1
|
Ozer H, Hekimoglu M, Kulac I, Eren OC, Arici YK, Celik HS, Ozer AF, Hekimoğlu M. Osseointegration potential of boron-coated titanium alloy pedicle screw in rabbit spine model. BMC Musculoskelet Disord 2024; 25:737. [PMID: 39277741 PMCID: PMC11401436 DOI: 10.1186/s12891-024-07864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Spinal implants' longevity is crucial, but titanium alloys, while advantageous, lack strong bone integration. This study aimed to achieve better osseointegration rates by utilizing the ability of boron compounds to transform stem cells in the vertebra into osteoblasts. METHOD Twenty male albino rabbits were divided into control (n = 10) and experimental (n = 10) groups. Control group received titanium alloy pedicle screws, while experimental group received boron-coated titanium alloy screws. Under general anesthesia, screws were inserted into the L6 and L7 lumbar spines. After 16 weeks, all animals were euthanized for histological examination. Vertebra samples underwent decalcification and H&E staining. Microscopic examination assessed osseointegration, necrosis, fibrosis, and vascularization using a triple scoring system by two blinded observers. RESULT In the boron-coated titanium alloy group, all subjects exhibited osseointegration, with 50% showing focal, 40% moderate, and 10% complete osseointegration. In the titanium alloy group, 90% showed osseointegration (70% focal, 10% moderate, and 10% complete).The differences between the groups were not statistically significant (p = 0.302). Focal necrosis rates were similar between groups, with 50.0% in the titanium alloy and 60.0% in the boron-coated group (p = 0.653).Fibrosis was absent in the titanium alloy group but present in the boron-coated group, albeit with lower rates of focal fibrosis (20.0%). However, the difference was not statistically significant (p = 0.086).Vascularization patterns showed no significant difference between groups. CONCLUSION Boron-coated titanium alloy pedicle screws provided osseointegration rates comparable to standard titanium screws and exhibited acceptable levels of necrosis and fibrosis. With stronger biomechanical properties, they could be a better alternative to currently used titanium screws.
Collapse
Affiliation(s)
- Hidir Ozer
- Neurosurgery Department, Ordu University Hospital, Ordu, Turkey
| | - Mehdi Hekimoglu
- Neurosurgery Department, American Hospital, Istanbul, Turkey
| | - Ibrahim Kulac
- Pathology Department, Koc University Hospital, Istanbul, Turkey
| | - Ozgur Can Eren
- Pathology Department, Koc University Hospital, Istanbul, Turkey
| | - Yeliz Kasko Arici
- Faculty of Medicine, Biostatics and Medical Informatics Department, Ordu University, Ordu, Turkey
| | - Haydar Sahin Celik
- Ankara Research and Training Hospital, Neurosurgery Department, Ankara, Turkey
| | - Ali Fahir Ozer
- Neurosurgery Department, American Hospital, Istanbul, Turkey
- Neurosurgery Department, Koc University HAospital, Istanbul, Turkey
| | - Mehdi Hekimoğlu
- Neurosurgery Department, American Hospital, Istanbul, Turkey.
| |
Collapse
|
2
|
Eun SM, Son K, Hwang SM, Son YT, Kim YG, Suh JY, Hwang JH, Kwon SM, Lee JH, Kim HD, Lee KB, Lee JM. The Impact of Mechanical Debridement Techniques on Titanium Implant Surfaces: A Comparison of Sandblasted, Acid-Etched, and Femtosecond Laser-Treated Surfaces. J Funct Biomater 2023; 14:502. [PMID: 37888167 PMCID: PMC10607329 DOI: 10.3390/jfb14100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This study evaluated the effects of various mechanical debridement methods on the surface roughness (Ra) of dental implants, comparing femtosecond laser-treated surfaces with conventionally machined and sandblasted with large-grit sand and acid-etched (SLA) implant surfaces. The fabrication of grade 4 titanium (Ti) disks (10 mm in diameter and 1 mm thick) and the SLA process were carried out by a dental implant manufacturer (DENTIS; Daegu, Republic of Korea). Subsequently, disk surfaces were treated with various methods: machined, SLA, and femtosecond laser. Disks of each surface-treated group were post-treated with mechanical debridement methods: Ti curettes, ultrasonic scaler, and Ti brushes. Scanning electron microscopy, Ra, and wettability were evaluated. Statistical analysis was performed using the Kruskal-Wallis H test, with post-hoc analyses conducted using the Bonferroni correction (α = 0.05). In the control group, no significant difference in Ra was observed between the machined and SLA groups. However, femtosecond laser-treated surfaces exhibited higher Ra than SLA surfaces (p < 0.05). The application of Ti curette or brushing further accentuated the roughness of the femtosecond laser-treated surfaces, whereas scaling reduced the Ra in SLA surfaces. Femtosecond laser-treated implant surfaces, with their unique roughness and compositional attributes, are promising alternatives in dental implant surface treatments.
Collapse
Affiliation(s)
- Seung-Mo Eun
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| | - Keunbada Son
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea; (K.S.); (Y.-T.S.)
| | - Sung-Min Hwang
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| | - Young-Tak Son
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea; (K.S.); (Y.-T.S.)
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| | - Jun Ho Hwang
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea; (J.H.H.); (S.-M.K.); (J.H.L.)
| | - Sung-Min Kwon
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea; (J.H.H.); (S.-M.K.); (J.H.L.)
| | - Jong Hoon Lee
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea; (J.H.H.); (S.-M.K.); (J.H.L.)
| | - Hyun Deok Kim
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Kyu-Bok Lee
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (S.-M.E.); (S.-M.H.); (Y.-G.K.); (J.-Y.S.)
| |
Collapse
|
3
|
Ma L, Zong J, Xun X, Hu X, Chen Z, Zhang Q, Peng M, Song B, Ao H. Fabrication of gentamicin loaded Col-I/HA multilayers modified titanium coatings for prevention of implant infection. Front Chem 2022; 10:1019332. [DOI: 10.3389/fchem.2022.1019332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, gentamicin loaded collagen I/hyaluronic acid multilayers modified titanium coating (TC-AA(C/H)6-G) was fabricated via a layer-by-layer (LBL) covalent immobilization method. The drug releasing properties of collagen I/Hyaluronic acid (Col-I/HA) multilayers and the effect of loaded gentamicin on the antibacterial properties and cytocompatibility of modified TC were investigated. The gentamicin release assay indicated that the Col-I/HA multilayers modified TC exhibited agreeable drug-loading amount (537.22 ± 29.66 µg of gentamicin) and controlled-release performance (240 h of sustained release time). TC-AA(C/H)6-G revealed satisfactory antibacterial activity and inhibited the colonization and biofilm formation of S. aureus. Fortunately, the functions of hMSCs on TC-AA(C/H)6-G did not affected by the loaded gentamicin, and TC-AA(C/H)6-G could improve the adhesion, proliferation and osteogenic differentiation of cells, as well as TC-AA(C/H)6. In vivo animal study indicated that TC-AA(C/H)6-G could effectively control intramedullary cavity infection caused by S. aureus and prevent bone destruction.
Collapse
|
4
|
Tang R, Shao C, Chen L, Yi L, Zhang B, Tang J, Ma W. A novel CKIP-1 SiRNA slow-release coating on porous titanium implants for enhanced osseointegration. BIOMATERIALS ADVANCES 2022; 137:212864. [PMID: 35929282 DOI: 10.1016/j.bioadv.2022.212864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Osseointegration between implants and bone tissue lays the foundation for the long-term stability of implants. The incorporation of a porous structure and local slow release of siRNA to silence casein kinase-2 interacting protein-1 (CKIP-1), a downregulator of bone formation, is expected to promote osseointegration. Here, porous implants with a porous outer layer and dense inner core were prepared by metal coinjection molding (MIM). Mg-doped calcium phosphate nanoparticles (CaPNPs)-grafted arginine-glycine-aspartate cell adhesion sequence (RGD) and transcribed activator (TAT) (MCPRT)/CKIP-1 siRNA complex and polylysine (PLL) were coated onto the surface of the porous implants by layer-by-layer (LBL) self-deposition. The in vitro results showed that the MCPRT-siRNA coating promoted MG63 cell adhesion and proliferation, enhanced the protein expressions (ALP and OC) and bone formation-related gene expression (OPN, OC and COL-1α) in vitro. The in vivo results demonstrated that the porous structure enhanced bone ingrowth and that the local slow release of MCPRT-siRNA accelerated new bone formation at the early stage. The porous structure coupled with local CKIP-1 siRNA delivery constitutes a promising approach to achieve faster and stronger osseointegration for dental implants.
Collapse
Affiliation(s)
- Ruimin Tang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Chunsheng Shao
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Liangjian Chen
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China.
| | - Li Yi
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Bo Zhang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Jiangjie Tang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Weina Ma
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| |
Collapse
|
5
|
Titanium alkalinization improves response of osteoblasts to zoledronic acid. Biointerphases 2022; 17:031004. [PMID: 35618545 DOI: 10.1116/6.0001670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This investigation is aimed to determine the effect of the modification of titanium surface with NaOH on the metabolism of osteoblasts treated with zoledronic acid (ZA). Machined and NaOH-treated titanium disks were used. Surfaces were characterized by scanning electron microscopy, confocal microscopy, and x-ray photoelectron spectroscopy (XPS) analysis. Human osteoblasts were seeded onto the disks. After 24 h, cells were treated with ZA at 5 μM for 7 days. At this point, cell viability, collagen synthesis, total protein production, alkaline phosphatase activity, and mineral nodule deposition were assessed. The results of surface roughness were descriptively and statistically analyzed (t-Student), while the XPS results were qualitatively described. Cell metabolism data were analyzed by the analysis of variance two-way and Tukey tests at a 5% significance level. The results demonstrated that NaOH-treatment increased surface roughness (p < .05) and confirmed the presence of sodium titanate and a pH switch on the NaOH-treated disks. This modification also resulted in higher cell viability, collagen synthesis, total protein production, and alkaline phosphatase by osteoblasts when compared to cells seeded onto machined disks (p < 0.05). In the presence of ZA, all cellular metabolism and differentiation parameters were significantly reduced for cells seeded on both surfaces (p < 0.05); however, the cells seeded onto modified surfaces showed higher values for these parameters, except for mineral nodule deposition (p < 0.05). NaOH modification improved cell adhesion and metabolism of osteogenic cells even in the presence of ZA. The surface modification of titanium with NaOH solution may be an interesting strategy to improve metabolism and differentiation of osteoblasts and accelerate osseointegration process, mainly for tissues exposed to ZA.
Collapse
|
6
|
Agour M, Abdal-hay A, Hassan MK, Bartnikowski M, Ivanovski S. Alkali-Treated Titanium Coated with a Polyurethane, Magnesium and Hydroxyapatite Composite for Bone Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1129. [PMID: 33925403 PMCID: PMC8145718 DOI: 10.3390/nano11051129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
The aim of this study was to form a functional layer on the surface of titanium (Ti) implants to enhance their bioactivity. Layers of polyurethane (PU), containing hydroxyapatite (HAp) nanoparticles (NPs) and magnesium (Mg) particles, were deposited on alkali-treated Ti surfaces using a cost-effective dip-coating approach. The coatings were assessed in terms of morphology, chemical composition, adhesion strength, interfacial bonding, and thermal properties. Additionally, cell response to the variably coated Ti substrates was investigated using MC3T3-E1 osteoblast-like cells, including assessment of cell adhesion, cell proliferation, and osteogenic activity through an alkaline phosphatase (ALP) assay. The results showed that the incorporation of HAp NPs enhanced the interfacial bonding between the coating and the alkali-treated Ti surface. Furthermore, the presence of Mg and HAp particles enhanced the surface charge properties as well as cell attachment, proliferation, and differentiation. Our results suggest that the deposition of a bioactive composite layer containing Mg and HAp particles on Ti implants may have the potential to induce bone formation.
Collapse
Affiliation(s)
- Mahmoud Agour
- Department of Production Engineering and Design, Faculty of Engineering, Minia University, Minia 61112, Egypt; (M.A.); (M.K.H.)
| | - Abdalla Abdal-hay
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, Herston Campus, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia;
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Mohamed K. Hassan
- Department of Production Engineering and Design, Faculty of Engineering, Minia University, Minia 61112, Egypt; (M.A.); (M.K.H.)
- Department of Mechanical Engineering, College of Engineering, Umm Al-Qura University (UQU), Mecca 24381, Saudi Arabia
| | - Michal Bartnikowski
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, Herston Campus, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia;
| | - Sašo Ivanovski
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, Herston Campus, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia;
| |
Collapse
|
7
|
Tissue Integration and Biological Cellular Response of SLM-Manufactured Titanium Scaffolds. METALS 2020. [DOI: 10.3390/met10091192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: SLM (Selective Laser Melting)–manufactured Titanium (Ti) scaffolds have a significant value for bone reconstructions in the oral and maxillofacial surgery field. While their mechanical properties and biocompatibility have been analysed, there is still no adequate information regarding tissue integration. Therefore, the aim of this study is a comprehensive systematic assessment of the essential parameters (porosity, pore dimension, surface treatment, shape) required to provide the long-term performance of Ti SLM medical implants. Materials and methods: A systematic literature search was conducted via electronic databases PubMed, Medline and Cochrane, using a selection of relevant search MeSH terms. The literature review was conducted using the preferred reporting items for systematic reviews and meta-analysis (PRISMA). Results: Within the total of 11 in vitro design studies, 9 in vivo studies, and 4 that had both in vitro and in vivo designs, the results indicated that SLM-generated Ti scaffolds presented no cytotoxicity, their tissue integration being assured by pore dimensions of 400 to 600 µm, high porosity (75–88%), hydroxyapatite or SiO2–TiO2 coating, and bioactive treatment. The shape of the scaffold did not seem to have significant importance. Conclusions: The SLM technique used to fabricate the implants offers exceptional control over the structure of the base. It is anticipated that with this technique, and a better understanding of the physical interaction between the scaffold and bone tissue, porous bases can be tailored to optimize the graft’s integrative and mechanical properties in order to obtain structures able to sustain osseous tissue on Ti.
Collapse
|
8
|
Jiang Y, Xie Y, Chen Z, Li K, Zheng X. Preparation and characteristics of a novel oxygen-releasing coating for improved cell responses in hypoxic environment. J Biomed Mater Res A 2020; 109:248-261. [PMID: 32496645 DOI: 10.1002/jbm.a.37020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
Affected by environmental factors such as oxygen deficiency, the secretion of growth factor was abnormal in bone injury sites, resulting in the poor responses of osteoblasts and prolonging the healing process. Herein, in this study, we reported an in situ oxygen-releasing porous titanium coating that combines the dual degradability of poly(lactic-co-glycolic acid) with the self-releasing oxygen capacity of the CaO2 core. The resulting formulation exhibited stable oxygen-releasing capacity as well as the ability to promote proliferation and differentiation of the MC3T3 cell line under hypoxia conditions. According to these results, oxygen-releasing coatings based on improved cellular microenvironment may be a promising bone repair material that would reduce the incidence of difficult bone healing in the future.
Collapse
Affiliation(s)
- Yuyin Jiang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoming Chen
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Gursoytrak B, Ataoglu H. Use of resonance frequency analysis to evaluate the effects of surface properties on the stability of different implants. Clin Oral Implants Res 2019; 31:239-245. [PMID: 31758589 DOI: 10.1111/clr.13560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We performed a randomized clinical study evaluating the stability of implants with different surfaces (alkali-modified or sandblasted) via resonance frequency analysis (RFA). MATERIALS AND METHODS Fourteen patients who were bilaterally edentulous in terms of their mandibular molars were enrolled. Implants with alkali-modified (bioactive) and sandblasted surfaces were randomly placed in either hemi-arch; the 50 implants used were identical in terms of diameter and length. RFA was used to measure the implant stability quotient (ISQ) immediately after placement (to assess primary stability) and 2, 6, and 12 weeks later. RESULTS The average RFA value for alkali-modified implants was significantly higher than that for sandblasted implants immediately after implantation, but the ISQs fell rapidly and were similar in the two groups at 2 and 6 weeks (p > .05); ISQ values were the same in the two groups at 3 months (p > .05). CONCLUSIONS Implants with alkali-modified surfaces were more stable than implants with sandblasted surfaces at all times after placement. The ISQs of bioactive implants exhibiting high-level primary stability fell to greater extents than did those of implants with sandblasted surfaces at 2 and 6 weeks postoperatively; both types of implant yielded similar clinical results at 12 weeks postoperatively.
Collapse
Affiliation(s)
- Burcu Gursoytrak
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Hanife Ataoglu
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Medipol University, Istanbul, Turkey
| |
Collapse
|
10
|
Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109883. [DOI: 10.1016/j.msec.2019.109883] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
|
11
|
Abdal-hay A, Agour M, Kim YK, Lee MH, Hassan MK, El-Ainin HA, Hamdy AS, Ivanovski S. Magnesium-particle/polyurethane composite layer coating on titanium surfaces for orthopedic applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Vilardell AM, Cinca N, Garcia-Giralt N, Müller C, Dosta S, Sarret M, Cano IG, Nogués X, Guilemany JM. In-vitro study of hierarchical structures: Anodic oxidation and alkaline treatments onto highly rough titanium cold gas spray coatings for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:589-596. [PMID: 30033291 DOI: 10.1016/j.msec.2018.05.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 04/17/2018] [Accepted: 05/23/2018] [Indexed: 01/11/2023]
Abstract
Hierarchical structures were obtained applying two different nanotexturing surface treatments onto highly rough commercial pure titanium coatings by cold spray: (i) anodic oxidation and (ii) alkaline treatments. An extended surface characterization in terms of topography, composition, and wettability has been performed to understand how those parameters affect to cell response. Primary human osteoblasts extracted from knee were seeded onto the as-sprayed titanium surface before and after the nanotexturing treatments. Cell viability was tested by using MTS and LIVE/DEAD assays, as well as osteoblasts differentiation by alkaline phosphatase (ALP) quantification at 3 and 10 days of cell culture. The combination of micro-/nano-roughness results in a significantly increase of cell proliferation, as well as cell differentiation after 10 days of cell culture in comparison with the non-treated coatings.
Collapse
Affiliation(s)
- A M Vilardell
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - N Cinca
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - N Garcia-Giralt
- IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), CIBERFES, ISCIII, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - C Müller
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Dosta
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Sarret
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - I G Cano
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - X Nogués
- IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), CIBERFES, ISCIII, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - J M Guilemany
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Fousova M, Vojtech D, Jablonska E, Fojt J, Lipov J. Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations. MATERIALS 2017; 10:ma10090987. [PMID: 28837101 PMCID: PMC5615642 DOI: 10.3390/ma10090987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
Abstract
Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.
Collapse
Affiliation(s)
- Michaela Fousova
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Dalibor Vojtech
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Eva Jablonska
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Jaroslav Fojt
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
14
|
An in vivo study on the effect of coating stability on osteointegration performance of collagen/hyaluronic acid multilayer modified titanium implants. Bioact Mater 2017; 3:97-101. [PMID: 29744446 PMCID: PMC5935658 DOI: 10.1016/j.bioactmat.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022] Open
Abstract
Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro. In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant. Stability of Col/HA multilayer could promote the growth of trabecular bone around implants. New bone was induced to grow into the hole of Col/HA multilayer covalently immobilized TC implants. New bone contacted with Col/HA multilayer covalently immobilized TC implants closely.
Collapse
|
15
|
Han J, Yang Y, Lu J, Wang C, Xie Y, Zheng X, Yao Z, Zhang C. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection. Biosci Trends 2017; 11:346-354. [PMID: 28552898 DOI: 10.5582/bst.2017.01061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.
Collapse
Affiliation(s)
- Jing Han
- Department of Orthopaedic surgery, Zhongshan Hospital of Fudan University
| | - Yi Yang
- Department of Orthopaedic surgery, Zhongshan Hospital of Fudan University
| | - Junren Lu
- Department of Orthopaedic surgery, Zhongshan Hospital of Fudan University
| | - Chenzhong Wang
- Department of Orthopaedic surgery, Zhongshan Hospital of Fudan University
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences
| | - Zhenjun Yao
- Department of Orthopaedic surgery, Zhongshan Hospital of Fudan University
| | - Chi Zhang
- Department of Orthopaedic surgery, Zhongshan Hospital of Fudan University
| |
Collapse
|
16
|
Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study. Int J Oral Sci 2017; 9:133-138. [PMID: 28452375 PMCID: PMC5709541 DOI: 10.1038/ijos.2017.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
In an attempt to overcome the limitations of titanium in dental and orthopaedic clinical applications, a new method has been developed to prepare calcium carbonate coatings on sandblasted and acid-etched (SA) titanium implants. The purpose of this study was to investigate the effect of calcium carbonate-SA (CC-SA) implants on osseointegration in vivo. The surfaces of SA and CC-SA implants were characterised for surface morphology and surface chemistry. Subsequently, these two kinds of implants were implanted in the femoral condyles of rabbits. The implants were retrieved and prepared for histological and histomorphometric evaluation 1, 2, 4, 8 and 12 weeks after implantation. Significantly higher values of bone-to-implant contact of the entire implant except the gap area (BIC_ALL) and the bone-to-implant contact of the gap area (BIC_GAP) were found in animals with the CC-SA implants than in those with the SA implants at 4 weeks. Higher values of total gap bone were found in those with the CC-SA implants than in those with the SA implants at 1, 2 and 4 weeks. In conclusion, the current findings demonstrate that the calcium carbonate coating can improve and accelerate the early ingrowth of bone and osseointegration at the early healing phase. This may reduce clinical healing times and thus improve implant success rates.
Collapse
|
17
|
Pan H, Xie Y, Zhang Z, Li K, Hu D, Zheng X, Tang T. Hierarchical macropore/nano surface regulates stem cell fate through a ROCK-related signaling pathway. RSC Adv 2017. [DOI: 10.1039/c6ra26509j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synergistic cytoskeleton distribution accompanying higher ROCK activity activated FAK-ERK1/2 signaling pathway and promotion of BMSC osteogenesis on hierarchical surface.
Collapse
Affiliation(s)
- Houhua Pan
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- PR China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- PR China
| | - Zequan Zhang
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- PR China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- PR China
| | - Dandan Hu
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- PR China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- PR China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai JiaoTong University
- School of Medicine
| |
Collapse
|
18
|
Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:675-683. [DOI: 10.1016/j.msec.2016.05.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022]
|
19
|
Salemi H, Behnamghader A, Afshar A. Topography and nanostructural evaluation of chemically and thermally modified titanium substrates. BIOMED ENG-BIOMED TE 2016; 61:491-498. [PMID: 26581061 DOI: 10.1515/bmt-2015-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 09/30/2015] [Indexed: 11/15/2022]
Abstract
In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.
Collapse
|
20
|
Kim DY, Kim JR, Jang KY, Kim MG, Lee KB. Evaluation of Titanium-Coated Pedicle Screws: In Vivo Porcine Lumbar Spine Model. World Neurosurg 2016; 91:163-71. [PMID: 27060512 DOI: 10.1016/j.wneu.2016.03.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Many studies have addressed the problem of loosening pedicle screws in spinal surgery, which is a serious concern. Titanium coating of medical implants (arthroplasty) is common, but few studies involving in vivo spine models have been reported. We evaluated the radiological, mechanical, and histological characteristics of titanium-coated pedicle screws compared with uncoated or hydroxyapatite-coated pedicle screws. METHODS Three different types of pedicle screws, i.e., uncoated, hydroxyapatite-coated, and titanium-coated, were implanted into the lumbar 3-4-5 levels of 9 mature miniature pigs. Radiological evaluation of loosening of pedicle screws was performed. Peak torsional extraction torque was tested in the 42 screws from 7 miniature pigs at 12 weeks postoperatively. The implant-bone interface of the remaining 12 pedicle screws from 2 miniature pigs in each group was assessed by micro-computed tomography and histologic studies. RESULTS The incidence of loosening at 12 weeks postoperatively was not significantly different between the titanium-coated pedicle screw group and the other groups. The titanium-coated pedicle screw group exhibited the greatest mean extraction torsional peak torque at 12 weeks postoperatively (P < 0.05). Quantitative micro-computed tomography data were greatest in the titanium-coated pedicle screw group (P < 0.05). Histologic findings showed osteointegration with densely packed new bone formation at the screw coating-bone interface in the titanium-coated pedicle screw group. CONCLUSIONS Fixation strength was greatest in the titanium-coated pedicle screw group. Osteointegration at the interface between the titanium-coated implant and bone produced prominent and firm bonding. The titanium-coated pedicle screw is a promising device for application in spinal surgery.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Orthopedic Surgery, The Himchan Hospital, Jeonju, Korea
| | - Jung-Ryul Kim
- Department of Orthopedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | | | - Kwang-Bok Lee
- Department of Orthopedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
21
|
Ao HY, Xie YT, Yang SB, Wu XD, Li K, Zheng XB, Tang TT. Covalently immobilised type I collagen facilitates osteoconduction and osseointegration of titanium coated implants. J Orthop Translat 2015; 5:16-25. [PMID: 30035071 PMCID: PMC5987008 DOI: 10.1016/j.jot.2015.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/09/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022] Open
Abstract
Background/Objective Plasma-sprayed titanium coating (TC) with rough surfaces has been successfully applied in hip or knee prostheses. This study aimed to investigate the osteoconduction and osseointegration of Type I collagen covalently immobilised on TC (TC-AAC) compared with those of TC. Methods In vitro, the migration of human mesenchymal stem cells (hMSCs) on TC and TC-AAC was observed by scanning electron microscopy and visualised fluorescent live/dead assay. In vivo, a rabbit model with femur condyle defect was employed, and implants of TC and TC-AAC were embedded into the femur condyles. Results Collagen immobilised on TC could promote hMSCs' migration into the porous structure of the TC. Micro computed tomography images showed that bone trabeculae were significantly more abundant around TC-AAC implants than around TC implants. Fluorescence micrographs indicated more active new-bone formation around implants in the TC-AAC group than in the TC group. The measurement of bone–implant contact on histological sections indicated significantly greater osteointegration around TC-AAC implants than around TC ones. Conclusion Immobilised Type I collagen could improve the osteoconduction and osseointegration of TC implants.
Collapse
Affiliation(s)
- Hai-Yong Ao
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - You-Tao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Sheng-Bing Yang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Dong Wu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Bin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface Modifications and Their Effects on Titanium Dental Implants. BIOMED RESEARCH INTERNATIONAL 2015; 2015:791725. [PMID: 26436097 PMCID: PMC4575991 DOI: 10.1155/2015/791725] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022]
Abstract
This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants.
Collapse
Affiliation(s)
- A. Jemat
- Department of Mechanical & Materials Engineering, Faculty of Engineering and Built Environment, UKM, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - M. J. Ghazali
- Department of Mechanical & Materials Engineering, Faculty of Engineering and Built Environment, UKM, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - M. Razali
- Department of Peridontology, Faculty of Dentistry, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Y. Otsuka
- Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka-Cho, Nagaoka-shi, Niigata 940-2188, Japan
| |
Collapse
|
23
|
John AA, Subramanian AP, Vellayappan MV, Balaji A, Jaganathan SK, Mohandas H, Paramalinggam T, Supriyanto E, Yusof M. Review: physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Adv 2015. [DOI: 10.1039/c5ra03018h] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Physico-chemical modification induced improvement in biocompatibility of materials.
Collapse
Affiliation(s)
- A. A. John
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - A. P. Subramanian
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - M. V. Vellayappan
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - A. Balaji
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - S. K. Jaganathan
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - H. Mohandas
- Department of Biomedical Engineering
- University of Texas Arlington
- Texas
- USA
| | - T. Paramalinggam
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - E. Supriyanto
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - M. Yusof
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| |
Collapse
|
24
|
Zhou R, Wei D, Ke H, Cao J, Li B, Cheng S, Feng W, Wang Y, Jia D, Zhou Y. H2Ti5O11·H2O nanorod arrays formed on a Ti surface via a hybrid technique of microarc oxidation and chemical treatment. CrystEngComm 2015. [DOI: 10.1039/c4ce02475c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Pan H, Xie Y, Li K, Hu D, Zhao J, Zheng X, Tang T. ROCK-regulated synergistic effect of macropore/nanowire topography on cytoskeletal distribution and cell differentiation. RSC Adv 2015. [DOI: 10.1039/c5ra19691d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Synergistic effect of cytoskeleton distribution on macro/nano surfaces led to higher intracellular tension and better differentiation performance.
Collapse
Affiliation(s)
- Houhua Pan
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Dandan Hu
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Jun Zhao
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants
- Department of Orthopaedics
- Shanghai Ninth People's Hospital
- Shanghai JiaoTong University School of Medicine
- Shanghai 200011
| |
Collapse
|
26
|
Li J, Wang G, Wang D, Wu Q, Jiang X, Liu X. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells. J Colloid Interface Sci 2014; 436:160-70. [PMID: 25268820 DOI: 10.1016/j.jcis.2014.08.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 01/05/2023]
Abstract
Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications.
Collapse
Affiliation(s)
- Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Guifang Wang
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Qianju Wu
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
27
|
Ao H, Xie Y, Qin A, Ji H, Yang S, Huang L, Zheng X, Tang T. Immobilization of hyaluronic acid on plasma-sprayed porous titanium coatings for improving biological properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1211-24. [PMID: 24927161 DOI: 10.1080/09205063.2014.926577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.
Collapse
Affiliation(s)
- Haiyong Ao
- a Shanghai Key Laboratory of Orthopedic Implant , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai 200011 , China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pham VH. Improving osseointegration of Co-Cr by nanostructured titanium coatings. SPRINGERPLUS 2014; 3:197. [PMID: 24809001 PMCID: PMC4012034 DOI: 10.1186/2193-1801-3-197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/08/2014] [Indexed: 11/10/2022]
Abstract
This study reports the deposition of nanostructured Ti films on Co-Cr substrates to improve their surface characteristics and biocompatibility. The microstructure of the Ti films was controlled by application of negative substrate bias voltages. The surface roughness of Co-Cr implants was increased significantly after Ti coatings. The nanostructured Ti films are found to improve osteointergration of Co-Cr implants as indicated by enhancing cellular attachment, proliferation and differentiation, which was attributed mainly to the application of a biocompatible Ti coating, possessed a higher surface area for cell attachments and growth.
Collapse
Affiliation(s)
- Vuong-Hung Pham
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet road, Hanoi, Vietnam
| |
Collapse
|
29
|
Li J, Zhang W, Qiao Y, Zhu H, Jiang X, Liu X, Ding C. Chemically regulated bioactive ion delivery platform on a titanium surface for sustained controlled release. J Mater Chem B 2014; 2:283-294. [DOI: 10.1039/c3tb21102a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Huang ZM, Qi YY, Du SH, Feng G, Unuma H, Yan WQ. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:055001. [PMID: 27877608 PMCID: PMC5090371 DOI: 10.1088/1468-6996/14/5/055001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/01/2013] [Indexed: 06/06/2023]
Abstract
Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.
Collapse
Affiliation(s)
- Zhong-Ming Huang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yi-Ying Qi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shao-Hua Du
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Gang Feng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hidero Unuma
- Department of Chemistry and Chemical Engineering, Yamagata University, Japan
| | - Wei-Qi Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
31
|
Ao H, Xie Y, Tan H, Wu X, Liu G, Qin A, Zheng X, Tang T. Improved hMSC functions on titanium coatings by type I collagen immobilization. J Biomed Mater Res A 2013; 102:204-14. [PMID: 23661627 DOI: 10.1002/jbm.a.34682] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/23/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022]
Abstract
In this study, type I collagen was fixed onto plasma-sprayed porous titanium coatings by either adsorptive immobilization or covalent immobilization. Surface characterization by scanning electron microscopy (SEM), diffuse reflectance Fourier transform infrared spectroscopy (DR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the biochemical modification of the titanium coatings. The immobilizing effects of type I collagen, including variations in the amount and stability of collagen, were investigated using Sirius red staining. A greater amount of collagen was found on the covalently immobilized titanium coating, and higher stability was achieved relative to the absorptive immobilization surface. Human mesenchymal stem cells (hMSCs) were used to evaluate the cytocompatibility of the modified titanium coatings. Type I collagen immobilized on titanium coating led to enhance cell-material interactions and improved hMSC functions, such as attachment, proliferation, and differentiation. Interestingly, covalently immobilized collagen on titanium coating showed a greater capability to regulate the osteogenic activity of hMSCs than did absorbed collagen, which was explained in terms of the increased amount and higher stability of the covalently linked collagen. The type I collagen covalently immobilized titanium coatings with improved biological function may exhibit better osteointegration in clinical application.
Collapse
Affiliation(s)
- Haiyong Ao
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai, China, 200050
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ao H, Xie Y, Tan H, Yang S, Li K, Wu X, Zheng X, Tang T. Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings. J R Soc Interface 2013; 10:20130070. [PMID: 23635490 DOI: 10.1098/rsif.2013.0070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants.
Collapse
Affiliation(s)
- Haiyong Ao
- Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yu X, Ning C, Li J, Huang S, Guo Y, Deng F. In vivo
evaluation of novel amine‐terminated nanopore Ti surfaces. J Biomed Mater Res A 2012; 100:3428-35. [PMID: 22791696 DOI: 10.1002/jbm.a.34269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 03/21/2012] [Accepted: 05/10/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolin Yu
- Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat‐sen University, Guangzhou, China
| | - Chengyun Ning
- College of Materials Science and Technology, South China University of Technology, Guangzhou, China
| | - Jingping Li
- Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat‐sen University, Guangzhou, China
| | - Shanshan Huang
- College of Materials Science and Technology, South China University of Technology, Guangzhou, China
| | - Yuanjun Guo
- College of Materials Science and Technology, South China University of Technology, Guangzhou, China
| | - Feilong Deng
- Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat‐sen University, Guangzhou, China
| |
Collapse
|
34
|
Zareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A. The relationship of surface roughness and cell response of chemical surface modification of titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1479-88. [PMID: 22460230 PMCID: PMC3368253 DOI: 10.1007/s10856-012-4611-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 01/02/2012] [Indexed: 04/14/2023]
Abstract
Implant surface topography influences osteoblastic proliferation, differentiation and extracellular matrix protein expressions. Previous researches proved that chemical surface modification of titanium implants could be used to improve Bone-to-implant contact. In this study, the surface topography, chemistry and biocompatibility of polished titanium surfaces treated with mixed solution of three acids containing HCl, HF and H(3)PO(4) with different etched conditions for example concentration, time and addition of calcium chloride were studied. Osteoblast cells (MG-63) were cultured on different groups of titanium surfaces. In order to investigate titanium surfaces, SEM, AFM and EDS analyses were carried out. The results showed that surfaces treated with HCl-HF-H(3)PO(4) had higher roughness, lower cytotoxicity level and better biocompatibility than controls. Moreover, addition of calcium chloride into mixed solution of three acids containing HCl, HF and H(3)PO(4) is an important, predominant and new technique for obtaining biofunction in metals for biomedical use including dentistry.
Collapse
Affiliation(s)
- Amir Zareidoost
- Department of Materials Science and Engineering, University of Semnan, Semnan, Iran
- Bio-Nano-Materials Research Center, University of Semnan, Semnan, Iran
| | - Mardali Yousefpour
- Department of Materials Science and Engineering, University of Semnan, Semnan, Iran
- Bio-Nano-Materials Research Center, University of Semnan, Semnan, Iran
- Nano Nafez Company, Science and Technology Park of University of Semnan, Semnan University, Semnan, Iran
| | - Behrooz Ghaseme
- Department of Materials Science and Engineering, University of Semnan, Semnan, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
35
|
Duan Y, Liu L, Wang L, Guo F, Li H, Shi L, Li M, Yin D, Jiang C, Zhu Q. Preliminary study of the biomechanical behavior and physical characteristics of tantalum (Ta)-coated prostheses. J Orthop Sci 2012; 17:173-85. [PMID: 22234374 DOI: 10.1007/s00776-011-0191-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/12/2011] [Indexed: 01/19/2023]
Abstract
BACKGROUND Use of Ta biomaterials in medicine started in the middle of the last century. The good biocompatibility and chemical stability, and the unique physical characteristics of Ta metal have resulted in many possible developments of Ta biomaterials. METHODS In this study, histopathological observation, histomorphometric analysis, scanning electron microscope (SEM) observation, energy-dispersive X-ray spectroscopy (EDX) analysis, biomechanical testing, and examination of the coating's mechanical strength have been used to evaluate the value of clinical application of Ta-coated prostheses prepared by a plasma-spraying process. RESULTS Histopathological observation has demonstrated that the periprosthetic new bone tissues tightly and stably adhere to the Ta coating after the implantation, with no signs of loosening. Early after implantation, there is no significant difference in periprosthetic bone volume and ultimate shear strength between Ta-coated and Ti-coated prostheses (P > 0.05). EDX analysis suggests that the ultimate shear stress does not damage Ta coating. Mechanical strength testing shows that the adhesive strength and Vicker's surface hardness (HV) of the Ta coating are significantly higher than those of the Ti coating (P < 0.01). CONCLUSIONS Ta coating has good stability and bone biocompatibility; the extraordinary physical characteristics of Ta coating have great significance in maintaining prosthetic stability and surface porosity after implantation.
Collapse
Affiliation(s)
- Yonghong Duan
- Orthopedic Institute of Chinese People's Liberation Army, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fu Q, Hong Y, Liu X, Fan H, Zhang X. A hierarchically graded bioactive scaffold bonded to titanium substrates for attachment to bone. Biomaterials 2011; 32:7333-46. [DOI: 10.1016/j.biomaterials.2011.06.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/21/2011] [Indexed: 11/29/2022]
|
37
|
Wang QQ, Ma N, Jiang B, Gu ZW, Yang BC. Preparation of a HA/collagen film on a bioactive titanium surface by the electrochemical deposition method. Biomed Mater 2011; 6:055009. [DOI: 10.1088/1748-6041/6/5/055009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Wang QQ, Li W, Yang BC. Regulation on the biocompatibility of bioactive titanium metals by type I collagen. J Biomed Mater Res A 2011; 99:125-34. [DOI: 10.1002/jbm.a.33142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/28/2011] [Accepted: 04/21/2011] [Indexed: 11/07/2022]
|
39
|
Eliaz N, Ritman-Hertz O, Aronov D, Weinberg E, Shenhar Y, Rosenman G, Weinreb M, Ron E. The effect of surface treatments on the adhesion of electrochemically deposited hydroxyapatite coating to titanium and on its interaction with cells and bacteria. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1741-1752. [PMID: 21611792 DOI: 10.1007/s10856-011-4355-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/16/2011] [Indexed: 05/30/2023]
Abstract
The effect of different mechanical and chemical pre-treatments on the adhesion strength of hydroxyapatite (HAp) coating on a commercially pure titanium (CP-Ti) substrate was studied by means of a standard tensile test followed by microscopic and chemical analysis to determine the locus of fracture. In addition, the effects of either these pre-treatments or post-treatment by low-energy electron irradiation, which allowed tuning the wettability of the surface, on both osteoblast progenitor attachment and S. aureus bacteria attachment were investigated. A dedicated program was developed for unambiguous identification and count of stained cells. A single-phase HAp coating was formed by electrodeposition. A series of surface pre-treatments consisted of grinding down to P1000, etching in HNO₃/HF solution, grit blast, soaking in NaOH and subsequent heat treatment provided the highest adhesion strength to the HAp coating. Osteoblast progenitors derived from rats may be attached preferentially to a hydrophilic surface (post-treatment to θ = 30°), while the bacteria seemed to be less attached to hydrophobic surfaces (post-treatment to θ = 105°). However, the results were not statistically different. The bacteria seemed to be less attached to the smoother, uncoated surfaces.
Collapse
Affiliation(s)
- Noam Eliaz
- Materials Science and Engineering Program, Tel Aviv University, Ramat Aviv 69978, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Gemelli E, Resende CX, de Almeida Soares GD. Nucleation and growth of octacalcium phosphate on treated titanium by immersion in a simplified simulated body fluid. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2035-2047. [PMID: 20390323 DOI: 10.1007/s10856-010-4074-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 03/26/2010] [Indexed: 05/29/2023]
Abstract
A simplified simulated body fluid solution (S-SBF) was used to study the kinetics and mechanism of nucleation and growth of octacalcium phosphate (OCP) on the surfaces of alkali and heat-treated titanium samples. After the alkali and heat treatments, the samples were soaked in S-SBF for periods varying up to 24 h. A thin layer of poorly crystallized calcium titanate was formed after 15 min of immersion, allowing for the deposition of another layer of amorphous calcium phosphate (ACP). After 2.5 h of immersion, OCP nuclei were observed on the surface of the ACP layer. After 5 h of immersion in S-SBF solution, the specimens were completely covered with a homogeneous plate-like layer of OCP. Analyses by transmission electron microscopy revealed that nucleation and growth of OCP occurred concomitantly to the crystallization of ACP in hydroxyapatite (HA). This transformation took place by solid-state diffusion, forming a needle-like HA structure underneath the OCP film.
Collapse
Affiliation(s)
- Enori Gemelli
- Department of Mechanical Engineering, Center of Technological Science, State University of Santa Catarina, Campus Universitario, Bairro Bom Retiro, 631, Joinville 89223-100, SC, Brazil.
| | | | | |
Collapse
|
42
|
Abstract
Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities.
Collapse
|
43
|
Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4V implants in rabbits. Acta Biomater 2009; 5:2258-69. [PMID: 19251497 DOI: 10.1016/j.actbio.2009.01.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/08/2009] [Accepted: 01/26/2009] [Indexed: 11/20/2022]
Abstract
Osseointegration, in terms of the bone apposition ratio (BAR) and the new bone area (NBA), was measured by backscattered electron imaging. The results were compared for four implant types: grit-blasted and NaOH-treated Ti-6Al-4V (Uncoated-NaOH), electrodeposited with hydroxyapatite without alkali treatment (ED-HAp), electrodeposited with hydroxyapatite after alkali treatment (NaOH-ED-HAp), and plasma sprayed with hydroxyapatite (PS-HAp). No heat treatment was done after soaking in NaOH. The implants were press fitted into the intramedullary canal of mature New Zealand white rabbits and analyzed, both at the diaphyseal and at the metaphyseal zones, either 1week or 12weeks after surgery. NaOH-ED-HAp already exhibited a higher BAR value than the ED-HAp at 1week, and was as good as the commercial PS-HAp at 12weeks. The NBA value for NaOH-ED-HAp at 12weeks was the highest. The higher content of octacalcium phosphate in NaOH-ED-HAp, as evident from the X-ray photoelectron spectroscopy analysis of the oxygen shake-up peaks, and the associated increase in the solubility of this coating in vivo are considered responsible for the enhanced osseointegration. Taking into account also the reduced occurrence of delamination and the inherent advantages of the electrodeposition process, electrodeposition of HAp following soaking in NaOH may become an attractive alternative for the traditional plasma-sprayed process for coating of orthopedic and dental implants.
Collapse
|
44
|
Ibasco S, Tamimi F, Meszaros R, Nihouannen DL, Vengallatore S, Harvey E, Barralet JE. Magnesium-sputtered titanium for the formation of bioactive coatings. Acta Biomater 2009; 5:2338-47. [PMID: 19357004 DOI: 10.1016/j.actbio.2009.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/17/2022]
Abstract
Osteoconductive coatings may improve the clinical performance of implanted metallic biomaterials. Several low-temperature coating methods have been reported where a supersaturated solution is used to deposit typically apatitic materials. However, due to the very low solubility of apatite, the concentration of calcium and phosphate ions attainable in a supersaturated solution is relatively low ( approximately 1-2mM), thus coating formation is slow, with several solution changes required to form a uniform and clinically relevant coating. In order to avoid this problem, we present a novel method where substrates were initially sputter coated with pure magnesium metal and then immersed in differing phosphate solutions. In this method, upon immersion the implant itself becomes the source of cations and only the anions to be incorporated into the coating are present in solution. These ions react rapidly, forming a continuous coating and avoiding problems of premature non-localized precipitation. The different coatings resulting from varying the phosphate solutions were then characterized in terms of morphology and composition by microscopy and chemical analyses. Upon immersion of the sputter-coated metals into ammonium phosphate solution, it was found that a uniform struvite (MgNH(4)PO(4).6H(2)O) coating was formed. Upon subsequent immersion into a calcium phosphate solution, stable coatings were formed. The coated surfaces also enhanced both osteoblastic cellular adhesion and cell viability compared to bare titanium. The concept of sputter-coating a reactive metal to form an adherent inorganic metal coating appears promising in the field of developing rapid-forming low-temperature bioceramic coatings.
Collapse
|
45
|
Variola F, Vetrone F, Richert L, Jedrzejowski P, Yi JH, Zalzal S, Clair S, Sarkissian A, Perepichka DF, Wuest JD, Rosei F, Nanci A. Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:996-1006. [PMID: 19360718 DOI: 10.1002/smll.200801186] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The human body is an intricate biochemical-mechanical system, with an exceedingly precise hierarchical organization in which all components work together in harmony across a wide range of dimensions. Many fundamental biological processes take place at surfaces and interfaces (e.g., cell-matrix interactions), and these occur on the nanoscale. For this reason, current health-related research is actively following a biomimetic approach in learning how to create new biocompatible materials with nanostructured features. The ultimate aim is to reproduce and enhance the natural nanoscale elements present in the human body and to thereby develop new materials with improved biological activities. Progress in this area requires a multidisciplinary effort at the interface of biology, physics, and chemistry. In this Review, the major techniques that have been adopted to yield novel nanostructured versions of familiar biomaterials, focusing particularly on metals, are presented and the way in which nanometric surface cues can beneficially guide biological processes, exerting influence on cellular behavior, is illustrated.
Collapse
Affiliation(s)
- Fabio Variola
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Upasani VV, Farnsworth CL, Tomlinson T, Chambers RC, Tsutsui S, Slivka MA, Mahar AT, Newton PO. Pedicle screw surface coatings improve fixation in nonfusion spinal constructs. Spine (Phila Pa 1976) 2009; 34:335-43. [PMID: 19182704 DOI: 10.1097/brs.0b013e318194878d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Biomechanical and histologic analysis. OBJECTIVE To compare the strength of the bone-screw interface of standard uncoated pedicle screws with screws treated with hydroxyapatite (HA), titanium plasma spray (TPS), and a composite HA-TPS coating. SUMMARY OF BACKGROUND DATA Transpedicular screw fixation has become the gold standard in the treatment of various thoracolumbar spinal conditions. Pedicle screw loosening, however, has been reported, especially in mechanically demanding constructs or in vertebrae with low bone mineral density. METHODS Six mature porcine were instrumented with 4 types of titanium monoaxial pedicle screws (uncoated, HA-only coated, TPS-only coated, and HA-TPS composite coated) in a systematically varied, single-blinded fashion. After a 3-month survival period, the spines were harvested en-bloc and "time zero" control screws were instrumented in adjacent vertebrae. Screw placement and bone mineral density were evaluated with a postharvest computed tomography, and the strength of the tissue-implant interface was evaluated with a torsional screw extraction analysis (60 screws) and a nondecalcified histologic analysis (16 screws). RESULTS At 3 months postoperative, peak torque increased for all 3 types of coated screws (increased fixation) and decreased significantly for the uncoated screws (P < 0.001). Although 3-month peak torque was not statistically different between the 3 screw coatings, 4 of 10 TPS-only coated screws had a peak torque that was nearly 0 (<0.1 N m) versus only 1 of 10 HA-only screws and 0 of 10 HA-TPS composite screws. Histologic analysis confirmed the biomechanical findings with improved osseointegration in the HA-only and HA-TPS composite screws. CONCLUSION Pedicle screw coatings that promote mechanical interlocking, TPS, or direct osteoblast bonding(HA) increased screw fixation in this nonfusion model. More non-HA coated screws, however, were thought to be "loose" with a nearly zero peak extraction torque and fibrous encapsulation. Increased osseointegration with HA may result in a decreased incidence of screw loosening and improved outcomes of transpedicular spinal instrumentation in nonfusion procedures.
Collapse
Affiliation(s)
- Vidyadhar V Upasani
- Department of Orthopedic Surgery, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Braceras I, De Maeztu MA, Alava JI, Gay-Escoda C. In vivo low-density bone apposition on different implant surface materials. Int J Oral Maxillofac Surg 2009; 38:274-8. [PMID: 19200692 DOI: 10.1016/j.ijom.2008.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/07/2008] [Accepted: 12/22/2008] [Indexed: 11/24/2022]
Abstract
During osseointegration, new bone may be laid down on the implant surface and/or on the old bone surface; the former is known as contact osteogenesis and the latter as distance osteogenesis. Implant surface topography and material composition affect this process. The present study evaluates Ca and P apposition onto three different dental implant material surfaces (carbon monoxide (CO) ion implantation on Ti6Al4V, sand blasting and acid etching on commercially pure titanium and untreated Ti6Al4V) on the mandibles of beagles after healing periods of 3 and 6 months. Energy dispersive spectroscopy is useful for identifying low-density bone relative to surrounding mature bone, allowing for discrimination of the osteogenesis source. Low-density bone was only found at the apical end; there was none on the surface of untreated implants. Low-density bone arising from mature bone towards the implant at month 3 (i.e. distance osteogenesis) was only present on the CO ion implanted samples, due to the modification of the surface nano-topography and the chemistry and structure of the material.
Collapse
Affiliation(s)
- I Braceras
- Inasmet-Tecnalia, San Sebastian, Spain; Lifenova Biomedical, Spain.
| | | | | | | |
Collapse
|
48
|
Borsari V, Fini M, Giavaresi G, Rimondini L, Consolo U, Chiusoli L, Salito A, Volpert A, Chiesa R, Giardino R. Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromised cortical and trabecular bone: in vivo comparative study on young, aged, and estrogen-deficient sheep. J Orthop Res 2007; 25:1250-60. [PMID: 17474132 DOI: 10.1002/jor.20413] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The osteointegration rate of titanium (Ti; TI01) and duplex Ti plus HA (HT01) coating systems with high surface roughness was investigated in healthy, aged, and oestrogen-deficient sheep. After having evaluated the bone quality, TI01 and HT01 rods were implanted in the tibial diaphyses (two implants for each tibia) and epiphyses (1 implant for each tibia) of five young (YOUNG), five aged (AGED), and five aged and ovariectomized (OVX) sheep. The iliac crest trabecular bone volume (BV/TV) and number (Tb.N) in OVX sheep were respectively 33.5% and 28.5% lower than in YOUNG sheep (p < 0.005) and lower than in the AGED group (BV/TV, -17%; Tb.N, -13.5%; not significant); in the OVX group the trabecular separation was 77.9% higher than in YOUNG (p < 0.05) and 30.9% higher than in AGED animals. Lumbar vertebrae L5 bone mineral density was significantly lower in AGED (8.9%, p < 0.05) and OVX sheep (19.3%, p < 0.0005) when compared with YOUNG animals. Five samples of five sheep from each group were analyzed for each observation. At 3 months, in cortical bone both affinity index and pushout test results showed no significant differences between the two materials in each group of animals. In trabecular bone, the affinity index of HT01 was significantly higher than that of TI01 in each group of animals (YOUNG, 90.7%; AGED, 76.9%; OVX, 49.9%) with no significant differences between groups. In conclusion, the performance of TI01 and HT01 surfaces was high not only in YOUNG, but also in OVX animals and, therefore, they might be useful for aged and osteoporotic patients.
Collapse
Affiliation(s)
- Veronica Borsari
- Laboratory of Experimental Surgery, Research Institute Codivilla-Putti, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Saldaña L, González-Carrasco JL, Rodríguez M, Munuera L, Vilaboa N. Osteoblast response to plasma-spray porous Ti6Al4V coating on substrates of identical alloy. J Biomed Mater Res A 2006; 77:608-17. [PMID: 16506177 DOI: 10.1002/jbm.a.30671] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have evaluated the in-vitro biocompatibility of Ti6Al4V alloy coated by plasma spraying with an identical alloy. These surfaces are widely used in cementless prosthetic components, although osteoblasts behavior on this treated alloy has not been evaluated to date. Cross sectional examination revealed a thick and rough coating of identical composition without sign of delamination. Within the coating, small discontinuities and nonconnected pores were observed. Osteoblast response was evaluated by assessing cell adhesion, proliferation, and differentiation of primary cultures of human osteoblastic cells. Compared to the polished alloy, osteoblast adhesion measured as cell attachment and actin network reorganization was delayed on the plasma-sprayed surface. Cell proliferation and viability were also impaired on the rough surface. Several informative markers of osteoblastic differentiation such as procollagen I peptide, alkaline phosphatase, osteocalcin, osteoprotegerin, and mineralized nodule formation were evaluated and indicated that the plasma-sprayed alloy favored a more differentiated phenotype than polished alloy. Taken together, our in vitro results indicate that successful osseointegration of plasma spraying of Ti6Al4V with an identical alloy is mediated by modulation of osteoblastic differentiation and mineralization.
Collapse
Affiliation(s)
- L Saldaña
- Unidad de Investigación, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain
| | | | | | | | | |
Collapse
|
50
|
Abstract
Nano- and conventional-TiO(2) powders were deposited onto titanium alloy using atmospheric plasma spraying technology. As-sprayed titania coatings were treated by H(2)SO(4) and HCl solutions at room temperature for 24 h, and the bioactivity was evaluated by simulated body fluid tests. Measured X-ray diffraction patterns indicated that as-sprayed titania coatings obtained from both nano and conventional powders were composed of primary rutile as well as a small quantity of anatase and Ti(3)O(5). The surface of as-sprayed coatings prepared from the conventional powder was rougher than that from nanopowder. After immersion in simulated body fluid for 2 weeks, both acid-treated nano- and titania coatings have induced carbonate-containing hydroxyapatite to form on the surfaces. However, this phenomenon did not appear on the surface of as-sprayed nano- and conventional-titania coatings. The results obtained indicated that the bioactivity of plasma sprayed titania coatings was improved by the acid treatment and had nothing to do with phase composition and particle size of the original TiO(2) powders.
Collapse
Affiliation(s)
- Xiaobing Zhao
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | | | | |
Collapse
|