1
|
Qian E, Kang Y. Branched Channels in Porous β-Tricalcium Phosphate Scaffold Promote Vascularization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19081-19093. [PMID: 38442339 DOI: 10.1021/acsami.3c17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Rapid and efficient vascularization is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, branched channels were created in the porous β-TCP scaffold by using 3D printing and a template-casting method to facilitate the instant flow of blood supply. Human bone mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were seeded in the channeled porous scaffolds and characterized through a double-stranded DNA (dsDNA) assay, alkaline phosphatase (ALP) assay, and cell migration. Channeled porous β-TCP scaffolds were then implanted in the subcutaneous pockets of mice. Histological staining and immunohistochemical staining on vascularization and bone-related markers were carried out on the embedded paraffin sections. Results from in vitro experiments showed that branched channels significantly promoted HUVECs' infiltration, migration, proliferation, and angiogenesis, and also promoted the proliferation and osteogenesis differentiation of hBMSCs. In vivo implantation results showed that, in the early stage after implantation, cells significantly migrated into branched channeled scaffolds. More matured blood vessels formed in the branched channeled scaffolds compared to that in nonchanneled and straight channeled scaffolds. Beside promoting vascularization, the branched channels also stimulated the infiltration of bone-related cells into the scaffolds. These results suggested that the geometric design of branched channels in the porous β-TCP scaffold promoted rapid vascularization and potentially stimulated bone cells recruitment.
Collapse
Affiliation(s)
- Enze Qian
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Faculty of Integrative Biology Ph.D. Program, Department of Biological Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
2
|
Peniche H, Razonado IA, Alcouffe P, Sudre G, Peniche C, Osorio-Madrazo A, David L. Wet-Spun Chitosan-Sodium Caseinate Fibers for Biomedicine: From Spinning Process to Physical Properties. Int J Mol Sci 2024; 25:1768. [PMID: 38339046 PMCID: PMC10855522 DOI: 10.3390/ijms25031768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
We designed and characterized chitosan-caseinate fibers processed through wet spinning for biomedical applications such as drug delivery from knitted medical devices. Sodium caseinate was either incorporated directly into the chitosan dope or allowed to diffuse into the chitosan hydrogel from a coagulation bath containing sodium caseinate and sodium hydroxide (NaOH). The latter route, where caseinate was incorporated in the neutralization bath, produced fibers with better mechanical properties for textile applications than those formed by the chitosan-caseinate mixed collodion route. The latter processing method consists of enriching a pre-formed chitosan hydrogel with caseinate, preserving the structure of the semicrystalline hydrogel without drastically affecting interactions involved in the chitosan self-assembly. Thus, dried fibers, after coagulation in a NaOH/sodium caseinate aqueous bath, exhibited preserved ultimate mechanical properties. The crystallinity ratio of chitosan was not significantly impacted by the presence of caseinate. However, when caseinate was incorporated into the chitosan dope, chitosan-caseinate fibers exhibited lower ultimate mechanical properties, possibly due to a lower entanglement density in the amorphous phase of the chitosan matrix. A standpoint is to optimize the chitosan-caseinate composition ratio and processing route to find a good compromise between the preservation of fiber mechanical properties and appropriate fiber composition for potential application in drug release.
Collapse
Affiliation(s)
- Hazel Peniche
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
- Biomaterials Center, University of Havana, Havana 10600, Cuba
| | - Ivy Ann Razonado
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Pierre Alcouffe
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Carlos Peniche
- Faculty of Chemistry, University of Havana, Havana 10600, Cuba;
| | - Anayancy Osorio-Madrazo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Jena Center for Soft Matter (JCSM), and Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University of Jena, 07743 Jena, Germany
- Laboratory of Organ Printing, University of Bayreuth, 95447 Bayreuth, Germany
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| |
Collapse
|
3
|
Liu C, Tong YW. Interfacial Polyelectrolyte Complexation-Inspired Bioprinting of Vascular Constructs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20712-20725. [PMID: 37071430 DOI: 10.1021/acsami.3c01199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bioprinting is a precise layer-by-layer manufacturing technology utilizing biomaterials, cells, and sometimes growth factors for the fabrication of customized three-dimensional (3D) biological constructs. In recent years, it has gained considerable interest in various biomedical studies. However, the translational application of bioprinting is currently impeded by the lack in efficient techniques for blood vessel fabrications. In this report, by systematically studying the previously reported phenomenon, interfacial polyelectrolyte complexation, an efficient blood vessel bioprinting technique based on the phenomenon, was proposed and subsequently investigated. In this technique, anionic hyaluronate and cationic lysine-based peptide amphiphiles were placed concentrically to bioprint with human umbilical endothelial cells for the fabrication of biological tubular constructs. These constructs demonstrated clear vascular features, which made them highly resemble blood vessels. In addition, to optimize the bioactivity of the printed constructs, this report also, for the first time, studied peptide sequencing's effect on the biocompatibility of the polyelectrolyte-peptide amphiphile complex. All these studies conducted in the report are highly relevant and interesting for research in vascular structure fabrication, which will eventually be beneficial for translational application development of bioprinting.
Collapse
Affiliation(s)
- Chixuan Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
4
|
Lee SH, Kang MS, Jeon S, Jo HJ, Hong SW, Kim B, Han DW. 3D bioprinting of human mesenchymal stem cells-laden hydrogels incorporating MXene for spontaneous osteodifferentiation. Heliyon 2023; 9:e14490. [PMID: 36994406 PMCID: PMC10040522 DOI: 10.1016/j.heliyon.2023.e14490] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Contemporary advances in three-dimensional (3D) bioprinting technologies have enabled the fabrication of tailored live 3D tissue mimetics. Furthermore, the development of advanced bioink materials has been highlighted to accurately reproduce the composition of a native extracellular matrix and mimic the intrinsic properties of laden cells. Recent research has shown that MXene is one of promising nanobiomaterials with osteogenic activity for bone grafts and scaffolds due to its unique atomic structure of three titanium layers between two carbon layers. In this study, the MXene-incorporated gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) (i.e., GelMA/HAMA-MXene) bioinks were prepared to explore if they have the potential to enable the spontaneous osteodifferentiation of human mesenchymal stem cells (hMSCs) when the hMSCs-laden GelMA/HAMA-MXene bioinks were 3D printed. The physicochemical and rheological characteristics of the GelMA/HAMA-MXene hydrogels were proven to be unprecedentedly favorable supportive matrices suited for the growth and survival of hMSCs. Furthermore, hMSCs were shown to spontaneously differentiate into osteoblasts within GelMA-HAMA/MXene composites to provide favorable microenvironments for osteogenesis. Therefore, our results suggest that the remarkable biofunctional advantages of the MXene-incorporated GelMA/HAMA bioink can be utilized in a wide range of strategies for the development of effective scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute / Innovation Research & Support Center for Dental Science, Seoul 8 National University Dental Hospital, Seoul, 03080, Republic of Korea
- Corresponding author.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
- Corresponding author. Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Kang MS, Kwon M, Lee SH, Kim WH, Lee GW, Jo HJ, Kim B, Yang SY, Kim KS, Han DW. 3D printing of skin equivalents with hair follicle structures and epidermal-papillary-dermal layers using gelatin/hyaluronic acid hydrogels. Chem Asian J 2022; 17:e202200620. [PMID: 35866189 DOI: 10.1002/asia.202200620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Indexed: 11/10/2022]
Abstract
Recent advances in three-dimensional (3D) bioprinting technologies enabled the fabrication of sophisticated live 3D tissue analogs. Although various hydrogel-based bioink has been reported, the development of advanced bioink materials that can reproduce the composition of native extracellular matrix (ECM) accurately and mimic the intrinsic property of laden cells is still challenging. In this work, 3D printed skin equivalents incorporating hair follicle structures and epidermal-papillary-dermal layers are fabricated with gelatin methacryloyl (GelMA)/hyaluronic acid (HA) MA (HAMA) hydrogel (GelMA/HAMA) bioink. The composition of collagen and glycosaminoglycan (GAG) of native skin was recapitulated by adjusting the combination of GelMA and HAMA. The GelMA/HAMA bioink was proven to have excellent viscoelastic and physicochemical properties, 3D printability, cytocompatibility, and functionality to maintain the hair inductive potency and facilitated spontaneous hair pore development. Overall, we suggest that the GelMA/HAMA hydrogels can be promising candidates as bioinks for the 3D printing of skin equivalents with epidermal-papillary-dermal multi-layers and hair follicle structures, and they might serve as a useful model in skin tissue engineering and regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Pusan National University, Cogno-Mechatronics Engineering, KOREA, REPUBLIC OF
| | - Mina Kwon
- Pusan National University, School of Chemical Engineering, KOREA, REPUBLIC OF
| | - Seok Hyun Lee
- Pusan National University, Cogno-Mechatronics Engineering, KOREA, REPUBLIC OF
| | - Won-Hyeon Kim
- Seoul National University Dental Hospital, Dental Life Science Research Institute, KOREA, REPUBLIC OF
| | - Gyeong Won Lee
- Pusan National University - Milyang Campus, Biomaterials Science, KOREA, REPUBLIC OF
| | - Hyo Jung Jo
- Pusan National University, Cogno-Mechatronics Engineering, KOREA, REPUBLIC OF
| | - Bongju Kim
- Seoul National University Dental Hospital, Dental Life Science Research Institute, KOREA, REPUBLIC OF
| | - Seung Yun Yang
- Pusan National University - Milyang Campus, Biomaterials Science, KOREA, REPUBLIC OF
| | - Ki Su Kim
- Pusan National University, School of Chemical Engineering, KOREA, REPUBLIC OF
| | - Dong-Wook Han
- Pusan National University, Cogno-Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea, 46241, Busan, KOREA, REPUBLIC OF
| |
Collapse
|
6
|
Fabrication of alginate/chitosan complex fibers via diffusion controlled in-situ polyelectrolyte complexation. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, Reis RL, González-Fernández Á, Oliveira JM. Methacrylated Gellan Gum/Poly-l-lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomater Sci Eng 2021; 7:4898-4913. [PMID: 34533303 DOI: 10.1021/acsbiomaterials.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell encapsulation strategies using hydrogel beads have been considered as an alternative to immunosuppression in cell-based therapies. They rely on layer-by-layer (LbL) deposition of polymers to tune beads' permeability, creating a physical barrier to the host immune system. However, the LbL approach can also create diffusion barriers, hampering the flow of essential nutrients and therapeutic cell products. In this work, the polyelectrolyte complex (PEC) methodology was used to circumvent the drawbacks of the LbL strategy by inducing hydrogel bead formation through the interaction of anionic methacrylated gellan gum (GG-MA) with cationic poly-l-lysine (PLL). The interfacial complexation between both polymers resulted in beads with a cell-friendly GG-MA hydrogel core surrounded by a PEC semipermeable membrane. The beads showed great in vitro stability over time, a semi-permeable behavior, and supported human adipose-derived stem cell encapsulation. Additionally, and regarding immune recognition, the in vitro and in vivo studies pointed out that the hydrogel beads behave as an immunocompatible system. Overall, the engineered beads showed great potential for hydrogel-mediated cell therapies, when immunoprotection is required, as when treating different metabolic disorders.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Elina Garet
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| |
Collapse
|
8
|
Kang MS, Kang JI, Le Thi P, Park KM, Hong SW, Choi YS, Han DW, Park KD. Three-Dimensional Printable Gelatin Hydrogels Incorporating Graphene Oxide to Enable Spontaneous Myogenic Differentiation. ACS Macro Lett 2021; 10:426-432. [PMID: 35549236 DOI: 10.1021/acsmacrolett.0c00845] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) bioprinting has attracted considerable attention for producing 3D engineered cellular microenvironments that replicate complex and sophisticated native extracellular matrices (ECM) as well as the spatiotemporal gradients of numerous physicochemical and biological cues. Although various hydrogel-based bioinks have been reported, the development of advanced bioink materials that can reproduce the complexity of ECM accurately and mimic the intrinsic property of laden cells is still a challenge. This paper reports 3D printable bioinks composed of phenol-rich gelatin (GHPA) and graphene oxide (GO) as a component for a myogenesis-inducing material, which can form a hydrogel network in situ by a dual enzyme-mediated cross-linking reaction. The in situ curable GO/GHPA hydrogel can be utilized successfully as 3D-printable bioinks to provide suitable cellular microenvironments with facilitated myogenic differentiation of C2C12 skeletal myoblasts. Overall, we suggest that functional bioinks may be useful in muscle tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Western Australia 6009, Australia
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
9
|
Patel A, Sant V, Velankar S, Dutta M, Balasubramanian V, Sane P, Agrawal V, Wilson J, Rohan LC, Sant S. Self-assembly of multiscale anisotropic hydrogels through interfacial polyionic complexation. J Biomed Mater Res A 2020; 108:2504-2518. [PMID: 32418322 DOI: 10.1002/jbm.a.37001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022]
Abstract
Polysaccharides are explored for various tissue engineering applications due to their inherent cytocompatibility and ability to form bulk hydrogels. However, bulk hydrogels offer poor control over their microarchitecture and multiscale hierarchy, parameters important to recreate extracellular matrix-mimetic microenvironment. Here, we developed a versatile platform technology to self-assemble oppositely charged polysaccharides into multiscale fibrous hydrogels with controlled anisotropic microarchitecture. We employed polyionic complexation through microfluidic flow of positively charged polysaccharide, chitosan, along with one of the three negatively charged polysaccharides: alginate, gellan gum, and kappa carrageenan. These hydrogels were composed of microscale fibers, which in turn were made of submicron fibrils confirming multiscale hierarchy. Fibrous hydrogels showed strong tensile mechanical properties, which were further modulated by encapsulation of shape-specific antioxidant cerium oxide nanoparticles (CNPs). Specifically, hydrogels with chitosan and gellan gum showed more than eight times higher tensile strength compared to the other two pairs. Incorporation of sphere-shaped cerium oxide nanoparticles in chitosan and gellan gum further reinforced fibrous hydrogels and increased their tensile strength by 40%. Altogether, our automated hydrogel fabrication platform allows fabrication of bioinspired biomaterials with scope for one-step encapsulation of small molecules and nanoparticles without chemical modification or use of chemical crosslinkers.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sachin Velankar
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Mechanical Engineering & Materials Science , Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Mayuri Dutta
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vibishan Balasubramanian
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Piyusha Sane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vishi Agrawal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamir Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa C Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Pohan G, Mattiassi S, Yao Y, Zaw AM, Anderson DE, Cutiongco MF, Hinds MT, Yim EK. Effect of Ethylene Oxide Sterilization on Polyvinyl Alcohol Hydrogel Compared with Gamma Radiation. Tissue Eng Part A 2020; 26:1077-1090. [PMID: 32264787 PMCID: PMC7580577 DOI: 10.1089/ten.tea.2020.0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
This study investigated the effects of terminal sterilization of polyvinyl alcohol (PVA) biomaterials using clinically translatable techniques, specifically ethylene oxide (EtO) and gamma (γ) irradiation. While a few studies have reported the possibility of sterilizing PVA with γ-radiation, the use of EtO sterilization of PVA requires additional study. PVA solutions were chemically crosslinked with trisodium trimetaphosphate and sodium hydroxide. The three experimental groups included untreated control, EtO, and γ-irradiation, which were tested for the degree of swelling and water content, and mechanical properties such as radial compliance, longitudinal tensile, minimum bend radius, burst pressure, and suture retention strength. In addition, samples were characterized with scanning electron microscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and water contact angle measurements. Cell attachment was assessed using the endothelial cell line EA.hy926, and the sterilized PVA cytotoxicity was studied with a live/dead stain. Platelet and fibrin accumulation was measured using an ex vivo shunt baboon model. Finally, the immune responses of PVA implants were analyzed after a 21-day subcutaneous implantation in rats and a 30-day implantation in baboon. EtO sterilization reduced the PVA graft wall thickness, its degree of swelling, and water content compared with both γ-irradiated and untreated PVA. Moreover, EtO sterilization significantly reduced the radial compliance and increased Young's modulus. EtO did not change PVA hydrophilicity, while γ-irradiation increased the water contact angle of the PVA. Consequently, endothelial cell attachment on the EtO-sterilized PVA showed similar results to the untreated PVA, while cell attachment significantly improved on the γ-irradiated PVA. When exposing the PVA grafts to circulating whole blood, fibrin accumulation of EtO-sterilized PVA was found to be significantly lower than γ-irradiated PVA. The immune responses of γ-irradiated PVA, EtO-treated PVA, and untreated PVA were compared. Implanted EtO-treated PVA showed the least MAC387 reaction. The terminal sterilization methods in this study changed PVA hydrogel properties; nevertheless, based on the characterizations performed, both sterilization methods were suitable for sterilizing PVA. We concluded that EtO can be used as an alternative method to sterilize PVA hydrogel material. Impact statement Polyvinyl alcohol (PVA) hydrogels have been used for a variety of tissue replacements, including neural, cardiac, meniscal, cartilage, muscle, pancreatic, and ocular applications. In addition, PVA can be made into a tubular shape and used as a small-diameter vascular graft. Ethylene oxide (EtO) is one of the Food and Drug Administration-approved methods for sterilization, but its effect on PVA has not been studied extensively. The outcome of this study provides the effects of EtO and γ-irradiation of PVA grafts on both the material properties and the in vivo responses, particularly for vascular applications. Knowledge of these effects may ultimately improve the success rate of PVA vascular grafts.
Collapse
Affiliation(s)
- Grace Pohan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Aung Moe Zaw
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Deirdre E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Marie F.A. Cutiongco
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| |
Collapse
|
11
|
Pressure Stimuli Improve the Proliferation of Wharton's Jelly-Derived Mesenchymal Stem Cells under Hypoxic Culture Conditions. Int J Mol Sci 2020; 21:ijms21197092. [PMID: 32993025 PMCID: PMC7583852 DOI: 10.3390/ijms21197092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are safe, and they have good therapeutic efficacy through their paracrine action. However, long-term culture to produce sufficient MSCs for clinical use can result in side-effects, such as an inevitable senescence and the reduction of the therapeutic efficacy of the MSCs. In order to overcome this, the primary culture conditions of the MSCs can be modified to simulate the stem cells’ niche environment, resulting in accelerated proliferation, the achievement of the target production yield at earlier passages, and the improvement of the therapeutic efficacy. We exposed Wharton’s jelly-derived MSCs (WJ-MSCs) to pressure stimuli during the primary culture step. In order to evaluate the proliferation, stemness, and therapeutic efficacy of WJ-MSCs, image, genetic, and Western blot analyses were carried out. Compared with standard incubation culture conditions, the cell proliferation was significantly improved when the WJ-MSCs were exposed to pressure stimuli. However, the therapeutic efficacy (the promotion of cell proliferation and anti-apoptotic effects) and the stemness of the WJ-MSCs was maintained, regardless of the culture conditions. Exposure to pressure stimuli is a simple and efficient way to improve WJ-MSC proliferation without causing changes in stemness and therapeutic efficacy. In this way, clinical-grade WJ-MSCs can be produced rapidly and used for therapeutic applications.
Collapse
|
12
|
Bai M, Cai L, Li X, Ye L, Xie J. Stiffness and topography of biomaterials dictate cell-matrix interaction in musculoskeletal cells at the bio-interface: A concise progress review. J Biomed Mater Res B Appl Biomater 2020; 108:2426-2440. [PMID: 32027091 DOI: 10.1002/jbm.b.34575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 02/05/2023]
Abstract
Mutually interacted musculoskeletal tissues work together within the physiological environment full of varieties of external stimulus. Consistent with the locomotive function of the tissues, musculoskeletal cells are remarkably mechanosensitive to the physical cues. Signals like extracellular matrix (ECM) stiffness, topography, and geometry can be sensed and transduced into intracellular signaling cascades to trigger a series of cell responses, including cell adhesion, cell phenotype maintenance, cytoskeletal reconstruction, and stem cell differentiation (Du et al., 2011; Murphy et al., 2014; Lv et al., 2015; Kim et al., 2016; Kumar et al., 2017). With the development of tissue engineering and regenerative medicine, the potent effects of ECM physical properties on cell behaviors at the cell-matrix interface are drawing much attention. To mimic the interaction between cell and its ECM physical properties, developing advanced biomaterials with desired characteristics which could achieve the biointerface between cells and the surrounded matrix close to the physiological conditions becomes a great hotspot. In this review, based on the current publications in the field of biointerfaces, we systematically summarized the significant roles of stiffness and topography on musculoskeletal cell behaviors. We hope to shed light on the importance of physical cues in musculoskeletal tissue engineering and provide up to date strategies towards the natural or artificial replication of physiological microenvironment.
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Zhao H, Xu J, Peng K, Fu X, Zhang E, Lv F, Liu L, Zhang N, Wang Y, Wang S, Gu Q. Supramolecular Nanofibers for Encapsulation and In Situ Differentiation of Neural Stem Cells. Adv Healthc Mater 2020; 9:e1901295. [PMID: 31746152 DOI: 10.1002/adhm.201901295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Design and fabrication of fibrous materials by natural biological macromolecules in light of biomimetics to achieve spatially cellular arrangements are highly desirable in tissue engineering. Herein, chromatin-inspired supramolecular fibers formed through the interfacial polyelectrolyte complexation (IPC) process by DNA and histone proteins for encapsulation and in situ differentiation of murine brain-derived neural stem cells (NSCs) are reported. High cell viability of encapsulated NSCs demonstrates the excellent biocompatibility of fibers as 3D scaffolds. Moreover, a cell-adhesive peptide (K6 -PEG-RGD) is introduced into fibers by electrostatic interaction to improve NSCs encapsulation efficiency and prevent them from migrating out of fibers for enhanced spatially cellular arrangement. In situ differentiation of NSCs into oligodendrocytes within fibers is revealed by immunocytochemical staining assay. Due to the robust abilities to encapsulate and in situ differentiate NSCs, these chromatin-inspired supramolecular fibers show great potential in neural system-related tissue.
Collapse
Affiliation(s)
- Hao Zhao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jingwen Xu
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences Beijing 100101 P. R. China
| | - Ke Peng
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Na Zhang
- Key Laboratory of Colloid and Interface ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences Beijing 100101 P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences Beijing 100101 P. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences Beijing 100101 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
14
|
Zhang B, Kasoju N, Li Q, Soliman E, Yang A, Cui Z, Ma J, Wang H, Ye H. Culture surfaces induce hypoxia-regulated genes in human mesenchymal stromal cells. ACTA ACUST UNITED AC 2019; 14:035012. [PMID: 30849767 DOI: 10.1088/1748-605x/ab0e61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Culturing human Mesenchymal stromal cells (hMSCs) in vitro in hypoxic conditions resulted in reduced senescence, enhanced pluripotency and altered proliferation rate. It has been known that in vitro hypoxia affects expression of cell surface proteins. However, the impact of culture surfaces on the hypoxia-regulated genes (HRG) have not yet been reported. This study utilized Next-Generation sequencing to analyse the changes in the gene expression levels of HRG for hMSCs cultured on different culture surfaces. The samples, which were cultured on four different synthesized surfaces (treatments) and tissue culture plate (control), resulted in a difference in growth rate. The sequencing results revealed that the transcription of a number of key genes involved in regulating hypoxic functions were significantly altered, including HIF2A, a marker for potency, differentiation, and various cellular functions. Significant alternations in the expression levels of previously reported oxygen-sensitive surface proteins were detected in this study, some of which closely correlate with the expression levels of HIF2A. Our analysis of the hMSCs transcriptome and HRG mapped out a list of genes encoding surface proteins which may directly regulate or be regulated by HIF2A. The findings from this study showed that culture surfaces have an impact on regulating the expression profile of HRG. Therefore, novel culture surfaces may be designed to selectively activate HIF2A and other HRG and pathways under in vitro normoxia. The understanding of the crosstalk between the regulating genes of hypoxia and culture surfaces may be utilized to strengthen desired hypoxic functions.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom. Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pendyala G, Bithi SS, Vanapalli SA, Fernandes GE. Continuous and high throughput production of alginate fibers using co‐flow in a millifluidic T‐junction. J Appl Polym Sci 2019. [DOI: 10.1002/app.47120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- G. Pendyala
- Department of Chemical EngineeringTexas Tech University Lubbock Texas 79409‐3121
| | - S. S. Bithi
- Department of Chemical EngineeringTexas Tech University Lubbock Texas 79409‐3121
| | - S. A. Vanapalli
- Department of Chemical EngineeringTexas Tech University Lubbock Texas 79409‐3121
| | - G. E. Fernandes
- Department of Chemical EngineeringTexas Tech University Lubbock Texas 79409‐3121
| |
Collapse
|
16
|
Liu S, Moore AC, Zerdoum AB, Zhang H, Scinto SL, Zhang H, Gong L, Burris DL, Rajasekaran AK, Fox JM, Jia X. Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials 2018; 180:24-35. [PMID: 30014964 PMCID: PMC6091885 DOI: 10.1016/j.biomaterials.2018.06.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
Fibrous proteins found in the natural extracellular matrix (ECM) function as host substrates for migration and growth of endogenous cells during wound healing and tissue repair processes. Although various fibrous scaffolds have been developed to recapitulate the microstructures of the native ECM, facile synthesis of hydrogel microfibers that are mechanically robust and biologically active have been elusive. Described herein is the use of interfacial bioorthogonal polymerization to create hydrogel-based microfibrous scaffolds via tetrazine ligation. Combination of a trifunctional strained trans-cyclooctene monomer and a difunctional s-tetrazine monomer at the oil-water interface led to the formation of microfibers that were stable under cell culture conditions. The bioorthogonal nature of the synthesis allows for direct incorporation of tetrazine-conjugated peptides or proteins with site-selectively, genetically encoded tetrazines. The microfibers provide physical guidance and biochemical signals to promote the attachment, division and migration of fibroblasts. Mechanistic investigations revealed that fiber-guided cell migration was both F-actin and microtubule-dependent, confirming contact guidance by the microfibers. Prolonged culture of fibroblasts in the presence of an isolated microfiber resulted in the formation of a multilayered cell sheet wrapping around the fiber core. A fibrous mesh provided a 3D template to promote cell infiltration and tissue-like growth. Overall, the bioorthogonal approach led to the straightforward synthesis of crosslinked hydrogel microfibers that can potentially be used as instructive materials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Axel C Moore
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Han Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Samuel L Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Liang Gong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
17
|
Li Q, Zhang B, Kasoju N, Ma J, Yang A, Cui Z, Wang H, Ye H. Differential and Interactive Effects of Substrate Topography and Chemistry on Human Mesenchymal Stem Cell Gene Expression. Int J Mol Sci 2018; 19:E2344. [PMID: 30096912 PMCID: PMC6121573 DOI: 10.3390/ijms19082344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Variations in substrate chemistry and the micro-structure were shown to have a significant effect on the biology of human mesenchymal stromal cells (hMSCs). This occurs when differences in the surface properties indirectly modulate pathways within numerous signaling networks that control cell fate. To understand how the surface features affect hMSC gene expression, we performed RNA-sequencing analysis of bone marrow-derived hMSCs cultured on tissue culture-treated polystyrene (TCP) and poly(l-lactide) (PLLA) based substrates of differing topography (Fl: flat and Fs: fibrous) and chemistry (Pr: pristine and Am: aminated). Whilst 80% of gene expression remained similar for cells cultured on test substrates, the analysis of differentially expressed genes (DEGs) revealed that surface topography significantly altered gene expression more than surface chemistry. The Fl and Fs topologies introduced opposite directional alternations in gene expression when compared to TCP control. In addition, the effect of chemical treatment interacted with that of topography in a synergistic manner with the Pr samples promoting more DEGs than Am samples in all gene ontology function groups. These findings not only highlight the significance of the culture surface on regulating the overall gene expression profile but also provide novel insights into cell-material interactions that could help further design the next-generation biomaterials to facilitate hMSC applications. At the same time, further studies are required to investigate whether or not the observations noted correlate with subsequent protein expression and functionality of cells.
Collapse
Affiliation(s)
- Qiongfang Li
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
| | - Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
- Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, UK.
| | - Naresh Kasoju
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| | - Jinmin Ma
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, UK.
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| | - Hui Wang
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
- Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, 215123 Suzhou, China.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| |
Collapse
|
18
|
Carretero A, Soares da Costa D, Reis RL, Pashkuleva I. Extracellular matrix-inspired assembly of glycosaminoglycan–collagen fibers. J Mater Chem B 2017; 5:3103-3106. [DOI: 10.1039/c7tb00704c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report on the fabrication of fibers exclusively from the extracellular matrix components by interfacial complexation without using any crosslinking agent.
Collapse
Affiliation(s)
- A. Carretero
- 3B's Research Group—Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Taipas
| | - D. Soares da Costa
- 3B's Research Group—Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Taipas
| | - R. L. Reis
- 3B's Research Group—Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Taipas
| | - I. Pashkuleva
- 3B's Research Group—Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Taipas
| |
Collapse
|
19
|
Costa-Almeida R, Gasperini L, Borges J, Babo PS, Rodrigues MT, Mano JF, Reis RL, Gomes ME. Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomater Sci Eng 2016; 3:1322-1331. [DOI: 10.1021/acsbiomaterials.6b00331] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raquel Costa-Almeida
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Luca Gasperini
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - João Borges
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Pedro S. Babo
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Márcia T. Rodrigues
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s
Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s
- PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Eng Regen Med 2016; 13:465-474. [PMID: 30603428 DOI: 10.1007/s13770-016-9080-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
Bone defects are common disease requiring thorough treatments since the bone is a complex vascularized tissue that is composed of multiple cell types embedded within an intricate extracellular matrix (ECM). For past decades, tissue engineering using cells, proteins, and scaffolds has been suggested as one of the promising approaches for effective bone regeneration. Recently, many researchers have been interested in designing effective platform for tissue regeneration by orchestrating factors involved in microenvironment around tissues. Among factors affecting bone formation, vascularization during bone development and after minor insults via endochondral and intramembranous ossification is especially critical for the long-term support for functional bone. In order to create vascularized bone constructs, the interactions between human mesenchymal stem cells (MSCs) and endothelial cells (ECs) have been investigated using both direct and indirect co-culture studies. Recently, various culture methods including micropatterning techniques, three dimensional scaffolds, and microfluidics have been developed to create micro-engineered platforms that mimic the nature of vascularized bone formation, leading to the creation of functional bone structures. This review focuses on MSCs co-cultured with endothelial cells and microengineered platforms to determine the underlying interplay between co-cultured MSCs and vascularized bone constructs, which is ultimately necessary for adequate regeneration of bone defects.
Collapse
|
21
|
Chai YW, Lee EH, Gubbe JD, Brekke JH. 3D Cell Culture in a Self-Assembled Nanofiber Environment. PLoS One 2016; 11:e0162853. [PMID: 27632425 PMCID: PMC5025053 DOI: 10.1371/journal.pone.0162853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/28/2016] [Indexed: 01/31/2023] Open
Abstract
The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young's modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease.
Collapse
Affiliation(s)
- Yi Wen Chai
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - Eu Han Lee
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - John D. Gubbe
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - John H. Brekke
- BRTI Life Sciences, Two Harbors, MN, United States of America
| |
Collapse
|
22
|
Sharifi F, Kurteshi D, Hashemi N. Designing highly structured polycaprolactone fibers using microfluidics. J Mech Behav Biomed Mater 2016; 61:530-540. [PMID: 27136089 DOI: 10.1016/j.jmbbm.2016.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Microfibers are becoming increasingly important for biomedical applications such as regenerative medicine and tissue engineering. We have used a microfluidic approach to create polycaprolactone (PCL) microfibers in a controlled manner. Through the variations of the sheath fluid flow rate and PCL concentration in the core solution, the morphology of the microfibers and their cross-sections can be tuned. The microfibers were made using PCL concentrations of 2%, 5%, and 8% in the core fluid with a wide range of sheath-to-core flow rate ratios from 120:5µL/min to 10:5µL/min, respectively. The results revealed that the mechanical properties of the PCL microfibers made using microfluidic approach were significantly improved compared to the PCL microfibers made by other fiber fabrication methods. Additionally, it was demonstrated that by decreasing the flow rate ratio and increasing the PCL concentration, the size of the microfiber could be increased. Varying the sheath-to-core flow rate ratios from 40:5 to 10:5, the tensile stress at break, the tensile strain at break, and the Young׳s modulus were enhanced from 24.51MPa to 77.07MPa, 567% to 1420%, and 247.25MPa to 539.70MPa, respectively. The porosity and roughness of microfiber decreased when the PCL concentration increased from 2% to 8%, whereas changing the flow rate ratio did not have considerable impact on the microfiber roughness.
Collapse
Affiliation(s)
- Farrokh Sharifi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Diamant Kurteshi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Nastaran Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; Center for Advanced Host Defense Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
23
|
Cutiongco MFA, Goh SH, Aid-Launais R, Le Visage C, Low HY, Yim EKF. Planar and tubular patterning of micro and nano-topographies on poly(vinyl alcohol) hydrogel for improved endothelial cell responses. Biomaterials 2016; 84:184-195. [PMID: 26828683 DOI: 10.1016/j.biomaterials.2016.01.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 11/28/2022]
Abstract
Poly(vinyl alcohol) hydrogel (PVA) is a widely used material for biomedical devices, yet there is a need to enhance its biological functionality for in vitro and in vivo vascular application. Significance of surface topography in modulating cellular behaviour is increasingly evident. However, hydrogel patterning remains challenging. Using a casting method, planar PVA were patterned with micro-sized features. To achieve higher patterning resolution, nanoimprint lithography with high pressure and temperature was used. In vitro experiment showed enhanced human endothelial cell (EC) density and adhesion on patterned PVA. Additional chemical modification via nitrogen gas plasma on patterned PVA further improved EC density and adhesion. Only EC monolayer grown on plasma modified PVA with 2 μm gratings and 1.8 μm concave lens exhibited expression of vascular endothelial cadherin, indicating EC functionality. Patterning of the luminal surface of tubular hydrogels is not widely explored. The study presents the first method for simultaneous tubular molding and luminal surface patterning of hydrogel. PVA graft with 2 μm gratings showed patency and endothelialization, while unpatterned grafts were occluded after 20 days in rat aorta. The reproducible, high yield and high-fidelity methods enable planar and tubular patterning of PVA and other hydrogels to be used for biomedical applications.
Collapse
Affiliation(s)
- Marie F A Cutiongco
- Department of Biomedical Engineering, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | - Seok Hong Goh
- Department of Biomedical Engineering, National University of Singapore, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore
| | | | - Catherine Le Visage
- INSERM, U1148, Laboratory for Vascular Translational Science, Paris, France; INSERM, U791, Center for OstesArticular and Dental Tissue Engineering, Nantes, France
| | - Hong Yee Low
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore; Engineering Product Development Cluster, Singapore University of Technology and Design, Singapore.
| | - Evelyn K F Yim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Department of Surgery, National University of Singapore, Singapore; Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
24
|
Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 2015. [DOI: 10.1002/app.42883] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ramin Khajavi
- Nanotechnology Research Center, South Tehran Branch, Islamic Azad University; Tehran Iran
| | - Mina Abbasipour
- Department of Textile Engineering; Science and Research Branch, Islamic Azad University; Tehran Iran
| | - Abbas Bahador
- Department of Medical Microbiology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
25
|
Cutiongco MFA, Teo BKK, Yim EKF. Composite Scaffolds of Interfacial Polyelectrolyte Fibers for Temporally Controlled Release of Biomolecules. J Vis Exp 2015:e53079. [PMID: 26325384 DOI: 10.3791/53079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Various scaffolds used in tissue engineering require a controlled biochemical environment to mimic the physiological cell niche. Interfacial polyelectrolyte complexation (IPC) fibers can be used for controlled delivery of various biological agents such as small molecule drugs, cells, proteins and growth factors. The simplicity of the methodology in making IPC fibers gives flexibility in its application for controlled biomolecule delivery. Here, we describe a method of incorporating IPC fibers into two different polymeric scaffolds, hydrophilic polysaccharide and hydrophobic polycaprolactone, to create a multi-component composite scaffold. We showed that IPC fibers can be easily embedded into these polymeric structures, enhancing the capability for sustained release and improved preservation of biomolecules. We also created a composite polymeric scaffold with topographical cues and sustained biochemical release that can have synergistic effects on cell behavior. Composite polymeric scaffolds with IPC fibers represent a novel and simple method of recreating the cellular niche.
Collapse
Affiliation(s)
| | | | - Evelyn King Fai Yim
- Department of Biomedical Engineering, National University of Singapore; Mechanobiology Institute, Singapore, National University of Singapore; Department of Surgery, National University of Singapore;
| |
Collapse
|
26
|
Lindborg BA, Brekke JH, Scott CM, Chai YW, Ulrich C, Sandquist L, Kokkoli E, O'Brien TD. A chitosan-hyaluronan-based hydrogel-hydrocolloid supports in vitro culture and differentiation of human mesenchymal stem/stromal cells. Tissue Eng Part A 2015; 21:1952-62. [PMID: 25748146 DOI: 10.1089/ten.tea.2014.0335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional (3D) cell culture platforms are increasingly utilized due to their ability to more closely mimic the in vivo microenvironment compared to traditional two-dimensional methods. Limitations of currently available 3D materials include lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. Evaluated here is a unique hydrogel comprised of polyelectrolytic complex (PEC) fibers formed by hyaluronic acid and chitosan (CT). When hydrated with fetal bovine serum containing human mesenchymal stem/stromal cells (hMSCs), a hydrogel with an elastic modulus of 264±38 Pa formed in seconds with cells distributed throughout the matrix. Scanning electron microscopy showed a lattice-like meshwork of PEC fibers forming irregular compartments. hMSCs showed 48% viability during the first 24 h, with cell populations thereafter reaching a steady state for 14 days. hMSCs in the matrix were induced to differentiate to chondrogenic, osteogenic, and adipogenic phenotypes. Emergent features, at days 56 and 70, consisted of chondrogenesis on the surface of hydrogels induced to osteogenic and adipogenic phenotypes. Results indicate that this matrix may be useful for tissue engineering and disease modeling applications.
Collapse
Affiliation(s)
- Beth A Lindborg
- 1Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.,2Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota.,3Bioactive Regenerative Therapeutics, Inc., Duluth, Minnesota
| | - John H Brekke
- 3Bioactive Regenerative Therapeutics, Inc., Duluth, Minnesota
| | - Carolyn M Scott
- 4Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Yi Wen Chai
- 3Bioactive Regenerative Therapeutics, Inc., Duluth, Minnesota
| | - Connor Ulrich
- 1Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.,2Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota
| | - Lee Sandquist
- 5Department of Surgery, Section of Neurosurgery, St. John Providence Health System, Southfield, Michigan
| | - Efrosini Kokkoli
- 6Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Timothy D O'Brien
- 1Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.,2Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
27
|
Cutiongco MFA, Choo RKT, Shen NJX, Chua BMX, Sju E, Choo AWL, Le Visage C, Yim EKF. Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery. Front Bioeng Biotechnol 2015; 3:3. [PMID: 25692128 PMCID: PMC4315105 DOI: 10.3389/fbioe.2015.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/05/2015] [Indexed: 11/26/2022] Open
Abstract
Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA–IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA–IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA–IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA–IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA–IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue engineering.
Collapse
Affiliation(s)
| | - Royden K T Choo
- Department of Biomedical Engineering, National University of Singapore , Singapore , Singapore
| | - Nathaniel J X Shen
- Department of Biomedical Engineering, National University of Singapore , Singapore , Singapore
| | - Bryan M X Chua
- Department of Biomedical Engineering, National University of Singapore , Singapore , Singapore
| | - Ervi Sju
- Department of Biomedical Engineering, National University of Singapore , Singapore , Singapore
| | - Amanda W L Choo
- Department of Biomedical Engineering, National University of Singapore , Singapore , Singapore
| | - Catherine Le Visage
- INSERM, U698 Cardiovascular Bioengineering , Paris , France ; INSERM, U791 Center for OsteoArticular and Dental Tissue Engineering , Nantes , France
| | - Evelyn K F Yim
- Department of Biomedical Engineering, National University of Singapore , Singapore , Singapore ; Mechanobiology Institute, National University of Singapore , Singapore , Singapore ; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| |
Collapse
|
28
|
Cutiongco MFA, Tan MH, Ng MYK, Le Visage C, Yim EKF. Composite pullulan-dextran polysaccharide scaffold with interfacial polyelectrolyte complexation fibers: a platform with enhanced cell interaction and spatial distribution. Acta Biomater 2014; 10:4410-8. [PMID: 24980061 DOI: 10.1016/j.actbio.2014.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 11/28/2022]
Abstract
Hydrogels are highly preferred in soft tissue engineering because they recapitulate the hydrated extracellular matrix. Naturally derived polysaccharides, like pullulan and dextran, are attractive materials with which to form hydrophilic polymeric networks due to their non-immunogenic and non-antigenic properties. However, their inherent hydrophilicity prevents adherent cell growth. In this study, we modified pullulan-dextran scaffolds with interfacial polyelectrolyte complexation (IPC) fibers to improve their ability to support adherent cell growth. We showed that the pullulan-dextran-IPC fiber composite scaffold laden with extracellular matrix protein has improved cell adhesion and proliferation compared to the plain polysaccharide scaffold. We also demonstrated the zero-order release kinetics of the biologics bovine serum albumin and vascular endothelial growth factor (VEGF) incorporated in the composite scaffold. Lastly, we showed that the VEGF released from the composite scaffold retained its capacity to stimulate endothelial cell growth. The incorporation of IPC fibers in the pullulan-dextran hydrogel scaffold improved its functionality and biological activity, thus enhancing its potential in tissue engineering applications.
Collapse
Affiliation(s)
| | - Ming Hao Tan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Martin Yoke Kuang Ng
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | | | - Evelyn King Fai Yim
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore; Mechanobiology Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
29
|
Akbari M, Tamayol A, Laforte V, Annabi N, Hassani Najafabadi A, Khademhosseini A, Juncker D. Composite Living Fibers for Creating Tissue Constructs Using Textile Techniques. ADVANCED FUNCTIONAL MATERIALS 2014; 24:4060-4067. [PMID: 25411576 PMCID: PMC4233137 DOI: 10.1002/adfm.201303655] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The fabrication of cell-laden structures with anisotropic mechanical properties while having a precise control over the distribution of different cell types within the constructs is important for many tissue engineering applications. Automated textile technologies for making fabrics allow simultaneous control over the color pattern and directional mechanical properties. The use of textile techniques in tissue engineering, however, demands the presence of cell-laden fibers that can withstand the mechanical stresses during the assembly process. Here, the concept of composite living fibers (CLFs) in which a core of load bearing synthetic polymer is coated by a hydrogel layer containing cells or microparticles is introduced. The core thread is drawn sequentially through reservoirs containing a cell-laden prepolymer and a crosslinking reagent. The thickness of the hydrogel layer increases linearly with to the drawing speed and the prepolymer viscosity. CLFs are fabricated and assembled using regular textile processes including weaving, knitting, braiding, winding, and embroidering, to form cell-laden structures. Cellular viability and metabolic activity are preserved during CLF fabrication and assembly, demonstrating the feasibility of using these processes for engineering functional 3D tissue constructs.
Collapse
Affiliation(s)
- Mohsen Akbari
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Ali Tamayol
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Veronique Laforte
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Womenís Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Alireza Hassani Najafabadi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Womenís Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Womenís Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - David Juncker
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, H3A 0G1, Canada
| |
Collapse
|
30
|
Teo BKK, Tan GDS, Yim EKF. The synergistic effect of nanotopography and sustained dual release of hydrophobic and hydrophilic neurotrophic factors on human mesenchymal stem cell neuronal lineage commitment. Tissue Eng Part A 2014; 20:2151-61. [PMID: 24932660 DOI: 10.1089/ten.tea.2013.0382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A combination of nanotopography and controlled release is a potential platform for neuronal tissue engineering applications. Previous studies showed that combining both physical and chemical guidance was more effective than individual cues in the directional promotion of neurite outgrowth. Nanotopography can direct human mesenchymal stem cells (hMSCs) into neuronal lineage, while controlled release of neurotrophic factors can deliver temporally controlled biochemical signals. Hypothesizing that the synergistic effect will enhance neuronal lineage commitment of hMSCs, a fabrication method for multiple neurotrophic factors delivery from a single nanopatterned (350 nm gratings), poly-ɛ-caprolactone (PCL) film was developed and evaluated. Our results showed a synergistic effect on hMSC differentiation cultured on substrates with both nanotopographical and biochemical cues. The protein/drug encapsulation into PCL nanopatterned films was first optimized using a hydrophilic model protein, bovine serum albumin. The hydrophobic retinoic acid (RA) molecule was directly incorporated into PCL films. To achieve sustained release, hydrophilic nerve growth factor (NGF) was first encapsulated within polyelectrolyte complexation fibers before they were embedded within the nanopatterned PCL film. Our results showed that nanotopography on the fabricated polymer films remained intact, while release of bioactive RA and NGF was sustained over a period of 3 weeks. Under the combinatorial effect of physical and biochemical cues, we observed an enhanced upregulation of neuronal genes such as microtubule-associated protein 2 (MAP2) and neurofilament light (NFL) as compared with sustained delivery of individual cues and bolus delivery. Quantitative polymerase chain reaction analysis showed that MAP2 and NFL gene upregulation in hMSCs was most pronounced on the nanogratings with sustained release of both RA and NGF. The fabricated platforms supported the sustained delivery of multiple neurotrophins, including both hydrophobic and hydrophilic therapeutic agents, while providing surface patterning versatility for application in neural regeneration and tissue engineering.
Collapse
Affiliation(s)
- Benjamin Kim Kiat Teo
- 1 Department of Biomedical Engineering, National University of Singapore , Singapore
| | | | | |
Collapse
|
31
|
Raghothaman D, Leong MF, Lim TC, Toh JKC, Wan ACA, Yang Z, Lee EH. Engineering cell matrix interactions in assembled polyelectrolyte fiber hydrogels for mesenchymal stem cell chondrogenesis. Biomaterials 2014; 35:2607-16. [PMID: 24388815 DOI: 10.1016/j.biomaterials.2013.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/08/2013] [Indexed: 12/25/2022]
Abstract
Cell-cell and cell-matrix interactions are important events in directing stem cell chondrogenesis, which can be promoted in matrix microenvironments presenting appropriate ligands. In this study, interfacial polyelectrolyte complexation (IPC) based hydrogels were employed, wherein the unique formation of submicron size fibers facilitated spatial orientation of ligands within such hydrogels. The influence of aligned, collagen type I (Col I) presentation in IPC hydrogel on chondrogenic differentiation of human mesenchymal stem cells (MSC) was investigated. Early morphological dynamics, onset of N-cadherin/β-catenin mediated chondrogenic induction and differentiation were compared between MSCs encapsulated in IPC-Col I and IPC-control (without Col I) hydrogels, and a conventional Col I hydrogel. MSCs in IPC-Col I hydrogel aligned and packed uniformly, resulting in enhanced cell-cell interactions and cellular condensation, facilitating superior chondrogenesis and the generation of mature hyaline neocartilage, with notable downregulation of fibrocartilaginous marker. Inhibition study using function blocking β1-integrin antibodies reversed the aforementioned outcomes, indicating the importance of coupling integrin mediated cell-matrix interactions and N-cadherin/β-catenin mediated downstream signaling events. This study demonstrated the significance of oriented ligand presentation for MSC chondrogenesis, and the importance of facilitating an orderly sequence of differentiation events, initiated by proximal interactions between MSCs and the extracellular matrix for robust neocartilage formation.
Collapse
Affiliation(s)
- Deepak Raghothaman
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119288, Singapore
| | - Meng Fatt Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Tze Chiun Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jerry K C Toh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119288, Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore 117510, Singapore.
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119288, Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore 117510, Singapore; Mechanobiology Institute (MBI), National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
32
|
Ma G, Wang Z, Chen J, Yin R, Chen B, Nie J. Freeze-dried chitosan–sodium hyaluronate polyelectrolyte complex fibers as tissue engineering scaffolds. NEW J CHEM 2014. [DOI: 10.1039/c3nj00701d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Wan AC, Tai BC. CHITIN — A promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv 2013; 31:1776-85. [DOI: 10.1016/j.biotechadv.2013.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
|
34
|
Rossi F, Santoro M, Perale G. Polymeric scaffolds as stem cell carriers in bone repair. J Tissue Eng Regen Med 2013; 9:1093-119. [DOI: 10.1002/term.1827] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/29/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering; 'Giulio Natta' Politecnico di Milano; Milan Italy
| | - Marco Santoro
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - Giuseppe Perale
- Department of Chemistry, Materials and Chemical Engineering; 'Giulio Natta' Politecnico di Milano; Milan Italy
- Department of Innovative Technologies; University of Southern Switzerland; Manno Switzerland
- Swiss Institute for Regenerative Medicine; Taverne Switzerland
| |
Collapse
|
35
|
Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol Adv 2013; 31:669-87. [PMID: 23195284 PMCID: PMC3631569 DOI: 10.1016/j.biotechadv.2012.11.007] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/28/2022]
Abstract
Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the abovementioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice.
Collapse
Affiliation(s)
- Ali Tamayol
- Biomedical Engineering Department, McGill University, Montreal, H3A 0G1, Canada
| | - Mohsen Akbari
- Biomedical Engineering Department, McGill University, Montreal, H3A 0G1, Canada
| | - Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute ofTechnology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02139, USA
| | - Arghya Paul
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute ofTechnology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02139, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute ofTechnology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02139, USA
| | - David Juncker
- Biomedical Engineering Department, McGill University, Montreal, H3A 0G1, Canada
| |
Collapse
|
36
|
Abstract
The design of new technologies for treatment of human disorders is a complex and difficult task. The aim of this article is to explore state of art discussion of various techniques and materials involve in cell encapsulations. Encapsulation of cells within semi-permeable polymer shells or beads is a potentially powerful tool, and has long been explored as a promising approach for the treatment of several human diseases such as lysosomal storage disease (LSD), neurological disorders, Parkinsons disease, dwarfism, hemophilia, cancer and diabetes using immune-isolation gene therapy.
Collapse
|
37
|
Abstract
Because of their high proliferative capacity, resistance to cryopreservation, and ability to differentiate into hepatocyte-like cells, stem and progenitor cells have recently emerged as attractive cell sources for liver cell therapy, a technique used as an alternative to orthotopic liver transplantation in the treatment of various hepatic ailments ranging from metabolic disorders to end-stage liver disease. Although stem and progenitor cells have been isolated from various tissues, obtaining them from the liver could be an advantage for the treatment of hepatic disorders. However, the techniques available to isolate these stem/progenitor cells are numerous and give rise to cell populations with different morphological and functional characteristics. In addition, there is currently no established consensus on the tests that need to be performed to ensure the quality and safety of these cells when used clinically. The purpose of this review is to describe the different types of liver stem/progenitor cells currently reported in the literature, discuss their suitability and limitations in terms of clinical applications, and examine how the culture and transplantation techniques can potentially be improved to achieve a better clinical outcome.
Collapse
Affiliation(s)
- Catherine A. Lombard
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Julie Prigent
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Etienne M. Sokal
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| |
Collapse
|
38
|
Hesaraki S, Nazarian H, Pourbaghi-Masouleh M, Borhan S. Comparative study of mesenchymal stem cells osteogenic differentiation on low-temperature biomineralized nanocrystalline carbonated hydroxyapatite and sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater 2013; 102:108-18. [DOI: 10.1002/jbm.b.32987] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/19/2013] [Accepted: 05/26/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Saeed Hesaraki
- Nanotechnology and Advanced Materials Department; Materials and Energy Research Center; Karaj P.O. Box: 31787/316 Iran
| | - Hamid Nazarian
- Nanotechnology and Advanced Materials Department; Materials and Energy Research Center; Karaj P.O. Box: 31787/316 Iran
| | - Milad Pourbaghi-Masouleh
- Nanotechnology and Advanced Materials Department; Materials and Energy Research Center; Karaj P.O. Box: 31787/316 Iran
| | - Shokoufeh Borhan
- Nanotechnology and Advanced Materials Department; Materials and Energy Research Center; Karaj P.O. Box: 31787/316 Iran
| |
Collapse
|
39
|
Kang Y, Kim S, Fahrenholtz M, Khademhosseini A, Yang Y. Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater 2013; 9:4906-15. [PMID: 22902820 DOI: 10.1016/j.actbio.2012.08.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/23/2012] [Accepted: 08/08/2012] [Indexed: 12/19/2022]
Abstract
The use of biodegradable beta-tricalcium phosphate (β-TCP) scaffolds holds great promise for bone tissue engineering. However, the effects of β-TCP on bone and endothelial cells are not fully understood. This study aimed to investigate cell proliferation and differentiation of mono- or co-cultured human-bone-marrow-derived mesenchymal stem cells (hBMSCs) and human-umbilical-vein endothelial cells (HUVECs) on a three-dimensional porous, biodegradable β-TCP scaffold. In co-culture studies, the ratios of hBMSCs:HUVECs were 5:1, 1:1 and 1:5. Cellular morphologies of HUVECs, hBMSCs and co-cultured HUVECs/hBMSCs on the β-TCP scaffolds were monitored using confocal and scanning electron microscopy. Cell proliferation was monitored by measuring the amount of double-stranded DNA (dsDNA) whereas hBMSC and HUVEC differentiation was assessed using the osteogenic and angiogenic markers, alkaline phosphatase (ALP) and PECAM-1 (CD31), respectively. Results show that HUVECs, hBMSCs and hBMSCs/HUVECs adhered to and proliferated well on the β-TCP scaffolds. In monoculture, hBMSCs grew faster than HUVECs on the β-TCP scaffolds after 7 days, but HUVECs reached similar levels of proliferation after 14 days. In monoculture, β-TCP scaffolds promoted ALP activities of both hBMSCs and HUVECs when compared to those grown on tissue culture well plates. ALP activity of cells in co-culture was higher than that of hBMSCs in monoculture. Real-time polymerase chain reaction results indicate that runx2 and alp gene expression in monocultured hBMSCs remained unchanged at days 7 and 14, but alp gene expression was significantly increased in hBMSC co-cultures when the contribution of individual cell types was not distinguished.
Collapse
Affiliation(s)
- Yunqing Kang
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
40
|
Wang Y, Zhang Y, Zhang S, Peng G, Liu T, Li Y, Xiang D, Wassler MJ, Shelat HS, Geng Y. Rotating Microgravity-Bioreactor Cultivation Enhances the Hepatic Differentiation of Mouse Embryonic Stem Cells on Biodegradable Polymer Scaffolds. Tissue Eng Part A 2012; 18:2376-85. [DOI: 10.1089/ten.tea.2012.0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yingjie Wang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Yunping Zhang
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
- Department of Emergency Medicine, JaoTong University, Shanghai, China
| | - Shichang Zhang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Guangyong Peng
- Division of Immunobiology, Department of Internal Medicine, Saint Louis University School of Medicine, Edward A Doisy Research Center, St. Louis, Missouri
| | - Tao Liu
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yangxin Li
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Dedong Xiang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Michael J. Wassler
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Harnath S. Shelat
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Yongjian Geng
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| |
Collapse
|
41
|
Kang Y, Kim S, Bishop J, Khademhosseini A, Yang Y. The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold. Biomaterials 2012; 33:6998-7007. [PMID: 22795852 DOI: 10.1016/j.biomaterials.2012.06.061] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/22/2012] [Indexed: 01/06/2023]
Abstract
Extracellular matrix (ECM) serves a key role in cell migration, attachment, and cell development. Here we report that ECM derived from human umbilical vein endothelial cells (HUVEC) promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSC). We first produced an HUVEC-derived ECM on a three-dimensional (3D) beta-tricalcium phosphate (β-TCP) scaffold by HUVEC seeding, incubation, and decellularization. The HUVEC-derived ECM was then characterized by SEM, FTIR, XPS, and immunofluorescence staining. The effect of HUVEC-derived ECM-containing β-TCP scaffold on hMSC osteogenic differentiation was subsequently examined. SEM images indicate a dense matrix layer deposited on the surface of struts and pore walls. FTIR and XPS measurements show the presence of new functional groups (amide and hydroxyl groups) and elements (C and N) in the ECM/β-TCP scaffold when compared to the β-TCP scaffold alone. Immunofluorescence images indicate that high levels of fibronectin and collagen IV and low level of laminin were present on the scaffold. ECM-containing β-TCP scaffolds significantly increased alkaline phosphatase (ALP) specific activity and up-regulated expression of osteogenesis-related genes such as runx2, alkaline phosphatase, osteopontin and osteocalcin in hMSC, compared to β-TCP scaffolds alone. This increased effect was due to the activation of MAPK/ERK signaling pathway since disruption of this pathway using an ERK inhibitor PD98059 results in down-regulation of these osteogenic genes. Cell-derived ECM-containing calcium phosphate scaffolds is a promising osteogenic-promoting bone void filler in bone tissue regeneration.
Collapse
Affiliation(s)
- Yunqing Kang
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
42
|
Wan ACA, Leong MF, Toh JKC, Zheng Y, Ying JY. Multicomponent fibers by multi-interfacial polyelectrolyte complexation. Adv Healthc Mater 2012. [PMID: 23184693 DOI: 10.1002/adhm.201100020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In multi-interfacial polyelectrolyte complexation (MIPC), fusion of nascent fibers from multiple interfaces brings the interfaces to a point from which a composite fiber is drawn. MIPC applied to two, three, and four polyelectrolyte complex interfaces leads to various patterned multicomponent fibers. Cells encapsulated in these fibers exhibit migration, aggregation and spreading in relation to the initial cell or matrix pattern.
Collapse
Affiliation(s)
- Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | |
Collapse
|
43
|
A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 2011; 33:2419-30. [PMID: 22196900 DOI: 10.1016/j.biomaterials.2011.11.077] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/27/2011] [Indexed: 12/18/2022]
Abstract
Realizing the potential of human pluripotent stem cell (hPSC)-based therapy requires the development of defined scalable culture systems with efficient expansion, differentiation and isolation protocols. We report an engineered 3D microfiber system that efficiently supports long-term hPSCs self-renewal under chemically defined conditions. The unique feature of this system lies in the application of a 3D ECM-like environment in which cells are embedded, that affords: (i) uniform high cell loading density in individual cell-laden constructs (∼10(7) cells/ml); (ii) quick recovery of encapsulated cells (<10min at 37°C) with excellent preservation of cell viability and 3D multicellular structure; (iii) direct cryopreservation of the encapsulated cells in situ in the microfibers with >17-fold higher cell viability compared to those cultured on Matrigel surface; (iv) long-term hPSC propagation under chemically defined conditions. Four hPSC lines propagated in the microfibrous scaffold for 10 consecutive passages were capable of maintaining an undifferentiated phenotype as demonstrated by the expression of stem cell markers and stable karyotype in vitro and the ability to form derivatives of the three germ layers both in vitro and in vivo. Our 3D microfibrous system has the potential for large-scale cultivation of transplantable hESCs and derivatives for clinical applications.
Collapse
|
44
|
Zhang W, He X. Microencapsulating and Banking Living Cells for Cell-Based Medicine. JOURNAL OF HEALTHCARE ENGINEERING 2011; 2:427-446. [PMID: 22180835 DOI: 10.1260/2040-2295.2.4.427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation) so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
45
|
Jeong SI, Krebs MD, Bonino CA, Samorezov JE, Khan SA, Alsberg E. Electrospun Chitosan–Alginate Nanofibers with In Situ Polyelectrolyte Complexation for Use as Tissue Engineering Scaffolds. Tissue Eng Part A 2011; 17:59-70. [DOI: 10.1089/ten.tea.2010.0086] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Sung In Jeong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Melissa D. Krebs
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Christopher A. Bonino
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Julia E. Samorezov
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Saad A. Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
46
|
Cao Y, Li D, Shang C, Yang ST, Wang J, Wang X. Three-dimensional culture of human mesenchymal stem cells in a polyethylene terephthalate matrix. Biomed Mater 2010; 5:065013. [PMID: 21079281 DOI: 10.1088/1748-6041/5/6/065013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Moutos FT, Estes BT, Guilak F. Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering. Macromol Biosci 2010; 10:1355-64. [PMID: 20857388 PMCID: PMC3214627 DOI: 10.1002/mabi.201000124] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The successful replacement of large-scale cartilage defects or osteoarthritic lesions using tissue-engineering approaches will likely require composite biomaterial scaffolds that have biomimetic mechanical properties and can provide cell-instructive cues to control the growth and differentiation of embedded stem or progenitor cells. This study describes a novel method of constructing multifunctional scaffolds for cartilage tissue engineering that can provide both mechanical support and biological stimulation to seeded progenitor cells. 3-D woven PCL scaffolds were infiltrated with a slurry of homogenized CDM of porcine origin, seeded with human ASCs, and cultured for up to 42 d under standard growth conditions. These constructs were compared to scaffolds derived solely from CDM as well as 3-D woven PCL fabric without CDM. While all scaffolds promoted a chondrogenic phenotype of the ASCs, CDM scaffolds showed low compressive and shear moduli and contracted significantly during culture. Fiber-reinforced CDM scaffolds and 3-D woven PCL scaffolds maintained their mechanical properties throughout the culture period, while supporting the accumulation of a cartilaginous extracellular matrix. These findings show that fiber-reinforced hybrid scaffolds can be produced with biomimetic mechanical properties as well as the ability to promote ASC differentiation and chondrogenesis in vitro.
Collapse
Affiliation(s)
- Franklin T Moutos
- Departments of Orthopaedic Surgery and Biomedical Engineering, Duke University Medical Center, 375 MSRB, Box 3093, Durham, NC 27710, USA
| | | | | |
Collapse
|
48
|
McCullen SD, Ramaswamy S, Clarke LI, Gorga RE. Nanofibrous composites for tissue engineering applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:369-90. [PMID: 20049804 DOI: 10.1002/wnan.39] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Development of artificial matrices for tissue engineering is a crucial area of research in the field of regenerative medicine. Successful tissue scaffolds, in analogy with the natural mammalian extracellular matrix (ECM), are multi-component, fibrous, and on the nanoscale. In addition, to this key morphology, artificial scaffolds must have mechanical, chemical, surface, and electrical properties that match the ECM or basement membrane of the specific tissue desired. In particular, these material properties may vary significantly for the four primary tissues in the body: nerve, muscle, epithelial, and connective. In order to address this complex array of attributes with a polymeric material, a nanocomposite approach, employing a blend of materials, addition of a particle to enhance particular properties, or a surface treatment, is likely to be required. In this review, we examine nanocomposite approaches to address these diverse needs as a function of tissue type. The review is intended as a bridge between material scientists and biomedical researchers to give basic background information on tissue biology to the former, and on material processing approaches to the latter, in a general manner, and specifically review fibrous nanocomposite materials that have previously been used for cell studies, either in vivo or in vitro.
Collapse
Affiliation(s)
- Seth D McCullen
- Department of Textile Engineering, Chemistry, and Science, NC State University, Raleigh, NC, USA
| | | | | | | |
Collapse
|
49
|
Mao HQ, Lim SH, Zhang S, Christopherson G, Kam K, Fischer S. The Nanofiber Matrix as an Artificial Stem Cell Niche. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2010. [DOI: 10.1007/8415_2010_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Li J, Mareddy S, Tan DM, Crawford R, Long X, Miao X, Xiao Y. A Minimal Common Osteochondrocytic Differentiation Medium for the Osteogenic and Chondrogenic Differentiation of Bone Marrow Stromal Cells in the Construction of Osteochondral Graft. Tissue Eng Part A 2009; 15:2481-90. [DOI: 10.1089/ten.tea.2008.0463] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jian Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- School of Stomatology, Wuhan University, Wuhan, China
| | - Shobha Mareddy
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Dawn Meifang Tan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Xing Long
- School of Stomatology, Wuhan University, Wuhan, China
| | - Xigeng Miao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- School of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|