1
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Kim Y, Hamada K, Sekine K. The effect of supplementing the calcium phosphate cement containing poloxamer 407 on cellular activities. J Biomed Mater Res B Appl Biomater 2024; 112:e35335. [PMID: 37772460 DOI: 10.1002/jbm.b.35335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Calcium phosphate cement (CPC) is generally used for bone repair and augmentation. Poloxamers are tri-block copolymers that are used as surfactants but have applications in drug and antibiotic delivery. However, their biological effects on bone regeneration systems remain unelucidated. Here, we aimed to understand how supplementing the prototype CPC with poloxamer would impact cellular activity and its function as a bone-grafting material. A novel CPC, modified beta-tricalcium phosphate (mβ-TCP) powder, was developed through a planetary ball-milling process using a beta-tricalcium phosphate (β-TCP). The mβ-TCP dissolves rapidly and accelerates hydroxyapatite precipitation; successfully shortening the cement setting time and enhancing the strength. Furthermore, the addition of poloxamer 407 to mβ-TCP could reduce the risk of leakage from bone defects and improve fracture toughness while maintaining mechanical properties. In this study, the poloxamer addition effects (0.05 and 0.1 g/mL) on the cellular activities of MC3T3-E1 cells cultured in vitro were investigated. The cell viability of mβ-TCP containing poloxamer 407 was similar to that of mβ-TCP. All specimens showed effective cell attachment and healthy polygonal extension of the cytoplasm firmly attached to hydroxyapatite (HA) crystals. Therefore, even with the addition of poloxamer to mβ-TCP, it does not have a negative effect to osteoblast growth. These data demonstrated that the addition of poloxamer 407 to mβ-TCP might be considered a potential therapeutic application for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
3
|
Duru İ, Büyük NI, Köse GT, Marques DW, Bruce KA, Martin JR, Ege D. Incorporating the Antioxidant Fullerenol into Calcium Phosphate Bone Cements Increases Cellular Osteogenesis without Compromising Physical Cement Characteristics. ADVANCED ENGINEERING MATERIALS 2023; 25:2300301. [PMID: 37982016 PMCID: PMC10656051 DOI: 10.1002/adem.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/21/2023]
Abstract
Herein, fullerenol (Ful), a highly water-soluble derivative of C60 fullerene with demonstrated antioxidant activity, is incorporated into calcium phosphate cements (CPCs) to enhance their osteogenic ability. CPCs with added carboxymethyl cellulose/gelatin (CMC/Gel) are doped with biocompatible Ful particles at concentrations of 0.02, 0.04, and 0.1 wt v%-1 and evaluated for Ful-mediated mechanical performance, antioxidant activity, and in vitro cellular osteogenesis. CMC/gel cements with the highest Ful concentration decrease setting times due to increased hydrogen bonding from Ful's hydroxyl groups. In vitro studies of reactive oxygen species (ROS) scavenging with CMC/gel cements demonstrate potent antioxidant activity with Ful incorporation and cement scavenging capacity is highest for 0.02 and 0.04 wt v%-1 Ful. In vitro cytotoxicity studies reveal that 0.02 and 0.04 wt v%-1 Ful cements also protect cellular viability. Finally, increase of alkaline phosphatase (ALP) activity and expression of runt-related transcription factor 2 (Runx2) in MC3T3-E1 pre-osteoblast cells treated with low-dose Ful cements demonstrate Ful-mediated osteogenic differentiation. These results strongly indicate that the osteogenic abilities of Ful-loaded cements are correlated with their antioxidant activity levels. Overall, this study demonstrates exciting potential of Fullerenol as an antioxidant and proosteogenic additive for improving the performance of calcium phosphate cements in bone reconstruction procedures.
Collapse
Affiliation(s)
- İlayda Duru
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| | - Nisa Irem Büyük
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Gamze Torun Köse
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Dylan Widder Marques
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Karina Ann Bruce
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - John Robert Martin
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Duygu Ege
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| |
Collapse
|
4
|
Feng Y, Wu D, Knaus J, Keßler S, Ni B, Chen Z, Avaro J, Xiong R, Cölfen H, Wang Z. A Bioinspired Gelatin-Amorphous Calcium Phosphate Coating on Titanium Implant for Bone Regeneration. Adv Healthc Mater 2023; 12:e2203411. [PMID: 36944062 PMCID: PMC11468875 DOI: 10.1002/adhm.202203411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Biocompatible and bio-active coatings can enhance and accelerate osseointegration via chemical binding onto substrates. Amorphous calcium phosphate (ACP) has been shown as a precursor to achieve mineralization in vertebrates and invertebrates under the control of biological macromolecules. This work presents a simple bioinspired Gelatin-CaPO4 (Gel-CaP) composite coating on titanium surfaces to improve osseointegration. The covalently bound Gel-CaP composite is characterized as an ACP-Gel compound via SEM, FT-IR, XRD, and HR-TEM. The amorphous compound coating exhibits a nanometer range thickness and improved elastic modulus, good wettability, and nanometric roughness. The amount of grafted carboxyl groups and theoretical thickness of the coatings are also investigated. More importantly, MC3T3 cells, an osteoblast cell line, show excellent cell proliferation and adhesion on the Gel-CaP coating. The level of osteogenic genes is considerably upregulated on Ti with Gel-CaP coatings compared to uncoated Ti, demonstrating that Gel-CaP coatings possess a unique osteogenic ability. To conclude, this work offers a new perspective on functional, bioactive titanium coatings, and Gel-CaP composites can be a low-cost and promising candidate in bone regeneration.
Collapse
Affiliation(s)
- Yanhuizhi Feng
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Di Wu
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
| | - Jennifer Knaus
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Sascha Keßler
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Bing Ni
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - ZongKun Chen
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Johnathan Avaro
- EMPAMaterial and Science TechnologyLerchenfeldstrasse 59014St. GallenSwitzerland
| | - Rui Xiong
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Helmut Cölfen
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Zuolin Wang
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
| |
Collapse
|
5
|
Dias AM, do Nascimento Canhas I, Bruziquesi CGO, Speziali MG, Sinisterra RD, Cortés ME. Magnesium (Mg2 +), Strontium (Sr2 +), and Zinc (Zn2 +) Co-substituted Bone Cements Based on Nano-hydroxyapatite/Monetite for Bone Regeneration. Biol Trace Elem Res 2023; 201:2963-2981. [PMID: 35994139 DOI: 10.1007/s12011-022-03382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
New bone cement type that combines Sr2 + /Mg2 + or Sr2 + /Zn2 + co-substituted nano-hydroxyapatite (n-HAs) with calcium phosphate dibasic and chitosan/gelatin polymers was developed to increase adhesion and cellular response. The cements were physicochemically described and tested in vitro using cell cultures. All cements exhibited quite hydrophilic and had high washout resistance. Cement releases Ca2 + , Mg2 + , Sr2 + , and Zn2 + in concentrations that are suitable for osteoblast proliferation and development. All of the cements stimulated cell proliferation in fibroblasts, endothelial cells, and osteoblasts, were non-cytotoxic, and produced apatite. Cements containing co-substituted n-HAs had excellent cytocompatibility, which improved osteoblast adhesion and cell proliferation. These cements had osteoinductive potential, stimulating extracellular matrix (ECM) mineralization and differentiation of MC3T3-E1 cells by increasing ALP and NO production. The ions Ca2 + , Mg2 + , Zn2 + , and Sr2 + appear to cooperate in promoting osteoblast function. The C3 cement (HA-SrMg5%), which was made up of n-HA co-substituted with 5 mol% Sr and 5 mol% Mg, showed exceptional osteoinductive capacity in terms of bone regeneration, indicating that this new bone cement could be a promising material for bone replacement.
Collapse
Affiliation(s)
- Alexa Magalhães Dias
- Dentistry Department, Faculty of Dentistry, Universidade Federal de Juiz de Fora, Rua São Paulo, 745 Governador Valadares/MG Brazil, Governador Valadares, MG, CEP, 31270901, Brazil
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Isabela do Nascimento Canhas
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Carlos Giovani Oliveira Bruziquesi
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Marcelo Gomes Speziali
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas E Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro s/n, Ouro Preto, MG, CEP, 35400000, Brazil
| | - Rubén Dario Sinisterra
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Maria Esperanza Cortés
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
| |
Collapse
|
6
|
Calcium phosphate bone cements as local drug delivery systems for bone cancer treatment. BIOMATERIALS ADVANCES 2023; 148:213367. [PMID: 36921461 DOI: 10.1016/j.bioadv.2023.213367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Bone cancer is usually a metastatic disease, affecting people of all ages. Its effective therapy requires a targeted drug administration locally at the cancer site so that the surrounding healthy organs and tissues stay unharmed. Upon a thorough literature search, a tremendous number of published articles are reporting on development of calcium phosphate cements (CPCs) for the treatment of a variety of diseases, such as osteoporosis, osteoarthritis, osteomyelitis, and other musculoskeletal disorders. However, just a limited number of research employs CPCs specifically for bone cancer treatment. In this review article, we study the factors influencing the local drug release from CPCs and particularly focus on bone cancer therapy. Finally, we locate the deficiencies in the literature regarding this specific topic and propose which other perspectives should be considered and discussed in future articles.
Collapse
|
7
|
Tronco MC, Cassel JB, Dos Santos LA. α-TCP-based Calcium Phosphate Cements: a critical review. Acta Biomater 2022; 151:70-87. [PMID: 36028195 DOI: 10.1016/j.actbio.2022.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Calcium phosphates are promising materials for applications in bone repair and substitution, particularly for their bioactivity and ability to form self-setting cements. Among them, α-tricalcium phosphate (α-TCP) stands out due to its high solubility, its hydration reaction and bioresorbability. The synthesis of α-TCP is particularly complex and the interactions between some of the synthesis parameters are still not completely understood. The variety of methods available to synthesize α-TCP has provided a substantial variance in the properties of α-TCP-based cements and the decision about which method, parameters and starting reagents will be used for the powder's synthesis is determinant of the properties of the resulting material. Therefore, this review paper focuses on α-TCP's synthesis and properties, presenting the synthesis methods currently in use as well as a discussion of how the synthesis parameters and the cement preparation affect the reactivity and mechanical properties of the material, providing a guide for the selection of the most suitable process for each α-TCP application. STATEMENT OF SIGNIFICANCE: α-TCP is a calcium phosphate and it is currently one of the most investigated bioceramics for applications that explore its bioresorbability and the hydration reaction of α-TCP-based cements. Despite the increasing number of publications on the topic, there are still aspects not well understood. This review article aims at contributing to this fascinating subject by offering an update on the state of the art of α-TCP's synthesis methods, while also addressing topics that are not often discussed about this material, such as the preparation of α-TCP-based cements and how its parameters affect the properties of the resulting cements.
Collapse
Affiliation(s)
- Matheus C Tronco
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Júlia B Cassel
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Luís A Dos Santos
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| |
Collapse
|
8
|
Kim Y, Uyama E, Sekine K, Kawano F, Hamada K. Effects of poloxamer additives on strength, injectability, and shape stability of beta-tricalcium phosphate cement modified using ball-milling. J Mech Behav Biomed Mater 2022; 130:105182. [PMID: 35305410 DOI: 10.1016/j.jmbbm.2022.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
Abstract
A new CPC was developed in this study using a β-TCP powder mechano-chemically modified by ball-milling. The prototype CPC exhibits excellent fluidity for easy injection into bone defects; however, there is a risk of leakage from the defects immediately after implantation due to its high fluidity. The addition of poloxamer, an inverse thermoresponsive gelling agent, into CPC optimizes the fluidity. At lower temperatures, it forms a sol and maintains good injectability, whereas at the human body temperature, it transforms to a gel, reducing the fluidity and risk of leakage. In this study, the effects of poloxamer addition of 3, 5, and 10 mass% on the injectability, shape stability, and strength of the prototype CPC were evaluated. The calculated injectability of the prototype CPC pastes containing three different poloxamer contents was higher than that of the CPC paste without poloxamer for 15 min at 37 °C. Furthermore, the shape stability immediately after injection of the three CPC pastes with poloxamer was higher than that of the CPC paste without poloxamer. After 1 week of storage at 37 °C, the compressive strength and diametral tensile strength of the CPC compacts containing 10 mass% poloxamer were similar to those of the CPC compact without poloxamer. Additionally, the CPC compacts containing 10 mass% poloxamer exhibited clear plastic deformation after fracture. These results indicate that the addition of poloxamer to the prototype CPC could reduce the risk of leakage from bone defects and improve the fracture toughness with maintaining the injectability and strength.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.
| | - Emi Uyama
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Fumiaki Kawano
- Department of Comprehensive Dentistry, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| |
Collapse
|
9
|
Rödel M, Teßmar J, Groll J, Gbureck U. Dual setting brushite—gelatin cement with increased ductility and sustained drug release. J Biomater Appl 2022; 36:1882-1898. [DOI: 10.1177/08853282221075877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel dual setting brushite-gelatin cement was achieved by genip ininitiated cross-linking of gelatin during cement setting. Although the combination of an inorganic and organic phase resulted in a decrease of the compressive strength from about 10 MPa without polymeric phase to 3–6–MPa for gelatin modified composites, an increase in elastic properties due to the gelatin hydrogel with a concentration of 10.0 w/v% was achieved. For a powder-to-liquid ratio of 2.5 g*mL−1, a shift of initial maximum stress value during compression testing was observed up to 5% deformation and tested samples showed a pseudo-ductile fracture behavior. The obtained composites of the different formulations were characterized regarding phase composition, porosity as well as drug loading capacity with rifampicin and vancomycin. For the latter, a sustained and prolonged release was realized with a drug release profile according to the Higuchi model and a release exponent of n = 0.5 for the formulation with a PLR of 2.5 g*mL−1 and an incorporation of 10.0 w/v% gelatin.
Collapse
Affiliation(s)
- Michaela Rödel
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Jörg Teßmar
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Chamansara A, Behnamghader A, Zamanian A. Preparation and characterization of injectable gelatin/alginate/chondroitin sulfate/α-calcium sulfate hemihydrate composite paste for bone repair application. J Biomater Appl 2022; 36:1758-1774. [PMID: 35199572 DOI: 10.1177/08853282211073231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a group of injectable composite pastes with a novel formulation consisting of two inorganic components: α-calcium sulfate hemihydrate (α-CSH, P/L = 1.8-2.1 g/ml) and calcium-deficient hydroxyapatite (CDHA, P/L = 0.1 g/ml) nanoparticles; and three biopolymers: gelatin (2, 4 wt. %), alginate (1, 1.5 wt. %), and chondroitin sulfate (0.5 wt. %) were carefully prepared and thoroughly characterized with commensurate characterizations. The composite sample composed of gelatin (2 wt. %), alginate (1.5 wt. %), chondroitin sulfate (0.5 wt. %), and also CDHA nanoparticles and α-CSH with P/L ratios of 0.1 and 2.1 g/ml, respectively, exhibited optimal properties in terms of injectability, anti-washout performance, and rheological characteristics. After 14 days of immersion of the chosen sample in the simulated body fluid medium, a dense layer of apatite was formed on the surface of the composite paste. The cellular in vitro tests, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT), alkaline phosphatase assay, 4',6-diamidino-2-phenylindole staining, and cellular attachment, revealed the desirable response of MG-63 cells to the composite paste. The chondroitin sulfate significantly improved the injectability, anti-washout performance, and cellular response of the samples. Considering the promising features of the composite paste prepared in this research work, it could be considered as an alternative injectable bioactive material for bone repair applications.[Formula: see text].
Collapse
Affiliation(s)
- Alireza Chamansara
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| | - Aliasghar Behnamghader
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
11
|
Yuan Z, Bi J, Wang W, Sun X, Wang L, Mao J, Yang F. A novel synthesis method and properties of calcium-deficient hydroxyapatite/α-TCP biphasic calcium phosphate. J Biomater Appl 2022; 36:1712-1719. [PMID: 35108128 DOI: 10.1177/08853282211068597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biphasic calcium phosphate (BCP) is an important research field based on calcium phosphate biomaterials. In this paper, a new synthesis method of CDHA/α-TCP BCP was studied. By controlling the addition amount of citric acid, the relative contents of CDHA and α-TCP in the BCP were controlled. BCP bone cement was prepared with different proportions of BCP as raw materials. The BCP bone cement was characterized by XRD and SEM, and evaluated by measuring setting time, compressive strength, SBF immersion, and colorimetric CCK-8 assay. The results showed that the increase of CDHA content can lead to the reduction of the setting time of bone cement and delay the degradation rate of BCP bone cement.
Collapse
Affiliation(s)
- Zhen Yuan
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, 12589Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jianqiang Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, 12589Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Weilli Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, 12589Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiaoning Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, 12589Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Lu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, 12589Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Junjie Mao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, 12589Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Fushuai Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, 12589Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
12
|
3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments. Acta Biomater 2021; 134:744-759. [PMID: 34358699 DOI: 10.1016/j.actbio.2021.07.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023]
Abstract
Porosity plays a key role on the osteogenic performance of bone scaffolds. Direct Ink Writing (DIW) allows the design of customized synthetic bone grafts with patient-specific architecture and controlled macroporosity. Being an extrusion-based technique, the scaffolds obtained are formed by arrays of cylindrical filaments, and therefore have convex surfaces. This may represent a serious limitation, as the role of surface curvature and more specifically the stimulating role of concave surfaces in osteoinduction and bone growth has been recently highlighted. Hence the need to design strategies that allow the introduction of concave pores in DIW scaffolds. In the current study, we propose to add gelatin microspheres as a sacrificial material in a self-setting calcium phosphate ink. Neither the phase transformation responsible for the hardening of the scaffold nor the formation of characteristic network of needle-like hydroxyapatite crystals was affected by the addition of gelatin microspheres. The partial dissolution of the gelatin resulted in the creation of spherical pores throughout the filaments and exposed on the surface, increasing filament porosity from 0.2 % to 67.9 %. Moreover, the presence of retained gelatin proved to have a significant effect on the mechanical properties, reducing the strength but simultaneously giving the scaffolds an elastic behavior, despite the high content of ceramic as a continuous phase. Notwithstanding the inherent difficulty of in vitro cultures with this highly reactive material an enhancement of MG-63 cell proliferation, as well as better spreading of hMSCs was recorded on the developed scaffolds. STATEMENT OF SIGNIFICANCE: Recent studies have stressed the role that concave surfaces play in tissue regeneration and, more specifically, in osteoinduction and osteogenesis. Direct ink writing enables the production of patient-specific bone grafts with controlled architecture. However, besides many advantages, it has the serious limitation that the surfaces obtained are convex. In this article, for the first time we develop a strategy to introduce concave pores in the printed filaments of biomimetic hydroxyapatite by incorporation and partial dissolution of gelatin microspheres. The retention of part of the gelatin results in a more elastic behavior compared to the brittleness of hydroxyapatite scaffolds, while the needle-shaped nanostructure of biomimetic hydroxyapatite is maintained and gelatin-coated concave pores on the surface of the filaments enhance cell spreading.
Collapse
|
13
|
Improved Anti-Washout Property of Calcium Sulfate/Tri-Calcium Phosphate Premixed Bone Substitute with Glycerin and Hydroxypropyl Methylcellulose. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Calcium sulfate/calcium phosphate (CS-CP)-based bone substitutes have been developed in premixed putty for usage in clinical applications. However, it is difficult to completely stop the bleeding during an operation because premixed putty can come into contact with blood or body fluids leading to disintegration. Under certain conditions depending on particle size and morphology, collapsed (washed) particles can cause inflammation and delay bone healing. In this context, anti-washout premixed putty CS-CP was prepared by mixing glycerin with 1, 2, and 4 wt% of hydroxypropyl methylcellulose (HPMC), and the resultant anti-washout properties were evaluated. The results showed that more than 70% of the premixed putty without HPMC was disintegrated after being immersed into simulated body fluid (SBF) for 15 min. The results demonstrated that the more HPMC was contained in the premixed putty, the less disintegration occurred. We conclude that CS-CP pre-mixed putty with glycerin and HPMC is a potential bone substitute that has good anti-washout properties for clinical applications.
Collapse
|
14
|
Montelongo SA, Chiou G, Ong JL, Bizios R, Guda T. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:94. [PMID: 34390404 PMCID: PMC8364524 DOI: 10.1007/s10856-021-06569-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/30/2021] [Indexed: 05/17/2023]
Abstract
Beta-tricalcium phosphate (β-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:β-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the β-TCP content while maintaining printability. Post-sintering, the gelatin:β-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing β-TCP content. The gelatin:β-TCP:CMC ink (25:75 gelatin:β-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during the 3D printing process (compressive strength of 13.1 ± 2.51 MPa and elastic modulus of 696 ± 108 MPa was achieved). The sintered, macroporous β-TCP scaffolds demonstrated both high porosity and pore size but retained mechanical strength and stiffness compared to macroporous, calcium phosphate ceramic scaffolds manufactured using alternative methods. The high interconnected porosity (45-60%) and fluid conductance (between 1.04 ×10-9 and 2.27 × 10-9 m4s/kg) of the β-TCP scaffolds tested, and the ability to finely tune the architecture using 3D printing, resulted in the development of novel bioink formulations and made available a versatile manufacturing process with broad applicability in producing substrates suitable for biomedical applications.
Collapse
Affiliation(s)
- Sergio A Montelongo
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Gennifer Chiou
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Joo L Ong
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
15
|
Jang KJ, Seonwoo H, Yang M, Park S, Lim KT, Kim J, Choung PH, Chung JH. Development and characterization of waste equine bone-derived calcium phosphate cements with human alveolar bone-derived mesenchymal stem cells. Connect Tissue Res 2021; 62:164-175. [PMID: 31581855 DOI: 10.1080/03008207.2019.1655003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium phosphate cements (CPCs) are regarded as promising graft substitutes for bone tissue engineering. However, their wide use is limited by the high cost associated with the complex synthetic processes involved in their fabrication. Cheaper xenogeneic calcium phosphate (CaP) materials derived from waste animal bone may solve this problem. Moreover, the surface topography, mechanical strength, and cellular function of CPCs are influenced by the ratio of micro- to nano-sized CaP (M/NCaP) particles. In this study, we developed waste equine bone (EB)-derived CPCs with various M/NCaP particle ratios to examine the potential capacity of EB-CPCs for bone grafting materials. Our study showed that increasing the number of NCaP particles resulted in reductions in roughness and porosity while promoting smoother surfaces of EB-CPCs. Changes in the chemical properties of EB-CPCs by NCaP particles were observed using X-ray diffractometry. The mechanical properties and cohesiveness of the EB-CPCs improved as the NCaP particle content increased. In an in vitro study, EB-CPCs with a greater proportion of MCaP particles showed higher cell adhesion. Alkaline phosphatase activity indicated that osteogenic differentiation by EB-CPCs was promoted with increased NCaP particle content. These results could provide a design criterion for bone substitutes for orthopedic disease, including periodontal bone defects.
Collapse
Affiliation(s)
- Kyoung-Je Jang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, College of Life Science and Natural Resources, Sunchon National University , Sunchon, Republic of Korea
| | - Minho Yang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Sangbae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Ki Taek Lim
- Department of Biosystems Engineering, College of Agricultural and Life Sciences, Kangwon National University , Chuncheon, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University , Gwangju, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
16
|
Wu IT, Kao PF, Huang YR, Ding SJ. In vitro and in vivo osteogenesis of gelatin-modified calcium silicate cement with washout resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111297. [DOI: 10.1016/j.msec.2020.111297] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
|
17
|
Güben E, Arıcı Ş, Bayır D, Bozdağ E, Ege D. Preparation of calcium phosphate/carboxymethylcellulose-based bone cements. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.19.00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Esra Güben
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Şule Arıcı
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Dilara Bayır
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ergün Bozdağ
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Duygu Ege
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
18
|
Grosfeld EC, Smith BT, Santoro M, Lodoso-Torrecilla I, Jansen JA, Ulrich DJ, Melchiorri AJ, Scott DW, Mikos AG, van den Beucken JJJP. Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration. ACTA ACUST UNITED AC 2020; 15:025002. [PMID: 31810074 DOI: 10.1088/1748-605x/ab5f9c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here, we demonstrate the in vivo efficacy of glucose microparticles (GMPs) to serve as porogens within calcium phosphate cements (CPCs) to obtain a fast-degrading bone substitute material. Composites were fabricated incorporating 20 wt% GMPs at two different GMP size ranges (100-150 μm (GMP-S) and 150-300 μm (GMP-L)), while CPC containing 20 wt% poly(lactic-co-glycolic acid) microparticles (PLGA) and plain CPC served as controls. After 2 and 8 weeks implantation in a rat femoral condyle defect model, specimens were retrieved and analyzed for material degradation and bone formation. Histologically, no adverse tissue response to any of the CPC-formulations was observed. All CPC-porogen formulations showed faster degradation compared to plain CPC control, but only GMP-containing formulations showed higher amounts of new bone formation compared to plain CPC controls. After 8 weeks, only CPC-porogen formulations with GMP-S or PLGA porogens showed higher degradation compared to plain CPC controls. Overall, the inclusion of GMPs into CPCs resulted in a macroporous structure that initially accelerated the generation of new bone. These findings highlight the efficacy of a novel approach that leverages simple porogen properties to generate porous CPCs with distinct degradation and bone regeneration profiles.
Collapse
Affiliation(s)
- Eline-Claire Grosfeld
- Radboudumc, Dentistry-Biomaterials, Philips van Leijdenlaan 25, 6525EX Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Salehi G, Behnamghader A, Hesaraki S, Mozafari M. Synergistic effects of carbohydrate polymers on the performance of hybrid injectable bone pastes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Schmidt LE, Hadad H, Vasconcelos IRD, Colombo LT, da Silva RC, Santos AFP, Cervantes LCC, Poli PP, Signorino F, Maiorana C, Carvalho PSPD, Souza FÁ. Critical Defect Healing Assessment in Rat Calvaria Filled with Injectable Calcium Phosphate Cement. J Funct Biomater 2019; 10:jfb10020021. [PMID: 31085984 PMCID: PMC6616410 DOI: 10.3390/jfb10020021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 01/19/2023] Open
Abstract
(1) Background: The tissue engineering field has been working to find biomaterials that mimic the biological properties of autogenous bone grafts. (2) Aim: To evaluate the osteoconduction potential of injectable calcium phosphate cement implanted in critical defects in rat calvaria. (3) Methods: In the calvarial bone of 36 rats, 7-mm diameter critical size defects were performed. Afterwards, the animals were randomly divided into three groups according to filler material: a blood clot group (BC), blood clot membrane group (BCM), and an injectable β-tricalcium phosphate group (HBS) cement group. After periods of 30 and 60 days, the animals were euthanized, the calvaria was isolated, and submitted to a decalcification process for later blades confection. Qualitative and quantitative analysis of the neoformed bone tissue were conducted, and histometric data were statistically analyzed. (4) Results: Sixty days post-surgery, the percentages of neoformed bone were 10.67 ± 5.57 in group BC, 16.71 ± 5.0 in group BCM, and 55.11 ± 13.20 in group HBS. The bone formation values in group HBS were significantly higher (p < 0.05) than in groups BC and BCM. (5) Conclusions: Based on these results, it can be concluded that injectable calcium phosphate cement is an osteoconductive material that can be used to fill bone cavities.
Collapse
Affiliation(s)
- Luis Eduardo Schmidt
- Implant Dentistry Post-Graduation Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas 13.045-755, Brazil.
| | - Henrique Hadad
- Department of Surgery and Integrated Clinic, Araçatuba Dental of School, São Paulo State University Júlio de Mesquita Filho-UNESP, Araçatuba, São Paulo 16.015.050, Brazil.
| | - Igor Rodrigues de Vasconcelos
- Implant Dentistry Post-Graduation Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas 13.045-755, Brazil.
| | - Luara Teixeira Colombo
- Department of Surgery and Integrated Clinic, Araçatuba Dental of School, São Paulo State University Júlio de Mesquita Filho-UNESP, Araçatuba, São Paulo 16.015.050, Brazil.
| | - Rodrigo Capalbo da Silva
- Department of Surgery and Integrated Clinic, Araçatuba Dental of School, São Paulo State University Júlio de Mesquita Filho-UNESP, Araçatuba, São Paulo 16.015.050, Brazil.
| | - Ana Flavia Piquera Santos
- Department of Surgery and Integrated Clinic, Araçatuba Dental of School, São Paulo State University Júlio de Mesquita Filho-UNESP, Araçatuba, São Paulo 16.015.050, Brazil.
| | - Lara Cristina Cunha Cervantes
- Department of Surgery and Integrated Clinic, Araçatuba Dental of School, São Paulo State University Júlio de Mesquita Filho-UNESP, Araçatuba, São Paulo 16.015.050, Brazil.
| | - Pier Paolo Poli
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCSS Cà Granda Maggiore Policlinico Hospital, University of Milan, 47.031 Milan, Italy.
| | - Fabrizio Signorino
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCSS Cà Granda Maggiore Policlinico Hospital, University of Milan, 47.031 Milan, Italy.
| | - Carlo Maiorana
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCSS Cà Granda Maggiore Policlinico Hospital, University of Milan, 47.031 Milan, Italy.
| | - Paulo Sérgio Perri de Carvalho
- Implant Dentistry Post-Graduation Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas 13.045-755, Brazil.
| | - Francisley Ávila Souza
- Department of Surgery and Integrated Clinic, Araçatuba Dental of School, São Paulo State University Júlio de Mesquita Filho-UNESP, Araçatuba, São Paulo 16.015.050, Brazil.
| |
Collapse
|
21
|
The Effect of the Thermosensitive Biodegradable PLGA⁻PEG⁻PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement. Int J Mol Sci 2019; 20:ijms20020391. [PMID: 30658476 PMCID: PMC6359562 DOI: 10.3390/ijms20020391] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/17/2022] Open
Abstract
The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA⁻PEG⁻PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA⁻PEG⁻PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.
Collapse
|
22
|
Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. Int J Pharm 2018; 536:241-250. [DOI: 10.1016/j.ijpharm.2017.11.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/20/2023]
|
23
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Xu HHK, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA. Calcium phosphate cements for bone engineering and their biological properties. Bone Res 2017; 5:17056. [PMID: 29354304 PMCID: PMC5764120 DOI: 10.1038/boneres.2017.56] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023] Open
Abstract
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Hockin HK Xu
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- Center for Stem Cell Biology and Regenerative
Medicine, University of Maryland School of Medicine, Baltimore,
MD
21201, USA
- University of Maryland Marlene and Stewart
Greenebaum Cancer Center, University of Maryland School of Medicine,
Baltimore, MD
21201, USA
- Mechanical Engineering Department, University
of Maryland Baltimore County, Baltimore, MD
21250, USA
| | - Ping Wang
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Lin Wang
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- VIP Integrated Department, Stomatological
Hospital of Jilin University, Changchun, Jilin
130011, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Michael D Weir
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
| | - Laurence C Chow
- Volpe Research Center, American Dental
Association Foundation, National Institute of Standards & Technology,
Gaithersburg, MD
20899, USA
| | - Liang Zhao
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- Department of Orthopaedic Surgery, Nanfang
Hospital, Southern Medical University, Guangzhou,
Guangdong
510515, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Mark A Reynolds
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
| |
Collapse
|
25
|
A straightforward approach to enhance the textural, mechanical and biological properties of injectable calcium phosphate apatitic cements (CPCs): CPC/blood composites, a comprehensive study. Acta Biomater 2017; 62:328-339. [PMID: 28864250 DOI: 10.1016/j.actbio.2017.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
Two commercial formulations of apatitic calcium phosphate cements (CPCs), Graftys® Quickset (QS) and Graftys® HBS (HBS), similar in composition but with different initial setting time (7 and 15min, respectively), were combined to ovine whole blood. Surprisingly, although a very cohesive paste was obtained after a few minutes, the setting time of the HBS/blood composite dramatically delayed when compared to its QS analogue and the two blood-free references. Using solid state NMR, scanning electron microscopy and high frequency impedance measurements, it was shown that, in the particular case of the HBS/blood composite, formation of a reticulated and porous organic network occurred in the intergranular space, prior to the precipitation of apatite crystals driven by the cement setting process. The resulting microstructure conferred unique biological properties to this material upon implantation in bone defects, since its degradation rate after 4 and 12weeks was more than twice that for the three other CPCs, with a significant replacement by newly formed bone. STATEMENT OF SIGNIFICANCE A major challenge in the design of bone graft substitutes is the development of injectable, cohesive, resorbable and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with initial mechanical properties as close as bone ones. Thus, we describe specific conditions in CPC-blood composites where the formation of a 3D clot-like network can interact with the precipitated apatite crystals formed during the cement setting process. The resulting microstructure appears more ductile at short-term and more sensitive to biological degradation which finally promotes new bone formation. This important and original paper reports the design and in-depth chemical and physical characterization of this groundbreaking technology.
Collapse
|
26
|
Ida Y, Bae J, Sekine K, Kawano F, Hamada K. Effects of powder-to-liquid ratio on properties of β-tricalcium-phosphate cements modified using high-energy ball-milling. Dent Mater J 2017; 36:590-599. [PMID: 28450674 DOI: 10.4012/dmj.2016-341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The authors have developed a β-tricalcium-phosphate (β-TCP) powder modified mechano-chemically through the application of a ball-milling process (mβ-TCP). The resulting powder can be used in a calcium-phosphate-cement (CPC). In this study, the effects of the powder-to-liquid ratio (P/L ratio) on the properties of the CPCs were investigated, and an appropriate P/L ratio that would simultaneously improve injectability and strength was clarified. The mβ-TCP cement mixed at a P/L ratio of 2.5 and set in air exhibited sufficient injectability until 20 min after mixing, and strength similar to or higher than that mixed at a P/L ratio of 2.0 and 2.78. Although the mβ-TCP cements set in vivo and in SBF were found to exhibit a lower strength than those set in air, it did have an appropriate setting time and strength for clinical applications. In conclusion, P/L ratio optimization successfully improved the strength of injectable mβ-TCP cement.
Collapse
Affiliation(s)
- Yumika Ida
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Oral Science
| | - Jiyoung Bae
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Oral Science
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Oral Science
| | - Fumiaki Kawano
- Department of Comprehensive Dentistry, Tokushima University Graduate School of Oral Science
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Oral Science
| |
Collapse
|
27
|
Smith BT, Santoro M, Grosfeld EC, Shah SR, van den Beucken JJ, Jansen JA, Mikos. AG. Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Acta Biomater 2017; 50:68-77. [PMID: 27956363 DOI: 10.1016/j.actbio.2016.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Calcium phosphate cements (CPCs) have been extensively investigated as scaffolds in bone tissue engineering in light of their chemical composition closely resembling the mineral component of bone extracellular matrix. Yet, the degradation kinetics of many CPCs is slow compared to de novo bone formation. In order to overcome this shortcoming, the use of porogens within CPCs has been suggested as a potential strategy to increase scaffold porosity and promote surface degradation. This study explored the usage of glucose microparticles (GMPs) as porogens for the introduction of macroporosity within CPCs, and characterized the handling properties and physicochemical characteristics of CPCs containing GMPs. Samples were fabricated with four different weight fractions of GMPs (10, 20, 30, and 40%) and two different size ranges (100-150μm and 150-300μm), and were assayed for porosity, pore size distribution, morphology, and compressive mechanical properties. Samples were further tested for their handling properties - specifically, setting time and cohesiveness. Additionally, these same analyses were conducted on samples exposed to a physiological solution in order to estimate the dissolution kinetics of GMPs and its effect on the properties of the composite. GMPs were efficiently encapsulated and homogeneously dispersed in the resulting composite. Although setting times increased for GMP/CPC formulations compared to control CPC material, increasing the Na2HPO4 concentration in the liquid phase decreased the initial setting time to clinically acceptable values (i.e. <15min). Incorporation of GMPs led to the formation of instant macroporosity upon cement setting, and encapsulated GMPs completely dissolved in three days, resulting in a further increase in scaffold porosity. However, the dissolution of GMPs decreased scaffold compressive strength. Overall, the introduction of GMPs into CPC resulted in macroporous scaffolds with good handling properties, as well as designer porosity and pore size distribution via selection of the appropriate size/weight fraction of GMPs. The data demonstrate that GMPs are promising porogens for the production of highly tunable porous CPC scaffolds. STATEMENT OF SIGNIFICANCE Calcium phosphate cements have shown great promise for the regeneration of bone. However, macropores (>100μm) are required for promoting bone ingrowth. Several studies have investigated methods to generate macroporosity within calcium phosphate cements but many of these methods either affect the cement setting or take weeks or months to generate the maximum porosity. This work offers a new method for generating macroporosity within calcium phosphate cements by utilizing glucose microparticles. The microparticles dissolve in less then 72h, thereby generating scaffolds with maximum porosity in short period of time. The results will offer a new method for generating macroporosity within calcium phosphate cements.
Collapse
|
28
|
Petta D, Fussell G, Hughes L, Buechter DD, Sprecher CM, Alini M, Eglin D, D'Este M. Calcium phosphate/thermoresponsive hyaluronan hydrogel composite delivering hydrophilic and hydrophobic drugs. J Orthop Translat 2016; 5:57-68. [PMID: 30035075 PMCID: PMC5987042 DOI: 10.1016/j.jot.2015.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND/OBJECTIVE Advanced synthetic biomaterials that are able to reduce or replace the need for autologous bone transplantation are still a major clinical need in orthopaedics, dentistry, and trauma. Key requirements for improved bone substitutes are optimal handling properties, ability to fill defects of irregular shape, and capacity for delivering osteoinductive stimuli. MATERIALS AND METHODS In this study, we targeted these requirements by preparing a new composite of β-tricalcium phosphate (TCP) and a thermoresponsive hyaluronan (HA) hydrogel. Dissolution properties of the composite as a function of the particle size and polymeric phase molecular weight and concentration were analysed to identify the best compositions. RESULTS Owing to its amphiphilic character, the composite was able to provide controlled release of both recombinant human bone morphogenetic protein-2 and dexamethasone, selected as models for a biologic and a small hydrophobic molecule, respectively. CONCLUSION The TCP-thermoresponsive HA hydrogel composite developed in this work can be used for preparing synthetic bone substitutes in the form of injectable or mouldable pastes and can be supplemented with small hydrophobic molecules or biologics for improved osteoinductivity.
Collapse
Affiliation(s)
- Dalila Petta
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Garland Fussell
- DePuy Synthes Biomaterials, 1230 Wilson Drive, West Chester, PA 19380, USA
| | - Lisa Hughes
- DePuy Synthes Biomaterials, 1230 Wilson Drive, West Chester, PA 19380, USA
| | | | | | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
29
|
Mouzakis D, Zaoutsos SP, Bouropoulos N, Rokidi S, Papanicolaou G. Influence of artificially-induced porosity on the compressive strength of calcium phosphate bone cements. J Biomater Appl 2016; 31:112-20. [DOI: 10.1177/0885328216636762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biological and mechanical nature of calcium phosphate cements (CPC's) matches well with that of bone tissues, thus they can be considered as an appropriate environment for bone repair as bone defect fillers. The current study focuses on the experimental characterization of the mechanical properties of CPCs that are favorably used in clinical applications. Aiming on evaluation of their mechanical performance, tests in compression loading were conducted in order to determine the mechanical properties of the material under study. In this context, experimental results occurring from the above mechanical tests on porous specimens that were fabricated from three different porous additives, namely albumin, gelatin and sodium alginate, are provided, while assessment of their mechanical properties in respect to the used porous media is performed. Additionally, samples reinforced with hydroxyapatite crystals were also tested in compression and the results are compared with those of the above tested porous CPCs. The knowledge obtained allows the improvement of their biomechanical properties by controlling their structure in a micro level, and finds a way to compromise between mechanical and biological response.
Collapse
Affiliation(s)
- Dionysios Mouzakis
- Department of Mechanical Engineering, Technological Educational Institute of Thessaly, Larissa, Greece
| | | | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Rion, Greece
- Institute of Chemical Engineering and High Temperature Chemical Processes FORTH, Patras, Greece
| | - Stamatia Rokidi
- Department of Materials Science, University of Patras, Rion, Greece
| | - George Papanicolaou
- Composite Materials Group, Department of Mechanical and Aeronautics Engineering, University of Patras, Rion, Greece
| |
Collapse
|
30
|
Tahmasebi Birgani Z, van Blitterswijk CA, Habibovic P. Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:54. [PMID: 26787486 PMCID: PMC4718960 DOI: 10.1007/s10856-016-5666-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/05/2016] [Indexed: 05/04/2023]
Abstract
Calcium phosphates (CaPs), extensively used synthetic bone graft substitutes, are often combined with other materials with the aim to overcome issues related to poor mechanical properties of most CaP ceramics. Thin ceramic coatings on metallic implants and polymer-ceramic composites are examples of such hybrid materials. Both the properties of the CaP used and the method of incorporation into a hybrid structure are determinant for the bioactivity of the final construct. In the present study, a monolithic composite comprising nano-sized CaP and poly(lactic acid) (PLA) and a CaP-coated PLA were comparatively investigated for their ability to support proliferation and osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells (hMSCs). Both, the PLA/CaP composite, produced using physical mixing and extrusion and CaP-coated PLA, resulting from a biomimetic coating process at near-physiological conditions, supported proliferation of hMSCs with highest rates at PLA/CaP composite. Enzymatic alkaline phosphatase activity as well as the mRNA expression of bone morphogenetic protein-2, osteopontin and osteocalcin were higher on the composite and coated polymer as compared to the PLA control, while no significant differences were observed between the two methods of combining CaP and PLA. The results of this study confirmed the importance of CaP in osteogenic differentiation while the exact properties and the method of incorporation into the hybrid material played a less prominent role.
Collapse
Affiliation(s)
- Zeinab Tahmasebi Birgani
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
31
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
32
|
Bae J, Ida Y, Sekine K, Kawano F, Hamada K. Effects of high-energy ball-milling on injectability and strength of β-tricalcium-phosphate cement. J Mech Behav Biomed Mater 2015; 47:77-86. [DOI: 10.1016/j.jmbbm.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
33
|
Wang WL, Sheu SY, Chen YS, Kao ST, Fu YT, Kuo TF, Chen KY, Yao CH. Enhanced Bone Tissue Regeneration by Porous Gelatin Composites Loaded with the Chinese Herbal Decoction Danggui Buxue Tang. PLoS One 2015; 10:e0131999. [PMID: 26126113 PMCID: PMC4488343 DOI: 10.1371/journal.pone.0131999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/26/2015] [Indexed: 12/02/2022] Open
Abstract
Danggui Buxue Tang (DBT) is a traditional Chinese herbal decoction containing Radix Astragali and Radix Angelicae sinensis. Pharmacological results indicate that DBT can stimulate bone cell proliferation and differentiation. The aim of the study was to investigate the efficacy of adding DBT to bone substitutes on bone regeneration following bone injury. DBT was incorporated into porous composites (GGT) made from genipin-crosslinked gelatin and β-triclacium phosphates as bone substitutes (GGTDBT). The biological response of mouse calvarial bone to these composites was evaluated by in vivo imaging systems (IVIS), micro-computed tomography (micro-CT), and histology analysis. IVIS images revealed a stronger fluorescent signal in GGTDBT-treated defect than in GGT-treated defect at 8 weeks after implantation. Micro-CT analysis demonstrated that the level of repair from week 4 to 8 increased from 42.1% to 71.2% at the sites treated with GGTDBT, while that increased from 33.2% to 54.1% at GGT-treated sites. These findings suggest that the GGTDBT stimulates the innate regenerative capacity of bone, supporting their use in bone tissue regeneration.
Collapse
Affiliation(s)
- Wen-Ling Wang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shi-Yuan Sheu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Tsung Fu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Tzong-Fu Kuo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
- * E-mail: (KYC); (CHY)
| | - Chun-Hsu Yao
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung, Taiwan
- * E-mail: (KYC); (CHY)
| |
Collapse
|
34
|
Harrison R, Criss ZK, Feller L, Modi SP, Hardy JG, Schmidt CE, Suggs LJ, Murphy MB. Mechanical properties of α-tricalcium phosphate-based bone cements incorporating regenerative biomaterials for filling bone defects exposed to low mechanical loads. J Biomed Mater Res B Appl Biomater 2015; 104:149-57. [PMID: 25677680 DOI: 10.1002/jbm.b.33362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/30/2014] [Accepted: 12/17/2014] [Indexed: 12/25/2022]
Abstract
Calcium phosphate-based cements with enhanced regenerative potential are promising biomaterials for the healing of bone defects in procedures such as percutaneous vertebroplasty. With a view to the use of such cements for low load bearing applications such as sinus augmentation or filling extraction sites. However, the inclusion of certain species into bone cement formulations has the potential to diminish the mechanical properties of the formulations and thereby reduce their prospects for clinical translation. Consequently, we have prepared α-tricalcium phosphate (α-TCP)-based bone cements including materials that we would expect to improve their regenerative potential, and describe the mechanical properties of the resulting formulations herein. Formulations incorporated α-TCP, hydroxyapatite, biopolymer-thickened wetting agents, sutures, and platelet poor plasma. The mechanical properties of the composites were composition dependent, and optimized formulations had clinically relevant mechanical properties. Such calcium phosphate-based cements have potential as replacements for cements such as those based on polymethylmethacrylate.
Collapse
Affiliation(s)
- Reed Harrison
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - Zachary K Criss
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - Lacie Feller
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - Shan P Modi
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - John G Hardy
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611-6131
| | - Christine E Schmidt
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611-6131
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - Matthew B Murphy
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| |
Collapse
|
35
|
Chiu CK, Lee DJ, Chen H, Chow LC, Ko CC. In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:92. [PMID: 25649517 DOI: 10.1007/s10856-015-5456-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/01/2015] [Indexed: 06/04/2023]
Abstract
Low mechanical strengths and inadequate bioactive material-tissue interactions of current synthetic materials limit their clinical applications in bone regeneration. Here, we demonstrate gelatin modified siloxane-calcium silicate (GEMOSIL-CS), a nanocomposite made of gelatinous hydroxyapatite with in situ pozzolanic formation of calcium silicate (CS) interacting among gelatin, silica and Calcium Hydroxide (Ca(OH)2). It is shown the formation of CS matrices, which chemically bonds to the gelatinous hydroxyapatite, provided hygroscopic reinforcement mechanism and promoted both in vitro and in vivo osteogenic properties of GEMOSIL-CS. The formation of CS was identified by Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction. The interfacial bindings within nanocomposites were studied by FTIR and thermogravimetric analysis. Both gelatin and CS have been found critical to the structure integrity and mechanical strengths (93 MPa in compressive strength and 58.9 MPa in biaxial strength). The GEMOSIL-CS was biocompatible and osteoconductive as result of type I collagen secretion and mineralized nodule formation from MC3T3 osteoblasts. SEM and TEM indicated the secretion of collagen fibers and mineral particles as the evidence of mineralization in the early stage of osteogenic differentiation. In vivo bone formation capability was performed by implanting GEMOSIL-CS into rat calvarial defects for 12 weeks and the result showed comparable new bone formation between GEMOSIL-CS group (20%) and the control (20.19%). The major advantage of GEMOSIL-CS composites is in situ self-hardening in ambient or aqueous environment at room temperature providing a simple, fast and cheap method to produce porous scaffolds.
Collapse
Affiliation(s)
- Chi-Kai Chiu
- NC Oral Health Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC, 27599, USA,
| | | | | | | | | |
Collapse
|
36
|
Perez RA, Shin SH, Han CM, Kim HW. Bioactive injectables based on calcium phosphates for hard tissues: A recent update. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
37
|
El-Fiqi A, Kim JH, Perez RA, Kim HW. Novel bioactive nanocomposite cement formulations with potential properties: incorporation of the nanoparticle form of mesoporous bioactive glass into calcium phosphate cements. J Mater Chem B 2015; 3:1321-1334. [DOI: 10.1039/c4tb01634c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel calcium phosphate cements incorporated with bioactive glass nanoparticles demonstrate excellent properties for bone injectables.
Collapse
Affiliation(s)
- Ahmed El-Fiqi
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
| | - Joong-Hyun Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
| | - Roman A. Perez
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
| |
Collapse
|
38
|
Karthika A, Kavitha L, Surendiran M, Kannan S, Gopi D. Fabrication of divalent ion substituted hydroxyapatite/gelatin nanocomposite coating on electron beam treated titanium: mechanical, anticorrosive, antibacterial and bioactive evaluations. RSC Adv 2015. [DOI: 10.1039/c5ra05624a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The strontium, magnesium and zinc substituted hydroxyapatite/gelatin (M-HAP/Gel) nanocomposite coating on electron beam treated titanium will definitely be an effective implant material for better cell growth in orthopedic applications.
Collapse
Affiliation(s)
- A. Karthika
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - L. Kavitha
- Department of Physics
- School of Basic and Applied Sciences
- Central University of Tamilnadu
- Thiruvarur 610101
- India
| | - M. Surendiran
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - S. Kannan
- Department of Zoology
- School of Life Sciences
- Periyar University
- Salem-636 011
- India
| | - D. Gopi
- Department of Chemistry
- Periyar University
- Salem 636011
- India
- Centre for Nanoscience and Nanotechnology
| |
Collapse
|
39
|
Liu W, Zhang J, Rethore G, Khairoun K, Pilet P, Tancret F, Bouler JM, Weiss P. A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta Biomater 2014; 10:3335-45. [PMID: 24657196 DOI: 10.1016/j.actbio.2014.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/11/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
This study reports on the incorporation of the self-setting polysaccharide derivative hydrogel (silanized-hydroxypropyl methylcellulose, Si-HPMC) into the formulation of calcium phosphate cements (CPCs) to develop a novel injectable material for bone substitution. The effects of Si-HPMC on the handling properties (injectability, cohesion and setting time) and mechanical properties (Young's modulus, fracture toughness, flexural and compressive strength) of CPCs were systematically studied. It was found that Si-HPMC could endow composite CPC pastes with an appealing rheological behavior at the early stage of setting, promoting its application in open bone cavities. Moreover, Si-HPMC gave the composite CPC good injectability and cohesion, and reduced the setting time. Si-HPMC increased the porosity of CPCs after hardening, especially the macroporosity as a result of entrapped air bubbles; however, it improved, rather than compromised, the mechanical properties of composite CPCs, which demonstrates a strong toughening and strengthening effect. In view of the above, the Si-HPMC composite CPC may be particularly promising as bone substitute material for clinic application.
Collapse
|
40
|
Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 2014; 10:1035-49. [PMID: 24231047 DOI: 10.1016/j.actbio.2013.11.001] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 01/02/2023]
Abstract
Since their initial formulation in the 1980s, calcium phosphate cements (CPCs) have been increasingly used as bone substitutes. This article provides an overview on the chemistry, kinetics of setting and handling properties (setting time, cohesion and injectability) of CPCs for bone substitution, with a focus on their mechanical properties. Many processing parameters, such as particle size, composition of cement reactants and additives, can be adjusted to control the setting process of CPCs, concomitantly influencing their handling and mechanical performance. Moreover, this review shows that, although the mechanical strength of CPCs is generally low, it is not a critical issue for their application for bone repair--an observation not often realized by researchers and clinicians. CPCs with compressive strengths comparable to those of cortical bones can be produced through densification and/or homogenization of the cement matrix. The real limitation for CPCs appears to be their low fracture toughness and poor mechanical reliability (Weibull modulus), which have so far been only rarely studied.
Collapse
|
41
|
Dessì M, Alvarez-Perez MA, De Santis R, Ginebra MP, Planell JA, Ambrosio L. Bioactivation of calcium deficient hydroxyapatite with foamed gelatin gel. A new injectable self-setting bone analogue. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:283-295. [PMID: 24136082 DOI: 10.1007/s10856-013-5071-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
An alternative approach to bone repair for less invasive surgical techniques, involves the development of biomaterials directly injectable into the injury sites and able to replicate a spatially organized platform with features of bone tissue. Here, the preparation and characterization of an innovative injectable bone analogue made of calcium deficient hydroxyapatite and foamed gelatin is presented. The biopolymer features and the cement self-setting reaction were investigated by rheological analysis. The porous architecture, the evolution of surface morphology and the grains dimension were analyzed with electron microscopy (SEM/ESEM/TEM). The physico-chemical properties were characterized by X-ray diffraction and FTIR analysis. Moreover, an injection test was carried out to prove the positive effect of gelatin on the flow ensuing that cement is fully injectable. The cement mechanical properties are adequate to function as temporary substrate for bone tissue regeneration. Furthermore, MG63 cells and bone marrow-derived human mesenchymal stem cells (hMSCs) were able to migrate and proliferate inside the pores, and hMSCs differentiated to the osteoblastic phenotype. The results are paving the way for an injectable bone substitute with properties that mimic natural bone tissue allowing the successful use as bone filler for craniofacial and orthopedic reconstructions in regenerative medicine.
Collapse
Affiliation(s)
- M Dessì
- Institute of Composite and Biomedical Materials, National Research Council of Italy, P.le Tecchio 80, 80125, Naples, Italy,
| | | | | | | | | | | |
Collapse
|
42
|
Maazouz Y, Montufar EB, Guillem-Marti J, Fleps I, Öhman C, Persson C, Ginebra MP. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J Mater Chem B 2014; 2:5378-5386. [DOI: 10.1039/c4tb00438h] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new self-setting ceramic ink was developed for robocasting of biomimetic hydroxyapatite scaffolds, based on alpha-tricalcium phosphate and gelatine. After setting a biomimetic hydroxyapatite is obtained, with higher reactivity and resorbability than high-temperature sintered hydroxyapatite. The setting reaction of the ink results in a significant increase of the mechanical properties of the scaffolds.
Collapse
Affiliation(s)
- Y. Maazouz
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
- Biomedical Research Networking Center in Bioengineering
| | - E. B. Montufar
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
- Biomedical Research Networking Center in Bioengineering
| | - J. Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
- Biomedical Research Networking Center in Bioengineering
| | - I. Fleps
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
| | - C. Öhman
- Division of Applied Materials Science
- Department of Engineering Sciences
- Uppsala University
- Sweden
| | - C. Persson
- Division of Applied Materials Science
- Department of Engineering Sciences
- Uppsala University
- Sweden
| | - M. P. Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group
- Department of Materials Science and Metallurgical Engineering
- Technical University of Catalonia
- , Spain
- Biomedical Research Networking Center in Bioengineering
| |
Collapse
|
43
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|
44
|
Endogan T, Kiziltay A, Kose GT, Comunoglu N, Beyzadeoglu T, Hasirci N. Acrylic bone cements: Effects of the poly(methyl methacrylate) powder size and chitosan addition on their properties. J Appl Polym Sci 2013. [DOI: 10.1002/app.39662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tugba Endogan
- Graduate Department of Polymer Science and Technology; Middle East Technical University; Ankara 06800 Turkey
- Central Laboratory; Middle East Technical University; Ankara 06800 Turkey
| | - Aysel Kiziltay
- Central Laboratory; Middle East Technical University; Ankara 06800 Turkey
- Graduate Department of Biotechnology; Middle East Technical University; Ankara 06800 Turkey
| | - Gamze Torun Kose
- Department of Genetics and Bioengineering; Faculty of Engineering and Architecture; Yeditepe University; Istanbul 34755 Turkey
- BIOMATEN-Center of Excellence in Biomaterials and Tissue Engineering; Ankara 06800 Turkey
| | - Nil Comunoglu
- Department of Pathology; Cerrahpasa Faculty of Medicine; Istanbul University; Istanbul 34098 Turkey
| | - Tahsin Beyzadeoglu
- Department of Orthopaedics and Traumatology; Faculty of Medicine; Yeditepe University; Istanbul 34755 Turkey
| | - Nesrin Hasirci
- Graduate Department of Polymer Science and Technology; Middle East Technical University; Ankara 06800 Turkey
- Graduate Department of Biotechnology; Middle East Technical University; Ankara 06800 Turkey
- Department of Chemistry; Middle East Technical University; Ankara 06800 Turkey
- BIOMATEN-Center of Excellence in Biomaterials and Tissue Engineering; Ankara 06800 Turkey
| |
Collapse
|
45
|
Zhai H, Quan Y, Li L, Liu XY, Xu X, Tang R. Spontaneously amplified homochiral organic-inorganic nano-helix complexes via self-proliferation. NANOSCALE 2013; 5:3006-3012. [PMID: 23459920 DOI: 10.1039/c3nr33782k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most spiral coiled biomaterials in nature, such as gastropod shells, are homochiral, and the favoured chiral feature can be precisely inherited. This inspired us that selected material structures, including chirality, could be specifically replicated into the self-similar populations; however, a physicochemical understanding of the material-based heritage is unknown. We study the homochirality by using calcium phosphate mineralization in the presence of racemic amphiphilic molecules and biological protein. The organic-inorganic hybrid materials with spiral coiling characteristics are produced at the nanoscale. The resulted helixes are chiral with the left- and right-handed characteristics, which are agglomerated hierarchically to from clusters and networks. It is interesting that each cluster or network is homochiral so that the enantiomorphs can be separated readily. Actually, each homochiral architecture is evolved from an original chiral helix, demonstrating the heritage of the matrix chirality during the material proliferation under a racemic condition. By using the Ginzburg-Landaue expression we find that the chiral recognition in the organic-inorganic hybrid formation may be determined by a spontaneous chiral separation and immobilization of asymmetric amphiphilic molecules on the mineral surface, which transferred the structural information from the mother matrix to the descendants by an energetic control. This study shows how biomolecules guide the selective amplification of chiral materials via spontaneous self-replication. Such a strategy can be applied generally in the design and production of artificial materials with self-similar structure characteristics.
Collapse
Affiliation(s)
- Halei Zhai
- Centre for Biomaterials and Biopathways and Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | | | | | | | | | | |
Collapse
|
46
|
Roy M, DeVoe K, Bandyopadhyay A, Bose S. Mechanical and In Vitro Biocompatibility of Brushite Cement Modified by Polyethylene Glycol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:2145-2152. [PMID: 23139441 PMCID: PMC3489179 DOI: 10.1016/j.msec.2012.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brushite (dicalcium phosphate dihydrate, DCPD) cement, owing to its high solubility in physiological condition and ability to guide new bone formation, is widely used to treat bone defects. In the present study, we have evaluated the effects of poly ethylene glycol (PEG) addition on the setting time, compressive strength and in vitro biocompatibility of brushite cement. The brushite cements were prepared by mixing β-tricalcium phosphate [β-TCP, Ca(3)(PO(4))(2)] and monocalcium phosphate monohydrate [MCPM, Ca(H(2)PO(4))(2). H(2)O]. PEG was introduced at 2.0 and 5.0 wt% with the liquid. Introduction of PEG resulted in marginal increase in both initial and final setting time; however, significantly affected the compressive strength. Effects of PEG incorporation on in vitro biocompatibility of brushite cements were studied by using human fetal osteoblast cells (hFOB) cells. Field emission scanning electron microscope (FESEM) images and immunohistochemical analysis indicated that pure and PEG incorporated brushite cement facilitates cell adhesion, proliferation and differentiation. Fewer cells expressed vinculin protein with increased PEG content in the cement. Cell proliferation was found to decrease with increased PEG concentration while the cell differentiation increased with PEG content. Our results provide a better understanding of in vitro biocompatibility of PEG added brushite cements that can be used to customize the cement compositions based on application need.
Collapse
Affiliation(s)
- Mangal Roy
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Ken DeVoe
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
47
|
Sonseca A, Peponi L, Sahuquillo O, Kenny JM, Giménez E. Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: Study on the morphology, crystallinity structure and thermal stability. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2012.05.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev 2012; 64:1090-110. [PMID: 22310160 DOI: 10.1016/j.addr.2012.01.008] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 01/19/2023]
Abstract
Calcium phosphate cements are used as synthetic bone grafts, with several advantages, such as their osteoconductivity and injectability. Moreover, their low-temperature setting reaction and intrinsic porosity allow for the incorporation of drugs and active principles in the material. It is the aim of the present work to: a) provide an overview of the different approaches taken in the application of calcium phosphate cements for drug delivery in the skeletal system, and b) identify the most significant achievements. The drugs or active principles associated to calcium phosphate cements are classified in three groups, i) low molecular weight drugs; ii) high molecular weight biomolecules; and iii) ions.
Collapse
|
49
|
Choi Y, Cho SY, Park DJ, Park HH, Heo S, Jin HJ. Silk fibroin particles as templates for mineralization of calcium-deficient hydroxyapatite. J Biomed Mater Res B Appl Biomater 2012; 100:2029-34. [DOI: 10.1002/jbm.b.32766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/12/2022]
|
50
|
Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 2012; 8:1401-21. [PMID: 22127225 DOI: 10.1016/j.actbio.2011.11.017] [Citation(s) in RCA: 490] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/04/2011] [Accepted: 11/13/2011] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications.
Collapse
|