1
|
Berri N, Moise S, Keirouz A, Jennings A, Castro-Dominguez B, Leese HS. Repurposing Laboratory Plastic into Functional Fibrous Scaffolds via Green Electrospinning for Cell Culture and Tissue Engineering Applications. ACS Biomater Sci Eng 2025. [PMID: 40207865 DOI: 10.1021/acsbiomaterials.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Cell culture for tissue engineering is a global and flexible research method that heavily relies on plastic consumables generating millions of tons of plastic waste annually. An innovative more sustainable method for scaffold production has been developed by repurposing spent tissue culture polystyrene into biocompatible microfiber scaffolds using environmentally friendly solvents. The green electrospinning approach utilized two green solvents, dihydrolevoglucosenone (Cyrene) and dimethyl carbonate (DMC) to process laboratory cell culture Petri dishes into polymer dopes for electrospinning. Scaffolds produced from these spinning dopes, with aligned and nonaligned microfiber configuration, exhibited mechanical properties comparable to cancellous bones. Aligned scaffolds demonstrated an ultimate tensile strength (UTS) of 4.58 ± 0.34 MPa and a Young's modulus of 11.87 ± 0.54 MPa, while nonaligned scaffolds exhibited a UTS of 4.27 ± 0.92 MPa and a Young's modulus of 20.37 ± 4.85 MPa. MG63 osteoblast-like cells were seeded onto aligned and nonaligned scaffolds to assess biocompatibility, cell adhesion, and differentiation. Cell viability, DNA content, and proliferation were monitored over 14 days. DNA quantification showed an 8-fold increase from 0.195 μg/mL (day 1) to 1.55 μg/mL (day 14), with a significant rise in cell metabolic activity over 7 days and no observed cytotoxic effects. Confocal microscopy revealed elongated cell alignment on aligned fiber scaffolds, while rounded, disoriented cells were observed on nonaligned fiber scaffolds. Alizarin Red staining and calcium quantification confirmed osteogenic differentiation, evidenced by mineral deposition on the scaffolds. This research is the first to demonstrate the feasibility of repurposing laboratory polystyrene waste into sustainable cell culture tissue engineering fibrous scaffolds using eco-friendly solvents. Such an approach exemplifies a paradigm shift toward more sustainable and environmentally conscious scientific practices, aligning with the principles of a circular economy.
Collapse
Affiliation(s)
- Nael Berri
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY U.K
| | - Sandhya Moise
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY U.K
| | - Antonios Keirouz
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
| | - Andrew Jennings
- Department of Mechanical Engineering, University of Bath, Bath BA2 7AY U.K
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
- Centre for Digital Manufacturing and Design (dMaDe), University of Bath, Bath BA2 7AY U.K
| | - Hannah S Leese
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY U.K
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY U.K
| |
Collapse
|
2
|
Ren X, Morimoto Y, Takeuchi S. Biohybrid hand actuated by multiple human muscle tissues. Sci Robot 2025; 10:eadr5512. [PMID: 39937887 DOI: 10.1126/scirobotics.adr5512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025]
Abstract
Cultured muscle tissue serves as a power source in biohybrid robots that demonstrate diverse motions. However, current designs typically only drive simple substrates on a small scale, limiting flexibility and controllability. To address this, we proposed a biohybrid hand with multijointed fingers powered by multiple muscle tissue actuators (MuMuTAs), bundles of thin muscle tissues. The MuMuTA can provide linear actuation with high contractile force (~8 millinewtons) and high contractile length (~4 millimeters), which can be converted into the flexion of multijointed fingers by a cable-driven mechanism. We successfully powered the biohybrid hand achieving individual control of fingers and a variety of motions using different signaling controls. This study showcases the potential of MuMuTAs as a driving source for advanced biohybrid robotics.
Collapse
Affiliation(s)
- Xinzhu Ren
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
| | - Yuya Morimoto
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
- Department of Electronic and Physical Systems, School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Cheng CH, Chen WC, Yang WC, Yang SC, Liu SM, Chen YS, Chen JC. Unidirectional Polyvinylidene/Copper-Impregnated Nanohydroxyapatite Composite Membrane Prepared by Electrospinning with Piezoelectricity and Biocompatibility for Potential Ligament Repair. Polymers (Basel) 2025; 17:185. [PMID: 39861257 PMCID: PMC11769023 DOI: 10.3390/polym17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair. These membranes were created through electrospinning using piezoelectric polyvinylidene fluoride (PVDF) composites, which contained 1 wt.% and 3 wt.% of copper-impregnated nanohydroxyapatite (Cu-nHA). The proposed electrospun membrane would feature an aligned fiber structure achieved through high-speed roller stretching, which mimics the properties of biomimetic ligaments. Nanoparticles of Cu-nHA had been composited into PVDF to enhance the pirzoelectric β-phase of the PVDF crystallines. The study assessed the physicochemical properties, antibacterial activity, and biocompatibility of the membranes in vitro. A microstructure analysis revealed that the composite membrane exhibited a bionic structure with aligned fibers resembling human ligaments. The piezoelectric performance of the experimental group containing 3 wt.% Cu-nHA was significantly improved to 25.02 ± 0.68 V/g·m-2 compared with that of the pure PVDF group at 18.98 ± 1.18 V/g·m-2. Further enhancement in piezoelectric performance by 31.8% was achieved by manipulating the semicrystalline structures. Antibacterial and cytotoxicity tests showed that the composite membrane inherited the antibacterial properties of Cu-nHA nanoparticles without causing cytotoxic reactions. Tensile tests revealed that the membrane's flexibility of strain was adequate for use as artificial scaffolds for ligaments. In particular, the mechanical properties of the two experimental groups containing Cu-nHA were significantly enhanced compared with those of the pure PVDF group. The favorable piezoelectric and flexible properties are highly beneficial for ligament tissue regeneration. This study successfully developed PVDF/Cu-nHA piezoelectric fibers for a biocompatible, unidirectional piezoelectric membrane with potential applications as ligament repair scaffolds.
Collapse
Affiliation(s)
- Chih-Hsin Cheng
- Clinical Histopathology Division, Hualien Armed Forces General Hospital, Hualien 970, Taiwan;
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Chieh Yang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
| | - Sen-Chi Yang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
| | - Ya-Shun Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
| | - Jian-Chih Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (W.-C.Y.); (S.-C.Y.); (S.-M.L.); (Y.-S.C.)
- Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Wang H, Xiong Y, Sanders K, Park SK, Baumberg JJ, De Volder MFL. Scalable Self-Assembly of Composite Nanofibers into High-Energy-Density Li-Ion Battery Electrodes. ACS NANO 2024; 18:26799-26806. [PMID: 39297802 PMCID: PMC11447904 DOI: 10.1021/acsnano.4c07602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/02/2024]
Abstract
The application of nanosized active particles in Li-ion batteries has been the subject of intense investigation, yielding mixed results in terms of overall benefits. While nanoparticles have shown promise in improving rate performance and reducing issues related to cracking, they have also faced criticism due to side reactions, low packing density, and consequent subpar volumetric battery performance. Interesting processes such as self-assembly have been proposed to increase packing density, but these tend to be incompatible with scalable processes such as roll-to-roll coating, which are essential to manufacture electrodes at scale. Addressing these challenges, this research demonstrates the long-range self-assembly of carbon-decorated V2O5 nanofiber cathodes as a model system. These nanorods are closely packed into thick electrode films, exhibiting a high volumetric capacity of 205 mA h cm-3at 0.2 C. This surpasses the volumetric capacity of unaligned V2O5 nanofiber electrodes (82 mA h cm-3) under the same cycling conditions. We also demonstrate that these energy-dense electrodes retain an excellent capacity of up to 190.4 mA h cm-3(<2% loss) over 500 cycles without needing binders. Finally, we demonstrate that the proposed self-assembly process is compatible with roll-to-roll coating. This work contributes to the development of energy-dense coatings for next-generation battery electrodes with high volumetric energy density.
Collapse
Affiliation(s)
- Heng Wang
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Yuling Xiong
- Department
of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Kate Sanders
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Sul Ki Park
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FS, U.K.
| | | | | |
Collapse
|
5
|
Yusro M, Hacker V. Fabricating ultra-thin nanofiber structures towards the advanced MEA of fuel cells: investigation of the degree of alignment, diameter, bead generation, and precision with Taguchi designs. NANOSCALE ADVANCES 2024:d4na00558a. [PMID: 39359351 PMCID: PMC11441462 DOI: 10.1039/d4na00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Modified nanofibers with a more aligned and very thin structure are a potential approach owing to their promising properties and enhanced fuel cell performance compared to conventional randomly oriented nanofibers. The strategy to fabricate randomly oriented nanofibers has been widely explored. However, the key factors of oriented fibres, such as the degree of alignment, diameter, bead generation, and precision, have not been investigated in detail. In this work, four specific profiles of nanofibres related to the parameters of the electrospinning system were analysed in more detail for the first time: collector speed, distance, voltage, and nozzle movement. The concentration was set at a constant value of 10% (w/w) of polyvinyl alcohol (PVA), which is suitable for the potential application of fabricating membrane electrode assemblies (MEAs) for fuel cells. The results indicated that the applied electrical voltage is the most important factor among all the features. Taguchi methods implemented in this work revealed the correlation factors for each specific parameter.
Collapse
Affiliation(s)
- Muhammad Yusro
- Institute of Chemical Engineering and Environmental Technology TU Graz 8010 Austria
- Telkom University Jalan D.I. Panjaitan 128 Purwokerto 5317 Jawa Tengah Indonesia
| | - Viktor Hacker
- Institute of Chemical Engineering and Environmental Technology TU Graz 8010 Austria
| |
Collapse
|
6
|
Vieira T, Silva JC, Kubinova S, Borges JP, Henriques C. Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells. Macromol Biosci 2024; 24:e2400014. [PMID: 39072995 DOI: 10.1002/mabi.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Indexed: 07/30/2024]
Abstract
Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).
Collapse
Affiliation(s)
- Tânia Vieira
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Jorge Carvalho Silva
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Sarka Kubinova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - João P Borges
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Ciência dos Materiais, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Célia Henriques
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
7
|
Kang DH, Kim NK, Lee W, Kang HW. Geometric feature extraction in nanofiber membrane image based on convolution neural network for surface roughness prediction. Heliyon 2024; 10:e35358. [PMID: 39170369 PMCID: PMC11336630 DOI: 10.1016/j.heliyon.2024.e35358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
As a technique in artificial intelligence, a convolution neural network model has been utilized to extract average surface roughness from the geometric characteristics of a membrane image featuring micro- and nanostructures. For surface roughness measurement, e.g. atomic force microscopy and optical profiler, the previous methods have been performed to analyze a porous membrane surface on an interest of region with a few micrometers of the restricted area according to the depth resolution. However, an image from the scanning electron microscope, combined with the feature extraction process, provides clarity on surface roughness for multiple areas with various depth resolutions. Through image preprocessing, the geometric pattern is elucidated by amplifying the disparity in pixel intensity values between the bright and dark regions of the image. The geometric pattern of the binary image and magnitude spectrum confirmed the classification of the surface roughness of images in a categorical scatter plot. A group of cropped images from an original image is used to predict the logarithmic average surface roughness values. The model predicted 4.80 % MAPE for the test dataset. The method of extracting geometric patterns through a feature map-based CNN, combined with a statistical approach, suggests an indirect surface measurement. The process is achieved through a bundle of predicted output data, which helps reduce the randomness error of the structural characteristics. A novel feature extraction approach of CNN with statistical analysis is a valuable method for revealing hidden physical characteristics in surface geometries from irregular pixel patterns in an array of images.
Collapse
Affiliation(s)
- Dong Hee Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
- Department of Industrial and Systems Engineering, Texas A&M University, College station, TX, 77843, United States
| | - Na Kyong Kim
- Green Energy System Research Center, Korea Automotive Technology Institute, 55 Jingoksandanjungang-ro, Gwangsan-Gu, Gwangju, 62465, Republic of Korea
| | - Wonoh Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Hyun Wook Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
8
|
Belda-Para C, Velarde-Rodríguez G, Velasco-Ocaña M, Trujillo-Sevilla JM, Rodríguez-Méndez I, Rodríguez-Martin J, Alejandre-Alba N, Rodríguez-García S, Rodríguez-Ramos JM. Comparing the clinical applicability of wavefront phase imaging in keratoconus versus normal eyes. Sci Rep 2024; 14:9984. [PMID: 38693352 PMCID: PMC11063207 DOI: 10.1038/s41598-024-60842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024] Open
Abstract
The aim of this work is to quantitatively assess the wavefront phase of keratoconic eyes measured by the ocular aberrometer t·eyede (based on WaveFront Phase Imaging Sensor), characterized by a lateral resolution of 8.6 µm without requiring any optical element to sample the wavefront information. We evaluated the parameters: root mean square error, Peak-to-Valley, and amplitude of the predominant frequency (Fourier Transform analysis) of a section of the High-Pass filter map in keratoconic and healthy cohorts. Furthermore, we have analyzed keratoconic eyes that presented dark-light bands in this map to assess their period and orientation with the Fourier Transform. There are significant statistical differences (p value < 0.001) between healthy and keratoconic eyes in the three parameters, demonstrating a tendency to increase with the severity of the disease. Otherwise, the quantification of the bands reveals that the width is independent of eye laterality and keratoconic stage as orientation, which tends to be oblique. In conclusion, the quantitative results obtained with t·eyede could help to diagnose and monitor the progression of keratoconus.
Collapse
Affiliation(s)
- Carolina Belda-Para
- Wooptix S.L., Avenida Trinidad, 61 Planta 7, 38000, La Laguna, Tenerife, Canary Islands, Spain.
- University of La Laguna, Calle Padre Herrera s/n, 38200, La Laguna, Tenerife, Canary Islands, Spain.
| | - Gonzalo Velarde-Rodríguez
- Ophthalmology Department, Fundación Jiménez Díaz University Hospital, Avenida. Reyes Católicos 2, 28040, Madrid, Spain
| | - Miriam Velasco-Ocaña
- Wooptix S.L., Avenida Trinidad, 61 Planta 7, 38000, La Laguna, Tenerife, Canary Islands, Spain
| | - Juan M Trujillo-Sevilla
- Wooptix S.L., Avenida Trinidad, 61 Planta 7, 38000, La Laguna, Tenerife, Canary Islands, Spain
| | - Iván Rodríguez-Méndez
- Wooptix S.L., Avenida Trinidad, 61 Planta 7, 38000, La Laguna, Tenerife, Canary Islands, Spain
- University of La Laguna, Calle Padre Herrera s/n, 38200, La Laguna, Tenerife, Canary Islands, Spain
| | | | - Nicolas Alejandre-Alba
- Ophthalmology Department, Fundación Jiménez Díaz University Hospital, Avenida. Reyes Católicos 2, 28040, Madrid, Spain
| | - Silvia Rodríguez-García
- University of La Laguna, Calle Padre Herrera s/n, 38200, La Laguna, Tenerife, Canary Islands, Spain
| | - José M Rodríguez-Ramos
- Wooptix S.L., Avenida Trinidad, 61 Planta 7, 38000, La Laguna, Tenerife, Canary Islands, Spain
- University of La Laguna, Calle Padre Herrera s/n, 38200, La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
9
|
Zhang H, Rahman T, Lu S, Adam AP, Wan LQ. Helical vasculogenesis driven by cell chirality. SCIENCE ADVANCES 2024; 10:eadj3582. [PMID: 38381835 PMCID: PMC10881055 DOI: 10.1126/sciadv.adj3582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
The cellular helical structure is well known for its crucial role in development and disease. Nevertheless, the underlying mechanism governing this phenomenon remains largely unexplored, particularly in recapitulating it in well-controlled engineering systems. Leveraging advanced microfluidics, we present compelling evidence of the spontaneous emergence of helical endothelial tubes exhibiting robust right-handedness governed by inherent cell chirality. To strengthen our findings, we identify a consistent bias toward the same chirality in mouse vascular tissues. Manipulating endothelial cell chirality using small-molecule drugs produces a dose-dependent reversal of the handedness in engineered vessels, accompanied by non-monotonic changes in vascular permeability. Moreover, our three-dimensional cell vertex model provides biomechanical insights into the chiral morphogenesis process, highlighting the role of cellular torque and tissue fluidity in its regulation. Our study unravels an intriguing mechanism underlying vascular chiral morphogenesis, shedding light on the broader implications and distinctive perspectives of tubulogenesis within biological systems.
Collapse
Affiliation(s)
- Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Department of Ophthalmology, Albany Medical College, Albany, NY 12208, USA
| | - Leo Q. Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
10
|
Gupta S, Sohail T, Checa M, Rohewal SS, Toomey MD, Kanbargi N, Damron JT, Collins L, Kearney LT, Naskar AK, Bowland CC. Enhancing Composite Toughness Through Hierarchical Interphase Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305642. [PMID: 38145356 PMCID: PMC10853716 DOI: 10.1002/advs.202305642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/08/2023] [Indexed: 12/26/2023]
Abstract
High strength and ductility are highly desired in fiber-reinforced composites, yet achieving both simultaneously remains elusive. A hierarchical architecture is developed utilizing high aspect ratio chemically transformable thermoplastic nanofibers that form covalent bonding with the matrix to toughen the fiber-matrix interphase. The nanoscale fibers are electrospun on the micrometer-scale reinforcing carbon fiber, creating a physically intertwined, randomly oriented scaffold. Unlike conventional covalent bonding of matrix molecules with reinforcing fibers, here, the nanofiber scaffold is utilized - interacting non-covalently with core fiber but bridging covalently with polymer matrix - to create a high volume fraction of immobilized matrix or interphase around core reinforcing elements. This mechanism enables efficient fiber-matrix stress transfer and enhances composite toughness. Molecular dynamics simulation reveals enhancement of the fiber-matrix adhesion facilitated by nanofiber-aided hierarchical bonding with the matrix. The elastic modulus contours of interphase regions obtained from atomic force microscopy clearly indicate the formation of stiffer interphase. These nanoengineered composites exhibit a ≈60% and ≈100% improved in-plane shear strength and toughness, respectively. This approach opens a new avenue for manufacturing toughened high-performance composites.
Collapse
Affiliation(s)
- Sumit Gupta
- Carbon and Composites GroupChemical Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Tanvir Sohail
- Advanced Computing for Chemistry and Materials GroupNational Center for Computational SciencesOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Marti Checa
- Functional Atomic Force Microscope GroupCenter for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Sargun S. Rohewal
- Carbon and Composites GroupChemical Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Michael D. Toomey
- Carbon and Composites GroupChemical Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Nihal Kanbargi
- Carbon and Composites GroupChemical Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Joshua T. Damron
- Carbon and Composites GroupChemical Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Liam Collins
- Functional Atomic Force Microscope GroupCenter for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Logan T. Kearney
- Carbon and Composites GroupChemical Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Amit K. Naskar
- Carbon and Composites GroupChemical Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Christopher C. Bowland
- Carbon and Composites GroupChemical Sciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| |
Collapse
|
11
|
Antonyshyn JA, MacQuarrie KD, McFadden MJ, Gramolini AO, Hofer SOP, Santerre JP. Paracrine cross-talk between human adipose tissue-derived endothelial cells and perivascular cells accelerates the endothelialization of an electrospun ionomeric polyurethane scaffold. Acta Biomater 2024; 175:214-225. [PMID: 38158104 DOI: 10.1016/j.actbio.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The ex vivo endothelialization of small diameter vascular prostheses can prolong their patency. Here, we demonstrate that heterotypic interactions between human adipose tissue-derived endothelial cells and perivascular cells can be exploited to accelerate the endothelialization of an electrospun ionomeric polyurethane scaffold. The scaffold was used to physically separate endothelial cells from perivascular cells to prevent their diffuse neo-intimal hyperplasia and spontaneous tubulogenesis, yet enable their paracrine cross-talk to accelerate the integration of the endothelial cells into a temporally stable endothelial lining of a continuous, elongated, and aligned morphology. Perivascular cells stimulated endothelial basement membrane protein production and suppressed their angiogenic and inflammatory activation to accelerate this biomimetic morphogenesis of the endothelium. These findings demonstrate the feasibility and underscore the value of exploiting heterotypic interactions between endothelial cells and perivascular cells for the fabrication of an endothelial lining intended for small diameter arterial reconstruction. STATEMENT OF SIGNIFICANCE: Adipose tissue is an abundant, accessible, and uniquely dispensable source of endothelial cells and perivascular cells for vascular tissue engineering. While their spontaneous self-assembly into microvascular networks is routinely exploited for the vascularization of engineered tissues, it threatens the temporal stability of an endothelial lining intended for small diameter arterial reconstruction. Here, we demonstrate that an electrospun polyurethane scaffold can be used to physically separate endothelial cells from perivascular cells to prevent their spontaneous capillary morphogenesis, yet enable their cross-talk to promote the formation of a stable endothelium. Our findings demonstrate the feasibility of engineering an endothelial lining from human adipose tissue, poising it for the rapid ex vivo endothelialization of small diameter vascular prostheses in an autologous, patient-specific manner.
Collapse
Affiliation(s)
- Jeremy A Antonyshyn
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Kate D MacQuarrie
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Meghan J McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Stefan O P Hofer
- Division of Plastic, Reconstructive, and Aesthetic Surgery, University of Toronto, Toronto, Canada; Departments of Surgery and Surgical Oncology, University Health Network, Toronto, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada; Faculty of Dentistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Huang T, Xu K, Jia N, Yang L, Liu H, Zhu J, Yan Q. Intrinsic Interfacial Dynamic Engineering of Zincophilic Microbrushes via Regulating Zn Deposition for Highly Reversible Aqueous Zinc Ion Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205206. [PMID: 36453716 DOI: 10.1002/adma.202205206] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Aqueous rechargeable zinc ion batteries are promising efficient energy storage systems due to remarkable safety and satisfactory capacity. However, zinc metal anode instability including dendrite growth and side reactions severely hinders widespread applications. Herein, zincophilic microbrushes have been in situ anchored on zinc plates through simple freeze-drying and mild reduction of graphene oxide, successfully overcoming these thorny issues. By introducing suitable oxygen-containing groups, the microbrushes exhibit a good affinity for zinc ions, thereby providing sufficient depositing sites, promoting zinc plating and stripping during cycling, and suppressing side reactions. The delicate zincophilic microbrushes can not only function as protective layer to guide the deposition of zinc ions, but also act as high-speed pathways to redistribute the zinc ion flux for rapid kinetics. Consequently, the microbrushes-covered zinc anode displays long lifespan and good durability, whenever in symmetric cell or full battery tests. This work paves a feasible bridge to design advanced aqueous anodes by architecting both structures and compositions of metal coverings.
Collapse
Affiliation(s)
- Tieqi Huang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Kui Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Ning Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lan Yang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
13
|
Wang X, Zhang Z, Qin C, Guo X, Zhang Y. Shape-memory responses compared between random and aligned electrospun fibrous mats. Front Bioeng Biotechnol 2023; 11:1130315. [PMID: 36777255 PMCID: PMC9909598 DOI: 10.3389/fbioe.2023.1130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Significant progress has been made in the design of smart fibers toward achieving improved efficacy in tissue regeneration. While electrospun fibers can be engineered with shape memory capability, both the fiber structure and applied shape-programming parameters are the determinants of final performance in applications. Herein, we report a comparison study on the shape memory responses compared between electrospun random and aligned fibers by varying the programming temperature T prog and the deforming strain ε deform . A PLLA-PHBV (6:4 mass ratio) polymer blend was first electrospun into random and aligned fibrous mat forms; thereafter, the effects of applying specific T prog (37°C and 46°C) and ε deform (30%, 50%, and 100%) on the morphological change, shape recovery efficiency, and switching temperature T sw of the two types of fibrous structures were examined under stress-free condition, while the maximum recovery stress σ max was determined under constrained recovery condition. It was identified that the applied T prog had less impact on fiber morphology, but increasing ε deform gave rise to attenuation in fiber diameters and bettering in fiber orientation, especially for random fibers. The efficiency of shape recovery was found to correlate with both the applied T prog and ε deform , with the aligned fibers exhibiting relatively higher recovery ability than the random counterpart. Moreover, T sw was found to be close to T prog , thereby revealing a temperature memory effect in the PLLA-PHBV fibers, with the aligned fibers showing more proximity, while the σ max generated was ε deform -dependent and 2.1-3.4 folds stronger for the aligned one in comparison with the random counterpart. Overall, the aligned fibers generally demonstrated better shape memory properties, which can be attributed to the macroscopic structural orderliness and increased molecular orientation and crystallinity imparted during the shape-programming process. Finally, the feasibility of using the shape memory effect to enable a mechanoactive fibrous substrate for regulating osteogenic differentiation of stem cells was demonstrated with the use of aligned fibers.
Collapse
Affiliation(s)
- Xianliu Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Zhaowenbin Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chunping Qin
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China,Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, China,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China,*Correspondence: Yanzhong Zhang,
| |
Collapse
|
14
|
Chen L, Zhang D, Cheng K, Li W, Yu Q, Wang L. Photothermal-responsive fiber dressing with enhanced antibacterial activity and cell manipulation towards promoting wound‐healing. J Colloid Interface Sci 2022; 623:21-33. [DOI: 10.1016/j.jcis.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
|
15
|
Distinctive structure, composition and biomechanics of collagen fibrils in vaginal wall connective tissues associated with pelvic organ prolapse. Acta Biomater 2022; 152:335-344. [PMID: 36055614 PMCID: PMC10182770 DOI: 10.1016/j.actbio.2022.08.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
Collagen is the predominant structural protein within connective tissues. Pelvic organ prolapse (POP) is characterized by weakening of the pelvic floor connective tissues and loss of support for pelvic organs. In this study, we examined the multiscale structure, molecular composition and biomechanics of native collagen fibrils in connective tissues of the posterior vaginal fornix collected from healthy women and POP patients, and established the correlation of these properties with clinical POP quantification (POP-Q) scores. The collagen characteristics, including collagen amount, ratio of Collagen I and Collagen III, collagen fibril d-period, alignment and stiffness, were found to change progressively with the increase of the clinical measurement of Point C, a measure of uterine descent and apical prolapse. The results imply that a severe prolapse is associated with stiffer collagen fibrils, reduced collagen d-period, increased fibril alignment and imbalanced collagen synthesis, degradation and deposition. Additionally, prolapse progression appears to be synchronized with deterioration of the collagen matrix, suggesting that a POP-Q score obtained via a non-invasive clinical test can be potentially used to quantitatively assess collagen abnormality of a patient's local tissue. STATEMENT OF SIGNIFICANCE: Abnormal collagen metabolism and deposition are known to associate with connective tissue disorders, such as pelvic organ prolapse. Quantitative correlation of the biochemical and biophysical characteristics of collagen in a prolapse patient's tissue with the clinical diagnostic measurements is unexplored and unestablished. This study fills the knowledge gap between clinical prolapse quantification and the individual's cellular and molecular disorders leading to connective tissue failure, thus, provides the basis for clinicians to employ personalized treatment that can best manage the patient's condition and to alert pre-symptomatic patients for early management to avoid unwanted surgery.
Collapse
|
16
|
Nitti P, Palazzo B, Gallo N, Scalera F, Sannino A, Gervaso F. Smooth‐rough asymmetric
PLGA
structure made of dip coating membrane and electrospun nanofibrous scaffolds meant to be used for guided tissue regeneration of periodontium. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paola Nitti
- Biomaterials Laboratory, Department of Engineering for Innovation University of Salento Lecce
| | - Barbara Palazzo
- Ghimas S.p.A., c/o Dhitech Scarl Lecce Italy
- ENEA Division for Sustainable Materials Research Centre of Brindisi Brindisi Italy
| | - Nunzia Gallo
- Biomaterials Laboratory, Department of Engineering for Innovation University of Salento Lecce
| | - Francesca Scalera
- Biomaterials Laboratory, Department of Engineering for Innovation University of Salento Lecce
- Department of Physical Sciences and Technologies of Matter Institute of Nanotechnology‐CNR Lecce Italy
| | - Alessandro Sannino
- Biomaterials Laboratory, Department of Engineering for Innovation University of Salento Lecce
| | - Francesca Gervaso
- Biomaterials Laboratory, Department of Engineering for Innovation University of Salento Lecce
- Department of Physical Sciences and Technologies of Matter Institute of Nanotechnology‐CNR Lecce Italy
| |
Collapse
|
17
|
Chen J, Ghosh T, Tang T, Ayranci C. Optimization of high‐quality carbon fiber production from electrospun aligned lignin fibers. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiawei Chen
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Tanushree Ghosh
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
- Center for Earth Sciences Indian Institute of Science Bengaluru Karnataka India
| | - Tian Tang
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Cagri Ayranci
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
18
|
Luketich SK, Cosentino F, Di Giuseppe M, Menallo G, Nasello G, Livreri P, Wagner WR, D'Amore A. Engineering in-plane mechanics of electrospun polyurethane scaffolds for cardiovascular tissue applications. J Mech Behav Biomed Mater 2022; 128:105126. [DOI: 10.1016/j.jmbbm.2022.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
19
|
Zhou H, Piñeiro Llanes J, Sarntinoranont M, Subhash G, Simmons CS. Label-free quantification of soft tissue alignment by polarized Raman spectroscopy. Acta Biomater 2021; 136:363-374. [PMID: 34537413 DOI: 10.1016/j.actbio.2021.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The organization of proteins is an important determinant of functionality in soft tissues. However, such organization is difficult to monitor over time in soft tissue with complex compositions. Here, we establish a method to determine the alignment of proteins in soft tissues of varying composition by polarized Raman spectroscopy (PRS). Unlike most conventional microscopy methods, PRS leverages non-destructive, label-free sample preparation. PRS data from highly aligned muscle layers were utilized to derive a weighting function for aligned proteins via principal component analysis (PCA). This trained weighting function was used as a master loading function to calculate a principal component score (PC1 Score) as a function of polarized angle for tendon, dermis, hypodermis, and fabricated collagen gels. Since the PC1 Score calculated at arbitrary angles was insufficient to determine level of alignment, we developed an Amplitude Alignment Metric by fitting a sine function to PC1 Score with respect to polarized angle. We found that our PRS-based Amplitude Alignment Metric can be used as an indicator of level of protein alignment in soft tissues in a non-destructive manner with label-free preparation and has similar discriminatory capacity among isotropic and anisotropic samples compared to microscopy-based image processing method. This PRS method does not require a priori knowledge of sample orientation nor composition and appears insensitive to changes in protein composition among different tissues. The Amplitude Alignment Metric introduced here could enable convenient and adaptable evaluation of protein alignment in soft tissues of varying protein and cell composition. STATEMENT OF SIGNIFICANCE: Polarized Raman spectroscopy (PRS) has been used to characterize the of organization of soft tissues. However, most of the reported applications of PRS have been on collagen-rich tissues and reliant on intensities of collagen-related vibrations. This work describes a PRS method via a multivariate analysis to characterize alignment in soft tissues composed of varying proteins. Of note, the highly aligned muscle layer of mouse skin was used to train a master function then applied to other soft tissue samples, and the degree of anisotropy in the PRS response was evaluated to obtain the level of alignment in tissues. We have demonstrated that this method supports convenient and adaptable evaluation of protein alignment in soft tissues of varying protein and cell composition.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Janny Piñeiro Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Ghatu Subhash
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
20
|
Ghollasi M, Poormoghadam D. Enhanced neural differentiation of human-induced pluripotent stem cells on aligned laminin-functionalized polyethersulfone nanofibers; a comparison between aligned and random fibers on neurogenesis. J Biomed Mater Res A 2021; 110:672-683. [PMID: 34651431 DOI: 10.1002/jbm.a.37320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Despite the numerous attempts in nerve tissue engineering, no ideal strategy has been translated into effective therapy for neuronal regeneration yet. Here, we designed a novel nerve regeneration scaffold combining aligned laminin-immobilized polyethersulfone (PES) nanofibers and human-induced pluripotent stem cells (hiPSCs) for transplantation strategies. Aligned and random PES nanofibers were fabricated by electrospinning method with a diameter of 95-500 nm and were then modified with covalent laminin bounding subsequent to O2 plasma treatment. PES-functionalized fibers found to induce a remarkable higher rate of neuronal genes expression as compared to nontreated group. In addition, hiPSCs cultured on aligned pure fibers exhibited the extension of neurites along with fibers direction and an exponentially elevated expression of neuron specific enolase (early neuroectoderm marker), Tuj-1 (axonal marker), and microtubule-associated protein 2 (dendritic marker) in comparison with random pure fibers. The concomitant of increased hydrophilicity and biocompatibility along with exploiting topographical cues and directional guidance make aligned PES-plasma-laminin a versatile scaffold for adhesion, proliferation, spreading, and differentiation of hiPSCs into nerve cells.
Collapse
Affiliation(s)
- Marzieh Ghollasi
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Poormoghadam
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
21
|
Application of "Magnetic Anchors" to Align Collagen Fibres for Axonal Guidance. Gels 2021; 7:gels7040154. [PMID: 34698174 PMCID: PMC8544430 DOI: 10.3390/gels7040154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
The use of neural scaffolds with a highly defined microarchitecture, fabricated with standard techniques such as electrospinning and microfluidic spinning, requires surgery for their application to the site of injury. To circumvent the risk associated with aciurgy, new strategies for treatment are sought. This has led to an increase in the quantity of research into injectable hydrogels in recent years. However, little research has been conducted into controlling the building blocks within these injectable hydrogels to produce similar scaffolds with a highly defined microarchitecture. “Magnetic particle string” and biomimetic amphiphile self-assembly are some of the methods currently available to achieve this purpose. Here, we developed a “magnetic anchor” method to improve the orientation of collagen fibres within injectable 3D scaffolds. This procedure uses GMNP (gold magnetic nanoparticle) “anchors” capped with CMPs (collagen mimetic peptides) that “chain” them to collagen fibres. Through the application of a magnetic field during the gelling process, these collagen fibres are aligned accordingly. It was shown in this study that the application of CMP functionalised GMNPs in a magnetic field significantly improves the alignment of the collagen fibres, which, in turn, improves the orientation of PC12 neurites. The growth of these neurite extensions, which were shown to be significantly longer, was also improved. The PC12 cells grown in collagen scaffolds fabricated using the “magnetic anchor” method shows comparable cellular viability to that of the untreated collagen scaffolds. This capability of remote control of the alignment of fibres within injectable collagen scaffolds opens up new strategic avenues in the research for treating debilitating neural tissue pathologies.
Collapse
|
22
|
Casale C, Imparato G, Mazio C, Netti PA, Urciuolo F. Geometrical confinement controls cell, ECM and vascular network alignment during the morphogenesis of 3D bioengineered human connective tissues. Acta Biomater 2021; 131:341-354. [PMID: 34144214 DOI: 10.1016/j.actbio.2021.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022]
Abstract
Engineered tissues featuring aligned ECM possess superior regenerative capabilities for the healing of damaged aligned tissues. The morphofunctional integration in the host's injury site improves if the aligned ECM elicits the unidirectional growth of vascular network. In this work we used a bottom-up tissue engineering strategy to produce endogenous and highly aligned human connective tissues with the final aim to trigger the unidirectional growth of capillary-like structures. Engineered microtissues, previously developed by our group, were casted in molds featured by different aspect ratio (AR) to obtain final centimeter-sized macrotissues differently shaped. By varying the AR from 1 to 50 we were able to vary the final shape of the macrotissues, from square to wire. We demonstrated that by increasing the AR of the maturation space hosting the microtissues, it was possible to control the alignment of the neo-synthesized ECM. The geometrical confinement conditions at AR = 50, indeed, promoted the unidirectional growth and assembly of the collagen network. The wire-shaped tissues were characterized by parallel arrangement of the collagen fiber bundles, higher persistence length and speed of migrating cells and superior mechanical properties than the square-shaped macrotissues. Interestingly, the aligned collagen fibers elicited the unidirectional growth of capillary-like structures. STATEMENT OF SIGNIFICANCE: Alignment of preexisting extracellular matrices by using mechanical cues modulating cell traction, has been widely described. Here, we show a new method to align de novo synthesized extracellular matrix components in bioengineered connective tissues obtained by means of a bottom-up tissue engineering approach. Building blocks are cast in maturation chambers, having different aspect ratios, in which the in vitro morphogenesis process takes place. High aspect ratio chambers (corresponding to wire-shaped tissues) triggered spontaneous alignment of collagenous network affecting cell polarization, migration and tensile properties of the tissue as well. Aligned ECM provided a contact guidance for the formation of highly polarized capillary-like network suggesting an in vivo possible application to trigger fast angiogenesis and perfusion in damaged aligned tissues.
Collapse
|
23
|
Chen L, Yu Q, Jia Y, Xu M, Wang Y, Wang J, Wen T, Wang L. Micro-and-nanometer topological gradient of block copolymer fibrous scaffolds towards region-specific cell regulation. J Colloid Interface Sci 2021; 606:248-260. [PMID: 34390992 DOI: 10.1016/j.jcis.2021.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
Regulating cell behavior and function by surface topography has drawn significant attention in tissue engineering. Herein, a gradient fibrous scaffold comprising anisotropic aligned fibers and isotropic annealed fibers was developed to provide a controllable direction of cell migration, adhesion, and spreading. The electrospun aligned fibers were engraved to create surface gradients with micro-and-nanometer roughness through block copolymer (BCP) self-assembly induced by selective solvent vapor annealing (SVA). The distinct manipulation of cell behavior by annealed fibrous scaffolds with tailored self-assembled nanostructure and welded fibrous microstructure has been illustrated by in situ/ex situ small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and in vitro cell culture. Further insights into the effect of integrated gradient fibrous scaffold were gained at the level of protein expression. From the perspective of gradient topology, this region-specific scaffold based on BCP fibers shows the prospect of guiding cell migration, adhesion and spreading and provides a generic method for designing biomaterials for tissue-engineering.
Collapse
Affiliation(s)
- Lei Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yifan Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mengmeng Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yingying Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
24
|
Li Q, Chen G, Cui Y, Ji S, Liu Z, Wan C, Liu Y, Lu Y, Wang C, Zhang N, Cheng Y, Zhang KQ, Chen X. Highly Thermal-Wet Comfortable and Conformal Silk-Based Electrodes for On-Skin Sensors with Sweat Tolerance. ACS NANO 2021; 15:9955-9966. [PMID: 34110782 DOI: 10.1021/acsnano.1c01431] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noninvasive and seamless interfacing between the sensors and human skin is highly desired for wearable healthcare. Thin-film-based soft and stretchable sensors can to some extent form conformal contact with skin even under dynamic movements for high-fidelity signals acquisition. However, sweat accumulation underneath these sensors for long-term monitoring would compromise the thermal-wet comfort, electrode adherence to the skin, and signal fidelity. Here, we report the fabrication of a highly thermal-wet comfortable and conformal silk-based electrode, which can be used for on-skin electrophysiological measurement under sweaty conditions. It is realized through incorporating conducting polymers poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) into glycerol-plasticized silk fiber mats. Glycerol plays the role of tuning the mechanical properties of silk fiber mats and enhancing the conductivity of PEDOT:PSS. Our silk-based electrodes show high stretchability (>250%), low thermal insulation (∼0.13 °C·m2·W-1), low evaporative resistance (∼23 Pa·m2·W-1, 10 times lower than ∼1.3 mm thick commercial gel electrodes), and high water-vapor transmission rate (∼117 g·m-2·h-1 under sweaty conditions, 2 times higher than skin water loss). These features enable a better electrocardiography signal quality than that of commercial gel electrodes without disturbing the heat dissipation during sweat evaporation and provide possibilities for textile integration to monitor the muscle activities under large deformation. Our glycerol-plasticized silk-based electrodes possessing superior physiological comfortability may further engage progress in on-skin electronics with sweat tolerance.
Collapse
Affiliation(s)
- Qingsong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Geng Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Yajing Cui
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Yuping Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yehu Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Changxian Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Nan Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuan Cheng
- Monash Suzhou Research Institute, Suzhou 215123, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
25
|
Li S, Lee B. Hydrodynamic and electrical interactions in electrospinning of polymer fibers over a liquid collector. J Appl Polym Sci 2021. [DOI: 10.1002/app.51271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shichen Li
- School of Mechanical Engineering Chonnam National University Gwangju Republic of Korea
| | - Bong‐Kee Lee
- School of Mechanical Engineering Chonnam National University Gwangju Republic of Korea
| |
Collapse
|
26
|
Chen X, Yao Y, Liu S, Hu Q. An integrated strategy for designing and fabricating triple-layer vascular graft with oriented microgrooves to promote endothelialization. J Biomater Appl 2021; 36:297-310. [PMID: 33709831 DOI: 10.1177/08853282211001006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compared with native blood vessels and existing vascular grafts, design and manufacture of vascular grafts with a three-dimensional topological structure is a key to induce cells and tissue growth, which remains an essential issue in both tissue engineering and regenerative medicine. This study sought to develop a novel triple-layer vascular graft (TLVG) with oriented microgrooves to investigate the mechanical property and endothelialization. The TLVGs were composed of electrospun Poly-ε-caprolactone (PCL)/thermoplastic polyurethane (TPU) as the inner layer, albumen/sodium alginate (SA) hydrogel as the middle layer, and electrospun PCL/TPU as the outer layer. In detail, a cylindrical sacrificial template was designed and printed using polyvinyl alcohol (PVA), served as the electrospinning receiving platform to form the oriented microgrooves in the inner layer of TLVGs. The highly elastic albumen/SA hydrogel and PCL/TPU nanofibers were able to simulate the elastin in blood vessels. In addition, the introduction of the albumen/SA hydrogel layer not only solves the leakage problem of a porous vascular graft but also improves the wettability of the scaffolds. The physicochemical properties and biological characteristics of TLVGs were evaluated by tensile testing, Surface wettability test, Fourier transform-infrared spectroscopy (FTIR) measurement, Live-Dead cell staining assay, and CCK-8 assay. Especially, the oriented microgrooves on the inner surface of the TLVGs can promote human umbilical vein endothelial cells (HUVECs) directed growth and migration in favor of endothelialization. All results showed that the fabricated TLVGs with excellent physicochemical properties and biocompatibility has great potential in clinic application.
Collapse
Affiliation(s)
- Xiao Chen
- School of Mechatronics and Automation, Rapid Manufacturing Center, Shanghai University, Shanghai, China
| | - Yuan Yao
- School of Mechatronics and Automation, Rapid Manufacturing Center, Shanghai University, Shanghai, China
| | - Suihong Liu
- School of Mechatronics and Automation, Rapid Manufacturing Center, Shanghai University, Shanghai, China
| | - Qingxi Hu
- School of Mechatronics and Automation, Rapid Manufacturing Center, Shanghai University, Shanghai, China
| |
Collapse
|
27
|
Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly Electroconductive and Mechanically Strong Ti 3C 2T x MXene Fibers Using a Deformable MXene Gel. ACS NANO 2021; 15:3320-3329. [PMID: 33497182 DOI: 10.1021/acsnano.0c10255] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Self-assembly of two-dimensional MXene sheets is used in various fields to create multiscale structures due to their electrical, mechanical, and chemical properties. In principle, MXene nanosheets are assembled by molecular interactions, including hydrogen bonds, electrostatic interactions, and van der Waals forces. This study describes how MXene colloid nanosheets can form self-supporting MXene hydrogels. Three-dimensional network structures of MXene gels are strengthened by reinforced electrostatic interactions between nanosheets. Stable gel networks are beneficial for fabricating highly aligned fibers because MXene gel can endure structural deformation. During wet spinning of highly concentrated MXene colloids in a coagulation bath, MXene sheets can be transformed into perfectly aligned fibers under a mechanical drawing force. Oriented MXene fibers exhibit a 1.5-fold increase in electrical conductivity (12 504 S cm-1) and Young's modulus (122 GPa) compared with other fibers. The oriented MXene fibers are expected to have widespread applications, including electrical wiring and signal transmission.
Collapse
Affiliation(s)
- Hwansoo Shin
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Wonsik Eom
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ki Hyun Lee
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Woojae Jeong
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kang
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
28
|
Benboujja F, Hartnick C. Quantitative evaluation of the human vocal fold extracellular matrix using multiphoton microscopy and optical coherence tomography. Sci Rep 2021; 11:2440. [PMID: 33510352 PMCID: PMC7844040 DOI: 10.1038/s41598-021-82157-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Identifying distinct normal extracellular matrix (ECM) features from pathology is of the upmost clinical importance for laryngeal diagnostics and therapy. Despite remarkable histological contributions, our understanding of the vocal fold (VF) physiology remains murky. The emerging field of non-invasive 3D optical imaging may be well-suited to unravel the complexity of the VF microanatomy. This study focused on characterizing the entire VF ECM in length and depth with optical imaging. A quantitative morphometric evaluation of the human vocal fold lamina propria using two-photon excitation fluorescence (TPEF), second harmonic generation (SHG), and optical coherence tomography (OCT) was investigated. Fibrillar morphological features, such as fiber diameter, orientation, anisotropy, waviness and second-order statistics features were evaluated and compared according to their spatial distribution. The evidence acquired in this study suggests that the VF ECM is not a strict discrete three-layer structure as traditionally described but instead a continuous assembly of different fibrillar arrangement anchored by predominant collagen transitions zones. We demonstrated that the ECM composition is distinct and markedly thinned in the anterior one-third of itself, which may play a role in the development of some laryngeal diseases. We further examined and extracted the relationship between OCT and multiphoton imaging, promoting correspondences that could lead to accurate 3D mapping of the VF architecture in real-time during phonosurgeries. As miniaturization of optical probes is consistently improving, a clinical translation of OCT imaging and multiphoton imaging, with valuable qualitative and quantitative features, may have significant implications for treating voice disorders.
Collapse
Affiliation(s)
- Fouzi Benboujja
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Christopher Hartnick
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|
29
|
Qin J, Feng P, Wang Y, Du X, Song B. Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46719-46732. [PMID: 32945656 DOI: 10.1021/acsami.0c13594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. Owing to its different contraction gradient amplitudes along the thickness direction and the unique physical property of the nanofibrous material, the prepared actuator exhibits excellent shape deformation performance, including superfast response (less than 150 ms), controllable deformation directions, multiple actuation models, multiple dimensional deformation (0D-3D, 1D-3D, 2D-3D, and 3D-3D), large bending curvature (25.3 cm-1), and a repeatability rate of at least 1000. The actuation performance of the nanofibrous actuator is superior to the currently reported actuators. The nanofibers are integrated into layer-by-layer and side-by-side structures to achieve competitive and independent actuation, respectively. The outstanding shape-changing properties of the nanofibrous actuator result in the construction of practical intelligent devices for applications such as amphibious movement, intelligent protection, and cargo transportation. The nanofibrous actuator designed herein exhibits tremendous potential in soft robotics, sensors, and biomedicine.
Collapse
Affiliation(s)
- Juanrong Qin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| | - Pingping Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| | - Yaru Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| | - Xiaolong Du
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| |
Collapse
|
30
|
The Effect of Process Parameters on Alignment of Tubular Electrospun Nanofibers for Tissue Regeneration Purposes. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
|
32
|
Hu Q, Su C, Zeng Z, Zhang H, Feng R, Feng J, Li S. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells. J Biomater Appl 2020; 35:553-566. [DOI: 10.1177/0885328220935090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aligned electrospun fibers used for the fabrication of tubular scaffolds possess the ability to regulate cellular alignment and relevant functional expression, with applications in tissue engineering. Despite significant progress in the fabrication of small-diameter vascular grafts (SDVGs) over the past decade, several challenges remain; one of the most problematic of these is the fabrication of aligned nanofibers for multilayer SDVGs. Furthermore, delamination between each layer is difficult to avoid during the fabrication of multilayer structures. This study introduces a new fabrication method for minute delamination four-layer tubular scaffolds (FLTSs) that consist of an interior layer with highly longitudinal aligned nanofibers, two middle layers composed of electrospun sloped and circumferentially aligned fibers, and an exterior layer comprising random fibers. These FLTSs are used to simulate the structures and functions of native blood vessels. Here, thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/polyethylene glycol (PEG) were electrospun to fabricate FLTSs or tubular scaffolds with completely random fibers layer (RLTSs). The surface wettability of the TPU/PCL/PEG tubular scaffold was tested by water contact angle analysis. In particular, compared with RLTSs, FLTSs showed excellent mechanical properties, with higher circumferential and longitudinal tensile properties. Furthermore, the high viability of the human umbilical vein endothelial cells (HUVECs) on the FLTSs indicated the biocompatibility of the tubular scaffolds comparing to RLTSs. The aligned and random composite structure of the FLTSs are conducive to promoting the growth of HUVECs, and the cell adhesion and proliferation on these scaffolds was found to be superior to that on RLTSs. These results demonstrate that the fabricated FLTSs have the potential for application in vascular tissue regeneration and clinical arterial replacements.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Caiping Su
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zhaoxiang Zeng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Rui Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Jiaxuan Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Shuai Li
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
33
|
Cerrone F, Pozner T, Siddiqui A, Ceppi P, Winner B, Rajendiran M, Babu R, Ibrahim HS, Rodriguez BJ, Winkler J, Murphy KJ, O'Connor KE. Polyhydroxyphenylvalerate/polycaprolactone nanofibers improve the life-span and mechanoresponse of human IPSC-derived cortical neuronal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110832. [DOI: 10.1016/j.msec.2020.110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
34
|
Zarei M, Karbasi S, Sari Aslani F, Zare S, Koohi-Hosseinabad O, Tanideh N. In Vitro and In Vivo Evaluation of Poly (3-hydroxybutyrate)/Carbon Nanotubes Electrospun Scaffolds for Periodontal Ligament Tissue Engineering. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2020; 21:18-30. [PMID: 32158781 PMCID: PMC7036354 DOI: 10.30476/dentjods.2019.77869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/11/2019] [Accepted: 04/13/2019] [Indexed: 01/09/2023]
Abstract
STATEMENT OF THE PROBLEM Tissue engineering was an idea, today it has become a potential therapy for several tissues in dentistry, such as periodontal disease and oral mucosa. PURPOSE In this experimental study, periodontal regeneration is one of the earliest clinical disciplines that has achieved therapeutic application in tissue engineering. The aim of the present study was to prepare electrospun Poly (3-hydroxybutyrate) (PHB)/1% Carbon nanotubes (CNTs) scaffolds for periodontal regeneration. MATERIALS AND METHOD 1% w/v of CNTs was added to the polymer solutions and electrospinned. Physical properties of the scaffolds were evaluated by scanning electron microscopy (SEM) and universal testing machine. Chemical characterization of the scaffolds was also assessed by Fourier-transform infrared spectroscopy (FTIR). Biological properties of the scaffolds were also evaluated in vitro by culturing periodontal ligament stem cells (PDLSCs) on the scaffolds for 10 days and in vivo by Implanting the scaffolds in rat model for 5 weeks. RESULTS Results showed that the scaffolds mimicked fibrous connective tissue of the (PDL). CNTs improved the mechanical properties, similar to 23-55 years old human PDL. In vitro biocompatibility study showed more attachment and proliferation of the PDLSCs for PHB/1%CNTs scaffolds compared to the PHB controls. In vivo study showed that CNTs in the scaffolds caused mild foreign body type giant cell reaction, moderate vascularization, and mild inflammation. CONCLUSION The results showed that the PHB/1%CNTs composite scaffolds might be potentially useful in periodontal regeneration.
Collapse
Affiliation(s)
- Moein Zarei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Karbasi
- Dept. of Biomaterials and Tissue Engineering, School of Advance Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Sari Aslani
- Molecular Dermatology Research Center, Dept. of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nader Tanideh
- Stem Cells Technology Research Center, Dept. of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Wieringa P, Truckenmuller R, Micera S, van Wezel R, Moroni L. Tandem electrospinning for heterogeneous nanofiber patterns. Biofabrication 2020; 12:025010. [DOI: 10.1088/1758-5090/ab6edb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Cavinato C, Badel P, Krasny W, Avril S, Morin C. Experimental Characterization of Adventitial Collagen Fiber Kinematics Using Second-Harmonic Generation Imaging Microscopy: Similarities and Differences Across Arteries, Species and Testing Conditions. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
The effect of aligned electrospun fibers and macromolecular crowding in tenocyte culture. Methods Cell Biol 2020; 157:225-247. [DOI: 10.1016/bs.mcb.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Li S, Lee B. Electrospinning of circumferentially aligned polymer nanofibers floating on rotating water collector. J Appl Polym Sci 2019. [DOI: 10.1002/app.48759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shichen Li
- School of Mechanical EngineeringChonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Republic of Korea
| | - Bong‐Kee Lee
- School of Mechanical EngineeringChonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Republic of Korea
| |
Collapse
|
39
|
Yao T, Chen H, Baker MB, Moroni L. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells. Tissue Eng Part C Methods 2019; 26:11-22. [PMID: 31774033 DOI: 10.1089/ten.tec.2019.0232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascularization is a critical process during bone regeneration. The lack of vascular networks leads to insufficient oxygen and nutrients supply, which compromises the survival of regenerated bone. One strategy for improving the survival and osteogenesis of tissue-engineered bone grafts involves the coculture of endothelial cells (ECs) with mesenchymal stromal cells (MSCs). Moreover, bone regeneration is especially challenging due to its unique structural properties with aligned topographical cues, with which stem cells can interact. Inspired by the aligned fibrillar nanostructures in human cancellous bone, we fabricated polycaprolactone (PCL) electrospun fibers with aligned and random morphology, cocultured human MSCs with human umbilical vein ECs (HUVECs), and finally investigated how these two factors modulate osteogenic differentiation of human MSCs (hMSCs). After optimizing cell ratio, a hMSCs/HUVECs ratio (90:10) was considered to be the best combination for osteogenic differentiation. Coculture results showed that hMSCs and HUVECs adhered to and proliferated well on both scaffolds. The aligned structure of PCL fibers strongly influenced the morphology and orientation of hMSCs and HUVECs; however, fiber alignment was observed to not affect alkaline phosphate (ALP) activity or mineralization of hMSCs compared with random scaffolds. More importantly, cocultured cells on both random and aligned scaffolds had significantly higher ALP activities than monoculture groups, which indicated that coculture with HUVECs provided a larger relative contribution to the osteogenesis of hMSCs compared with fiber alignment. Taken together, we conclude that coculture of hMSCs with ECs is an effective strategy to promote osteogenesis on electrospun scaffolds, and aligned fibers could be introduced to regenerate bone tissues with oriented topography without significant deleterious effects on hMSCs differentiation. This study shows the ability to grow oriented tissue-engineered cocultures with significant increases in osteogenesis over monoculture conditions. Impact statement This work demonstrates an effective method of enhancing osteogenesis of mesenchymal stromal cells on electrospun scaffolds through coculturing with endothelial cells. Furthermore, we provide the optimized conditions for cocultures on electrospun fibrous scaffolds and engineered bone tissues with oriented topography on aligned fibers. This study demonstrates promising findings for growing oriented tissue-engineered cocultures with significant increase in osteogenesis over monoculture conditions.
Collapse
Affiliation(s)
- Tianyu Yao
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Honglin Chen
- Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Matthew B Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
40
|
Syed O, Kim JH, Keskin-Erdogan Z, Day RM, El-Fiqi A, Kim HW, Knowles JC. SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties. Acta Biomater 2019; 99:181-195. [PMID: 31446049 DOI: 10.1016/j.actbio.2019.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Abstract
With donor organs not readily available, the need for a tissue-engineered oesophagus remains high, particularly for congenital childhood conditions such as atresia. Previous attempts have not been successful, and challenges remain. Small intestine submucosa (SIS) is an acellular matrix material with good biological properties; however, as is common with these types of materials, they demonstrate poor mechanical properties. In this work, electrospinning was performed to mechanically reinforce tubular SIS with polylactic-co-glycolic acid (PLGA) nanofibres. It was hypothesised that if attachment could be achieved between the two materials, then this would (i) improve the SIS mechanical properties, (ii) facilitate smooth muscle cell alignment to support directional growth of muscle cells and (iii) allow for the delivery of bioactive molecules (VEGF in this instance). Through a relatively simple multistage process, adhesion between the layers was achieved without chemically altering the SIS. It was also found that altering mandrel rotation speed affected the alignment of the PLGA nanofibres. SIS-PLGA scaffolds performed mechanically better than SIS alone; yield stress improvement was 200% and 400% along the longitudinal and circumferential directions, respectively. Smooth muscle cells cultured on the aligned fibres showed resultant unidirectional alignment. In vivo the SIS-PLGA scaffolds demonstrated limited foreign body reaction judged by the type and proportion of immune cells present and lack of fibrous encapsulation. The scaffolds remained intact at 4 weeks in vivo, and good cellular infiltration was observed. The incorporation of VEGF within SIS-PLGA scaffolds increased the blood vessel density of the surrounding tissues, highlighting the possible stimulation of endothelialisation by angiogenic factor delivery. Overall, the designed SIS-PLGA-VEGF hybrid scaffolds might be used as a potential matrix platform for oesophageal tissue engineering. In addition to this, achieving improved attachment between layers of acellular matrix materials and electrospun fibre layers offers the potential utility in other applications. STATEMENT OF SIGNIFICANCE: Because of its multi-layered nature and complex structure, the oesophagus tissue poses several challenges for successful clinical grafting. Therefore, it is promising to utilise tissue engineering strategies to mimic and form structural compartments for its recovery. In this context, we investigated the use of tubular small intestine submucosa (SIS) reinforced with polylactic-co-glycolic acid (PLGA) nanofibres by using electrospinning and also, amongst other parameters, the integrity of the bilayered structure created. This was carried out to facilitate smooth muscle cell alignment, support directional growth of muscle cells and allow the delivery of bioactive molecules (VEGF in this study). We evaluated this approach by using in vitro and in vivo models to determine the efficacy of this new system.
Collapse
|
41
|
Li J, Gao W. Fabrication and characterization of 3D microtubular collagen scaffolds for peripheral nerve repair. J Biomater Appl 2019; 33:541-552. [PMID: 30326800 DOI: 10.1177/0885328218804338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the structure-function relationship in biomaterial constructs is critical in optimizing biological outcomes. For ensheathed structures such as peripheral nerve, engineering implantable tissue substitutes has been challenging. This is due to a unique geometry of thin-walled microtube arrays composed mostly of basement membrane. In this work, we propose a sacrificial templating method to create Matrigel scaffolds that resemble endogenous peripheral nerve. These paralleled microtube constructs possess high void space and membrane-like walls. Additionally, we investigated the effect of chemical crosslinking in altering the physical, mechanical, and biologic properties of Matrigel. Results show that both glutaraldehyde and genipin increased the modulus and failure stress of Matrigel while also improving degradation resistance. However, glutaraldehyde crosslinking induced some cytotoxicity whereas genipin showed good biocompatibility. PC-12 cells, Schwann cells, and primary chick dorsal root ganglia cultured onto microtube scaffolds demonstrated viability up to 10 days. Strong cellular alignment along the channels was observed in Schwann cells whereas neurite outgrowth in primary chick dorsal root ganglia was also biased along the major axis of the microtubes. This suggests that the microtubes may mediate cell orientation and axon pathfinding. This proof of concept study provides a tunable workflow that may be adapted to other collagen types.
Collapse
Affiliation(s)
- Jianming Li
- Center for Paralysis Research, Purdue University, West Lafayette, IN USA
| | - Wen Gao
- Center for Paralysis Research, Purdue University, West Lafayette, IN USA
| |
Collapse
|
42
|
Pereira Rodrigues IC, Tamborlin L, Rodrigues AA, Jardini AL, Ducati Luchessi A, Maciel Filho R, Najar Lopes ÉS, Pellizzer Gabriel L. Polyurethane fibrous membranes tailored by rotary jet spinning for tissue engineering applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Leticia Tamborlin
- School of Applied SciencesUniversity of Campinas Limeira São Paulo Brazil
- Institute of BiosciencesSão Paulo State University Rio Claro São Paulo Brazil
| | | | - André Luiz Jardini
- National Institute of Biofabrication Campinas São Paulo Brazil
- School of Chemical EngineeringUniversity of Campinas Campinas São Paulo Brazil
| | - Augusto Ducati Luchessi
- School of Applied SciencesUniversity of Campinas Limeira São Paulo Brazil
- Institute of BiosciencesSão Paulo State University Rio Claro São Paulo Brazil
| | - Rubens Maciel Filho
- National Institute of Biofabrication Campinas São Paulo Brazil
- School of Chemical EngineeringUniversity of Campinas Campinas São Paulo Brazil
| | | | | |
Collapse
|
43
|
Sewanan LR, Schwan J, Kluger J, Park J, Jacoby DL, Qyang Y, Campbell SG. Extracellular Matrix From Hypertrophic Myocardium Provokes Impaired Twitch Dynamics in Healthy Cardiomyocytes. JACC Basic Transl Sci 2019; 4:495-505. [PMID: 31468004 PMCID: PMC6712054 DOI: 10.1016/j.jacbts.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
The goal of this study was to examine the effects of diseased extracellular matrix on the behavior of healthy heart cells. Myocardium was harvested from a genetically engineered miniature pig carrying the hypertrophic cardiomyopathy mutation MYH7 R403Q and from a wild-type littermate. Engineered heart tissues were created by seeding healthy human induced pluripotent stem cell–derived cardiomyocytes onto thin strips of decellularized porcine myocardium. Engineered heart tissues made from the extracellular matrix of hypertrophic cardiomyopathy hearts exhibit increased stiffness, impaired relaxation, and increased force development. This suggests that diseased extracellular matrix can provoke abnormal contractile behavior in otherwise healthy cardiomyocytes.
Hypertrophic cardiomyopathy (HCM) is often caused by single sarcomeric gene mutations that affect muscle contraction. Pharmacological correction of mutation effects prevents but does not reverse disease in mouse models. Suspecting that diseased extracellular matrix is to blame, we obtained myocardium from a miniature swine model of HCM, decellularized thin slices of the tissue, and re-seeded them with healthy human induced pluripotent stem cell–derived cardiomyocytes. Compared with cardiomyocytes grown on healthy extracellular matrix, those grown on the diseased matrix exhibited prolonged contractions and poor relaxation. This outcome suggests that extracellular matrix abnormalities must be addressed in therapies targeting established HCM.
Collapse
Key Words
- CM, cardiomyocyte
- ECM, extracellular matrix
- EHT, engineered heart tissue
- H&E, hematoxylin and eosin
- HCM, hypertrophic cardiomyopathy
- MTR, Masson trichrome
- MUT, minipig carrying MYH7 R403Q mutation
- MYH7 mutation
- RT50, time from peak tension to 50% relaxation
- SR, Sirius red
- TTP, time to peak tension
- WT, wild-type
- cDNA, complementary deoxyribonucleic acid
- diastolic dysfunction
- engineered heart tissue
- fibrosis
- hypertrophic cardiomyopathy
- iPSC, induced pluripotent stem cell
- iPSC-derived cardiomyocyte
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jonathan Kluger
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut
| | - Daniel L Jacoby
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, Yale University, New Haven, Connecticut.,Department of Pathology, Yale University, New Haven, Connecticut.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
44
|
Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering. FIBERS 2019. [DOI: 10.3390/fib7070066] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospinning and polymer blending have been the focus of research and the industry for their versatility, scalability, and potential applications across many different fields. In tissue engineering, nanofiber scaffolds composed of natural fibers, synthetic fibers, or a mixture of both have been reported. This review reports recent advances in polymer blended scaffolds for tissue engineering and the fabrication of functional scaffolds by electrospinning. A brief theory of electrospinning and the general setup as well as modifications used are presented. Polymer blends, including blends with natural polymers, synthetic polymers, mixture of natural and synthetic polymers, and nanofiller systems, are discussed in detail and reviewed.
Collapse
|
45
|
Preparation of aligned poly(glycerol sebacate) fibrous membranes for anisotropic tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:30-37. [DOI: 10.1016/j.msec.2019.02.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/03/2019] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
|
46
|
Vajanthri KY, Sidu RK, Poddar S, Singh AK, Mahto SK. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance. Cytoskeleton (Hoboken) 2019; 76:269-285. [DOI: 10.1002/cm.21527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiran Yellappa Vajanthri
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Rakesh Kumar Sidu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Suruchi Poddar
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Ashish Kumar Singh
- School of Biochemical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
- Center for Advanced Biomaterials and Tissue EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| |
Collapse
|
47
|
Chen H, Lui YS, Tan ZW, Lee JYH, Tan NS, Tan LP. Migration and Phenotype Control of Human Dermal Fibroblasts by Electrospun Fibrous Substrates. Adv Healthc Mater 2019; 8:e1801378. [PMID: 30901162 DOI: 10.1002/adhm.201801378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/26/2019] [Indexed: 12/26/2022]
Abstract
Electrospun fibrous matrices, mimicking extracellular matrix (ECM) hierarchical structures, are potential scaffolds for wound healing. To design functional scaffolds, it is important to explore the interactions between scaffold topographic features and cellular responses, especially directional migration and phenotypic changes, which are critical functional aspects during wound healing. Here, accelerated and persistent migration of human dermal fibroblasts (HDFs) is observed on fibers with aligned orientation. Furthermore, aligned fibers can induce fibroblast-to-myofibroblast differentiation of HDFs. During wound healing, the presence of myofibroblasts advances wound repair by rendering contractile force and ECM deposition within the early and middle courses, but its continuous persistence in the later event may not be desired due to the contribution in pathological scarring. To tune the balance, it is noted in this work that the introduction of matricellular protein angiopoietin-like 4 (ANGPTL4) is capable of reversing the phenotypic alteration induced by aligned fibers, in a time-dependent manner. These results indicate fibrous matrices with oriented configuration are functional in mediating directional cell migration and phenotypic change. The discoveries further suggest that tissue-engineered fibrous grafts with precise alignment modulation and ANGPTL4 releasing properties may thus be promising to promote wound repair with minimizing scar formation.
Collapse
Affiliation(s)
- Huizhi Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Interdisciplinary Graduate SchoolNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yuan Siang Lui
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zhen Wei Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Justin Yin Hao Lee
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Nguan Soon Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University 59 Nanyang Drive Singapore 636921 Singapore
| | - Lay Poh Tan
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
48
|
Zhao X, Zhou C, Lvov Y, Liu M. Clay Nanotubes Aligned with Shear Forces for Mesenchymal Stem Cell Patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900357. [PMID: 30957957 DOI: 10.1002/smll.201900357] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Aligned halloysite nanotubes on solid substrates are fabricated by a shearing method with brush assistance. These clay nanotubes are aligned by shear force in strip-like patterns accomplished with drying ordering at elevated temperatures. The nanotubes' orientation is governed by "coffee-ring" formation mechanisms depending on the dispersion concentration, nanotube charge, and speed of thermos-evaporation. Polarized light irradiated through the patterns demonstrates birefringence and confirms the orientation. Scanning electron microscopy and atomic force microscopy show that the nanotubes are aligned along the direction of the wetting lines above 4 wt%, while they are not oriented at lower concentrations. Halloysite concentration, drying temperature, and type of brush fibers affect the pattern ordering. The aligned halloysite systems on glass, tissue culture plates, and polymer films, provide a promising platform for biocell guiding. Human foreskin fibroblasts proliferated well on the aligned clay patterns and the cell orientation agrees with the nanotube direction. Human bone mesenchymal stem cells (HBMSCs) are also cultured on the organized halloysite coating. The clay patterns support HBMSC proliferation with alignment, and such nanostructured substrates promote osteogenesis differentiation without growth factors. This facile method for preparing aligned halloysite patterns on solid substrates is very promising for surface modification in biotissue engineering.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", Moscow, 119049, Russia
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| |
Collapse
|
49
|
Niu Z, Wang X, Meng X, Guo X, Jiang Y, Xu Y, Li Q, Shen C. Controllable fiber orientation and nonlinear elasticity of electrospun nanofibrous small diameter tubular scaffolds for vascular tissue engineering. Biomed Mater 2019; 14:035006. [DOI: 10.1088/1748-605x/ab07f1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Baklaushev VP, Bogush VG, Kalsin VA, Sovetnikov NN, Samoilova EM, Revkova VA, Sidoruk KV, Konoplyannikov MA, Timashev PS, Kotova SL, Yushkov KB, Averyanov AV, Troitskiy AV, Ahlfors JE. Tissue Engineered Neural Constructs Composed of Neural Precursor Cells, Recombinant Spidroin and PRP for Neural Tissue Regeneration. Sci Rep 2019; 9:3161. [PMID: 30816182 PMCID: PMC6395623 DOI: 10.1038/s41598-019-39341-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
We have designed a novel two-component matrix (SPRPix) for the encapsulation of directly reprogrammed human neural precursor cells (drNPC). The matrix is comprised of 1) a solid anisotropic complex scaffold prepared by electrospinning a mixture of recombinant analogues of the spider dragline silk proteins - spidroin 1 (rS1/9) and spidroin 2 (rS2/12) - and polycaprolactone (PCL) (rSS-PCL), and 2) a "liquid matrix" based on platelet-rich plasma (PRP). The combination of PRP and spidroin promoted drNPC proliferation with the formation of neural tissue organoids and dramatically activated neurogenesis. Differentiation of drNPCs generated large numbers of βIII-tubulin and MAP2 positive neurons as well as some GFAP-positive astrocytes, which likely had a neuronal supporting function. Interestingly the SPRPix microfibrils appeared to provide strong guidance cues as the differentiating neurons oriented their processes parallel to them. Implantation of the SPRPix matrix containing human drNPC into the brain and spinal cord of two healthy Rhesus macaque monkeys showed good biocompatibility: no astroglial and microglial reaction was present around the implanted construct. Importantly, the human drNPCs survived for the 3 month study period and differentiated into MAP2 positive neurons. Tissue engineered constructs based on SPRPix exhibits important attributes that warrant further examination in spinal cord injury treatment.
Collapse
Affiliation(s)
- V P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia.
| | - V G Bogush
- Scientific Center "Kurchatov Institute" - Research Institute for Genetics and Selection of Industrial Microorganisms", 1-st Dorozhniy pr., 1, 117545, Moscow, Russia
| | - V A Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - N N Sovetnikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - E M Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - V A Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - K V Sidoruk
- Scientific Center "Kurchatov Institute" - Research Institute for Genetics and Selection of Industrial Microorganisms", 1-st Dorozhniy pr., 1, 117545, Moscow, Russia
| | - M A Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991, Moscow, Russia
| | - P S Timashev
- Federal Research Center "Crystallography and Photonics", Institute of Photonic Technology of the Russian Academy of Sciences, 2 Pionerskaya St., Troitsk, 142190, Moscow, Russia
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991, Moscow, Russia
- N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991, Moscow, Russia
| | - S L Kotova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991, Moscow, Russia
- N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991, Moscow, Russia
| | - K B Yushkov
- National University of Science and Technology "MISIS", 4 Leninsky Prospekt, 119049, Moscow, Russia
| | - A V Averyanov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - A V Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - J-E Ahlfors
- New World Laboratories Inc., Laval, Quebec, Canada.
| |
Collapse
|