1
|
Ferreira SA, Tallia F, Heyraud A, Walker SA, Salzlechner C, Jones JR, Rankin SM. 3D printed hybrid scaffolds do not induce adverse inflammation in mice and direct human BM-MSC chondrogenesis in vitro. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100087. [PMID: 38312434 PMCID: PMC10835132 DOI: 10.1016/j.bbiosy.2024.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Biomaterials that can improve the healing of articular cartilage lesions are needed. To address this unmet need, we developed novel 3D printed silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid scaffolds. Our aim was to carry out essential studies to advance this medical device towards functional validation in pre-clinical trials. First, we show that the chemical composition, microarchitecture and mechanical properties of these scaffolds were not affected by sterilisation with gamma irradiation. To evaluate the systemic and local immunogenic reactivity of the sterilised 3D printed hybrid scaffolds, they were implanted subcutaneously into Balb/c mice. The scaffolds did not trigger a systemic inflammatory response over one week of implantation. The interaction between the host immune system and the implanted scaffold elicited a local physiological reaction with infiltration of mononuclear cells without any signs of a chronic inflammatory response. Then, we investigated how these 3D printed hybrid scaffolds direct chondrogenesis in vitro. Human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs) seeded within the 3D printed hybrid scaffolds were cultured under normoxic or hypoxic conditions, with or without chondrogenic supplements. Chondrogenic differentiation assessed by both gene expression and protein production analyses showed that 3D printed hybrid scaffolds support hBM-MSC chondrogenesis. Articular cartilage-specific extracellular matrix deposition within these scaffolds was enhanced under hypoxic conditions (1.7 or 3.7 fold increase in the median of aggrecan production in basal or chondrogenic differentiation media). Our findings show that 3D printed SiO2/PTHF/PCL-diCOOH hybrid scaffolds have the potential to support the regeneration of cartilage tissue.
Collapse
Affiliation(s)
| | | | - Agathe Heyraud
- Department of Materials, Imperial College London, London, UK
| | - Simone A. Walker
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Julian R. Jones
- Department of Materials, Imperial College London, London, UK
| | - Sara M. Rankin
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Moura D, Pereira AT, Ferreira HP, Barrias CC, Magalhães FD, Bergmeister H, Gonçalves IC. Poly(2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contact applications: from soft inert to strong degradable material. Acta Biomater 2023; 164:253-268. [PMID: 37121371 DOI: 10.1016/j.actbio.2023.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
Degradable biomaterials for blood-contacting devices (BCDs) are associated with weak mechanical properties, high molecular weight of the degradation products and poor hemocompatibility. Herein, the inert and biocompatible FDA approved poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel was turned into a degradable material by incorporation of different amounts of a hydrolytically labile crosslinking agent, pentaerythritol tetrakis(3-mercaptopropionate). In situ addition of 1wt.% of oxidized graphene-based materials (GBMs) with different lateral sizes/thicknesses (single-layer graphene oxide, and oxidized forms of few-layer graphene materials) was performed to enhance the mechanical properties of hydrogels. An ultimate tensile strength increases up to 0.2 MPa (293% higher than degradable pHEMA) was obtained using oxidized few-layer graphene with 5 μm lateral size. Moreover, the incorporation of GBMs has demonstrated to simultaneously tune the degradation time, which ranged from 2 to 4 months. Notably, these features were achieved keeping not only the intrinsic properties of inert pHEMA regarding water uptake, wettability and cytocompatibility (short and long term), but also the non-fouling behavior towards human cells, platelets and bacteria. This new pHEMA hydrogel with degradation and biomechanical performance tuned by GBMs, can therefore be envisioned for different applications in tissue engineering, particularly for BCDs where non-fouling character is essential. STATEMENT OF SIGNIFICANCE: Suitable mechanical properties, low molecular weight of the degradation products and hemocompatibility are key features in degradable blood contacting devices (BCDs), and pave the way for significant improvement in the field. In here, a hydrogel with outstanding anti-adhesiveness (pHEMA) provides hemocompatibility, the presence of a degradable crosslinker provides degradability, and incorporation of graphene oxide reestablishes its strength, allowing tuning of both degradation and mechanical properties. Notably, these hydrogels simultaneously provide suitable water uptake, wettability, cytocompatibility (short and long term), no acute inflammatory response, and non-fouling behavior towards endothelial cells, platelets and bacteria. Such results highlight the potential of these hydrogels to be envisioned for applications in tissue engineered BCDs, namely as small diameter vascular grafts.
Collapse
Affiliation(s)
- Duarte Moura
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Andreia T Pereira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Helena P Ferreira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Cristina C Barrias
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Austria
| | - Inês C Gonçalves
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal.
| |
Collapse
|
3
|
Silva D, Rocha R, Silva CJ, Barroso H, Botelho J, Machado V, Mendes JJ, Oliveira J, Loureiro MV, Marques AC, Alves E, Serro AP. Gamma radiation for sterilization of textile based materials for personal protective equipment. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Rizwan M, Chan SW, Comeau PA, Willett TL, Yim EK. Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels. Biomed Mater 2020; 15:065017. [PMID: 32640427 PMCID: PMC7733554 DOI: 10.1088/1748-605x/aba40c] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gelatin methacryloyl (GelMA) hydrogel scaffolds and GelMA-based bioinks are widely used in tissue engineering and bioprinting due to their ability to support cellular functions and new tissue development. Unfortunately, while terminal sterilization of the GelMA is a critical step for translational tissue engineering applications, it can potentially cause thermal or chemical modifications of GelMA. Thus, understanding the effect of terminal sterilization on GelMA properties is an important, though often overlooked, aspect of material design for translational tissue engineering applications. To this end, we characterized the effects of FDA-approved terminal sterilization methods (autoclaving, ethylene oxide treatment, and gamma (γ)-irradiation) on GelMA prepolymer (bioink) and GelMA hydrogels in terms of the relevant properties for biomedical applications, including mechanical strength, biodegradation rate, cell culture in 2D and 3D, and printability. Autoclaving and ethylene oxide treatment of the GelMA decreased the stiffness of the hydrogel, but the treatments did not modify the biodegradation rate of the hydrogel; meanwhile, γ-irradiation increased the stiffness, reduced the pore size and significantly slowed the biodegradation rate. None of the terminal sterilization methods changed the 2D fibroblast or endothelial cell adhesion and spreading. However, ethylene oxide treatment significantly lowered the fibroblast viability in 3D cell culture. Strikingly, γ-irradiation led to significantly reduced ability of the GelMA prepolymer to undergo sol-gel transition. Furthermore, printability studies showed that the bioinks prepared from γ-irradiated GelMA had significantly reduced printability as compared to the GelMA bioinks prepared from autoclaved or ethylene oxide treated GelMA. These results reveal that the choice of the terminal sterilization method can strongly influence important properties of GelMA bioink and hydrogel. Overall, this study provides further insight into GelMA-based material design with consideration of the effect of terminal sterilization.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Sarah W. Chan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Patricia A. Comeau
- Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Thomas L. Willett
- Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Centre for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Centre for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
5
|
Bai Y, Moeinzadeh S, Kim S, Park Y, Lui E, Tan H, Zhao W, Zhou X, Yang YP. Development of PLGA-PEG-COOH and gelatin-based microparticles dual delivery system and E-beam sterilization effects for controlled release of BMP-2 and IGF-1. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2020; 37:2000180. [PMID: 33384477 PMCID: PMC7771709 DOI: 10.1002/ppsc.202000180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The purpose of this study was to develop a PLGA-PEG-COOH- and gelatin-based microparticles (MPs) dual delivery system for release of BMP-2 and IGF-1. We made and characterized the delivery system based on its morphology, loading capacity, Encapsulation efficiency and release kinetics. Second, we examined the effects of electron beam (EB) sterilization on BMP-2 and IGF-1 loaded MPs and their biological effects. Third, we evaluated the synergistic effect of a controlled dual release of BMP-2 and IGF-1 on osteogenesis of MSCs. Encapsulation efficiency of growth factors into gelatin and PLGA-PEG-COOH MPs are in the range of 64.78% to 76.11%. E-beam sterilized growth factor delivery systems were effective in significantly promoting osteogenesis of MSCs, although E-beam sterilization decreased the bioactivity of growth factors in MPs by approximately 22%. BMP-2 release behavior from gelatin MPs/PEG hydrogel shows a faster release (52.7%) than that of IGF-1 from the PLGA-PEG-COOH MPs/PEG hydrogel (27.3%). The results demonstrate that the gelatin and PLGA-PEG-COOH MPs based delivery system could realize temporal release of therapeutic biomolecules by incorporating different growth factors into distinct microparticles. EB sterilization was an accessible method for sterilizing growth factors loaded carriers, which could pave the way for implementing growth factor delivery in clinical applications.
Collapse
Affiliation(s)
- Yan Bai
- Department of Orthopaedic Surgery, Stanford University, CA, USA
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | | | - Sungwoo Kim
- Department of Orthopaedic Surgery, Stanford University, CA, USA
| | - Youngbum Park
- Department of Orthopaedic Surgery, Stanford University, CA, USA
- Dept. Prosthodontics, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Elaine Lui
- Department of Orthopaedic Surgery, Stanford University, CA, USA
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Hua Tan
- School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weiling Zhao
- School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaobo Zhou
- School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, CA, USA
- Department of Materials Science and Engineering, Stanford University, CA, USA
- Department of Bioengineering, Stanford University, CA, USA
| |
Collapse
|
6
|
Domańska IM, Oledzka E, Sobczak M. Sterilization process of polyester based anticancer-drug delivery systems. Int J Pharm 2020; 587:119663. [PMID: 32702451 DOI: 10.1016/j.ijpharm.2020.119663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023]
Abstract
Recently, growing interest in biodegradable polyesters as drug carriers in the development of innovative anticancer drug delivery systems (DDSs) has been observed. These compounds are thermally unstable, and are therefore, particularly demanding due to the limited number of available sterilization techniques. Furthermore, the DDSs sterilization process is often limited to aseptic filtration. Ensuring aseptic production is very demanding and costly, and it is therefore necessary to work on the application of new sterilization methods. In view of this, this review presents the current state of knowledge regarding the radiation sterilization process of some anticancer drugs as well biodegradable polyester carriers (such as polylactide, polyglycolide, poly(ε-caprolactone), poly(trimethylene carbonate) and co- or terpolymers of lactide, glycolide, ε-caprolactone and trimethylene carbonate). The structural changes in anticancer DDSs under the influence of ionizing radiation and the potential degradation mechanisms of both, polyester carriers and cytostatics during the sterilization process of ionizing radiation as well as their effects on the microstructure and properties of DDSs have been discussed in this paper.
Collapse
Affiliation(s)
- Izabela M Domańska
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., Warsaw 02-097, Poland.
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., Warsaw 02-097, Poland.
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., Warsaw 02-097, Poland.
| |
Collapse
|
7
|
Thivya P, Wilson J. Electron rays irradiated polyaniline anchored over bovine serum albumin for simultaneous detection of epinephrine and uric acid. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Bruyas A, Moeinzadeh S, Kim S, Lowenberg DW, Yang YP. Effect of Electron Beam Sterilization on Three-Dimensional-Printed Polycaprolactone/Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. Tissue Eng Part A 2018; 25:248-256. [PMID: 30234441 DOI: 10.1089/ten.tea.2018.0130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT Providing customized geometries and improved control in physical and biological properties, 3D-printed polycaprolactone/beta-tricalcium phosphate (PCL/β-TCP) composite constructs are of high interest for bone tissue engineering applications. A critical step toward the translation and clinical applications of these types of scaffolds is terminal sterilization, and E-beam irradiation might be the most relevant method because of PCL properties. Through in vitro experimental testing of both physical and biological properties, it is proven in this article that E-beam irradiation is relevant for sterilization of 3D-printed PCL/β-TCP scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Arnaud Bruyas
- 1 Department of Orthopaedic Surgery and of Bioengineering and of Material Science and Engineering, Stanford University, Stanford, California
| | - Seyedsina Moeinzadeh
- 1 Department of Orthopaedic Surgery and of Bioengineering and of Material Science and Engineering, Stanford University, Stanford, California
| | - Sungwoo Kim
- 1 Department of Orthopaedic Surgery and of Bioengineering and of Material Science and Engineering, Stanford University, Stanford, California
| | - David W Lowenberg
- 1 Department of Orthopaedic Surgery and of Bioengineering and of Material Science and Engineering, Stanford University, Stanford, California
| | - Yunzhi Peter Yang
- 2 Department of Orthopaedic Surgery, of Bioengineering and of Material Science and Engineering, Stanford University, Stanford, California
| |
Collapse
|
9
|
Effect of Ionizing Radiation on the Chemical Structure and the Physical Properties of Polycaprolactones of Different Molecular Weight. Polymers (Basel) 2018; 10:polym10040397. [PMID: 30966432 PMCID: PMC6415462 DOI: 10.3390/polym10040397] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/30/2018] [Accepted: 04/01/2018] [Indexed: 12/02/2022] Open
Abstract
Polymers used in the biomedical sector can be exposed to ionizing radiation (X-ray, gamma) in vivo as implants or ex vivo for sterilization purposes (gamma, electron beam). This ionizing radiation can, at certain levels, cause degradation of the polymer. Polycaprolactones (PCL) of different molecular weights were irradiated with electron beam and the changes in their chemical structure and physical properties with the dose were evaluated. Electron beam irradiation produced crosslinking and chain scission in the PCL chain without significant predominance of one mechanism over the other. Minimum dose for gelation decreased with the increase in PCL molecular weight whereas crosslinking efficiency was almost independent of PCL molecular weight. Carboxylic groups, hydroxyl groups and new saturated hydrocarbon species were detected by proton nuclear magnetic resonance (NMR). These species were consistent with a mechanism where chain scission could take place at any bond in the PCL chain with preference in the –COO–CH2– bond. Crosslinking decreased significantly the crystallization temperature of PCL. Tensile properties decreased continuously with the increase in dose. Irradiation with gamma rays produced a faster decay in mechanical properties than electron beam.
Collapse
|
10
|
Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method. Top Curr Chem (Cham) 2016; 375:5. [DOI: 10.1007/s41061-016-0092-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
|
11
|
Effects of electron beam irradiation on thermal and mechanical properties of poly(lactic acid) films. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Dai Z, Ronholm J, Tian Y, Sethi B, Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng 2016; 7:2041731416648810. [PMID: 27247758 PMCID: PMC4874054 DOI: 10.1177/2041731416648810] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
Biodegradable scaffolds have been extensively studied due to their wide applications in biomaterials and tissue engineering. However, infections associated with in vivo use of these scaffolds by different microbiological contaminants remain to be a significant challenge. This review focuses on different sterilization techniques including heat, chemical, irradiation, and other novel sterilization techniques for various biodegradable scaffolds. Comparisons of these techniques, including their sterilization mechanisms, post-sterilization effects, and sterilization efficiencies, are discussed.
Collapse
Affiliation(s)
- Zheng Dai
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer Ronholm
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Yiping Tian
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Benu Sethi
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Lanzalaco S, Campora S, Brucato V, Carfì Pavia F, Di Leonardo ER, Ghersi G, Scialdone O, Galia A. Sterilization of macroscopic poly(l-lactic acid) porous scaffolds with dense carbon dioxide: Investigation of the spatial penetration of the treatment and of its effect on the properties of the matrix. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Shimojo AAM, de Souza Brissac IC, Pina LM, Lambert CS, Santana MHA. Sterilization of auto-crosslinked hyaluronic acid scaffolds structured in microparticles and sponges. Biomed Mater Eng 2015; 26:183-91. [PMID: 26684890 DOI: 10.3233/bme-151558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This work evaluated the effects of UV irradiation, plasma radiation, steam and 70% ethanol treatments on the sterilization and integrity of auto-crosslinked hyaluronic acid (HA-ACP) scaffolds structured in microparticles and sponges aiming in vivo applications for regenerative medicine of bone tissue. The integrity of the microparticles was characterized by rheological behavior, while for the sponges, it was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. The effectiveness of the sterilization treatment was verified by the number of microorganism colonies in the samples after the treatments. In conclusion, plasma radiation was the best treatment for the sponges, while steam sterilization in the autoclave at 126°C (1.5 kgf/cm2) for 5 min was the best treatment for the microparticles.
Collapse
Affiliation(s)
- Andréa Arruda Martins Shimojo
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas-SP, Brazil
| | - Isabela Cambraia de Souza Brissac
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas-SP, Brazil
| | - Lucas Martins Pina
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas-SP, Brazil
| | - Carlos Salles Lambert
- Department of Applied Physics, Institute of Physics "Gleb Wataghin", University of Campinas, Campinas-SP, Brazil
| | - Maria Helena Andrade Santana
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas-SP, Brazil
| |
Collapse
|
15
|
Skodje A, Idris SBM, Sun Y, Bartaula S, Mustafa K, Finne-Wistrand A, Wikesjö UME, Leknes KN. Biodegradable polymer scaffolds loaded with low-dose BMP-2 stimulate periodontal ligament cell differentiation. J Biomed Mater Res A 2014; 103:1991-8. [DOI: 10.1002/jbm.a.35334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/22/2014] [Accepted: 09/10/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Anders Skodje
- Faculty of Medicine and Dentistry; Department of Clinical Dentistry - Periodontics; University of Bergen; Bergen Norway
| | - Shaza Bushra M. Idris
- Faculty of Medicine and Dentistry; Department of Clinical Dentistry - Center for Clinical Dental Research; University of Bergen; Bergen Norway
| | - Yang Sun
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; Stockholm Sweden
| | - Sushma Bartaula
- Faculty of Medicine and Dentistry; Department of Clinical Dentistry - Center for Clinical Dental Research; University of Bergen; Bergen Norway
| | - Kamal Mustafa
- Faculty of Medicine and Dentistry; Department of Clinical Dentistry - Center for Clinical Dental Research; University of Bergen; Bergen Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; Stockholm Sweden
| | - Ulf M. E. Wikesjö
- Laboratory for Applied Periodontal & Craniofacial Regeneration; Georgia Regents University; Augusta GA, USA
| | - Knut N. Leknes
- Faculty of Medicine and Dentistry; Department of Clinical Dentistry - Periodontics; University of Bergen; Bergen Norway
| |
Collapse
|
16
|
Kanelli M, Douka A, Vouyiouka S, Papaspyrides CD, Topakas E, Papaspyridi LM, Christakopoulos P. Production of biodegradable polyesters via enzymatic polymerization and solid state finishing. J Appl Polym Sci 2014. [DOI: 10.1002/app.40820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Kanelli
- Laboratory of Polymer Technology; School of Chemical Engineering, National Technical University of Athens; Zografou Campus 15780 Athens Greece
- Laboratory of Biotechnology; School of Chemical Engineering, National Technical University of Athens; Zografou Campus 15780 Athens Greece
| | - Aliki Douka
- Laboratory of Polymer Technology; School of Chemical Engineering, National Technical University of Athens; Zografou Campus 15780 Athens Greece
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology; School of Chemical Engineering, National Technical University of Athens; Zografou Campus 15780 Athens Greece
| | - Constantine D. Papaspyrides
- Laboratory of Polymer Technology; School of Chemical Engineering, National Technical University of Athens; Zografou Campus 15780 Athens Greece
| | - Evangelos Topakas
- Laboratory of Biotechnology; School of Chemical Engineering, National Technical University of Athens; Zografou Campus 15780 Athens Greece
| | - Lefki-Maria Papaspyridi
- Laboratory of Biotechnology; School of Chemical Engineering, National Technical University of Athens; Zografou Campus 15780 Athens Greece
| | - Paul Christakopoulos
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil; Environmental and Natural Resources Engineering, Luleå University of Technology; SE-971 87 Luleå Sweden
| |
Collapse
|
17
|
Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Acta Biomater 2014; 10:308-17. [PMID: 24013025 DOI: 10.1016/j.actbio.2013.08.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 01/20/2023]
Abstract
The development of porous scaffolds for tissue engineering applications requires the careful choice of properties, as these influence cell adhesion, proliferation and differentiation. Sterilization of scaffolds is a prerequisite for in vitro culture as well as for subsequent in vivo implantation. The variety of methods used to provide sterility is as diverse as the possible effects they can have on the structural and material properties of the three-dimensional (3-D) porous structure, especially in polymeric or proteinous scaffold materials. Silk fibroin (SF) has previously been demonstrated to offer exceptional benefits over conventional synthetic and natural biomaterials in generating scaffolds for tissue replacements. This study sought to determine the effect of sterilization methods, such as autoclaving, heat-, ethylene oxide-, ethanol- or antibiotic-antimycotic treatment, on porous 3-D SF scaffolds. In terms of scaffold morphology, topography, crystallinity and short-term cell viability, the different sterilization methods showed only few effects. Nevertheless, mechanical properties were significantly decreased by a factor of two by all methods except for dry autoclaving, which seemed not to affect mechanical properties compared to the native control group. These data suggest that SF scaffolds are in general highly resistant to various sterilization treatments. Nevertheless, care should be taken if initial mechanical properties are of interest.
Collapse
|
18
|
Ghaffar A, Schoenmakers PJ, van der Wal S. Methods for the Chemical Analysis of Degradable Synthetic Polymeric Biomaterials. Crit Rev Anal Chem 2013; 44:23-40. [DOI: 10.1080/10408347.2013.831729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Ozer AY, Turker S, Colak S, Korkmaz M, Kiliç E, Ozalp M. The effects of gamma irradiation on diclofenac sodium, liposome and niosome ingredients for rheumatoid arthritis. Interv Med Appl Sci 2013; 5:122-30. [PMID: 24265902 DOI: 10.1556/imas.5.2013.3.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022] Open
Abstract
The use of gamma rays for the sterilization of pharmaceutical raw materials and dosage forms is an alternative method for sterilization. However, one of the major problems of the radiosterilization is the production of new radiolytic products during the irradiation process. Therefore, the principal problem in radiosterilization is to determine and to characterize these physical and chemical changes originating from high-energy radiation. Parenteral drug delivery systems were prepared and in vitro characterization, biodistribution and treatment studies were done in our previous studies. Drug delivery systems (liposomes, niosomes, lipogelosomes and niogelosomes) encapsulating diclofenac sodium (DFNa) were prepared for the treatment of rheumatoid arthritis (RA). This work complies information about the studies developed in order to find out if gamma radiation could be applied as a sterilization method to DFNa, and the raw materials as dimyristoyl phosphatidylcholine (DMPC), surfactant I [polyglyceryl-3-cethyl ether (SUR I)], dicethyl phosphate (DCP) and cholesterol (CHOL) that are used to prepare those systems. The raw materials were irradiated with different radiation doses (5, 10, 25 and 50 kGy) and physicochemical changes (organoleptic properties pH, UV and melting point), microbiological evaluation [sterility assurance level (SAL), sterility and pyrogen test] and electron spin resonance (ESR) characteristics were studied at normal (25 °C, 60% relative humidity) and accelerated (40 °C, 75% relative humidity) stability test conditions.
Collapse
|
20
|
Heredia-Guerrero JA, de Lara R, Domínguez E, Heredia A, Benavente J, Benítez JJ. Chemical–physical characterization of isolated plant cuticles subjected to low-dose γ-irradiation. Chem Phys Lipids 2012; 165:803-8. [DOI: 10.1016/j.chemphyslip.2012.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/24/2012] [Accepted: 10/18/2012] [Indexed: 11/30/2022]
|
21
|
Improvement of human skin cell growth by radiation-induced modifications of a Ge/Ch/Ha scaffold. Bioprocess Biosyst Eng 2012; 36:317-24. [PMID: 22802044 DOI: 10.1007/s00449-012-0786-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/01/2012] [Indexed: 12/18/2022]
Abstract
Gelatin-/chitosan-/hyaluronan-based biomaterials are used in tissue engineering as cell scaffolds. Three gamma radiation doses (1, 10 and 25 kGy) were applied to scaffolds for sterilization. Microstructural changes of the irradiated polymers were evaluated by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A dose of 25 kGy produced a rough microstructure with a reduction of the porosity (from 99 to 96 %) and pore size (from 160 to 123 μm). Radiation also modified the glass transition temperature between 31.2 and 42.1 °C (1 and 25 kGy respectively). Human skin cells cultivated on scaffolds irradiated with 10 and 25 kGy proliferated at 48 h and secreted transforming growth factor β3 (TGF-β3). Doses of 0 kGy (non-irradiated) or 1 kGy did not stimulate TGF-β3 secretion or cell proliferation. The specific growth rate and lactate production increased proportionally to radiation dose. The use of an appropriate radiation dose improves the cell scaffold properties of biomaterials.
Collapse
|
22
|
Nugroho RWN, Odelius K, Höglund A, Albertsson AC. Nondestructive covalent "grafting-from" of poly(lactide) particles of different geometries. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2978-2984. [PMID: 22591188 DOI: 10.1021/am3003507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A nondestructive "grafting-from" method has been developed using poly(lactide) (PLA) particles of different shapes as substrates and three hydrophilic monomers as grafts. Irregularly shaped particles and spheres of PLA were covalently surface functionalized using a versatile method of photoinduced free radical polymerization. The preservation of the molecular weight of the PLA particle bulk and the retention of the original particle shape confirmed the negligible effect of the grafting method. The changes in surface composition were determined by FTIR for both spherical and irregular particles and by XPS for the irregular particles showing the versatility of the method. Changes in the surface morphology of the PLA spherical particles were observed using microscopy techniques showing a full surface coverage of one of the grafted monomers. The method is applicable to a wide set of grafting monomers and provides a permanent alteration of the surface chemistry of the PLA particles creating hydrophilic PLA surfaces in addition to creating sites for further modification and drug delivery in the biomedical fields.
Collapse
Affiliation(s)
- Robertus Wahyu N Nugroho
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-10044, Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Guo B, Sun Y, Finne-Wistrand A, Mustafa K, Albertsson AC. Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomater 2012; 8:144-53. [PMID: 21985870 DOI: 10.1016/j.actbio.2011.09.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/08/2023]
Abstract
Electroactive degradable porous tubular scaffolds were fabricated from the blends of polycaprolactone and a hyperbranched degradable conducting copolymer at different feed ratios by a solution-casting/salt-leaching method. Scaning electron microscopy (SEM) and microcomputed tomography tests indicated that these scaffolds had homogeneously distributed interconnected pores on the cross-section and surface. The electrical conductivity of films with the same composition as the scaffolds was between 3.4×10(-6) and 3.1×10(-7) S cm(-1), depending on the ratio of hyperbranched degradable conducting copolymer to polycaprolactone. A hydrophilic surface with a contact angle of water about 30° was achieved by doping the films with (±)-10-camphorsulfonic acid. The mechanical properties of the films were investigated by tensile tests, and the morphology of the films was studied by SEM. The scaffolds were subjected to the WST test (a cell proliferation and cytotoxicity assay using water-soluble tetrazolium salts) with HaCaT keratinocyte cells, and the results show that these scaffolds are non-cytotoxic. These degradable electroactive tubular scaffolds are good candidates for neural tissue engineering application.
Collapse
|
24
|
Idris SB, Bolstad AI, Ibrahim SO, Dånmark S, Finne-Wistrand A, Albertsson AC, Arvidson K, Mustafa K. Global gene expression profile of osteoblast-like cells grown on polyester copolymer scaffolds. Tissue Eng Part A 2011; 17:2817-31. [PMID: 21905880 DOI: 10.1089/ten.tea.2010.0660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the principal goals in tissue engineering is to produce scaffold materials that will guide cells to differentiate and regenerate functional replacement tissue at the site of injury. Poly(l-lactide-co-1,5-dioxepan-2-one) [Poly(LLA-co-DXO)], a potential scaffolding material for bone tissue engineering, has high hydrophilicity. Previous in vitro studies using human osteoblast-like cells (HOBs) demonstrated greater cytocompatibility and enhanced osteogenic differentiation when HOBs were seeded onto Poly(LLA-co-DXO) compared to Poly(l-lactide) [P(LLA)] scaffolds. The aim of the study was to identify the gene expression profiles of HOBs obtained from alveolar bone and grown on Poly(LLA-co-DXO) biodegradable polymer scaffolds compared to P(LLA) one. Illumina HumanWG-6 v3.0 Expression BeadChips were used for the gene expression analysis. Several genes were found as differentially expressed at 24 h and at 21 days. Expression of genes related to cell adhesion, cytoskeleton, antiapoptosis, proliferation, and bone mineralization was influenced by adding the monomer 1,5-dioxepan-2-one to the L-lactide. Genes related to three biological pathways involving Integrin, Notch, and Ras were found to be upregulated. For selected genes, results were confirmed by quantitative reverse transcriptase-polymerase chain reaction. Further, calcium content analysis revealed a significant enhancement of calcium deposition on both tested scaffolds. This observation was confirmed by Von Kossa and Alizarin Red S staining. Findings of this study are relevant to a better understanding of the molecular mechanisms underlying the behavior of HOBs in bone regenerative procedure.
Collapse
Affiliation(s)
- Shaza B Idris
- Department of Clinical Dentistry-Center for Clinical Dental Research, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Siritientong T, Srichana T, Aramwit P. The effect of sterilization methods on the physical properties of silk sericin scaffolds. AAPS PharmSciTech 2011; 12:771-81. [PMID: 21671201 DOI: 10.1208/s12249-011-9641-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 06/02/2011] [Indexed: 11/30/2022] Open
Abstract
Protein-based biomaterials respond differently to sterilization methods. Since protein is a complex structure, heat, or irradiation may result in the loss of its physical or biological properties. Recent investigations have shown that sericin, a degumming silk protein, can be successfully formed into a 3-D scaffolds after mixing with other polymers which can be applied in skin tissue engineering. The objective of this study was to investigate the effectiveness of ethanol, ethylene oxide (EtO) and gamma irradiation on the sterilization of sericin scaffolds. The influence of these sterilization methods on the physical properties such as pore size, scaffold dimensions, swelling and mechanical properties, as well as the amount of sericin released from sericin/polyvinyl alcohol/glycerin scaffolds, were also investigated. Ethanol treatment was ineffective for sericin scaffold sterilization whereas gamma irradiation was the most effective technique for scaffold sterilization. Moreover, ethanol also caused significant changes in pore size resulting from shrinkage of the scaffold. Gamma-irradiated samples exhibited the highest swelling property, but they also lost the greatest amount of weight after immersion for 24 h compared with scaffolds obtained from other sterilization methods. The results of the maximum stress test and Young's modulus showed that gamma-irradiated and ethanol-treated scaffolds are more flexible than the EtO-treated and untreated scaffolds. The amount of sericin released, which was related to its collagen promoting effect, was highest from the gamma-irradiated scaffold. The results of this study indicate that gamma irradiation should have the greatest potential for sterilizing sericin scaffolds for skin tissue engineering.
Collapse
|
26
|
Dånmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, Albertsson AC. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater 2011; 7:2035-46. [PMID: 21316490 DOI: 10.1016/j.actbio.2011.02.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/13/2011] [Accepted: 02/07/2011] [Indexed: 11/29/2022]
Abstract
Degradation characteristics in response to electron beam sterilization of designed and biodegradable aliphatic polyester scaffolds are relevant for clinically successful synthetic graft tissue regeneration. Scaffold degradation in vitro and in vivo were documented and correlated to the macroscopic structure and chemical design of the original polymer. The materials tested were of inherently diverse hydrophobicity and crystallinity: poly(L-lactide) (poly(LLA)) and random copolymers from L-lactide and ε-caprolactone or 1,5-dioxepan-2-one, fabricated into porous and non-porous scaffolds. After sterilization, the samples underwent hydrolysis in vitro for up to a year. In vivo, scaffolds were surgically implanted into rat calvarial defects and retrieved for analysis after 28 and 91days. In vitro, poly(L-lactide-co-1,5-dioxepan-2-one) (poly(LLA-co-DXO)) samples degraded most rapidly during hydrolysis, due to the pronounced chain-shortening reaction caused by the sterilization. This was indicated by the rapid decrease in both mass and molecular weight of poly(LLA-co-DXO). Poly(L-lactide-co-ε-caprolactone) (poly(LLA-co-CL)) samples were also strongly affected by sterilization, but mass loss was more gradual; molecular weight decreased rapidly during hydrolysis. Least affected by sterilization were the poly(LLA) samples, which subsequently showed low mass loss rate and molecular weight decrease during hydrolysis. Mechanical stability varied greatly: poly(LLA-co-CL) withstood mechanical testing for up to 182 days, while poly(LLA) and poly(LLA-co-DXO) samples quickly became too brittle. Poly(LLA-co-DXO) samples unexpectedly degraded more rapidly in vitro than in vivo. After sterilization by electron beam irradiation, the three biodegradable polymers present widely diverse degradation profiles, both in vitro and in vivo. Each exhibits the potential to be tailored to meet diverse clinical tissue engineering requirements.
Collapse
Affiliation(s)
- S Dånmark
- Centre for Clinical Dental Research, Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
27
|
Inkinen S, Hakkarainen M, Albertsson AC, Södergård A. From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules 2011; 12:523-32. [DOI: 10.1021/bm101302t] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Saara Inkinen
- Laboratory of Polymer Technology, Center for Functional Materials (FUNMAT), Åbo Akademi University, Piispankatu 8, 20100 Turku, Finland
| | - Minna Hakkarainen
- The Royal Institute of Technology (KTH), Department of Fibre and Polymer Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Ann-Christine Albertsson
- The Royal Institute of Technology (KTH), Department of Fibre and Polymer Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Anders Södergård
- Laboratory of Polymer Technology, Center for Functional Materials (FUNMAT), Åbo Akademi University, Piispankatu 8, 20100 Turku, Finland
| |
Collapse
|
28
|
Schander K, Arvidson K, Mustafa K, Hellem E, Bolstad AI, Finne-Wistrand A, Albertsson AC. Response of Bone and Periodontal Ligament Cells to Biodegradable Polymer Scaffolds In Vitro. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911510383684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this in vitro study, the initial response of human periodontal ligament (PDL) cells and alveolar osteoblast-like cells (HOB) to three biodegradable polymers with varying pore size and different mechanical properties were evaluated. Scaffolds were synthesized from poly(L-lactide), [poly(LLA)], poly(L-lactide-co-1,5-dioxepan-2-one), [poly(LLA-co-DXO)], poly(L-lactide-co-ε-caprolactone), and [poly(LLA-co-CL)] with pore sizes greater or less than 90 µm by salt leaching. Cells were obtained from patients undergoing routine oral surgery. After 2—4 passages, the cells were grown on scaffolds and in culture plates (control) for 3 h (PDL cells), 3 days (PDL cells and HOB), 10 and 14 days (HOB), respectively. The cellular morphology and spreading were determined by scanning electron microscopy (SEM) and the attachment and proliferation were evaluated by MTT assays. The SEM images revealed heterogeneous cellular morphology and good spreading. Cellular attachment and proliferation were significantly higher on poly(LLA-co-DXO) and poly(LLA-co-CL) than on poly(LLA) scaffolds (p = 0.003) and highest for poly(LLA-co-DXO). Expression of bone formation markers, collagen-I (COL-I), transforming growth factor-β 1 (TGF-β1), and osteocalcin (OCN), was determined by ELISA. The expression of COL-1 was similar for HOB and PDL cells, but significantly higher for pore size >90 µm while the HOB expression of TGFβ 1 and OCN was greater on poly(LLA-co-CL) and poly(LLA-co-DXO) than on poly(LLA) scaffolds.
Collapse
Affiliation(s)
- Kerstin Schander
- Department of Clinical Dentistry - Center for Clinical Dental Research, University of Bergen, Årstadveien 17, Bergen, N-5009, Norway,
| | - Kristina Arvidson
- Department of Clinical Dentistry - Center for Clinical Dental Research, University of Bergen, Årstadveien 17, Bergen, N-5009, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry - Center for Clinical Dental Research, University of Bergen, Årstadveien 17, Bergen, N-5009, Norway,
| | - Endre Hellem
- Department of Oral and Maxillofacial Surgery, Sørlandet Hospital, Arendal, N-484, Norway
| | - Anne Isine Bolstad
- Department of Clinical Dentistry - Periodontics, University of Bergen, Årstadveien 17, Bergen, N-5009, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, S-10044, Sweden
| | - Ann-Christine Albertsson
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, S-10044, Sweden
| |
Collapse
|
29
|
Xue Y, Dånmark S, Xing Z, Arvidson K, Albertsson AC, Hellem S, Finne-Wistrand A, Mustafa K. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: An in vitro study. J Biomed Mater Res A 2010; 95:1244-51. [DOI: 10.1002/jbm.a.32945] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/23/2010] [Accepted: 07/08/2010] [Indexed: 11/09/2022]
|
30
|
Idris SB, Arvidson K, Plikk P, Ibrahim S, Finne-Wistrand A, Albertsson AC, Bolstad AI, Mustafa K. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells. J Biomed Mater Res A 2010; 94:631-9. [PMID: 20205238 DOI: 10.1002/jbm.a.32726] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In tissue engineering, the resorbable aliphatic polyester poly(L-lactide) (PLLA) is used as scaffolds in bone regeneration. Copolymers of poly(L-lactide)-co-(epsilon-caprolactone) [poly(LLA-co-CL)] and poly(L-lactide)-co-(1,5-dioxepan-2-one) [poly(LLA-co-DXO)], with superior mechanical properties to PLLA, have been developed to be used as scaffolds, but the influence on the osteogenic potential is unclear. This in vitro study of test scaffolds of poly(LLA-co-CL) and poly(LLA-co-DXO) using PLLA scaffolds as a control demonstrates the attachment and proliferation of human osteoblast-like cells (HOB) as measured by SEM and a methylthiazol tetrazolium (MTT) colorimetric assay, and the progression of HOB osteogenesis for up to 3 weeks; expressed as synthesis of the osteoblast differentiation markers: collagen type 1 (Col 1), alkaline phosphatase, bone sialoprotein, osteocalcin (OC), osteopontin and runt related gene 2 (Runx2). Surface analysis disclosed excellent surface attachment, spread and penetration of the cells into the pores of the test scaffolds compared to the PLLA. MTT results indicated that test scaffolds enhanced the proliferation of HOBs. Cells grown on the test scaffolds demonstrated higher synthesis of Col 1 and OC and also increased bone markers mRNA expression. Compared to scaffolds of PLLA, the poly(LLA-co-CL) and poly(LLA-co-DXO) scaffolds enhanced attachment, proliferation, and expression of osteogenic markers by HOBs in vitro. Therefore, these scaffolds might be appropriate carriers for bone engineering.
Collapse
Affiliation(s)
- Shaza Bushra Idris
- Department of Clinical Dentistry, Center for Clinical Dental Research, Faculty of Medicine and Dentistry, University of Bergen, Bergen 5009, Norway
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Idris SB, Dånmark S, Finne-Wistrand A, Arvidson K, Albertsson AC, Bolstad AI, Mustafa K. Biocompatibility of Polyester Scaffolds with Fibroblasts and Osteoblast-like Cells for Bone Tissue Engineering. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911510381368] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate the in vitro cytotoxicity and cytocompatibility of the developed aliphatic polyester co-polymer scaffolds: poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-co-1,5-dioxepan-2-one). The scaffolds were produced by solvent casting and particulate leaching, and tested by direct and indirect contact cytotoxicity assays on human osteoblast-like cells and mouse fibroblasts. Cell morphology was documented by light and scanning electron microscopy. Viability was assessed by the MTT, neutral red uptake, lactic dehydrogenase and apoptosis assays. Extraction tests confirmed that the scaffolds did not have a cytotoxic effect on the cells. The cells grew and spread well on the test scaffolds with good cellular attachment and viability. The scaffolds are noncytotoxic and biocompatible with the two cell types and warrant continued investigation as potential constructs for bone tissue engineering.
Collapse
Affiliation(s)
- Shaza B. Idris
- Department of Clinical Dentistry -Center for Clinical Dental Research Faculty of Medicine and Dentistry, University of Bergen N-5009 Bergen, Norway,
| | - Staffan Dånmark
- Department of Clinical Dentistry - Center for Clinical Dental Research Faculty of Medicine and Dentistry, University of Bergen N-5009 Bergen, Norway, Fibre and Polymer Technology, Royal Institute of Technology 100 44 Stockholm, Sweden
| | - Anna Finne-Wistrand
- Fibre and Polymer Technology, Royal Institute of Technology 100 44 Stockholm, Sweden
| | - Kristina Arvidson
- Department of Clinical Dentistry - Center for Clinical Dental Research Faculty of Medicine and Dentistry, University of Bergen N-5009 Bergen, Norway
| | | | - Anne Isine Bolstad
- Department of Clinical Dentistry -Periodontics University of Bergen, N-5009 Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry - Center for Clinical Dental Research Faculty of Medicine and Dentistry, University of Bergen N-5009 Bergen, Norway
| |
Collapse
|
32
|
Di Foggia M, Corda U, Plescia E, Taddei P, Torreggiani A. Effects of sterilisation by high-energy radiation on biomedical poly-(epsilon-caprolactone)/hydroxyapatite composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1789-1797. [PMID: 20224934 DOI: 10.1007/s10856-010-4046-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/01/2010] [Indexed: 05/28/2023]
Abstract
The effects of a high energy sterilization treatment on poly-epsilon-caprolactone/carbonated hydroxyapatite composites have been investigated. Poly-epsilon-caprolactone is a biodegradable polymer used as long-term bioresorbable scaffold for bone tissue engineering and carbonated hydroxyapatite is a bioactive material able to promote bone growth. The composites were gamma-irradiated in air or under nitrogen atmosphere with doses ranging from 10 to 50 kGy (i.e. to a value higher than that recommended for sterilization). The effects of the irradiation treatment were evaluated by vibrational spectroscopy (IR and Raman spectroscopies) coupled to thermal analysis (Differential Scanning Calorimetry and Thermogravimetry) and Electron Paramagnetic Resonance spectroscopy. Irradiation with the doses required for sterilization induced acceptable structural changes and damaging effects: only a very slight fragmentation of the polymeric chains and some defects in the inorganic component were observed. Moreover, the radiation sensitivity of the composites proved almost the same under the two different atmospheres.
Collapse
Affiliation(s)
- Michele Di Foggia
- Department of Biochemistry "G. Moruzzi", University of Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy.
| | | | | | | | | |
Collapse
|
33
|
Phong L, Han ESC, Xiong S, Pan J, Loo SCJ. Properties and hydrolysis of PLGA and PLLA cross-linked with electron beam radiation. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2010.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Dånmark S, Finne-Wistrand A, Wendel M, Arvidson K, Albertsson AC, Mustafa K. Osteogenic Differentiation by Rat Bone Marrow Stromal Cells on Customized Biodegradable Polymer Scaffolds. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911509358812] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this report, poly(L-lactide-co-ε-caprolactone), poly(LLA-co-CL) and poly(L-lactide-co-1,5-dioxepan-2-one), poly(LLA-co-DXO) were evaluated and compared for potential use in bone tissue engineering constructs together with bone marrow stromal cells (BMSC). The copolymers were tailored to reduce the level of harmful tin residuals in the scaffolding. BMSC isolated from Sprague—Dawley rats were seeded onto the scaffolds and cultured in vitro for up to 21 days. Cell spreading and proliferation was analyzed after 72 h by scanning electron microscopy and thiazolyl blue tetrazolium bromide (MTT) conversion assay. Osteogenic differentiation of BMSC was evaluated by real-time PCR after 14 and 21 days of culture. Hydrophilicity was significantly different between poly(LLA-co-CL) and poly(LLA-co-DXO) with the latter being more hydrophilic. After 72 h, both scaffolds supported increased cell proliferation and the mRNA expression of osteocalcin and osteopontin was significantly increased after 21 days. Further investigation of these constructs, with lower levels of tin residuals, are being pursued.
Collapse
Affiliation(s)
- Staffan Dånmark
- Department of Clinical Dentistry - Center of Clinical Dental Research, Faculty of Medicine and Dentistry, University of Bergen, N-5009, Bergen, Norway, Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology 100 44, Stockholm, Sweden
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology 100 44, Stockholm, Sweden
| | - Mikael Wendel
- Centre for Oral Biology, Department of Odontology Karolinska Institutet, 141 04, Huddinge, Sweden
| | - Kristina Arvidson
- Department of Clinical Dentistry - Center of Clinical Dental Research, Faculty of Medicine and Dentistry, University of Bergen, N-5009, Bergen, Norway
| | - Ann-Christine Albertsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology 100 44, Stockholm, Sweden
| | - Kamal Mustafa
- Department of Clinical Dentistry - Center of Clinical Dental Research, Faculty of Medicine and Dentistry, University of Bergen, N-5009, Bergen, Norway,
| |
Collapse
|
35
|
Tan HY, Widjaja E, Boey F, Loo SCJ. Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA. J Biomed Mater Res B Appl Biomater 2009; 91:433-40. [DOI: 10.1002/jbm.b.31419] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Smith S, Griffiths S, MacGregor S, Beveridge J, Anderson J, van der Walle C, Grant MH. Pulsed electric field as a potential new method for microbial inactivation in scaffold materials for tissue engineering: The effect on collagen as a scaffold. J Biomed Mater Res A 2009; 90:844-51. [DOI: 10.1002/jbm.a.32150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
38
|
Li W, Qiao X, Sun K, Chen X. Effect of electron beam irradiation on the silk fibroin fiber/poly(ε-caprolactone) composite. J Appl Polym Sci 2009. [DOI: 10.1002/app.29869] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Plikk P, Målberg S, Albertsson AC. Design of Resorbable Porous Tubular Copolyester Scaffolds for Use in Nerve Regeneration. Biomacromolecules 2009; 10:1259-64. [DOI: 10.1021/bm900093r] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Plikk
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Sofia Målberg
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Ann-Christine Albertsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| |
Collapse
|
40
|
Stjerndahl A, Finne-Wistrand A, Albertsson AC, Bäckesjö CM, Lindgren U. Minimization of residual tin in the controlled Sn(II)octoate-catalyzed polymerization of ε-caprolactone. J Biomed Mater Res A 2008; 87:1086-91. [DOI: 10.1002/jbm.a.31733] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Biomaterials 2008; 29:129-40. [DOI: 10.1016/j.biomaterials.2007.08.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/27/2007] [Indexed: 11/21/2022]
|
42
|
Changes of porous poly(ε-caprolactone) bone grafts resulted from e-beam sterilization process. Radiat Phys Chem Oxf Engl 1993 2007. [DOI: 10.1016/j.radphyschem.2007.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|