1
|
Dhakal S, Wolfe BW, Pantha S, Vijayakumar S. Sex Differences during Influenza A Virus Infection and Vaccination and Comparison of Cytokine and Antibody Responses between Plasma and Serum Samples. Pathogens 2024; 13:468. [PMID: 38921766 PMCID: PMC11206404 DOI: 10.3390/pathogens13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we evaluated sex differences during infection with mouse-adapted H1N1 and H3N2 influenza A viruses (IAVs) in the C57BL/6J mouse model and compared the cytokine and antibody responses between plasma and serum samples during IAV infection and vaccination. Lethal doses for both H1N1 and H3N2 IAVs were lower for adult females and they suffered with greater morbidity than adult males when infected with sublethal doses. In influenza virus-infected mice, cytokine responses differed between plasma and serum samples. After inactivated influenza virus vaccination and drift variant challenge, adult female mice had greater antibody responses and were better protected. In influenza-vaccinated and challenged mice, binding antibodies were unaffected between paired plasma or serum samples. However, functional antibody assays, including hemagglutination inhibition, microneutralization, and antibody-dependent cellular cytotoxicity assays, were affected by the use of plasma and serum sample types. Our results indicate that careful consideration is required while selecting plasma versus serum samples to measure cytokine and antibody responses during IAV infection and vaccination.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; (B.W.W.); (S.P.); (S.V.)
| | | | | | | |
Collapse
|
2
|
Holbrook BC, Clemens EA, Alexander-Miller MA. Sex-Dependent Effects on Influenza-Specific Antibody Quantity and Neutralizing Activity following Vaccination of Newborn Non-Human Primates Is Determined by Adjuvants. Vaccines (Basel) 2024; 12:415. [PMID: 38675797 PMCID: PMC11054256 DOI: 10.3390/vaccines12040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A number of studies have demonstrated the role of sex in regulating immune responses to vaccination. However, these findings have been limited to adults for both human and animal models. As a result, our understanding of the impact of sex on vaccine responses in the newborn is highly limited. Here, we probe this important question using a newborn non-human primate model. We leveraged our prior analysis of two cohorts of newborns, with one being mother-reared and one nursery-reared. This provided adequate numbers of males and females to interrogate the impact of sex on the response to inactivated influenza vaccines alone or adjuvanted with R848, flagellin, or both. We found that, in contrast to what has been reported in adults, the non-adjuvanted inactivated influenza virus vaccine induced similar levels of virus-specific IgG in male and female newborns. However, the inclusion of R848, either alone or in combination with flagellin, resulted in higher antibody titers in females compared to males. Sex-specific increases in the neutralizing antibody were only observed when both R848 and flagellin were present. These data, generated in the highly translational NHP newborn model, provide novel insights into the role of sex in the immune response of newborns.
Collapse
Affiliation(s)
| | | | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Rm 2E-018 Biotech Place, 575 North Patterson Ave., Winston-Salem, NC 27101, USA; (B.C.H.); elene.a.- (E.A.C.)
| |
Collapse
|
3
|
Dhakal S, Park HS, Seddu K, Lee JS, Creisher PS, Seibert B, Davis KM, Hernandez IR, Maul RW, Klein SL. Estradiol mediates greater germinal center responses to influenza vaccination in female than male mice. mBio 2024; 15:e0032624. [PMID: 38441028 PMCID: PMC11005424 DOI: 10.1128/mbio.00326-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Adult females of reproductive age develop greater antibody responses to inactivated influenza vaccines (IIV) than males. How sex, age, and sex steroid concentrations impact B cells and durability of IIV-induced immunity and protection over 4 months post-vaccination (mpv) was analyzed. Vaccinated adult females had greater germinal center B cell and plasmablast frequencies in lymphoid tissues, higher neutralizing antibody responses 1-4 mpv, and better protection against live H1N1 challenge than adult males. Aged mice, regardless of sex, had reduced B cell frequencies, less durable antibody responses, and inferior protection after challenge than adult mice, which correlated with diminished estradiol among aged females. To confirm that greater IIV-induced immunity was caused by sex hormones, four core genotype (FCG) mice were used, in which the testes-determining gene, Sry, was deleted from chromosome Y (ChrY) and transferred to Chr3 to separate gonadal sex (i.e., ovaries or testes) from sex chromosome complement (i.e., XX or XY complement). Vaccinated, gonadal female FCG mice (XXF and XYF) had greater numbers of B cells, higher antiviral antibody titers, and reduced pulmonary virus titers following live H1N1 challenge than gonadal FCG males (XYM and XXM). To establish that lower estradiol concentrations cause diminished immunity, adult and aged females received either a placebo or estradiol replacement therapy prior to IIV. Estradiol replacement significantly increased IIV-induced antibody responses and reduced morbidity after the H1N1 challenge among aged females. These data highlight that estradiol is a targetable mechanism mediating greater humoral immunity following vaccination among adult females.IMPORTANCEFemales of reproductive ages develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection against influenza were mediated by estradiol signaling in B cells. Using diverse mouse models ranging from advanced-age mice to transgenic mice that separate sex steroids from sex chromosome complement, those mice with greater concentrations of estradiol consistently had greater numbers of antibody-producing B cells in lymphoid tissue, higher antiviral antibody titers, and greater protection against live influenza virus challenge. Treatment of aged female mice with estradiol enhanced vaccine-induced immunity and protection against disease, suggesting that estradiol signaling in B cells is critical for improved vaccine outcomes in females.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John S. Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Brittany Seibert
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Isabella R. Hernandez
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Ga E, Kang JA, Hwang J, Moon S, Choi J, Bae E, Seol H, Mun Y, Song D, Jeong DG, Na W. Assessment of the immune interference effects of multivalent vaccine for influenza epidemic strain in 2022-2023 and evaluation of its efficacy. Heliyon 2024; 10:e28326. [PMID: 38532995 PMCID: PMC10963641 DOI: 10.1016/j.heliyon.2024.e28326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The various strains of influenza virus cause respiratory symptoms in humans every year and annual vaccinations are recommended. Due to its RNA-type genes and segmented state, it belongs to a virus that mutates frequently with antigenic drift and shift, giving rise to various strains. Each year, the World Health Organization identifies the epidemic strains and operates a global surveillance system to suggest the viral composition for the influenza vaccine. Influenza viruses, which have multiple viral strains, are produced in the format of multivalent vaccine. However, the multivalent vaccine has a possibility of causing immune interference by introducing multiple strain-specific antigens in a single injection. Therefore, evaluating immune interference phenomena is essential when assessing multivalent vaccines. In this study, the protective ability and immunogenicity of multivalent and monovalent vaccines were evaluated in mice to assess immune interference in the multivalent vaccine. Monovalent and multivalent vaccines were manufactured using the latest strain of the 2022-2023 seasonal influenza virus selected by the World Health Organization. The protective abilities of both types of vaccines were tested through hemagglutination inhibition test. The immunogenicity of multivalent and monovalent vaccines were tested through enzyme-linked immunosorbent assay to measure the cellular and humoral immunity expression rates. As a result of the protective ability and immunogenicity test, higher level of virus neutralizing ability and greater amount of antibodies in both IgG1 and IgG2 were confirmed in the multivalent vaccine. No immune interference was found to affect the protective capacity and immune responses of the multivalent vaccines.
Collapse
Affiliation(s)
- Eulhae Ga
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Jung-Ah Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Jaehyun Hwang
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Suyun Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Jaeseok Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Eunseo Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyein Seol
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Yubin Mun
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Daesub Song
- College of Veterinary Medicine, Seoul National University, Gwanak-ro, Seoul, 08826, South Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Woonsung Na
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Daehak-ro 101 (Yeongeon-dong), Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
5
|
Li X, Xiu X, Su R, Ma S, Li Z, Zhang L, Wang Z, Zhu Y, Ma F. Immune cell receptor-specific nanoparticles as a potent adjuvant for nasal split influenza vaccine delivery. NANOTECHNOLOGY 2024; 35:125101. [PMID: 38100843 DOI: 10.1088/1361-6528/ad1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Mucosal delivery systems have gained much attention as effective way for antigen delivery that induces both systemic and mucosal immunity. However, mucosal vaccination faces the challenges of mucus barrier and effective antigen uptake and presentation. In particular, split, subunit and recombinant protein vaccines that do not have an intact pathogen structure lack the efficiency to stimulate mucosal immunity. In this study, poly (lactic acid-co-glycolic acid-polyethylene glycol) (PLGA-PEG) block copolymers were modified by mannose to form a PLGA-PEG-Man conjugate (mannose modified PLGA-PEG), which were characterized. The novel nanoparticles (NPs) prepared with this material had a particle size of about 150 nm and a zeta potential of -15 mV, and possessed ideal mucus permeability, immune cell targeting, stability and low toxicity. Finally, PLGA-PEG-Man nanoparticles (PLGA-PEG-Man NPs) were successfully applied for intranasal delivery of split influenza vaccine in rat for the first time, which triggered strong systemic and mucosal immune responses. These studies suggest that PLGA-PEG-Man NPs could function as competitive potential nano-adjuvants to address the challenge of inefficient mucosal delivery of non-allopathogenic antigens.
Collapse
Affiliation(s)
- Xuemei Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Xueliang Xiu
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Rui Su
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Shichao Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhipeng Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Li Zhang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
- Micro-nano Scale Biomedical Engineering Laboratory, Institute for Frontiers and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Hangzhou 310023, People's Republic of China
| |
Collapse
|
6
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
7
|
Dhakal S, Park HS, Seddu K, Lee J, Creisher PS, Davis KM, Hernandez IR, Maul RW, Klein SL. Estradiol Mediates Greater Germinal Center Responses to Influenza Vaccination in Female than Male Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568847. [PMID: 38077071 PMCID: PMC10705292 DOI: 10.1101/2023.11.27.568847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Adult females of reproductive ages develop greater antibody responses to inactivated influenza vaccine (IIV) than males. How sex, age, and sex steroid changes impact B cells and durability of IIV-induced immunity and protection over 4-months post-vaccination (mpv) was analyzed. Vaccinated adult females had greater germinal center (GC) B cell and plasmablast frequencies in lymphoid tissues, higher neutralizing antibody responses 1-4 mpv, and better protection against live H1N1 challenge than adult males. Aged mice, regardless of sex, had reduced B cell frequencies, less durable antibody responses, and inferior protection after challenge than adult mice, which correlated with diminished estradiol among aged females. To confirm that greater IIV-induced immunity was caused by sex hormones, four core genotype (FCG) mice were used, in which the testes determining gene, Sry, was deleted from ChrY and transferred to Chr3, to separate gonadal sex (i.e., ovaries or testes) from sex chromosome complement (i.e., XX or XY complement). Vaccinated, gonadal female FCG mice (XXF and XYF) had greater numbers of B cells, higher antiviral antibody titers, and reduced pulmonary virus titers following live H1N1 challenge than gonadal FCG males (XYM and XXM). To establish that lower estradiol concentrations cause diminished immunity, adult and aged females received either a placebo or estradiol replacement therapy prior to IIV. Estradiol replacement significantly increased IIV-induced antibody responses and reduced morbidity after the H1N1 challenge among aged females. These data highlight that estradiol is a targetable mechanism mediating greater humoral immunity following vaccination among adult females.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Isabella R. Hernandez
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Ursin RL, Dhakal S, Liu H, Jayaraman S, Park HS, Powell HR, Sherer ML, Littlefield KE, Fink AL, Ma Z, Mueller AL, Chen AP, Seddu K, Woldetsadik YA, Gearhart PJ, Larman HB, Maul RW, Pekosz A, Klein SL. Greater Breadth of Vaccine-Induced Immunity in Females than Males Is Mediated by Increased Antibody Diversity in Germinal Center B Cells. mBio 2022; 13:e0183922. [PMID: 35856618 PMCID: PMC9426573 DOI: 10.1128/mbio.01839-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.
Collapse
Affiliation(s)
- Rebecca L. Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sahana Jayaraman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Harrison R. Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Morgan L. Sherer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kirsten E. Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashley L. Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zexu Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alice L. Mueller
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allison P. Chen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yishak A. Woldetsadik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patricia J. Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Feng H, Zhao X, Xie J, Bai X, Fu W, Chen H, Tang H, Wang X, Dong C. Pathogen-associated T follicular helper cell plasticity is critical in anti-viral immunity. SCIENCE CHINA LIFE SCIENCES 2022; 65:1075-1090. [DOI: 10.1007/s11427-021-2055-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/26/2021] [Indexed: 01/12/2023]
|
10
|
Dhakal S, Deshpande S, McMahon M, Strohmeier S, Krammer F, Klein SL. Female-biased effects of aging on a chimeric hemagglutinin stalk-based universal influenza virus vaccine in mice. Vaccine 2022; 40:1624-1633. [PMID: 33293159 PMCID: PMC8178415 DOI: 10.1016/j.vaccine.2020.11.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
To determine if biological sex and age intersect to affect universal influenza vaccine-induced immunity, adult and aged male and female C57BL/6 mice were sequentially immunized with a chimeric-hemagglutinin (cHA) stalk-based H1 vaccine. Adult mice developed greater quantity and quality of H1-stalk antibodies, that were more cross-reactive with other group 1, but not group 2, influenza viruses, than aged mice. The vaccine did not induce neutralizing or hemagglutination inhibition antibodies, but rather antibody-dependent cellular cytotoxicity, which was greater in adult than aged mice. Vaccinated adult mice were better protected than aged mice after challenge with 2009 H1N1 virus, experiencing less morbidity and having lower pulmonary virus titers. The age-associated decline in immunity and protection was consistently greater among females than males, with the reduction in immunity and protection for aged as compared with adult females often being the sole comparison driving the overall age-associated significant differences. The age-associated reduction in stalk-based immunity in females was not, however, associated with changes in estradiol. To determine if the better antibodies in adults could be utilized to protect aged mice, serum was passively transferred from vaccinated adult mice into naïve sex-matched aged mice. Even with transferred serum from young adult mice, aged females still suffered greater morbidity than aged males. These data suggest there are sex-dependent effects of aging on cHA-based universal influenza virus vaccine-induced immunity that cannot be reversed through transfer of serum from young animals. The lack of consideration of sex-specific effects of aging on immunity could hinder efforts toward universal vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sharvari Deshpande
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Fan Q, Miao C, Huang Y, Yue H, Wu A, Wu J, Wu J, Ma G. Hydroxypropyltrimethyl ammonium chloride chitosan-based hydrogel as the split H5N1 mucosal adjuvant: Structure-activity relationship. Carbohydr Polym 2021; 266:118139. [PMID: 34044953 DOI: 10.1016/j.carbpol.2021.118139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
In this study, 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC)-based hydrogel was devised as a mucosal adjuvant for H5N1 vaccine. Aimed to investigate the structure activity relationship between HTCC hydrogel and immune response, we prepared a series of HTCC hydrogel with defined quaternization degrees (DQs, 0%, 21%, 41%, 60%, 80%). Results suggested that with DQ increasing, the positive charge and gelation time of HTCC hydrogel increased but the viscosity decreased. We applied in vivo imaging system and found that the moderate DQ 41% prolonged antigen residence time in nasal cavity, resulting in the most potent systemic responses (IgG, IgG1, IgG2a, HI). While, the lowest DQ 0% produced the best mucosal IgA antibody responses, most likely due to the closer contact with mucosa. Furthermore, the influence of animal gender was also discussed. These data add to the growing understanding of the relationship between physicochemical features of chitosan-based hydrogel and how they influence the immune responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Chitosan/administration & dosage
- Chitosan/analogs & derivatives
- Chitosan/chemistry
- Chitosan/pharmacology
- Female
- Hydrogels/administration & dosage
- Hydrogels/chemistry
- Hydrogels/pharmacology
- Immunity/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Male
- Mice, Inbred BALB C
- Nasal Mucosa/virology
- Quaternary Ammonium Compounds/administration & dosage
- Quaternary Ammonium Compounds/chemistry
- Quaternary Ammonium Compounds/pharmacology
- Rats, Sprague-Dawley
- Sex Factors
- Structure-Activity Relationship
- Mice
- Rats
Collapse
Affiliation(s)
- Qingze Fan
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yilan Huang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
12
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
13
|
Abstract
Biological sex affects the outcome of diverse respiratory viral infections. The pathogenesis of respiratory infections caused by viruses ranging from respiratory syncytial virus to influenza viruses and severe acute respiratory syndrome coronavirus 2 differs between the sexes across the life course. Generally, males are more susceptible to severe outcomes from respiratory viral infections at younger and older ages. During reproductive years (i.e., after puberty and prior to menopause), females are often at greater risk than males for severe outcomes. Pregnancy and biological sex affect the pathogenesis of respiratory viral infections. In addition to sex differences in the pathogenesis of disease, there are consistent sex differences in responses to treatments, with females often developing greater immune responses but experiencing more adverse reactions than males. Animal models provide mechanistic insights into the causes of sex differences in respiratory virus pathogenesis and treatment outcomes, where available. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rebecca L Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205;
| | - Sabra L Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205; .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Maryland, USA 21205
| |
Collapse
|
14
|
Denly L. The effect of sex on responses to influenza vaccines. Hum Vaccin Immunother 2021; 17:1396-1402. [PMID: 33180651 DOI: 10.1080/21645515.2020.1830685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The poor uptake and limited effectiveness of seasonal influenza vaccines mean that influenza continues to create a significant burden of disease. It has been hypothesized that sex differences are present in responses to seasonal influenza vaccines, and that these differences may contribute to this poor vaccine success. This has led to the suggestion that vaccines should be tailored to an individual's biological sex. However, studies in this field are often low quality. Comprehensive analysis of the available literature reveals that there is insufficient evidence to support sex differences in vaccine immunogenicity, effectiveness, or efficacy. Nonetheless, differences in vaccine safety are consistently observed, with females reporting adverse events following immunization more frequently than males. Bias introduced by gender differences in passive reporting of adverse effects may underlie this phenomenon. Highly controlled studies are required in future before any conclusions can be made about potential sex differences in response to seasonal influenza vaccines.
Collapse
Affiliation(s)
- Lucy Denly
- Medical Sciences Division, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Mauvais-Jarvis F, Berthold HK, Campesi I, Carrero JJ, Dakal S, Franconi F, Gouni-Berthold I, Heiman ML, Kautzky-Willer A, Klein SL, Murphy A, Regitz-Zagrosek V, Reue K, Rubin JB. Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacol Rev 2021; 73:730-762. [PMID: 33653873 PMCID: PMC7938661 DOI: 10.1124/pharmrev.120.000206] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, the combination of all sex-specific genetic, epigenetic, and hormonal influences of biologic sex produces different in vivo environments for male and female cells. We dissect how these influences of sex modify the pharmacokinetics and pharmacodynamics of multiple drugs and provide examples for common drugs acting on specific organ systems. We also discuss how gender of physicians and patients may influence the therapeutic response to drugs. We aim to highlight sex as a genetic modifier of the pharmacological response to drugs, which should be considered as a necessary step toward precision medicine that will benefit men and women. SIGNIFICANCE STATEMENT: This study discusses the influences of biologic sex on the pharmacokinetics and pharmacodynamics of drugs and provides examples for common drugs acting on specific organ systems. This study also discusses how gender of physicians and patients influence the therapeutic response to drugs.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Heiner K Berthold
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Ilaria Campesi
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Juan-Jesus Carrero
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Santosh Dakal
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Flavia Franconi
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Ioanna Gouni-Berthold
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Mark L Heiman
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Alexandra Kautzky-Willer
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Sabra L Klein
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Anne Murphy
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Vera Regitz-Zagrosek
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Karen Reue
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Joshua B Rubin
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| |
Collapse
|
16
|
Rahimi G, Rahimi B, Panahi M, Abkhiz S, Saraygord-Afshari N, Milani M, Alizadeh E. An overview of Betacoronaviruses-associated severe respiratory syndromes, focusing on sex-type-specific immune responses. Int Immunopharmacol 2021; 92:107365. [PMID: 33440306 PMCID: PMC7797024 DOI: 10.1016/j.intimp.2021.107365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023]
Abstract
Emerging beta-coronaviruses (β-CoVs), including Severe Acute Respiratory Syndrome CoV-1 (SARS-CoV-1), Middle East Respiratory Syndrome-CoV (MERS-CoV), and Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2, the cause of COVID19) are responsible for acute respiratory illnesses in human. The epidemiological features of the SARS, MERS, and new COVID-19 have revealed sex-dependent variations in the infection, frequency, treatment, and fatality rates of these syndromes. Females are likely less susceptible to viral infections, perhaps due to their steroid hormone levels, the impact of X-linked genes, and the sex-based immune responses. Although mostly inactive, the X chromosome makes the female's immune system more robust. The extra immune-regulatory genes of the X chromosome are associated with lower levels of viral load and decreased infection rate. Moreover, a higher titer of the antibodies and their longer blood circulation half-life are involved in a more durable immune protection in females. The activation rate of the immune cells and the production of TLR7 and IFN are more prominent in females. Although the bi-allelic expression of the immune regulatory genes can sometimes lead to autoimmune reactions, the higher titer of TLR7 in females is further associated with a stronger anti-viral immune response. Considering these sex-related differences and the similarities between the SARS, MERS, and COVID-19, we will discuss them in immune responses against the β-CoVs-associated syndromes. We aim to provide information on sex-based disease susceptibility and response. A better understanding of the evasion strategies of pathogens and the host immune responses can provide worthful insights into immunotherapy, and vaccine development approaches.
Collapse
Affiliation(s)
- Golbarg Rahimi
- Department of Cellular and Molecular Biology, University of Esfahan, Esfahan, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Panahi
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences and Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Aaby P, Benn CS, Flanagan KL, Klein SL, Kollmann TR, Lynn DJ, Shann F. The non-specific and sex-differential effects of vaccines. Nat Rev Immunol 2020; 20:464-470. [PMID: 32461674 PMCID: PMC7252419 DOI: 10.1038/s41577-020-0338-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 12/27/2022]
Abstract
The textbook view of vaccination is that it functions to induce immune memory of the specific pathogen components of the vaccine, leading to a quantitatively and qualitatively better response if the host is exposed to infection with the same pathogen. However, evidence accumulated over the past few decades increasingly suggests that vaccines can also have non-specific effects on unrelated infections and diseases, with important implications for childhood mortality particularly in low-income settings. Furthermore, many of these non-specific effects, as well as the pathogen-specific effects, of vaccines show differences between the sexes. Here, members of the Optimmunize consortium discuss the evidence for and potential mechanisms of non-specific and sex-differential effects of vaccines, as well as their potential policy implications. Given that the non-specific effects of some vaccines are now being tested for their ability to protect against COVID-19, the authors also comment on the broader implications of these trials. In this Viewpoint article, members of the Optimmunize consortium discuss the evidence for non-specific and sex-differential effects of vaccines and how this information might inform vaccine design and policy, including in relation to the COVID-19 pandemic. Peter Aaby was trained as an anthropologist but has built a large health surveillance system in Guinea-Bissau since 1978, focusing on the high levels of child mortality there. Crowding and intensive exposure to measles were key determinants of child mortality. This led to vaccine research and the discovery of the non-specific effects of measles vaccine. Christine Stabell Benn is a professor in global health at the University of Southern Denmark. She conducts epidemiological and immunological studies of vaccines and vitamin A, with a focus on their real-life effects on overall health in Africa and Denmark. She formulated the hypothesis that these health interventions with immunomodulatory effects interact, often in a sex-differential manner. Katie L. Flanagan is Director of Infectious Diseases for north/north-west Tasmania, an adjunct professor at the University of Tasmania and RMIT University and an adjunct associate professor at Monash University. She is Honorary Secretary of the Australasian Society for Infectious Diseases (ASID), Chair of the ASID Vaccination Special Interest Group and a member of the Australian Technical Advisory Group on Immunisation. Her current research focuses on using systems vaccinology to study the sex-differential and non-targeted effects of vaccines. Sabra L. Klein is a professor of molecular microbiology and immunology at the Johns Hopkins Bloomberg School of Public Health, Baltimore, USA. She is an expert on sex and gender differences in immune responses and susceptibility to infection. She is the immediate past president of the Organization for the Study of Sex Differences, a principal investigator of the Johns Hopkins Specialized Center for Research Excellence in sex and age differences in immunity to influenza and a co-director of the Johns Hopkins Center for Women’s Health, Sex, and Gender Research. Tobias R. Kollmann is a paediatric infectious disease clinician and systems vaccinologist at Telethon Kids Institute and Perth Children’s Hospital in Perth, Australia. His expertise centres on newborn infectious diseases, immune ontogeny and early-life vaccine responses, using cutting-edge technology and analytics to extract the most information out of the typically small biological samples obtainable in early life. David J. Lynn is Director of the Computational and Systems Biology Program and an EMBL Australia group leader at the South Australian Health and Medical Research Institute. He is also a professor at the Flinders University College of Medicine and Public Health. He leads a research programme in systems immunology, investigating how pathogenic and commensal microorganisms modulate the immune system in different contexts, including vaccination. Frank Shann worked as a paediatrician in Papua New Guinea and then for 20 years was Director of Intensive Care at the Royal Children’s Hospital in Melbourne, Australia. He is a professorial fellow in the Department of Paediatrics, University of Melbourne, engaged in research on the non-specific effects of vaccines.
Collapse
Affiliation(s)
- Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau.
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Department of Clinical Research, Odense University Hospital, Odense, Denmark. .,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark.
| | - Katie L Flanagan
- University of Tasmania, Hobart, TAS, Australia. .,RMIT University, Melbourne, VIC, Australia. .,Monash University, Melbourne, VIC, Australia.
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | - David J Lynn
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia. .,Flinders University, Adelaide, SA, Australia.
| | - Frank Shann
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Rebuli ME, Speen AM, Martin EM, Addo KA, Pawlak EA, Glista-Baker E, Robinette C, Zhou H, Noah TL, Jaspers I. Wood Smoke Exposure Alters Human Inflammatory Responses to Viral Infection in a Sex-Specific Manner. A Randomized, Placebo-controlled Study. Am J Respir Crit Care Med 2020; 199:996-1007. [PMID: 30360637 DOI: 10.1164/rccm.201807-1287oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exposure to particulates from burning biomass is an increasing global health issue. Burning biomass, including wood smoke, is associated with increased lower respiratory infections. OBJECTIVES To determine whether acute exposure to wood smoke modifies nasal inflammatory responses to influenza. METHODS Healthy young adults (n = 39) were randomized to a 2-hour controlled chamber exposure to wood smoke, where exposure levels were controlled to particulate number (wood smoke particles [WSP]; 500 μg/cm3) or filtered air, followed by nasal inoculation with a vaccine dose of live attenuated influenza virus (LAIV). Nasal lavage was performed before exposure (Day 0) and on Days 1 and 2 after exposure. Nasal lavage fluid cells were analyzed for inflammatory gene expression profiles, and cell-free fluid was assayed for cytokines. MEASUREMENTS AND MAIN RESULTS Only IP-10 protein levels were affected, suppressed, by WSP exposure in aggregate analysis. Subsequent analysis indicated an exposure × sex interaction, prompting additional analyses of WSP- and LAIV-induced changes in males and females. Inflammation-related gene expression profiles differed between the sexes, at baseline (males greater than females), after LAIV inoculation (females greater than males), and after WSP exposure (increase in males and decrease in females), demonstrating that WSP- and LAIV-induced changes in antiviral defense responses in the nasal mucosa occur in a sex-specific manner. CONCLUSIONS WSP exposure resulted in minimal modification of LAIV-induced responses in aggregate analysis. In contrast, analyzing WSP-induced modification of LAIV responses in the sexes separately unmasked sex-specific differences in response to exposure. These data highlight the need for additional studies to understand sex-specific pollutant-induced effects. Clinical trial registered with www.clinicaltrials.gov (NCT02183753).
Collapse
Affiliation(s)
| | - Adam M Speen
- 1 Curriculum in Toxicology & Environmental Medicine
| | - Elizabeth M Martin
- 1 Curriculum in Toxicology & Environmental Medicine.,2 Department of Environmental Sciences and Engineering, Gillings School of Global Public Health
| | - Kezia A Addo
- 1 Curriculum in Toxicology & Environmental Medicine
| | - Erica A Pawlak
- 3 Center for Environmental Medicine, Asthma, and Lung Biology
| | | | | | | | - Terry L Noah
- 1 Curriculum in Toxicology & Environmental Medicine.,3 Center for Environmental Medicine, Asthma, and Lung Biology.,5 Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- 1 Curriculum in Toxicology & Environmental Medicine.,3 Center for Environmental Medicine, Asthma, and Lung Biology.,5 Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Dhakal S, Klein SL. Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019; 93:e00797-19. [PMID: 31391269 PMCID: PMC6803252 DOI: 10.1128/jvi.00797-19] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019. [PMID: 31391269 DOI: 10.1128/jvi.00797‐19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
|
21
|
Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 2019; 4:29. [PMID: 31312529 PMCID: PMC6626024 DOI: 10.1038/s41541-019-0124-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Vaccine-induced immunity declines with age, which may differ between males and females. Using human sera collected before and 21 days after receipt of the monovalent A/Cal/09 H1N1 vaccine, we evaluated cytokine and antibody responses in adult (18-45 years) and aged (65+ years) individuals. After vaccination, adult females developed greater IL-6 and antibody responses than either adult males or aged females, with female antibody responses being positively associated with concentrations of estradiol. To test whether protection against influenza virus challenge was greater in females than males, we primed and boosted adult (8-10 weeks) and aged (68-70 weeks) male and female mice with an inactivated A/Cal/09 H1N1 vaccine or no vaccine and challenged with a drift variant A/Cal/09 virus. As compared with unvaccinated mice, vaccinated adult, but not aged, mice experienced less morbidity and better pulmonary viral clearance following challenge, regardless of sex. Vaccinated adult female mice developed antibody responses that were of greater quantity and quality and more protective than vaccinated adult males. Sex differences in vaccine efficacy diminished with age in mice. To determine the role of sex steroids in vaccine-induced immune responses, adult mice were gonadectomized and hormones (estradiol in females and testosterone in males) were replaced in subsets of animals before vaccination. Vaccine-induced antibody responses were increased in females by estradiol and decreased in males by testosterone. The benefit of elevated estradiol on antibody responses and protection against influenza in females is diminished with age in both mice and humans.
Collapse
|
22
|
Morgan R, Klein SL. The intersection of sex and gender in the treatment of influenza. Curr Opin Virol 2019; 35:35-41. [PMID: 30901632 DOI: 10.1016/j.coviro.2019.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
Males/men and females/women differ in the outcome of influenza A virus (IAV) infections, vaccination, and antiviral treatments. Both sex (i.e. biological factors) and gender (i.e. sociocultural factors) can impact exposure and severity of IAV infections as well as responses and outcomes of treatments for IAV. Greater consideration of the combined effects of sex and gender in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Rosemary Morgan
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
23
|
Petrović R, Bufan B, Arsenović-Ranin N, Živković I, Minić R, Radojević K, Leposavić G. Mouse strain and sex as determinants of immune response to trivalent influenza vaccine. Life Sci 2018; 207:117-126. [PMID: 29859986 DOI: 10.1016/j.lfs.2018.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
AIMS The study examined the influence of sex and mouse strain on germinal center (GC) reaction and antibody responses to seasonal split trivalent influenza vaccine (TIV). MAIN METHODS C57BL/6 and BALB/c mice of both sexes were immunized with TIV and examined for specific antibody response by ELISA. Splenic T follicular regulatory (Tfr), T follicular helper (Tfh) and GC B cells are detected by flow cytometry. The proliferative response of splenocytes, and concentrations of IFN-γ and IL-4 upon restimulation with vaccine antigens were examined by 7-AAD staining and ELISA, respectively. KEY FINDINGS BALB/c mice developed more robust IgG responses to vaccine type A antigens than their sex-matched C57BL/6 counterparts, while that to B antigen did not differ between strains. In both strains IgG responses against type A vaccine antigens were greater in females than in males. The greater IgG responses correlated with lower splenic Tfr/Tfh and Tfr/GC B cell ratios and greater vaccine antigen-specific proliferative responses of CD4+ and B cells in splenocyte cultures. In both mouse strains IgG2a(c)/IgG1 ratios were comparable between sexes, but lower in BALB/c than in C57BL/6 mice indicating a shift in Th1/Th2 balance towards Th2 response in BALB/c ones. Consistently, splenocytes from BALB/c mice produced more IL-4 and less IFN-γ than those from C57BL/6 mice. SIGNIFICANCE The study indicated that magnitude of humoral response to influenza type A haemagglutinins depends on mouse strain and sex, and thereby set background for the vaccination strategies taking into account biological sex, and in a longterm perspective individual differences in immune reactivity.
Collapse
Affiliation(s)
- Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Rajna Minić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Katarina Radojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|