesis, and diarrhea in some patients (Lachesis syndrome), the possibility of a vagal or cholinergic effect is raised. The treatment of envenomation is hindered by the scarcity of antivenom and the need to use high doses. A review of the most relevant biological and medical aspects of bushmaster snakes is presented, mainly for those occurring in Colombia, to facilitate their recognition and raise awareness about the need for special attention to improve their conservation and advance scientific knowledge, in particular, about their venom.
Collapse
Affiliation(s)
- Carlos A Cañas
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, 760031, Colombia; Fundación Valle del Lili, Departamento de Reumatología, Cali, 760026, Colombia.
| | - Santiago Castaño-Valencia
- Department of Physiological Sciences, Department of Health Sciences, Universidad del Valle. Cali 760042, Colombia; Laboratorio de Herpetología y Toxinología, Universidad del Valle. Cali 760042, Colombia
| | | |
Collapse
|
9
|
Antibodies against a single fraction of Micrurus dumerilii venom neutralize the lethal effect of whole venom. Toxicol Lett 2023; 374:77-84. [PMID: 36528173 DOI: 10.1016/j.toxlet.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The coralsnake Micrurus dumerilii (Elapidae) is reported to cause envenomings of medical importance. Previous studies characterized the protein composition of its venom, with phospholipase A2 (PLA2) proteins the most abundant. However, it is unknown which venom components are responsible for its lethal toxicity. Fractionation of M. dumerilii venom from Colombia was carried out using RP-HPLC and each fraction was screened for lethal effect in mice at a dose of 20 μg by intraperitoneal route. Results showed that only one fraction, F9, was lethal. This fraction displayed PLA2 activity, induced indirect hemolysis in vitro, as well as edema and myotoxicity in vivo. SDS-PAGE of unreduced F9 evidenced two bands of 8 and 15 kDa, respectively, consistent with the detection of proteins with masses of 13,217.77 Da, 7144.06 Da, and 7665.55 Da. Tryptic digestion of F9 followed by nESI-MS/MS revealed peptide sequences matching proteins of the three-finger toxin (3FTx) and PLA2 families. Immunization of a rabbit with F9 proteins elicited antibody titers up to 1:10,000 by ELISA. After serum fractionation with caprylic acid, the obtained IgG was able to neutralize the lethal effect of the complete venom of M. dumerilii using a challenge of 2 ×LD50 at the IgG/venom ratio of 50:1 (w/w). In conclusion, present results show that the lethal effect of M. dumerilii venom in mice is mainly driven by one fraction which contains 3FTx and PLA2 proteins. The antibodies produced against this fraction cross-recognized other PLA2s and neutralized the lethal effect of whole M. dumerilii venom, pointing out to the potential usefulness of F9 as a relevant antigen for improving current coral snake antivenoms.
Collapse
|
10
|
Palasuberniam P, Tan KY, Chan YW, Blanco FB, Tan CH. Decomplexation proteomic analysis and purity assessment of a biologic for snakebite envenoming: Philippine Cobra Antivenom. Trans R Soc Trop Med Hyg 2023:6972591. [PMID: 36611268 DOI: 10.1093/trstmh/trac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Philippine Cobra Antivenom (PCAV) is the only snake antivenom manufactured in the Philippines. It is used clinically to treat envenoming caused by the Philippine Spitting Cobra (Naja philippinensis). While PCAV is effective pharmacologically, it is crucial to ensure the safety profile of this biologic that is derived from animal plasma. METHODS This study examined the composition purity of PCAV through a decomplexation proteomic approach, applying size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS SDS-PAGE and SEC showed that the major protein in PCAV (constituting ∼80% of total proteins) is approximately 110 kDa, consistent with the F(ab')2 molecule. This protein is reducible into two subunits suggestive of the light and heavy chains of immunoglobulin G. LC-MS/MS further identified the proteins as equine immunoglobulins, representing the key therapeutic ingredient of this biologic product. However, protein impurities, including fibrinogens, alpha-2-macroglobulins, albumin, transferrin, fibronectin and plasminogen, were detected at ∼20% of the total antivenom proteins, unveiling a concern for hypersensitivity reactions. CONCLUSIONS Together, the findings show that PCAV contains a favorable content of F(ab')2 for neutralization, while the antibody purification process awaits improvement to minimize the presence of protein impurities.
Collapse
Affiliation(s)
- Praneetha Palasuberniam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.,Venom Research & Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yi Wei Chan
- Department of Emergency Medicine, Ospital ng Muntinlupa, 1781 Muntinlupa, Manila, Philippines
| | - Francis Bonn Blanco
- Department of Emergency Medicine, Ospital ng Muntinlupa, 1781 Muntinlupa, Manila, Philippines.,Department of Internal Medicine, Davao Medical School Foundation Hospital, 8000 Davao City, Philippines
| | - Choo Hock Tan
- Venom Research & Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
A current perspective on snake venom composition and constituent protein families. Arch Toxicol 2023; 97:133-153. [PMID: 36437303 DOI: 10.1007/s00204-022-03420-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Collapse
|
12
|
dos Santos-Silva E, Torres-Rêgo M, Gláucia-Silva F, Feitosa RC, Lacerda AF, Rocha HADO, Fernandes-Pedrosa MDF, da Silva-Júnior AA. Cationic PLGA Nanoparticle Formulations as Biocompatible Immunoadjuvant for Serum Production and Immune Response against Bothrops jararaca Venom. Toxins (Basel) 2022; 14:toxins14120888. [PMID: 36548785 PMCID: PMC9786128 DOI: 10.3390/toxins14120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Snakebite envenoming represents a worldwide public health issue. Suitable technologies have been investigated for encapsulated recombinant or native proteins capable of inducing an effective and long-lasting adaptive immune response. Nanoparticles are colloidal dispersions that have been used as drug delivery systems for bioactive biological compounds. Venom-loaded nanoparticles modulate the protein release and activate the immune response to produce specific antibodies. In this study, biocompatible cationic nanoparticles with Bothrops jararaca venom were prepared to be used as a novel immunoadjuvant that shows a similar or improved immune response in antibody production when compared to a conventional immunoadjuvant (aluminum hydroxide). We prepared stable, small-sized and spherical particles with high Bothrops jararaca venom protein association efficiency. The high protein loading efficiency, electrophoresis, and zeta potential results demonstrated that Bothrops jararaca venom is adsorbed on the particle surface, which remained as a stable colloidal dispersion over 6 weeks. The slow protein release occurred and followed parabolic diffusion release kinetics. The in vivo studies demonstrated that venom-loaded nanoparticles were able to produce an immune response similar to that of aluminum hydroxide. The cationic nanoparticles (CNp) as carriers of bioactive molecules, were successfully developed and demonstrated to be a promising immunoadjuvant.
Collapse
Affiliation(s)
- Emanuell dos Santos-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Manoela Torres-Rêgo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Fiamma Gláucia-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Renata Carvalho Feitosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Ariane Ferreira Lacerda
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | | | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
- Correspondence:
| |
Collapse
|
13
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
14
|
Offor BC, Muller B, Piater LA. A Review of the Proteomic Profiling of African Viperidae and Elapidae Snake Venoms and Their Antivenom Neutralisation. Toxins (Basel) 2022; 14:723. [PMID: 36355973 PMCID: PMC9694588 DOI: 10.3390/toxins14110723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease (NTD) that results from the injection of snake venom of a venomous snake into animals and humans. In Africa (mainly in sub-Saharan Africa), over 100,000 envenomings and over 10,000 deaths per annum from snakebite have been reported. Difficulties in snakebite prevention and antivenom treatment are believed to result from a lack of epidemiological data and underestimated figures on snakebite envenoming-related morbidity and mortality. There are species- and genus-specific variations associated with snake venoms in Africa and across the globe. These variations contribute massively to diverse differences in venom toxicity and pathogenicity that can undermine the efficacy of adopted antivenom therapies used in the treatment of snakebite envenoming. There is a need to profile all snake venom proteins of medically important venomous snakes endemic to Africa. This is anticipated to help in the development of safer and more effective antivenoms for the treatment of snakebite envenoming within the continent. In this review, the proteomes of 34 snake venoms from the most medically important snakes in Africa, namely the Viperidae and Elipdae, were extracted from the literature. The toxin families were grouped into dominant, secondary, minor, and others based on the abundance of the protein families in the venom proteomes. The Viperidae venom proteome was dominated by snake venom metalloproteinases (SVMPs-41%), snake venom serine proteases (SVSPs-16%), and phospholipase A2 (PLA2-17%) protein families, while three-finger toxins (3FTxs-66%) and PLA2s (16%) dominated those of the Elapidae. We further review the neutralisation of these snake venoms by selected antivenoms widely used within the African continent. The profiling of African snake venom proteomes will aid in the development of effective antivenom against snakebite envenoming and, additionally, could possibly reveal therapeutic applications of snake venom proteins.
Collapse
Affiliation(s)
- Benedict C. Offor
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Beric Muller
- South Africa Venom Suppliers CC, Louis Trichardt 0920, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
15
|
Hung WH, Sung J, Chen WY, Chiu LT, Yip HT, Wei JCC, Hung YM, Chang R. Risk of stroke with antivenom usage after venomous snakebite in Taiwan: a population-based cohort study. QJM 2022; 115:587-595. [PMID: 34613415 DOI: 10.1093/qjmed/hcab259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/03/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Stroke is a rare complication of snakebites, but may lead to serious sequelae. We aimed to explore the relationship between venomous snakebite and the risk for acute stroke, in a nationwide population-based cohort study. METHODS This retrospective cohort study used claims data between 1 January 2000 and 31 December 2012, from the Taiwan National Health Insurance Research Database. The study included data of patients aged 18 years or older with venomous snakebite (n = 535), matched for propensity score with controls without venomous snakebite (n = 2140). The follow-up period was the duration from the initial diagnosis of venomous snakebite and administration of antivenom to the date of an acute stroke, or until 31 December 2013. The competing risk model was used to estimate the hazard ratio (HR) and 95% confidence intervals (CIs) of stroke, ischemic stroke and hemorrhagic stroke, after adjusting for demographic and other possible stroke risk factors. RESULTS The adjusted HR for the venomous snakebite group compared with the control group was 2.68 for hemorrhagic stroke (95% CI = 1.35-5.33). Stratified analysis showed that the older age group (>65 years old) had a higher risk of hemorrhagic stroke. A 2.72-fold significant increase in the risk for hemorrhagic stroke was observed following venomous snakebite with antivenom usage (95% CI = 1.41-5.26). CONCLUSION Venomous snakebite is associated with an increased risk of hemorrhagic stroke after the use of antivenom. Further study of the underlying mechanism is warranted.
Collapse
Affiliation(s)
- W-H Hung
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - J Sung
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospitals, Kaohsiung, Taiwan
| | - W-Y Chen
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - L-T Chiu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - H-T Yip
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - J C-C Wei
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Y-M Hung
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospitals, Kaohsiung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - R Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan
| |
Collapse
|
16
|
da Costa CBP, Carvalho VRD, Ferreira LLC, Mattos JLC, Garcia LDM, Antunes MDS, Martins FJ, Ratcliffe NA, Cisne R, Castro HC. Production of hyperimmune sera: a study of digestion and fractionation methodologies for the purification process of heterologous immunoglobulins. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Camila Braz Pereira da Costa
- Instituto Vital Brazil, Niterói, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | | | - Francislene Juliana Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
| | - Norman A. Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Department of Biosciences, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Helena C. Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
17
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
18
|
Chowdhury A, Youngman NJ, Liu J, Lewin MR, Carter RW, Fry BG. The relative efficacy of chemically diverse small-molecule enzyme-inhibitors against anticoagulant activities of Black Snake (Pseudechis spp.) venoms. Toxicol Lett 2022; 366:26-32. [PMID: 35788045 DOI: 10.1016/j.toxlet.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Snakebite remains a worldwide public health burden and a severely neglected tropical disease. Recent research has begun to focus on the potential use of repurposed small-molecule enzyme-inhibitors as early treatments to neutralise the effects of snake venoms. Black snakes (Pseudechis spp.) are a widespread and dangerously venomous group found throughout Australia and New Guinea. Utilising validated coagulation assays, our study assessed the efficacy of two chemically different small molecule inhibitors, a phospholipase A2 inhibitor (varespladib) and a metalloproteinase inhibitor (prinomastat), in vitro neutralisation of the anticoagulant prothrombinase-inhibiting activity of venom from seven species within the Pseudechis genus (P. australis, P. butleri, P. coletti, P. guttatus, P. papuanus, P.rossignolii, P. sp (NT).). Varespladib was shown to be highly effective at neutralising this anticoagulant activity for all seven species, but with P. coletti notably less so than the others. In contrast, prinomastat showed strong neutralisation for five out of the seven species, but was ineffective at neutralising the activity of P. coletti or P. rossignolii venoms. This suggests that varespladib binds to a highly conserved site but that prinomastat binds to a more variable site. These results build upon recent literature indicating that metalloproteinase inhibitors have cross-neutralising potential towards snake venom phospholipase A2 toxins, but with higher degrees of variability that PLA2-specific inhibitors. An important caveat is that these are in vitro tests and while suggestive of potential clinical utility, in vivo animal testing and clinical trials are required as future work.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia; Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh.
| | - Nicholas J Youngman
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia
| | - Jiaojiao Liu
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia
| | - Matthew R Lewin
- California Academy of Sciences, San Francisco, CA, 94118, USA; Ophirex, Inc., Corte Madera, CA, 94925, USA
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia.
| |
Collapse
|
19
|
de Souza JF, Santana MVDS, da Silva ACR, Donza MRH, Ferreira VF, Ferreira SB, Sanchez EF, Castro HC, Fuly AL. Study on the synthesis and structure-activity relationship of 1,2,3-triazoles against toxic activities of Bothrops jararaca venom. Z NATURFORSCH C 2022; 77:459-471. [PMID: 35767726 DOI: 10.1515/znc-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
Snakebite envenoming is a health concern and has been a neglected tropical disease since 2017, according to the World Health Organization. In this study, we evaluated the ability of ten 1,2,3-triazole derivatives AM001 to AM010 to inhibit pertinent in vitro (coagulant, hemolytic, and proteolytic) and in vivo (hemorrhagic, edematogenic, and lethal) activities of Bothrops jararaca venom. The derivatives were synthesized, and had their molecular structures fully characterized by CHN element analysis, Fourier-transform infrared spectroscopy and Nuclear magnetic resonance. The derivatives were incubated with the B. jararaca venom (incubation protocol) or administered before (prevention protocol) or after (treatment protocol) the injection of B. jararaca venom into the animals. Briefly, the derivatives were able to inhibit the main toxic effects triggered by B. jararaca venom, though with varying efficacies, and they were devoid of toxicity through in vivo, in silico or in vitro analyses. However, it seemed that the derivatives AM006 or AM010 inhibited more efficiently hemorrhage or lethality, respectively. The derivatives were nontoxic. Therefore, the 1,2,3-triazole derivatives may be useful as an adjuvant to more efficiently treat the local toxic effects caused by B. jararaca envenoming.
Collapse
Affiliation(s)
- Jenifer Frouche de Souza
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Ana Cláudia Rodrigues da Silva
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Federal Fluminense University, Niterói, RJ, Brazil
| | - Sabrina Baptista Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, RJ, RJ, Brazil
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Helena Carla Castro
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Post-Graduate Program in Pathology, University Hospital Antônio Pedro, Federal Fluminense University, Niterói, RJ, Brazil
| | - André Lopes Fuly
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| |
Collapse
|
20
|
Youngman NJ, Peng YH, Harris RJ, Jones L, Llinas J, Haworth M, Gillett A, Fry BG. Differential coagulotoxic and neurotoxic venom activity from species of the arboreal viperid snake genus Bothriechis (palm-pitvipers). Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109326. [PMID: 35248757 DOI: 10.1016/j.cbpc.2022.109326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
The viperid snake genus Bothriechis consists of eleven species distributed among Central and South America, living across low and high-altitude habitats. Despite Bothriechis envenomations being prominent across the Central and South American region, the functional effects of Bothriechis venoms are poorly understood. Thus, the aim of this study was to investigate the coagulotoxic and neurotoxic activities of Bothriechis venoms to fill this knowledge gap. Coagulotoxic investigations revealed Bothriechis nigroviridis and B. schlegelii to have pseudo-procoagulant venom activity, forming weak clots that rapidly break down, thereby depleting fibrinogen levels and thus contributing to a net anticoagulant state. While one sample of B. lateralis also showed weaker pseudo-procoagulant activity, directly clotting fibrinogen, two samples of B. lateralis venom were anticoagulant through the inhibition of thrombin and factor Xa activity. Differential efficacy of PoliVal-ICP antivenom was also observed, with the pseudo-procoagulant effect of B. nigroviridis venom poorly neutralised, despite this same activity in the venom of B. schlegelii being effectively neutralised. Significant specificity of these fibrinogen cleaving toxins was also observed, with no activity upon model amphibian, avian, lizard or rodent plasma observed. However, upon avian plasma the venom of B. nigroviridis exerted a complete anticoagulant effect, in contrast to the pseudo-procoagulant effect seen on human plasma. Neurotoxic investigations revealed B. schlegelii to be unique among the genus in having potent binding to the orthosteric site of the alpha-1 postsynaptic nicotinic acetylcholine receptor (with B. lateralis having a weaker but still discernible effect). This represents the first identification of postsynaptic nAChR neurotoxic activity for Bothriechis. In conclusion this study identifies notable differential activity within the coagulotoxic and postsynaptic neurotoxic activity of Bothriechis venoms, supporting previous research, and highlights the need for further studies with respect to antivenom efficacy as well as coagulotoxin specificity for Bothriechis venoms.
Collapse
Affiliation(s)
- Nicholas J Youngman
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yin-Hsuan Peng
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lee Jones
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Mark Haworth
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Amber Gillett
- FaunaVet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
21
|
Kakati H, Patra A, Kalita B, Chanda A, Rapole S, Mukherjee AK. A comparison of two different analytical workflows to determine the venom proteome composition of Naja kaouthia from North-East India and immunological profiling of venom against commercial antivenoms. Int J Biol Macromol 2022; 208:275-287. [PMID: 35331793 DOI: 10.1016/j.ijbiomac.2022.03.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The Indian monocled cobra (Naja kaouthia) is one of the most prevalent venomous snakes in northeast India (NEI) and is the cause of many fatalities. The composition of NEI N. kaouthia venom (NkV) was deciphered using two different proteomic approaches: (i) 1D SDS-PAGE coupled to label-free quantification of protein bands using stringent identification criteria and (ii) reversed-phase high-performance liquid chromatography (RP-HPLC) followed by quantification based on area under the RP-HPLC peaks. The proteomic data from both strategies were compared. Proteomic analyses from both workflows identified 32 proteins (toxins) distributed over 10-14 snake venom protein families in NEI NkV. The relative abundances of the venom proteins determined from the analytical workflows coincided with the densitometry band intensities of the NEI NkV. Phospholipase A2 (13.1-16.0%) and three-finger toxins (58.5-64.2%) represented the most abundant enzymatic and non-enzymatic proteins in NEI NkV, respectively. Immuno-cross-reactivity studies by enzyme-linked immunoassay and immunoblot analyses pointed to the poor efficacy of commercial PAVs in recognizing the low molecular mass (<15 kDa) toxins of NEI NkV. Spectrofluorometric titration determined the presence of NEI NkV-specific antibodies in commercial PAV, at a level that was higher than that previously reported for eastern India NkV-specific antibodies in commercial antivenom.
Collapse
Affiliation(s)
- Hirakjyoti Kakati
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Aparup Patra
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Bhargab Kalita
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, Kerala, India; Proteomics Lab, National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Abhishek Chanda
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India.
| |
Collapse
|
22
|
Korah MC, Hima SP, V SR, Anil A, Harikrishnan VS, Krishnan LK. Pharmacokinetics and pharmacodynamics of avian egg-yolk derived pure anti-snake venom in healthy and disease animal-model. J Pharm Sci 2022; 111:1565-1576. [DOI: 10.1016/j.xphs.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
23
|
BthTX-II from Bothrops jararacussu venom has variants with different oligomeric assemblies: An example of snake venom phospholipases A 2 versatility. Int J Biol Macromol 2021; 191:255-266. [PMID: 34547312 DOI: 10.1016/j.ijbiomac.2021.09.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Phospholipases A2 (PLA2s) are found in almost every venomous snake family. In snakebites, some PLA2s can quickly cause local myonecrosis, which may lead to permanent sequelae if antivenom is administered belatedly. They hydrolyse phospholipids in membranes through a catalytic calcium ions-dependent mechanism. BthTX-II is a basic PLA2 and the second major component in the venom of Bothrops jararacussu. Herein, using the software SEQUENCE SLIDER, which integrates crystallographic, mass spectrometry and genetic data, we characterized the primary, tertiary and quaternary structure of two BthTX-II variants (called a and b), which diverge in 7 residues. Crystallographic structure BthTX-IIa is in a Tense-state with its distorted calcium binding loop buried in the dimer interface, contrarily, the novel BthTX-IIb structure is a monomer in a Relax-state with a fatty acid in the hydrophobic channel. Structural data in solution reveals that both variants are monomeric in neutral physiological conditions and mostly dimeric in an acidic environment, being catalytic active in both situations. Therefore, we propose two myotoxic mechanisms for BthTX-II, a catalytic one associated with the monomeric assembly, whereas the other has a calcium independent activity related to its C-terminal region, adopting a dimeric conformation similar to PLA2-like proteins.
Collapse
|
24
|
Gómez A, Solano G, Chang-Castillo A, Chacón D, Corrales G, Segura Á, Estrada R, León G. Intraspecific variability of the Central American rattlesnake (Crotalus simus) venom and its usefulness to obtain a representative standard venom. Toxicon 2021; 202:20-26. [PMID: 34562491 DOI: 10.1016/j.toxicon.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Snake venoms are mixtures of proteins whose physicochemical features confer them toxicity and immunogenicity. Animals (e.g., horses or sheep) immunized with snake venoms produce antibodies towards the venom proteins. Since these antibodies can neutralize the venom toxicity, they have been used to formulate snake antivenoms. The efficacy of the antivenoms is widely accepted, and standard venoms are expected to be representative of the snake's population that inhabit in the region where the antivenom is intended to be used. The representativeness of a single venom collected from a Crotalus simus snake, and its usefulness as standard venom to produce an antivenom is evaluated. The use of an "average venom" might be as representative of the population intended to be used, as the standard venom composed by many venom samples. Variations in the relative abundance concentration of crotoxin in the C. simus leads to different clinical manifestations, as well as differences in the neutralization efficacy of the antivenoms. A monovalent anti-Cs antivenom was produced from a single venom C. simus specimen, and its efficacy in neutralizing the lethal activity of 30 C. simus snakes was tested. Despite the variations in the relative abundance content of crotoxin found in the proteomes, the monovalent anti-Cs antivenom was successful in neutralize the toxicity caused by the variations on the venom composition of three different snake population used. Interestingly, it seems that the sex is not a key factor in the lethality of the venoms tested. The concept of representative venom mixtures for immunization should be revised for the case of C. simus on the populations found in Costa Rica, since it might use as less as one representative individual whose venom covers the mainly toxic enzymes.
Collapse
Affiliation(s)
- Aarón Gómez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Arturo Chang-Castillo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Danilo Chacón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Greivin Corrales
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Estrada
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
25
|
Pintor AF, Ray N, Longbottom J, Bravo-Vega CA, Yousefi M, Murray KA, Ediriweera DS, Diggle PJ. Addressing the global snakebite crisis with geo-spatial analyses - Recent advances and future direction. Toxicon X 2021; 11:100076. [PMID: 34401744 PMCID: PMC8350508 DOI: 10.1016/j.toxcx.2021.100076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
Venomous snakebite is a neglected tropical disease that annually leads to hundreds of thousands of deaths or long-term physical and mental ailments across the developing world. Insufficient data on spatial variation in snakebite risk, incidence, human vulnerability, and accessibility of medical treatment contribute substantially to ineffective on-ground management. There is an urgent need to collect data, fill knowledge gaps and address on-ground management problems. The use of novel, and transdisciplinary approaches that take advantage of recent advances in spatio-temporal models, 'big data', high performance computing, and fine-scale spatial information can add value to snakebite management by strategically improving our understanding and mitigation capacity of snakebite. We review the background and recent advances on the topic of snakebite related geospatial analyses and suggest avenues for priority research that will have practical on-ground applications for snakebite management and mitigation. These include streamlined, targeted data collection on snake distributions, snakebites, envenomings, venom composition, health infrastructure, and antivenom accessibility along with fine-scale models of spatio-temporal variation in snakebite risk and incidence, intraspecific venom variation, and environmental change modifying human exposure. These measures could improve and 'future-proof' antivenom production methods, antivenom distribution and stockpiling systems, and human-wildlife conflict management practices, while simultaneously feeding into research on venom evolution, snake taxonomy, ecology, biogeography, and conservation.
Collapse
Affiliation(s)
- Anna F.V. Pintor
- Division of Data, Analytics and Delivery for Impact (DDI), World Health Organization, Geneva, Switzerland
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Carlos A. Bravo-Vega
- Research Group in Mathematical and Computational Biology (BIOMAC), Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Masoud Yousefi
- School of Biology, College of Science, University of Tehran, Iran
| | - Kris A. Murray
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, UK
- MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Atlantic Blvd, Fajara, Gambia
| | - Dileepa S. Ediriweera
- Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Peter J. Diggle
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
26
|
Eskafi AH, Bagheri KP, Behdani M, Yamabhai M, Shahbazzadeh D, Kazemi-Lomedasht F. Development and characterization of human single chain antibody against Iranian Macrovipera lebetina snake venom. Toxicon 2021; 197:106-113. [DOI: 10.1016/j.toxicon.2021.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
|
27
|
Chowdhury A, Zdenek CN, Lewin MR, Carter R, Jagar T, Ostanek E, Harjen H, Aldridge M, Soria R, Haw G, Fry BG. Venom-Induced Blood Disturbances by Palearctic Viperid Snakes, and Their Relative Neutralization by Antivenoms and Enzyme-Inhibitors. Front Immunol 2021; 12:688802. [PMID: 34177943 PMCID: PMC8222980 DOI: 10.3389/fimmu.2021.688802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Palearctic vipers are medically significant snakes in the genera Daboia, Macrovipera, Montivipera, and Vipera which occur throughout Europe, Central Asia, Near and Middle East. While the ancestral condition is that of a small-bodied, lowland species, extensive diversification has occurred in body size, and niche specialization. Using 27 venom samples and a panel of in vitro coagulation assays, we evaluated the relative coagulotoxic potency of Palearctic viper venoms and compared their neutralization by three antivenoms (Insoserp Europe, VIPERFAV and ViperaTAb) and two metalloprotease inhibitors (prinomastat and DMPS). We show that variation in morphology parallels variation in the Factor X activating procoagulant toxicity, with the three convergent evolutions of larger body sizes (Daboia genus, Macrovipera genus, and Vipera ammodytes uniquely within the Vipera genus) were each accompanied by a significant increase in procoagulant potency. In contrast, the two convergent evolutions of high altitude specialization (the Montivipera genus and Vipera latastei uniquely within the Vipera genus) were each accompanied by a shift away from procoagulant action, with the Montivipera species being particularly potently anticoagulant. Inoserp Europe and VIPERFAV antivenoms were both effective against a broad range of Vipera species, with Inoserp able to neutralize additional species relative to VIPERFAV, reflective of its more complex antivenom immunization mixture. In contrast, ViperaTAb was extremely potent in neutralizing V. berus but, reflective of this being a monovalent antivenom, it was not effective against other Vipera species. The enzyme inhibitor prinomastat efficiently neutralized the metalloprotease-driven Factor X activation of the procoagulant venoms. In contrast, DMPS (2,3-dimercapto-1-propanesulfonic acid), which as been suggested as another potential treatment option in the absence of antivenom, DMPS failed against all venoms tested. Overall, our results highlight the evolutionary variations within Palearctic vipers and help to inform clinical management of viper envenomation.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | - Matthew R. Lewin
- California Academy of Sciences, San Francisco, CA, United States
- Ophirex, Inc., Corte Madera, CA, United States
| | | | | | | | - Hannah Harjen
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Grace Haw
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
28
|
Doxycycline treatment reestablishes renal function of Wistar rats in experimental envenomation with Bothrops jararacussu venom. Toxicon 2021; 199:20-30. [PMID: 34058237 DOI: 10.1016/j.toxicon.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Acute kidney injury is one of the main complications of ophidian accidents and the leading cause of death in patients who survive the initial damage effects of venom. The hypothesis proposed in this investigation is that the pharmacological repositioning of doxycycline (doxy) attenuates renal injury provoked by Bothrops jararacussu (Bj) venom. Male Wistar rats were subjected or not (control) to experimental envenomation with Bj venom (3.5 mg/kg, im). Doxy (3 mg/kg, ip) was administered 2 h after envenoming. Envenomation with Bj venom promoted tissue damage in the renal cortex (moderate degree, score 3) in 24 h associated with decreased glomerular and tubular function, which promoted proteinuria and polyuria. Doxy treatment prevented the increase in urinary volume in 3 times, the increase in plasma creatinine in 33%, the increase in blood urea-nitrogen accumulation in 65%, the increase in urinary Na+ excretion in 2 times, marked proteinuria and kidney cortex injury induced by Bj envenomation. Bj venom promoted increase in protein content (66%) and reduction of 45% (Na++K+)-ATPase activity in the renal cortex. The enzyme was detected mainly in the luminal membrane. Doxy treatment was effective in preventing the mentioned alterations, maintaining (Na++K+)-ATPase in the basolateral membranes.
Collapse
|
29
|
Patra A, Mukherjee AK. Assessment of snakebite burdens, clinical features of envenomation, and strategies to improve snakebite management in Vietnam. Acta Trop 2021; 216:105833. [PMID: 33485869 DOI: 10.1016/j.actatropica.2021.105833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022]
Abstract
The sheer paucity of scientific documentation of herpetofauna in Vietnam and the rudimentary healthcare response to snakebite have stimulated this review. Over six decades of data culled from public data bases and search engines, have been used to assess snakebite burdens, clinical features of envenomation, and strategies for snakebite management in Vietnam. In addition, biochemical and proteomic analyses to decipher venom composition, rapid analytical techniques to be used for clinical diagnosis of snakebite in Vietnam have been discussed in detail. The assessment of efficacy, safety, and quality of commercial antivenom produced in Vietnam and improvement of antivenom production to meet the national requirement has been critically examined. It is apparent that snake bite incidence in Vietnam is exacerbated by mismatch in demand and supply of antivenom therapy, insufficient medical facilities, preference for traditional healers and poor management of clinical records. The impediments arising from geographical and species-specific variation in venom composition can be overcome by the 'Omics approach', and scientific documentation of pathophysiological manifestations post envenomation. The development of next generation of therapeutics, encouraging clinical research, novel approaches and social awareness against snakebite and its treatments have been suggested to significantly reduce the snakebite mortality and morbidity in this region.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India.
| |
Collapse
|
30
|
Seneci L, Zdenek CN, Chowdhury A, Rodrigues CFB, Neri-Castro E, Bénard-Valle M, Alagón A, Fry BG. A Clot Twist: Extreme Variation in Coagulotoxicity Mechanisms in Mexican Neotropical Rattlesnake Venoms. Front Immunol 2021; 12:612846. [PMID: 33815366 PMCID: PMC8011430 DOI: 10.3389/fimmu.2021.612846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Rattlesnakes are a diverse clade of pit vipers (snake family Viperidae, subfamily Crotalinae) that consists of numerous medically significant species. We used validated in vitro assays measuring venom-induced clotting time and strength of any clots formed in human plasma and fibrinogen to assess the coagulotoxic activity of the four medically relevant Mexican rattlesnake species Crotalus culminatus, C. mictlantecuhtli, C. molossus, and C. tzabcan. We report the first evidence of true procoagulant activity by Neotropical rattlesnake venom in Crotalus culminatus. This species presented a strong ontogenetic coagulotoxicity dichotomy: neonates were strongly procoagulant via Factor X activation, whereas adults were pseudo-procoagulant in that they converted fibrinogen into weak, unstable fibrin clots that rapidly broke down, thereby likely contributing to net anticoagulation through fibrinogen depletion. The other species did not activate clotting factors or display an ontogenetic dichotomy, but depleted fibrinogen levels by cleaving fibrinogen either in a destructive (non-clotting) manner or via a pseudo-procoagulant mechanism. We also assessed the neutralization of these venoms by available antivenom and enzyme-inhibitors to provide knowledge for the design of evidence-based treatment strategies for envenomated patients. One of the most frequently used Mexican antivenoms (Bioclon Antivipmyn®) failed to neutralize the potent procoagulant toxic action of neonate C. culminatus venom, highlighting limitations in snakebite treatment for this species. However, the metalloprotease inhibitor Prinomastat substantially thwarted the procoagulant venom activity, while 2,3-dimercapto-1-propanesulfonic acid (DMPS) was much less effective. These results confirm that venom-induced Factor X activation (a procoagulant action) is driven by metalloproteases, while also suggesting Prinomastat as a more promising potential adjunct treatment than DMPS for this species (with the caveat that in vivo studies are necessary to confirm this potential clinical use). Conversely, the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibited the direct fibrinogen cleaving actions of C. mictlantecuhtli venom, thereby revealing that the pseudo-procoagulant action is driven by kallikrein-type serine proteases. Thus, this differential ontogenetic variation in coagulotoxicity patterns poses intriguing questions. Our results underscore the need for further research into Mexican rattlesnake venom activity, and also highlights potential limitations of current antivenom treatments.
Collapse
Affiliation(s)
- Lorenzo Seneci
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Institute of Biology Leiden (IBL), Leiden University, Leiden, Netherlands
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Caroline F B Rodrigues
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
31
|
Current research into snake antivenoms, their mechanisms of action and applications. Biochem Soc Trans 2021; 48:537-546. [PMID: 32196542 DOI: 10.1042/bst20190739] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/11/2023]
Abstract
Snakebite is a major public health issue in the rural tropics. Antivenom is the only specific treatment currently available. We review the history, mechanism of action and current developments in snake antivenoms. In the late nineteenth century, snake antivenoms were first developed by raising hyperimmune serum in animals, such as horses, against snake venoms. Hyperimmune serum was then purified to produce whole immunoglobulin G (IgG) antivenoms. IgG was then fractionated to produce F(ab) and F(ab')2 antivenoms to reduce adverse reactions and increase efficacy. Current commercial antivenoms are polyclonal mixtures of antibodies or their fractions raised against all toxin antigens in a venom(s), irrespective of clinical importance. Over the last few decades there have been small incremental improvements in antivenoms, to make them safer and more effective. A number of recent developments in biotechnology and toxinology have contributed to this. Proteomics and transcriptomics have been applied to venom toxin composition (venomics), improving our understanding of medically important toxins. In addition, it has become possible to identify toxins that contain epitopes recognized by antivenom molecules (antivenomics). Integration of the toxinological profile of a venom and its composition to identify medically relevant toxins improved this. Furthermore, camelid, humanized and fully human monoclonal antibodies and their fractions, as well as enzyme inhibitors have been experimentally developed against venom toxins. Translation of such technology into commercial antivenoms requires overcoming the high costs, limited knowledge of venom and antivenom pharmacology, and lack of reliable animal models. Addressing such should be the focus of antivenom research.
Collapse
|
32
|
Patiño RSP, Salazar-Valenzuela D, Medina-Villamizar E, Mendes B, Proaño-Bolaños C, da Silva SL, Almeida JR. Bothrops atrox from Ecuadorian Amazon: Initial analyses of venoms from individuals. Toxicon 2021; 193:63-72. [PMID: 33503404 DOI: 10.1016/j.toxicon.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/26/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Bothrops atrox is the most clinically relevant snake species within the Amazon region, which includes Ecuadorian territories. It comprises a large distribution, which could contribute to the genetic and venomic variation identified in the species. The high variability and protein isoform diversity of its venom are of medical interest, since it can influence the clinical manifestations caused by envenomation and its treatment. However, in Ecuador there is insufficient information on the diversity of venomic phenotypes, even of relevant species such as B. atrox. Here, we characterized the biochemical and toxicological profiles of the venom of six B. atrox individuals from the Ecuadorian Amazon. Differences in catalytic activities of toxins, elution profiles in liquid chromatography, electrophoretic patterns, and toxic effects among the analyzed samples were identified. Nonetheless, in the preclinical testing of antivenom, two samples from Mera (Pastaza) required a higher dose to achieve total neutralization of lethality and hemorrhage. Taken together, these data highlight the importance of analyzing individual venoms in studies focused on the outcomes of envenoming.
Collapse
Affiliation(s)
- Ricardo S P Patiño
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador; Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Guayaquil, Ecuador
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Evencio Medina-Villamizar
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Saulo L da Silva
- Escuela de Bioquímica y Farmacia, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Azuay, Ecuador; Centro de Innovación de la Salud - EUS/EP, Cuenca, Azuay, Ecuador; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal; LAQV - REQUIMTE, University of Porto, Porto, Portugal
| | - José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador.
| |
Collapse
|
33
|
Quality-Related Properties of Equine Immunoglobulins Purified by Different Approaches. Toxins (Basel) 2020; 12:toxins12120798. [PMID: 33327454 PMCID: PMC7764988 DOI: 10.3390/toxins12120798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Whole IgG antivenoms are prepared from hyperimmune animal plasma by various refinement strategies. The ones most commonly used at industrial scale are precipitation by sodium or ammonium sulphate (ASP), and caprylic acid precipitation (CAP) of non-immunoglobulin proteins. The additional procedures, which have so far been used for experimental purposes only, are anion-exchange (AEX) and cation-exchange chromatography (CEX), as well as affinity chromatography (AC) using IgG’s Fc-binding ligands. These protocols extract the whole IgG fraction from plasma, which contains both venom-specific and therapeutically irrelevant antibodies. Such preparations represent a complex mixture of various IgG subclasses whose functional and/or structural properties, as well as relative distribution, might be affected differently, depending on employed purification procedure. The aim of this work was to compare the influence of aforementioned refinement strategies on the IgG subclass distribution, venom-specific protective efficacy, thermal stability, aggregate formation and retained impurity profile of the final products. A unique sample of Vipera ammodytes ammodytes specific hyperimmune horse plasma was used as a starting material, enabling direct comparison of five purification approaches. The highest purity was achieved by CAP and AC (above 90% in a single step), while the lowest aggregate content was present in samples from AEX processing. Albumin was the main contaminant in IgG preparations obtained by ASP and CEX, while transferrin dominantly contaminated IgG sample from AEX processing. Alpha-1B-glycoprotein was present in CAP IgG fraction, as well as in those from ASP- and AEX-based procedures. AC approach induced the highest loss of IgG(T) subclass. CEX and AEX showed the same tendency, while CAP and ASP had almost no impact on subclass distribution. The shift in IgG subclass composition influenced the specific protective efficacy of the respective final preparation as measured in vivo. AC and CEX remarkably affected drug’s venom-neutralization activity, in contrary to the CAP procedure, that preserved protective efficacy of the IgG fraction. Presented data might improve the process of designing and establishing novel downstream processing strategies and give guidance for optimization of the current ones by providing information on potency-protecting and purity-increasing properties of each purification principle.
Collapse
|
34
|
Plenge-Tellechea LF, Acosta-Lara S, Rodrigo-García J, Álvarez-Parrilla E, Meléndez-Martínez D, Gatica-Colima A, Sierra-Fonseca JA. Cytoprotective effects of creosote bush ( Larrea tridentata) and Southern live oak ( Quercus virginiana) extracts against toxicity induced by venom of the black-tailed rattlesnake ( Crotalus ornatus). Drug Chem Toxicol 2020; 45:1698-1706. [PMID: 33297789 DOI: 10.1080/01480545.2020.1856864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The venom of Crotalus ornatus (vCo) poses a threat to human health, as it contains a mixture of toxins that can cause cytotoxic, necrotic, and hemolytic effects. The present study assessed methanolic and acetone extracts from leaves and flowers of Larrea tridentata, as well as the bark of Quercus virginiana as potential suppressors of the toxic effects of vCo in vitro. The content of total phenols, flavonoids, and tannins of the plant extracts were quantified for the suppression of vCo cytotoxicity in two cell culture models, human lymphocytes and porcine aortic endothelial (PAE) cells. Extracts from Q. virginiana displayed a greater concentration of total phenols, flavonoids, and tannins. Co-incubation of lymphocytes and PAE cells with fixed concentrations of vCo and plant extracts resulted in decreased vCo-induced cytotoxicity. A 24-hour co-incubation of lymphocytes with vCo (2.36 ± 0.17 µg/mL) and 0.5 µg/mL of methanolic leaf extract from L. tridentata (LLM) significantly suppressed the venom-induced cytotoxicity by 37.33 ± 8.33%. Similarly, the LLM extract (4 µg/mL) caused a significant decrease in vCo cytotoxicity after 24 hours in PAE cells. In contrast, while the acetone extract of Q. virginiana bark (QA) suppressed cytotoxicity by 29.20 ± 3.51% (p < 0.001) in lymphocytes, it failed to protect PAE cells against vCo after 24 hours. In PAE cells, a shorter 4-hour co-incubation showed significant suppression of cytotoxicity with both extracts. Our results collectively suggest that LLM and QA possess cytoprotective properties against the in vitro toxic effects of vCo, and thus establish extracts from these plants as potential therapeutic interventions against Crotalus envenomation.
Collapse
Affiliation(s)
| | - Sergio Acosta-Lara
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Joaquín Rodrigo-García
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, México
| | - Emilio Álvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - David Meléndez-Martínez
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Ana Gatica-Colima
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Jorge A Sierra-Fonseca
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| |
Collapse
|
35
|
Simas Pereira Junior LC, Coriolano de Oliveira E, Valle Rorig TD, Pinto de Araújo PI, Sanchez EF, Garrett R, Palazzo de Mello JC, Fuly AL. The plant Stryphnodendron adstringens (Mart.) Coville as a neutralizing source against some toxic activities of Bothrops jararacussu snake venom. Toxicon 2020; 186:182-190. [PMID: 32822735 DOI: 10.1016/j.toxicon.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Snakebites produce several toxic effects in victims, such as hemorrhage, tissue necrosis, hemostatic, renal, or cardiotoxic alterations, inflammation, and death. To counteract these symptoms, antivenom is the official treatment. Although such therapy prevents death, it does not efficiently neutralize necrosis or other local effects, leading to amputation or morbidities of the affected limb. Therefore, the search for better and more efficient therapies deserves attention; further, plants have been used to ameliorate a number of diseases and medical conditions, including snakebites, for many years. Thus, the aim of this work was to evaluate the antivenom effect of the crude extract, fractions (aqueous and diethyl acetate), and subfractions derived from the aqueous fraction (P1, P2, P3, and P4) of the plant Stryphnodendron adstringens against in vitro (coagulation and proteolytic) and in vivo (edema, hemorrhage, and myotoxic) activities caused by Bothrops jararacussu venom. Overall, all extracts inhibited the toxic effect of B. jararacussu venom, but with different potencies, regardless of whether plant samples were incubated together with venom or injected before or after venom injection into animals; the crude extract and aqueous fraction were found to be the most effective. Indeed, phytochemical and mass spectrometry analysis of S. adstringens samples revealed the presence of flavonols, tannins, and saponins. In conclusion, the plant S. adstringens may represent a promising natural source of molecules to treat the toxic effects associated with envenomation by B. jararacussu snakebites.
Collapse
Affiliation(s)
- Luiz Carlos Simas Pereira Junior
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, RJ, Brazil
| | - Eduardo Coriolano de Oliveira
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, RJ, Brazil
| | - Taísa Dalla Valle Rorig
- Laboratory of Pharmaceutical Biology, Palafito, State University of Maringá, Maringá, 87020-900, PR, Brazil
| | - Paula Ivens Pinto de Araújo
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-598, RJ, Brazil
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, 30510-010, MG, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-598, RJ, Brazil
| | | | - André Lopes Fuly
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, RJ, Brazil.
| |
Collapse
|
36
|
da Silva AR, da Silva ACR, Donza MRH, de Aquino GAS, Kaiser CR, Sanchez EF, Ferreira SB, Fuly AL. Design, synthesis and effect of triazole derivatives against some toxic activities of Bothrops jararaca venom. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02653-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Chanda A, Mukherjee AK. Quantitative proteomics to reveal the composition of Southern India spectacled cobra (Naja naja) venom and its immunological cross-reactivity towards commercial antivenom. Int J Biol Macromol 2020; 160:224-232. [DOI: 10.1016/j.ijbiomac.2020.05.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
|
38
|
Diniz-Sousa R, Moraes JDN, Rodrigues-da-Silva TM, Oliveira CS, Caldeira CADS. A brief review on the natural history, venomics and the medical importance of bushmaster ( Lachesis) pit viper snakes. Toxicon X 2020; 7:100053. [PMID: 32793880 PMCID: PMC7408722 DOI: 10.1016/j.toxcx.2020.100053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Snakes of the genus Lachesis, commonly known as bushmasters, are the largest venomous snakes in the Americas. Because these snakes have their habitats in areas of remote forests they are difficult to find, and consequently there are few studies of Lachesis taxa in their natural ecosystems. Bushmasters are distributed in tropical forest areas of South and Central America. In Brazil they can be found in the Amazon Rainforest and the Atlantic Forest. Despite the low incidence of cases, laquetic envenoming causes severe permanent sequelae due to the high amount of inoculated venom. These accidents are characterized by local pain, hemorrhage and myonecrosis that can be confused with bothropic envenomings. However, victims of Lachesis bites develop symptoms characteristic of Lachesis envenoming, known as vagal syndrome. An important message of this bibliographic synthesis exercise is that, despite having the proteomic profiles of all the taxa of the genus available, very few structure-function correlation studies have been carried out. Therefore the motivation for this review was to fill a gap in the literature on the genus Lachesis, about which there is no recent review. Here we discuss data scattered in a number of original articles published in specialized journals, spanning the evolutionary history and extant phylogeographic distribution of the bushmasters, their venom composition and diet, as well as the pathophysiology of their bites to humans and the biological activities and possible biotechnological applicability of their venom toxins.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
- Sao Lucas University Center (UniSL), Porto Velho, RO, Brazil
| | - Jeane do N. Moraes
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | | | - Cláudia S. Oliveira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Cleópatra A. da S. Caldeira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| |
Collapse
|
39
|
Lin JH, Lo CM, Chuang SH, Chiang CH, Wang SD, Lin TY, Liao JW, Hung DZ. Collocation of avian and mammal antibodies to develop a rapid and sensitive diagnostic tool for Russell's Vipers Snakebite. PLoS Negl Trop Dis 2020; 14:e0008701. [PMID: 32956365 PMCID: PMC7529284 DOI: 10.1371/journal.pntd.0008701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/01/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Russell's vipers (RVs) envenoming is an important public health issue in South-East Asia. Disseminated intravascular coagulopathy, systemic bleeding, hemolysis, and acute renal injury are obvious problems that develop in most cases, and neuromuscular junction blocks are an additional problem caused by western RV snakebite. The complex presentations usually are an obstacle to early diagnosis and antivenom administration. Here, we tried to produce highly specific antibodies in goose yolks for use in a paper-based microfluidic diagnostic kit, immunochromatographic test of viper (ICT-Viper), to distinguish RVs from other vipers and even cobra snakebite in Asia. We used indirect ELISA to monitor specific goose IgY production and western blotting to illustrate the interaction of avian or mammal antibody with venom proteins. The ICT-Viper was tested not only in prepared samples but also in stored patient serum to demonstrate its preliminary efficacy. The results revealed that specific anti-Daboia russelii IgY could be raised in goose eggs effectively without inducing adverse effects. When it was collocated with horse anti-Daboia siamensis antibody, which broadly reacted with most of the venom proteins of both types of Russell's viper, the false cross-reactivity was reduced, and the test showed good performance. The limit of detection was reduced to 10 ng/ml in vitro, and the test showed good detection ability in clinical snake envenoming case samples. The ICT-Viper performed well and could be combined with a cobra venom detection kit (ICT-Cobra) to create a multiple detection strip (ICT-VC), which broadens its applications while maintaining its detection ability for snake envenomation identification. Nonetheless, the use of the ICT-Viper in the South-East Asia region is pending additional laboratory and field investigations and regional collaboration. We believe that the development of this practical diagnostic tool marks the beginning of positive efforts to face the global snakebite issue.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| | - Che-Min Lo
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| | - Ssu-Han Chuang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Chao-Hung Chiang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Sheng-Der Wang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Tsung-Yi Lin
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
40
|
Kurtović T, Brgles M, Balija ML, Steinberger S, Sviben D, Marchetti-Deschmann M, Halassy B. Streamlined downstream process for efficient and sustainable (Fab') 2 antivenom preparation. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200025. [PMID: 32760431 PMCID: PMC7384442 DOI: 10.1590/1678-9199-jvatitd-2020-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. METHODS The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. RESULTS Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. CONCLUSION A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.
Collapse
Affiliation(s)
- Tihana Kurtović
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Marija Brgles
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Maja Lang Balija
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Stephanie Steinberger
- Faculty of Technical Chemistry, Institute of Chemical Technologies
and Analytics, TU Wien, Vienna, Austria
| | - Dora Sviben
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | | | - Beata Halassy
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| |
Collapse
|
41
|
Ahmadi S, Pucca MB, Jürgensen JA, Janke R, Ledsgaard L, Schoof EM, Sørensen CV, Çalışkan F, Laustsen AH. An in vitro methodology for discovering broadly-neutralizing monoclonal antibodies. Sci Rep 2020; 10:10765. [PMID: 32612183 PMCID: PMC7329857 DOI: 10.1038/s41598-020-67654-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
Broadly-neutralizing monoclonal antibodies are of high therapeutic utility against infectious diseases caused by bacteria and viruses, as well as different types of intoxications. Snakebite envenoming is one such debilitating pathology, which is currently treated with polyclonal antibodies derived from immunized animals. For the development of novel envenoming therapies based on monoclonal antibodies with improved therapeutic benefits, new discovery approaches for broadly-neutralizing antibodies are needed. Here, we present a methodology based on phage display technology and a cross-panning strategy that enables the selection of cross-reactive monoclonal antibodies that can broadly neutralize toxins from different snake species. This simple in vitro methodology is immediately useful for the development of broadly-neutralizing (polyvalent) recombinant antivenoms with broad species coverage, but may also find application in the development of broadly-neutralizing antibodies against bacterial, viral, and parasitic agents that are known for evading therapy via resistance mechanisms and antigen variation.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Manuela B Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Medical School, Federal University of Roraima, Boa Vista, Roraima, Brazil
| | - Jonas A Jürgensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rahel Janke
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
42
|
de Souza JF, de Oliveira EC, da Silva ACR, da Silva VP, Coelho Kaplan MA, Figueiredo MR, Flores Sanchez E, Lopes Fuly A. Potential use of extract of the plant Schwartiza brasiliensis (choisy) bedell ex gir.-Cañas against the toxic effects of the venom of Bothrops jararaca or B. jararacussu. Biomed Pharmacother 2020; 125:109951. [PMID: 32044719 DOI: 10.1016/j.biopha.2020.109951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/26/2022] Open
Abstract
Envenomation by snakes is a worldwide health public issue, and antivenoms are less efficient in neutralizing local toxic effects. Thus, more efficient therapies to treat patients deserve attention, and plants have been extensively tested. So, the aim of this work was to evaluate the effect of the aqueous fraction of the plant Schwartzia brasiliensis to inhibit some toxic activities of Bothrops jararaca or B. jararacussu venom. S. brasiliensis inhibited coagulant, hemolytic, proteolytic, hemorrhagic, edematogenic, and lethal activities of both venoms, regardless if plant was mixed together with venoms or injected after them as well as the route of administration (intravenous, oral or subcutaneous) of the plant. The S. brasiliensis extract showed no toxicity to mice or red blood cells. Thus, S. brasiliensis may be useful as an alternative treatment for snakebite envenomation and aid antivenom therapy to neutralize relevant toxic activities in patients bitten by Bothrops species.
Collapse
Affiliation(s)
- Jenifer Frouche de Souza
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | | | | | - Vagner Pereira da Silva
- Laboratory of Chemistry of Natural Products, Technological Institute of Pharmaceuticals, Fiocruz, Rio de Janeiro, Brazil
| | - Maria Auxiliadora Coelho Kaplan
- Institute of Research of Natural Products, Center of Sciences of the Health, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Raquel Figueiredo
- Laboratory of Chemistry of Natural Products, Technological Institute of Pharmaceuticals, Fiocruz, Rio de Janeiro, Brazil
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - André Lopes Fuly
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Brenes-Chacón H, Ulloa-Gutierrez R, Soriano-Fallas A, Camacho-Badilla K, Valverde-Muñoz K, Ávila-Agüero ML. Bacterial Infections Associated with Viperidae Snakebites in Children: A 14-Year Experience at the Hospital Nacional de Niños de Costa Rica †. Am J Trop Med Hyg 2020; 100:1227-1229. [PMID: 30915952 DOI: 10.4269/ajtmh.18-1015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secondary bacterial infections following Viperidae snakebite envenomation in children are common. Among 75 patients admitted because of snakebites at the only pediatric hospital in Costa Rica, 16 (21.3%) had a culture-confirmed secondary bacterial infection. Morganella morganii (37.5%), Aeromonas hydrophila (31.2%), and Providencia rettgeri (18.7%) were the most common pathogens. Empiric prophylaxis is still recommended and should be based on local etiological agents and antimicrobial susceptibilities.
Collapse
Affiliation(s)
- Helena Brenes-Chacón
- Pediatric Infectious Diseases Division, Pediatric Hemato-Oncology Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", Centro de Ciencias Médicas, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Rolando Ulloa-Gutierrez
- Pediatric Infectious Diseases Division, Pediatric Hemato-Oncology Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", Centro de Ciencias Médicas, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Alejandra Soriano-Fallas
- Pediatric Infectious Diseases Division, Pediatric Hemato-Oncology Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", Centro de Ciencias Médicas, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Kattia Camacho-Badilla
- Pediatric Infectious Diseases Division, Pediatric Hemato-Oncology Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", Centro de Ciencias Médicas, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Kathia Valverde-Muñoz
- Pediatric Infectious Diseases Division, Pediatric Hemato-Oncology Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", Centro de Ciencias Médicas, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - María L Ávila-Agüero
- Center for Infectious Disease Modeling and Analysis (CIDMA), Yale University, New Haven, Connecticut.,Pediatric Infectious Diseases Division, Pediatric Hemato-Oncology Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", Centro de Ciencias Médicas, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| |
Collapse
|
44
|
Girish KS, Katkar GD, Harrison RA, Kemparaju K. Research into the Causes of Venom-Induced Mortality and Morbidity Identifies New Therapeutic Opportunities. Am J Trop Med Hyg 2020; 100:1043-1048. [PMID: 30675839 PMCID: PMC6493937 DOI: 10.4269/ajtmh.17-0877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Snakebite primarily affects rural subsistent farming populations in underdeveloped and developing nations. The annual number of deaths (100,000) and physical disabilities (400,000) of snakebite victims is a societal tragedy that poses a significant added socioeconomic burden to the society. Antivenom therapy is the treatment of choice for snakebite but, as testified by the continuing high rates of mortality and morbidity, too many rural tropical snakebite victims fail to access effective treatment. Here, we advocate for more basic research to better understand the pathogenesis of systemic and local envenoming and describe how research outcomes can identify novel snakebite therapeutic strategies with the potential to be more accessible and affordable to victims than current treatment.
Collapse
Affiliation(s)
- Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India.,Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | - Gajanan D Katkar
- Cardiovascular Research Lab, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | - Robert A Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| |
Collapse
|
45
|
Sarmiento K, Rodríguez A, Quevedo-Buitrago W, Torres I, Ríos C, Ruíz L, Salazar J, Hidalgo-Martínez P, Diez H. Comparación de la eficacia, la seguridad y la farmacocinética de los antivenenos antiofídicos: revisión de literatura. UNIVERSITAS MÉDICA 2019. [DOI: 10.11144/javeriana.umed61-1.anti] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
En Colombia se presentan anualmente alrededor de 5000 casos de mordedura de serpiente y su tratamiento se basa en la neutralización con inmunoglobulinas completas purificadas, sin embargo, globalmente se utilizan antivenenos faboterápicos. Objetivo: Dar a conocer diferencias entre las generaciones de antivenenos, la importancia del veneno en la producción de anticuerpos, comparar aspectos farmacocinéticos y los efectos adversos en pacientes. Materiales Métodos: Se realizó una búsqueda de literatura en bases de datos utilizando combinaciones de los descriptores y términos Mesh, en inglés y español. Se cotejaron parámetros farmacocinéticos en estudios preclínicos y los efectos adversos en estudios clínicos. Resultados: Se encontraron diferencias debidas al tamaño de la fracción de la inmunoglobulina que la compone, así entre más pequeña es ésta, se observa mayor distribución a los tejidos y una vida media más corta, comparada con las moléculas más pesadas. Se encontraron estudios con disminución de efectos adversos con antivenenos faboterápicos
Collapse
|
46
|
Rodríguez-Abarca S, Corrales G, Chacón D, Guevara M, Esquivel C, Arroyo C, Gómez A. Morphological alterations caused by manual venom extraction on the main venom gland of Bothrops asper and Crotalus simus snakes (Serpentes: Viperidae): Long-term implications for antivenom production. Toxicon 2019; 172:23-32. [PMID: 31689424 DOI: 10.1016/j.toxicon.2019.10.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
The only scientifically validated treatment for snakebite envenomation is the administration of antivenoms. For their production, small quantities of snake venom are injected in animals to elicit a specific antibody response. Snakes are kept in captivity, and their venom is regularly extracted to assure antivenom access. It has already been reported that the pressure exerted upon the venom gland during this extraction can cause tissue damage and fibrosis, leading to a decrease in the venom yield. We described the histopathology of venom glands for B. asper and C. simus snakes used for antivenom production. Based on these reported tissue abnormalities, we quantify the tissue injury by a generated damage-SCORE and fibrosis. A variety of histopathological damages were found such as fibrosis, edema, necrosis, hemorrhage, and formation of anomalous structures, especially in C. simus, which is more prone to suffer severe damage. The level and severity of the damage depend on the frequency and the number of venom extractions. Furthermore, we design an experimental intensive venom extraction scheme with which we could confirm the causality of these effects. In addition to the histopathological damages, the LD50 and biochemical venom composition were also affected giving experimental evidence that the venom extraction not only causes tissue damage but also affects the composition stability and toxicity of the venom. In order to produce quality and effective antivenoms, an improvement of the management of snake collections could be established, such as rotation groups to assure the quality of the venom yielded.
Collapse
Affiliation(s)
- Sylvia Rodríguez-Abarca
- Serpentario, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Apto: 11501-2060, Costa Rica; Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional, Heredia, Apto: 86-3000, Costa Rica.
| | - Greivin Corrales
- Serpentario, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Apto: 11501-2060, Costa Rica.
| | - Danilo Chacón
- Serpentario, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Apto: 11501-2060, Costa Rica.
| | - Maricruz Guevara
- Facultad de Medicina Veterinaria, Universidad Técnica Nacional, Alajuela, Costa Rica.
| | - Carolina Esquivel
- Escuela de Ciencias Biológicas, Laboratoria de Biología Tropical, Facultad de Ciencias Exactas y Naturales, Universidad Nacional, Apto: 86-3000, Heredia, Costa Rica.
| | - Cynthia Arroyo
- Departamento de Análisis Clínicos, Facultad de Microbiología, Universidad de Costa Rica, San José, Apto: 11501-2060, Costa Rica.
| | - Aarón Gómez
- Serpentario, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Apto: 11501-2060, Costa Rica.
| |
Collapse
|
47
|
Lopes-de-Souza L, Costal-Oliveira F, Stransky S, Fonseca de Freitas C, Guerra-Duarte C, Braga VMM, Chávez-Olórtegui C. Development of a cell-based in vitro assay as a possible alternative for determining bothropic antivenom potency. Toxicon 2019; 170:68-76. [PMID: 31494208 DOI: 10.1016/j.toxicon.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Accidents with venomous snakes are a major health hazard in tropical countries. Bothrops genus is responsible for almost 80% of snakebites in Brazil. Immunotherapy is the only approved specific treatment against snake toxins and the production of therapeutic antivenoms requires quality control tests to determine their neutralizing potency. Currently, these controls are performed by in vivo lethality neutralization, however, the inhibition of particular events produced by bothropic venoms such as coagulopathy, hemorrhage, edema or cytotoxic effects are also required. The aim of this work is to develop an in vitro alternative assay for antivenom pre-clinical evaluation. In this sense, we designed a cell viability assay using different amounts (0.2-10 μL/well) of low and high potency anti-bothropic sera, previously classified by the traditional in vivo test, for assessing the antivenom capacity to protect the cells against B. jararaca venom cytotoxicity (5xEC50 = 58.95 μg/mL). We found that high potency sera are more effective in neutralizing B. jararaca venom cytotoxicity when compared to low potency sera, which is in accordance to their pre-determined in vivo potency. Considering sera in vitro inhibitory concentration able to prevent 50% cell death (IC50) and their known in vivo potency, a cut-off point was determined to discriminate low and high potency sera. Our data provide insights for the development of an in vitro method which can determine the anti-bothropic antivenom potency during its production.
Collapse
Affiliation(s)
- Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Stephanie Stransky
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, SW7 2AZ, London, UK
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
48
|
da Silva AR, Anholeti MC, Pietroluongo M, Sanchez EF, Valverde AL, de Paiva SR, Figueiredo MR, Kaplan MAC, Fuly AL. Utilization of the Plant Clusia Fluminensis Planch & Triana Against Some Toxic Activities of the Venom of Bothrops jararaca and B. jararacussu Snake Venom Toxic Activities. Curr Top Med Chem 2019; 19:1990-2002. [PMID: 31339072 DOI: 10.2174/1568026619666190724160711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In Brazil, the Bothrops genus accounts for 87% of registered snakebites, which are characterized by hemorrhage, tissue necrosis, hemostatic disturbances, and death. The treatment recommended by governments is the administration of specific antivenoms. Although antivenom efficiently prevents venom-induced lethality, it has limited efficacy in terms of preventing local tissue damage. Thus, researchers are seeking alternative therapies able to inhibit the main toxic effects of venoms, without compromising safety. OBJECTIVE The study aimed to test the ability of aqueous extracts of leaves, stems, and fruits of the plant Clusia fluminensis to neutralize some toxic effects induced by the venoms of Bothrops jararaca and Bothrops jararacussu. METHODS The plant extracts were incubated with venoms for 30 min. at 25 °C, and then in vitro (coagulant and proteolytic) and in vivo (hemorrhagic, myotoxic, and edematogenic) activities were evaluated. In addition, the extracts were administered to animals (by oral, intravenous or subcutaneous routes) before or after the injection of venom samples, and then hemorrhage and edema assays were performed. In addition, a gel solution of the fruit extract was produced and tested in terms of reducing hemorrhage effects. A chemical prospection was performed to identify the main classes of compounds present in the extracts. RESULTS All the extracts inhibited the activities of the two venoms, regardless of the experimental protocol or route of administration of the extracts. Moreover, the gel of the fruit extract inhibited the venom-induced-hemorrhage. The extracts comprised of tannins, flavonoids, saponins, steroids, and terpenoids. CONCLUSION Antivenom properties of C. fluminensis extracts deserve further investigation in order to gain detailed knowledge regarding the neutralization profile of these extracts.
Collapse
Affiliation(s)
| | | | | | - Eladio Flores Sanchez
- Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | | | | | | | | | - André Lopes Fuly
- Department of Cellular and Molecular Biology, Fluminense Federal University, RJ, Brazil
| |
Collapse
|
49
|
Zeng F, Chen C, Chen X, Zhang L, Liu M. Small Incisions Combined with Negative-Pressure Wound Therapy for Treatment of Protobothrops Mucrosquamatus Bite Envenomation: A New Treatment Strategy. Med Sci Monit 2019; 25:4495-4502. [PMID: 31204383 PMCID: PMC6592139 DOI: 10.12659/msm.913579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the effects of a new treatment strategy for envenomation that consists of multiple small incisions and negative-pressure wound therapy (NPWT) on injured limb swelling and systemic inflammatory reaction. MATERIAL AND METHODS This was a prospective randomized controlled trial on snakebite envenomation. The enrolled patients were randomly divided into 2 groups: an observation group and a control group. The traditional comprehensive treatment was administered in both groups, but the observation group also received combined treatment with multiple small incisions and NPWT. Reduction in limb swelling, mean admission duration, complication rate, and changes in the levels of relevant cytokines were recorded and compared between the 2 groups. RESULTS The mean duration of hospital stay was significantly lower in the observation group than in the control group (5.44±0.89 days vs. 7.71±1.70 days). The complication rate and IL-6 concentration were significantly lower in the observation group than in the control group. CONCLUSIONS Multiple small incisions combined with NPWT proved effective for controlling the release of inflammatory cytokines and accelerating the relief of systemic inflammatory reaction. As a consequence, the complication rate decreased. Therefore, our new treatment strategy is safe and effective.
Collapse
Affiliation(s)
- Fanjie Zeng
- Emergency Department, Southwest Hospital of Amy Medical University, Chongqing, China (mainland).,90th Squad Health Clinic, 31631 Troop of People's Liberation Army, Huizhou, Guangdong, China (mainland)
| | - Cong Chen
- Emergency Department, 187th Military Hospital of People's Liberation Army, Haikou, Hainan, China (mainland)
| | - Xiangyu Chen
- Emergency Department, Southwest Hospital of Amy Medical University, Chongqing, China (mainland)
| | - Lei Zhang
- Emergency Department, Southwest Hospital of Amy Medical University, Chongqing, China (mainland)
| | - Minghua Liu
- Emergency Department, Southwest Hospital of Amy Medical University, Chongqing, China (mainland)
| |
Collapse
|
50
|
Kurtović T, Lang Balija M, Brgles M, Sviben D, Tunjić M, Cajner H, Marchetti-Deschmann M, Allmaier G, Halassy B. Refinement strategy for antivenom preparation of high yield and quality. PLoS Negl Trop Dis 2019; 13:e0007431. [PMID: 31206512 PMCID: PMC6597126 DOI: 10.1371/journal.pntd.0007431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/27/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Abstract
Antivenoms from hyperimmune animal plasma are the only specific pharmaceuticals against snakebites. The improvement of downstream processing strategies is of great interest, not only in terms of purity profile, but also from yield-to-cost perspective and rational use of plasma of animal origin. We report on development of an efficient refinement strategy for F(ab')2-based antivenom preparation. Process design was driven by the imperative to keep the active principle constantly in solution as a precautionary measure to preserve stability of its conformation (precipitation of active principle or its adsorption to chromatographic stationary phase has been completely avoided). IgG was extracted from hyperimmune horse plasma by 2% (V/V) caprylic acid, depleted from traces of precipitating agent and digested by pepsin. Balance between incomplete IgG fraction breakdown, F(ab')2 over-digestion and loss of the active principle's protective efficacy was achieved by adjusting pepsin to substrate ratio at the value of 4:300 (w/w), setting pH to 3.2 and incubation period to 1.5 h. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. Developed manufacturing strategy gave 100% pure and aggregate-free F(ab')2 preparation, as shown by size-exclusion HPLC and confirmed by MS/MS. The overall yield of 75% or higher compares favorably to others so far reported. This optimised procedure looks also promising for large-scale production of therapeutic antivenoms, since high yield of the active drug and fulfillment of the regulatory demand considering purity was achieved. The recovery of the active substance was precisely determined in each purification step enabling accurate estimation of the process cost-effectiveness.
Collapse
Affiliation(s)
- Tihana Kurtović
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Maja Lang Balija
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Dora Sviben
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Monika Tunjić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Hrvoje Cajner
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, Zagreb, Croatia
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| |
Collapse
|