1
|
Liu Y, Gao A, Wang T, Zhang Y, Zhu G, Ling S, Wu Z, Jin Y, Chen H, Lai Y, Zhang R, Yang Y, Han J, Deng Y, Du Y. Growing meat on autoclaved vegetables with biomimetic stiffness and micro-patterns. Nat Commun 2025; 16:161. [PMID: 39746945 PMCID: PMC11695936 DOI: 10.1038/s41467-024-55048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Cultured meat needs edible bio-scaffolds that provide not only a growth milieu for muscle and adipose cells, but also biomimetic stiffness and tissue-sculpting topography. Current meat-engineering technologies struggle to achieve scalable cell production, efficient cell differentiation, and tissue maturation in one single culture system. Here we propose an autoclaving strategy to transform common vegetables into muscle- and adipose-engineering scaffolds, without undergoing conventional plant decellularization. We selected vegetables with natural anisotropic and isotropic topology mimicking muscle and adipose microstructures respectively. We further adjusted vegetable stiffness by autoclaving, to emulate the mechanical properties of animal tissues. Autoclaved vegetables preserve rich cell-affinitive moieties, yielding a good cell culture effect with simplified processing. Autoclaved Chinese chive and Shiitake mushroom with anisotropic micro-patterns support the scalable expansion of muscle cells, improved cell alignment and myogenesis. Autoclaved isotropic loofah encourages adipocyte proliferation and lipid accumulation. Our engineered muscle- and fat-on-vegetables can further construct meat stuffing or layered meat chips. Autoclaved vegetables possess tissue-mimicking stiffness and topology, and bring biochemical benefits, operational ease, cost reduction and bioreactor compatibility. Without needing decellularization, these natural biomaterials may see scale-up applications in meat analog bio-fabrication.
Collapse
Affiliation(s)
- Ye Liu
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China.
| | - Anqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Tiantian Wang
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yongqian Zhang
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Gaoxiang Zhu
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sida Ling
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhaozhao Wu
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuhong Jin
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Haoke Chen
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuming Lai
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Rui Zhang
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuchen Yang
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yulin Deng
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- National Key Laboratory of Kidney Diseases, Beijing, China.
| |
Collapse
|
2
|
Tollabi M, Poursalehi Z, Mehrafshar P, Bakhtiari R, Sarmadi VH, Tayebi L, Haramshahi SMA. Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration. Connect Tissue Res 2024; 65:343-363. [PMID: 39297793 PMCID: PMC11541888 DOI: 10.1080/03008207.2024.2396002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 10/17/2024]
Abstract
Features of the extracellular matrix, along with biochemical factors, have a momentous impress in making genes on and/or off. The interaction of cells and the extracellular matrix is mediated by integrins. Therefore, these molecules have pivotal roles in regulating cell behaviors. Integrins include a group of molecules with a variety of characteristics that can affect different molecular cascades. Considering the importance of these molecules in tissue regeneration after injury, it is necessary to know well the integrins involved in the process of connecting cells to the extracellular matrix in each tissue.With the increase in life expectancy, bone tissue engineering has received more attention from researchers. Integrins are critical components in osteoblast differentiation, survival, and bone mechanotransduction. During osteogenic differentiation in stem cells, specific integrins facilitate multiple signaling pathways through their cytoplasmic domain, leading to the induction of osteogenic differentiation. Also, due to the importance of using biomaterials in bone tissue engineering, efforts have been made to design and use biomaterials with maximum interaction with integrins. Notably, the use of RGD peptide or fibronectin for surface modification is a well-established and commonly employed approach to manipulate integrin activity.This review article looks into integrins' role in bone development and regeneration. It then goes on to explore the complex mechanisms by which integrins contribute to these processes. In addition, this review discusses the use of natural and synthetic biomaterials that target integrins to promote bone regeneration.
Collapse
Affiliation(s)
- Mohammad Tollabi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Poursalehi
- Department of Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parichehr Mehrafshar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hazrate Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kapat K, Kumbhakarn S, Sable R, Gondane P, Takle S, Maity P. Peptide-Based Biomaterials for Bone and Cartilage Regeneration. Biomedicines 2024; 12:313. [PMID: 38397915 PMCID: PMC10887361 DOI: 10.3390/biomedicines12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface. As regulators of cell adhesion, proliferation, differentiation, angiogenesis, immunomodulation, and antibacterial activity, potential therapeutic strategies for OCDs utilizing bone and cartilage-specific peptides should be examined and investigated. The main goal of this review was to study how they contribute to the healing of OCDs, either alone or in conjunction with other peptides and biomaterials.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
5
|
Jacobs CAM, Cramer EEA, Dias AA, Smelt H, Hofmann S, Ito K. Surface modifications to promote the osteoconductivity of ultra-high-molecular-weight-polyethylene fabrics for a novel biomimetic artificial disc prosthesis: An in vitro study. J Biomed Mater Res B Appl Biomater 2023; 111:442-452. [PMID: 36111647 PMCID: PMC10087191 DOI: 10.1002/jbm.b.35163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/13/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
A novel biomimetic artificial intervertebral disc (bioAID) for the cervical spine was developed, containing a hydrogel core representing the nucleus pulposus, an UHMWPE fiber jacket as annulus fibrosis, and titanium endplates with pins for mechanical fixation. Osseointegration of the UHMWPE fibers to adjacent bone structures is required to achieve proper biomimetic behavior and to provide long-term stability. Therefore, the aim of this study was to assess the osteoconductivity of several surface modifications of UHMWPE fabrics, 2D weft-knitted, using non-treated UHMWPE fibers (N), plasma treated UHMWPE fibers (PT), 10% hydroxy apatite (HA) loaded UHMWPE fibers (10%HA), plasma treated 10%HA UHMWPE fibers (PT-10%HA), 15%HA loaded UHMWPE fibers (15%HA) and plasma treated 15%HA UHMWPE fibers (PT-15%HA). Scanning electron microscopy (SEM) was used for surface characterization. Biological effects were assessed by evaluating initial cell attachment (SEM, DNA content), metabolic activity (PrestoBlue assay), proliferation, differentiation (alkaline phosphatase activity) and mineralization (energy dispersive x-ray, EDX analysis) using human bone marrow stromal cells. Plasma treated samples showed increased initial cell attachment, indicating the importance of hydrophilicity for cell attachment. However, incorporation only of HA or plasma treatment alone was not sufficient to result in upregulated alkaline phosphatase activity (ALP) activity. Combining HA loaded fibers with plasma treatment showed a combined effect, leading to increased cell attachment and upregulated ALP activity. Based on these results, combination of HA loaded UHMWPE fibers and plasma treatment provided the most promising fabric surface for facilitating bone ingrowth.
Collapse
Affiliation(s)
- Celien A M Jacobs
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248727. [PMID: 36557865 PMCID: PMC9781125 DOI: 10.3390/molecules27248727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In orthopedic, dental, and maxillofacial fields, joint prostheses, plates, and screws are widely used in the treatment of problems related to bone tissue. However, the use of these prosthetic systems is not free from complications: the fibrotic encapsulation of endosseous implants often prevents optimal integration of the prostheses with the surrounding bone. To overcome these issues, biomimetic titanium implants have been developed where synthetic peptides have been selectively grafted on titanium surfaces via Schiff base formation. We used the retro-inverted sequence (DHVPX) from [351-359] human Vitronectin and its dimer (D2HVP). Both protease-resistant peptides showed increased human osteoblast adhesion and proliferation, an augmented number of focal adhesions, and cellular spreading with respect to the control. D2HVP-grafted samples significantly enhance Secreted Phosphoprotein 1, Integrin Binding Sialoprotein, and Vitronectin gene expression vs. control. An estimation of peptide surface density was determined by Two-photon microscopy analysis on a silanized glass model surface labeled with a fluorescent analog.
Collapse
|
7
|
Mesenchymal Stem Cell Sheet Centrifuge-Assisted Layering Augments Pro-Regenerative Cytokine Production. Cells 2022; 11:cells11182840. [PMID: 36139414 PMCID: PMC9497223 DOI: 10.3390/cells11182840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
A focal advantage of cell sheet technology has been as a scaffold-free three-dimensional (3D) cell delivery platform capable of sustained cell engraftment, survival, and reparative function. Recent evidence demonstrates that the intrinsic cell sheet 3D tissue-like microenvironment stimulates mesenchymal stem cell (MSC) paracrine factor production. In this capacity, cell sheets not only function as 3D cell delivery platforms, but also prime MSC therapeutic paracrine capacity. This study introduces a “cell sheet multilayering by centrifugation” strategy to non-invasively augment MSC paracrine factor production. Cell sheets fabricated by temperature-mediated harvest were first centrifuged as single layers using optimized conditions of rotational speed and time. Centrifugation enhanced cell physical and biochemical interactions related to intercellular communication and matrix interactions within the single cell sheet, upregulating MSC gene expression of connexin 43, integrin β1, and laminin α5. Single cell sheet centrifugation triggered MSC functional enhancement, secreting higher concentrations of pro-regenerative cytokines vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10). Subsequent cell sheet stacking, and centrifugation generated cohesive, bilayer MSC sheets within 2 h, which could not be accomplished within 24 h by conventional layering methods. Conventional layering led to H1F-1α upregulation and increased cell death, indicating a hypoxic thickness limitation to this approach. Comparing centrifuged single and bilayer cell sheets revealed that layering increased VEGF production 10-fold, attributed to intercellular interactions at the layered sheet interface. The “MSC sheet multilayering by centrifugation” strategy described herein generates a 3D MSC-delivery platform with boosted therapeutic factor production capacity.
Collapse
|
8
|
Cassari L, Brun P, Di Foggia M, Taddei P, Zamuner A, Pasquato A, De Stefanis A, Valentini V, Saceleanu VM, Rau JV, Dettin M. Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4647. [PMID: 35806763 PMCID: PMC9267458 DOI: 10.3390/ma15134647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022]
Abstract
The addition of Mn in bioceramic formulation is gaining interest in the field of bone implants. Mn activates human osteoblast (h-osteoblast) integrins, enhancing cell proliferation with a dose-dependent effect, whereas Mn-enriched glasses induce inhibition of Gram-negative or Gram-positive bacteria and fungi. In an effort to further optimize Mn-containing scaffolds' beneficial interaction with h-osteoblasts, a selective and specific covalent functionalization with a bioactive peptide was carried out. The anchoring of a peptide, mapped on the BMP-2 wrist epitope, to the scaffold was performed by a reaction between an aldehyde group of the peptide and the aminic groups of silanized Mn-containing bioceramic. SEM-EDX, FT-IR, and Raman studies confirmed the presence of the peptide grafted onto the scaffold. In in vitro assays, a significant improvement in h-osteoblast proliferation, gene expression, and calcium salt deposition after 7 days was detected in the functionalized Mn-containing bioceramic compared to the controls.
Collapse
Affiliation(s)
- Leonardo Cassari
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.C.); (A.Z.); (A.P.)
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, 35121 Padova, Italy;
| | - Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (M.D.F.); (P.T.)
| | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (M.D.F.); (P.T.)
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.C.); (A.Z.); (A.P.)
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.C.); (A.Z.); (A.P.)
| | - Adriana De Stefanis
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Montelibretti Unit, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy; (A.D.S.); (V.V.)
| | - Veronica Valentini
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Montelibretti Unit, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy; (A.D.S.); (V.V.)
| | | | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (L.C.); (A.Z.); (A.P.)
| |
Collapse
|
9
|
Chitosan Covalently Functionalized with Peptides Mapped on Vitronectin and BMP-2 for Bone Tissue Engineering. NANOMATERIALS 2021; 11:nano11112784. [PMID: 34835549 PMCID: PMC8622029 DOI: 10.3390/nano11112784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022]
Abstract
Worldwide, over 20 million patients suffer from bone disorders annually. Bone scaffolds are designed to integrate into host tissue without causing adverse reactions. Recently, chitosan, an easily available natural polymer, has been considered a suitable scaffold for bone tissue growth as it is a biocompatible, biodegradable, and non-toxic material with antimicrobial activity and osteoinductive capacity. In this work, chitosan was covalently and selectively biofunctionalized with two suitably designed bioactive synthetic peptides: a Vitronectin sequence (HVP) and a BMP-2 peptide (GBMP1a). Nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) investigations highlighted the presence of the peptides grafted to chitosan (named Chit-HVP and Chit-GBMP1a). Chit-HVP and Chit-GBMP1a porous scaffolds promoted human osteoblasts adhesion, proliferation, calcium deposition, and gene expression of three crucial osteoblast proteins. In particular, Chit-HVP highly promoted adhesion and proliferation of osteoblasts, while Chit-GBMP1a guided cell differentiation towards osteoblastic phenotype.
Collapse
|
10
|
Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021; 28:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
11
|
Bullock G, Atkinson J, Gentile P, Hatton P, Miller C. Osteogenic Peptides and Attachment Methods Determine Tissue Regeneration in Modified Bone Graft Substitutes. J Funct Biomater 2021; 12:22. [PMID: 33807267 PMCID: PMC8103284 DOI: 10.3390/jfb12020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023] Open
Abstract
The inclusion of biofunctional molecules with synthetic bone graft substitutes has the potential to enhance tissue regeneration during treatment of traumatic bone injuries. The clinical use of growth factors has though been associated with complications, some serious. The use of smaller, active peptides has the potential to overcome these problems and provide a cost-effective, safe route for the manufacture of enhanced bone graft substitutes. This review considers the design of peptide-enhanced bone graft substitutes, and how peptide selection and attachment method determine clinical efficacy. It was determined that covalent attachment may reduce the known risks associated with growth factor-loaded bone graft substitutes, providing a predictable tissue response and greater clinical efficacy. Peptide choice was found to be critical, but even within recognised families of biologically active peptides, the configurations that appeared to most closely mimic the biological molecules involved in natural bone healing processes were most potent. It was concluded that rational, evidence-based design of peptide-enhanced bone graft substitutes offers a pathway to clinical maturity in this highly promising field.
Collapse
Affiliation(s)
- George Bullock
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Joss Atkinson
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Newcastle upon Tyne NE1 7RU, UK;
| | - Paul Hatton
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Cheryl Miller
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| |
Collapse
|
12
|
Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep 2020; 10:8277. [PMID: 32427838 PMCID: PMC7237416 DOI: 10.1038/s41598-020-65050-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
For the generation of multi-layered full thickness osteochondral tissue substitutes with an individual geometry based on clinical imaging data, combined extrusion-based 3D printing (3D plotting) of a bioink laden with primary chondrocytes and a mineralized biomaterial phase was introduced. A pasty calcium phosphate cement (CPC) and a bioink based on alginate-methylcellulose (algMC) - both are biocompatible and allow 3D plotting with high shape fidelity - were applied in monophasic and combinatory design to recreate osteochondral tissue layers. The capability of cells reacting to chondrogenic biochemical stimuli inside the algMC-based 3D hydrogel matrix was assessed. Towards combined osteochondral constructs, the chondrogenic fate in the presence of CPC in co-fabricated and biphasic mineralized pattern was evaluated. Majority of expanded and algMC-encapsulated cells survived the plotting process and the cultivation period, and were able to undergo redifferentiation in the provided environment to produce their respective extracellular matrix (ECM) components (i.e. sulphated glycosaminoglycans, collagen type II), examined after 3 weeks. The presence of a mineralized zone as located in the physiological calcified cartilage region suspected to interfere with chondrogenesis, was found to support chondrogenic ECM production by altering the ionic concentrations of calcium and phosphorus in in vitro culture conditions.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Hamann A, Thomas AK, Kozisek T, Farris E, Lück S, Zhang Y, Pannier AK. Screening a chemically defined extracellular matrix mimetic substrate library to identify substrates that enhance substrate-mediated transfection. Exp Biol Med (Maywood) 2020; 245:606-619. [PMID: 32183552 DOI: 10.1177/1535370220913501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonviral gene delivery, though limited by inefficiency, has extensive utility in cell therapy, tissue engineering, and diagnostics. Substrate-mediated gene delivery (SMD) increases efficiency and allows transfection at a cell-biomaterial interface, by immobilizing and concentrating nucleic acid complexes on a surface. Efficient SMD generally requires substrates to be coated with serum or other protein coatings to mediate nucleic acid complex immobilization, as well as cell adhesion and growth; however, this strategy limits reproducibility and may be difficult to translate for clinical applications. As an alternative, we screened a chemically defined combinatorial library of 20 different extracellular matrix mimetic substrates containing combinations of (1) different sulfated polysaccharides that are essential extracellular matrix glycosaminoglycans (GAGs), with (2) mimetic peptides derived from adhesion proteins, growth factors, and cell-penetrating domains, for use as SMD coatings. We identified optimal substrates for DNA lipoplex and polyplex SMD transfection of fibroblasts and human mesenchymal stem cells. Optimal extracellular matrix mimetic substrates varied between cell type, donor source, and transfection reagent, but typically contained Heparin GAG and an adhesion peptide. Multiple substrates significantly increased transgene expression (i.e. 2- to 20-fold) over standard protein coatings. Considering previous research of similar ligands, we hypothesize extracellular matrix mimetic substrates modulate cell adhesion, proliferation, and survival, as well as plasmid internalization and trafficking. Our results demonstrate the utility of screening combinatorial extracellular matrix mimetic substrates for optimal SMD transfection towards application- and patient-specific technologies. Impact statement Substrate-mediated gene delivery (SMD) approaches have potential for modification of cells in applications where a cell-material interface exists. Conventional SMD uses ill-defined serum or protein coatings to facilitate immobilization of nucleic acid complexes, cell attachment, and subsequent transfection, which limits reproducibility and clinical utility. As an alternative, we screened a defined library of extracellular matrix mimetic substrates containing combinations of different glycosaminoglycans and bioactive peptides to identify optimal substrates for SMD transfection of fibroblasts and human mesenchymal stem cells. This strategy could be utilized to develop substrates for specific SMD applications in which variability exists between different cell types and patient samples.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Alvin K Thomas
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Steffen Lück
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Yixin Zhang
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
14
|
Hu J, Zhang Y, Fan L, Yang Y, Hu R, Huang Q, Rui G, Lin C. Optimized Cytocompatibility and Antimicrobial Activity of Octacalcium Phosphate/ε-Polylysine Composite Coating Electrochemically Codeposited on Medical Titanium. ACS APPLIED BIO MATERIALS 2019; 3:335-345. [DOI: 10.1021/acsabm.9b00844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiejie Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanmei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Beijing Medical Implant Engineering Research Center, Naton Technology Group Co. Ltd, Beijing 100082, China
| | - Lili Fan
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Yun Yang
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiaoling Huang
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Gang Rui
- Department of Orthopedics Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Beijing Medical Implant Engineering Research Center, Naton Technology Group Co. Ltd, Beijing 100082, China
| |
Collapse
|
15
|
Kanjevac T, Gustafson C, Ivanovska A, Ravanetti F, Cacchioli A, Bosnakovski D. Inflammatory Cytokines and Biodegradable Scaffolds in Dental Mesenchymal Stem Cells Priming. Curr Stem Cell Res Ther 2019; 14:320-326. [PMID: 30608044 DOI: 10.2174/1574888x14666190103170109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with wide-ranging clinical applications due to their ability to regenerate tissue from mesenchymal origin and their capability of suppressing immune responses, thus reducing the likelihood of graft versus host disease after transplantation. MSCs can be isolated from a variety of sources including bone marrow, adipose tissue, umbilical cord blood, and immature teeth. Dental stem cells (DSCs) possess progenitor and immunomodulatory abilities as the other MSC types and because they can be easily isolated, are considered as attractive therapeutic agents in regenerative dentistry. Recently, it has been shown that DSCs seeded onto newly developed synthetic biomaterial scaffolds have retained their potential for proliferation and at the same time have enhanced capabilities for differentiation and immunosuppression. The scaffolds are becoming more efficient at MSC priming as researchers learn how short peptide sequences alter the adhesive and proliferative capabilities of the scaffolds by stimulating or inhibiting classical osteogenic pathways. New findings on how to modulate the inflammatory microenvironment, which can prime DSCs for differentiation, combined with the use of next generation scaffolds may significantly improve their therapeutic potential. In this review, we summarize current findings regarding DSCs as a potential regenerative therapy, including stem cell priming with inflammatory cytokines, types of scaffolds currently being explored and the modulation of scaffolds to regulate immune response and promote growth.
Collapse
Affiliation(s)
- Tatjana Kanjevac
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Collin Gustafson
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, United States
| | - Ana Ivanovska
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, United States.,Faculty of Medical Sciences, University Goce Delcev, Stip, R. Macedonia
| |
Collapse
|
16
|
Addition of an oligoglutamate domain to bone morphogenic protein 2 confers binding to hydroxyapatite materials and induces osteoblastic signaling. PLoS One 2019; 14:e0217766. [PMID: 31150531 PMCID: PMC6544276 DOI: 10.1371/journal.pone.0217766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/17/2019] [Indexed: 11/19/2022] Open
Abstract
Nonautologous bone grafts have limited osteoinductive potential and thus there is substantial interest in reconstituting these graft materials with osteogenic factors such as bone morphogenic protein 2 (BMP2). However, one limitation of this approach is that BMP2 is typically weakly bound to the graft, which can lead to side effects associated with BMP2 dissemination. In the current study we added a hydroxyapatite (HA)-binding domain onto BMP2 to increase coupling to the graft surface. A sequence consisting of eight glutamate residues (E8) was inserted into the C-terminus of BMP2, and the recombinant protein (rBMP2-E8) was expressed in E. coli. Compared with rBMP2, rBMP2-E8 displayed markedly enhanced binding to HA disks and was better retained on the disks following exposure to vigorous wash steps. Furthermore, rBMP2-E8 was purified using a heparin column, and evaluated for its capacity to stimulate osteoblastic cell signaling. Treatment of SAOS2 cells with rBMP2-E8 induced SMAD 1/5 activation, confirming that the protein retains activity. Collectively these results suggest that the E8 domain serves as an effective tool for improving rBMP2 coupling to graft materials. The increased retention of rBMP2-E8 on the graft surface is expected to prolong BMP2's osteoinductive activity within the graft site, while simultaneously reducing off-target effects.
Collapse
|
17
|
Pathak S, Regmi S, Shrestha P, Choi I, Doh KO, Jeong JH. Mesenchymal Stem Cell Capping on ECM-Anchored Caspase Inhibitor-Loaded PLGA Microspheres for Intraperitoneal Injection in DSS-Induced Murine Colitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901269. [PMID: 31018047 DOI: 10.1002/smll.201901269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered as a promising alternative for the treatment of various inflammatory disorders. However, poor viability and engraftment of MSCs after transplantation are major hurdles in mesenchymal stem cell therapy. Extracellular matrix (ECM)-coated scaffolds provide better cell attachment and mechanical support for MSCs after transplantation. A single-step method for ECM functionalization on poly(lactic-co-glycolic acid) (PLGA) microspheres using a novel compound, dopamine-conjugated poly(ethylene-alt-maleic acid), as a stabilizer during the preparation of microspheres is reported. The dopamine molecules on the surface of microspheres provide active sites for the conjugation of ECM in an aqueous solution. The results reveal that the viability of MSCs improves when they are coated over the ECM-functionalized PLGA microspheres (eMs). In addition, the incorporation of a broad-spectrum caspase inhibitor (IDN6556) into the eMs synergistically increases the viability of MSCs under in vitro conditions. Intraperitoneal injection of the MSC-microsphere hybrid alleviates experimental colitis in a murine model via inhibiting Th1 and Th17 differentiation of CD4+ T cells in colon-draining mesenteric lymph nodes. Therefore, drug-loaded ECM-coated surfaces may be considered as attractive tools for improving viability, proliferation, and functionality of MSCs following transplantation.
Collapse
Affiliation(s)
- Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Prakash Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Kyoung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
18
|
Liao J, Wu S, Li K, Fan Y, Dunne N, Li X. Peptide‐modified bone repair materials: Factors influencing osteogenic activity. J Biomed Mater Res A 2019; 107:1491-1512. [DOI: 10.1002/jbm.a.36663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical Engineering, Beihang University Beijing 100083 China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical Engineering, Beihang University Beijing 100083 China
| | - Kun Li
- State Key Laboratory of Powder MetallurgyCentral South University Changsha 410083 China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical Engineering, Beihang University Beijing 100083 China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100083 China
| | - Nicholas Dunne
- Centre for Medical Engineering ResearchSchool of Mechanical and Manufacturing Engineering, Dublin City University Stokes Building, Collins Avenue, Dublin 9 Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical Engineering, Beihang University Beijing 100083 China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100083 China
| |
Collapse
|
19
|
Padiolleau L, Chanseau C, Durrieu S, Chevallier P, Laroche G, Durrieu MC. Single or Mixed Tethered Peptides To Promote hMSC Differentiation toward Osteoblastic Lineage. ACS APPLIED BIO MATERIALS 2018; 1:1800-1809. [DOI: 10.1021/acsabm.8b00236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laurence Padiolleau
- Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Université de Bordeaux, Pessac, France
- Laboratoire d’Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Hôpital St-François d’Assise, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Québec G1L 3L5, Canada
| | - Christel Chanseau
- Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Université de Bordeaux, Pessac, France
| | - Stéphanie Durrieu
- ARNA Laboratory, Université de Bordeaux, 33076 Bordeaux, France
- ARNA Laboratory, INSERM, U1212 − CNRS UMR 5320, 33000 Bordeaux, France
| | - Pascale Chevallier
- Laboratoire d’Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Hôpital St-François d’Assise, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Québec G1L 3L5, Canada
| | - Gaétan Laroche
- Laboratoire d’Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Hôpital St-François d’Assise, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Québec G1L 3L5, Canada
| | - Marie-Christine Durrieu
- Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Université de Bordeaux, Pessac, France
| |
Collapse
|
20
|
Simitzi C, Harimech P, Spanou S, Lanara C, Heuer-Jungemann A, Manousaki A, Fotakis C, Ranella A, Kanaras AG, Stratakis E. Cells on hierarchically-structured platforms hosting functionalized nanoparticles. Biomater Sci 2018; 6:1469-1479. [PMID: 29623309 DOI: 10.1039/c7bm00904f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, we report on a novel approach to develop hierarchically-structured cell culture platforms incorporating functionalized gold nanoparticles (AuNPs). In particular, the hierarchical substrates comprise primary pseudo-periodic arrays of silicon microcones combined with a secondary nanoscale pattern of homogeneously deposited AuNPs terminated with bio-functional moieties. AuNPs with various functionalities (i.e. oligopeptides, small molecules and oligomers) were successfully attached onto the microstructures. Experiments with PC12 cells on hierarchical substrates incorporating AuNPs carrying the RGD peptide showed an impressive growth and NGF-induced differentiation of the PC12 cells, compared to that on the NP-free, bare, micropatterned substrates. The exploitation of the developed methodology for the binding of AuNPs as carriers of specific bio-functional moieties onto micropatterned culture substrates for cell biology studies is envisaged.
Collapse
Affiliation(s)
- Chara Simitzi
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Heraklion, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ahlfeld T, Doberenz F, Kilian D, Vater C, Korn P, Lauer G, Lode A, Gelinsky M. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink. Biofabrication 2018; 10:045002. [PMID: 30004388 DOI: 10.1088/1758-5090/aad36d] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to their characteristic resemblance of the mineral component of bone, calcium phosphates are widely accepted as optimal bone substitute materials. Recent research focused on the development of pasty calcium phosphate cement (CPC) formulations, which can be fabricated into various shapes by low-temperature extrusion-based additive manufacturing, namely 3D plotting. While it could be demonstrated that sensitive substances like growth factors can be integrated in such printed CPC scaffolds without impairment of their biological activity live cells cannot be suspended in CPC as they may not be functional when enclosed in a solid and stiff matrix. In contrast, 3D bioprinting of soft cell-laden hydrogels (bioinks) enables the fabrication of constructs with spatially defined cell distribution, which has the potential to overcome problems of conventional cell seeding techniques-but such objects lack mechanical stability. Herein, we combine 3D plotting of CPC and bioprinting of a cell-laden bioink for the first time. As model bioink, an alginate-methylcellulose blend (alg/mc) was used, previously developed by us. Firstly, a fabrication regime was established, enabling optimal setting of CPC and cell survival inside the bioink. As the cells are exposed to the chemical changes of CPC precursors during setting, we studied the compatibility of the complex system of CPC and cell-laden alg/mc for a combined extrusion process and characterized the cellular behavior of encapsulated human mesenchymal stroma cells within the bioink at the interface and in direct vicinity to the CPC. Furthermore, biphasic scaffolds were mechanically characterized and a model for osteochondral tissue grafts is proposed. The manuscript discusses possible impacts of the CPC setting reaction on cells within the bioink and illustrates the advantages of CPC in bioprinting as alternative to the commonly used thermoplasts for bone tissue engineering.
Collapse
Affiliation(s)
- Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Daugela P, Pranskunas M, Juodzbalys G, Liesiene J, Baniukaitiene O, Afonso A, Sousa Gomes P. Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study. J Tissue Eng Regen Med 2018; 12:1195-1208. [PMID: 29498222 DOI: 10.1002/term.2651] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/05/2017] [Accepted: 02/17/2018] [Indexed: 12/19/2022]
Abstract
Cellulose scaffolds containing nano- or micro-hydroxyapatite (nHA or μHA) were prepared by the regeneration of cellulose from its acetylated derivative and the mechanical immobilization of inorganic particles, followed by freeze-drying. Microtomographic (micro-computed tomography) evaluation revealed that both scaffolds presented a highly interconnected porous structure, with a mean pore diameter of 490 ± 94 and 540 ± 132 μm for cellulose/nHA and cellulose/μHA, respectively. In vitro and in vivo characterizations of the developed scaffolds were investigated. Commercially available bone allograft was used as a control material. For the in vitro characterization, osteoblastic cell cultures were used and characterized over time to evaluate cell adhesion, metabolic activity, and functional output (alkaline phosphatase activity and osteoblastic gene expression). The results revealed greater spreading cell distribution alongside an increased number of filopodia, higher MTT values, and significantly increased expression of osteoblastic genes (Runx-2, alkaline phosphatase, and BMP-2) for cellulose/nHA, compared with cellulose/μHA and the control. The in vivo biocompatibility was evaluated in a rabbit calvarial defect model. The investigated scaffolds were implanted in circular rabbit calvaria defects. Four- and 12-week bone biopsies were investigated using micro-computed tomography and histological analysis. Although both cellulose/HA scaffolds outperformed the assayed control, a significantly higher amount of newly formed mineralized tissue was found within the defects loaded with cellulose/nHA. Within the limitations of this study, the developed cellulose/HA scaffolds showed promising results for bone regeneration applications. The biological response to the scaffold seems to be greatly dependent on the HA particles' characteristics, with cellulose scaffolds loaded with nHA eliciting an enhanced bone response.
Collapse
Affiliation(s)
- Povilas Daugela
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Pranskunas
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintaras Juodzbalys
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolanta Liesiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Odeta Baniukaitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Américo Afonso
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Pedro Sousa Gomes
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Sogorkova J, Zapotocky V, Cepa M, Stepankova V, Vagnerova H, Batova J, Pospisilova M, Betak J, Nesporova K, Hermannova M, Daro D, Duffy G, Velebny V. Optimization of cell growth on palmitoyl-hyaluronan knitted scaffolds developed for tissue engineering applications. J Biomed Mater Res A 2018; 106:1488-1499. [PMID: 29377555 DOI: 10.1002/jbm.a.36353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
Abstract
Polysaccharides meet several criteria for a suitable biomaterial for tissue engineering, which include biocompatibility and ability to support the delivery and growth of cells. Nevertheless, most of these polysaccharides, for example dextran, alginate, and glycosaminoglycans, are highly soluble in aqueous solutions. Hyaluronic acid hydrophobized by palmitic acid and processed to the form of wet-spun fibers and the warp-knitted textile scaffold is water non-soluble, but biodegradable material, which could be used for the tissue engineering purpose. However, its surface quality does not allow cell attachment. To enhance the biocompatibility the surface of palmitoyl-hyaluronan was roughened by freeze drying and treated by different cell adhesive proteins (fibronectin, fibrinogen, laminin, methacrylated gelatin and collagen IV). Except for collagen IV, these proteins covered the fibers uniformly for an extended period of time and supported the adhesion and cultivation of dermal fibroblasts and mesenchymal stem cells. Interestingly, adipose stem cells cultivated on the fibronectin-modified scaffold secreted increasing amount of HGF, SDF-1, and VEGF, three key growth factors involved in cardiac regeneration. These results suggested that palmitoyl-hyaluronan scaffold may be a promising material for various applications in tissue regeneration, including cardiac tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1488-1499, 2018.
Collapse
Affiliation(s)
- Jana Sogorkova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Martin Cepa
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Hana Vagnerova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | - Jana Batova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Jiri Betak
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | | | - Dorothée Daro
- Celyad, Rue Edouard Belin 2, Mont-Saint-Guibert, 1435, Belgium
| | - Garry Duffy
- Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | | |
Collapse
|
24
|
Li R, McRae NL, McCulloch DR, Boyd-Moss M, Barrow CJ, Nisbet DR, Stupka N, Williams RJ. Large and Small Assembly: Combining Functional Macromolecules with Small Peptides to Control the Morphology of Skeletal Muscle Progenitor Cells. Biomacromolecules 2018; 19:825-837. [DOI: 10.1021/acs.biomac.7b01632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rui Li
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds 3216, Australia
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan 571339, China
| | - Natasha L. McRae
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Daniel R. McCulloch
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Mitchell Boyd-Moss
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
- School of Engineering, RMIT University, Bundoora 3083, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds 3216, Australia
| | - David R. Nisbet
- Research School of Engineering, The Australian National University, Canberra 2601, Australia
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
| | - Nicole Stupka
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Richard J. Williams
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
- School of Engineering, RMIT University, Bundoora 3083, Australia
| |
Collapse
|
25
|
Gentile P, Ferreira AM, Callaghan JT, Miller CA, Atkinson J, Freeman C, Hatton PV. Multilayer Nanoscale Encapsulation of Biofunctional Peptides to Enhance Bone Tissue Regeneration In Vivo. Adv Healthc Mater 2017; 6. [PMID: 28169513 DOI: 10.1002/adhm.201601182] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/08/2017] [Indexed: 11/09/2022]
Abstract
Bone tissue healing is a dynamic process that is initiated by the recruitment of osteoprogenitor cells followed by their migration, proliferation, differentiation, and development of a mineralizing extracellular matrix. The work aims to manufacture a functionalized porous membrane that stimulates early events in bone healing for initiating a regenerative cascade. Layer-by-layer (LbL) assembly is proposed to modify the surface of osteoconductive electrospun meshes, based on poly(lactic-co-glycolic acid) and nanohydroxyapatite, by using poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) as polyelectrolytes. Molecular cues are incorporated by grafting peptide fragments into the discrete nanolayers. KRSR (lysine-arginine-serine-arginine) sequence is grafted to enhance cell adhesion and proliferation, NSPVNSKIPKACCVPTELSAI to guide bone marrow mesenchymal stem cells differentiation in osteoblasts, and FHRRIKA (phenylalanine-histidine-arginine-arginine-isoleucine-lysine-alanine) to improve mineralization matrix formation. Scanning electron microscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrate the successful surface functionalization. Furthermore, the peptide incorporation enhances cellular processes, with good viability and significant increase of alkaline phosphatase activity, osteopontin, and osteocalcin. The functionalized membrane induces a favorable in vivo response after implantation for four weeks in nonhealing rat calvarial defect model. It is concluded that the multilayer nanoencapsulation of biofunctional peptides using LbL approach has significant potential as innovative manufacturing technique to improve bone regeneration in orthopedic and craniofacial medical devices.
Collapse
Affiliation(s)
- Piergiorgio Gentile
- School of Mechanical and Systems Engineering; Newcastle University; Claremont Road Newcastle upon Tyne NE1 7RU UK
| | - Ana Marina Ferreira
- School of Mechanical and Systems Engineering; Newcastle University; Claremont Road Newcastle upon Tyne NE1 7RU UK
| | - Jill T. Callaghan
- School of Clinical Dentistry; University of Sheffield; 19 Claremont Crescent Sheffield S10 2TA UK
| | - Cheryl A. Miller
- School of Clinical Dentistry; University of Sheffield; 19 Claremont Crescent Sheffield S10 2TA UK
| | - Joss Atkinson
- School of Clinical Dentistry; University of Sheffield; 19 Claremont Crescent Sheffield S10 2TA UK
| | - Christine Freeman
- School of Clinical Dentistry; University of Sheffield; 19 Claremont Crescent Sheffield S10 2TA UK
| | - Paul V. Hatton
- School of Clinical Dentistry; University of Sheffield; 19 Claremont Crescent Sheffield S10 2TA UK
| |
Collapse
|
26
|
Huang ZB, Shi X, Mao J, Gong SQ. Design of a hydroxyapatite-binding antimicrobial peptide with improved retention and antibacterial efficacy for oral pathogen control. Sci Rep 2016; 6:38410. [PMID: 27910930 PMCID: PMC5133556 DOI: 10.1038/srep38410] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/09/2016] [Indexed: 11/08/2022] Open
Abstract
Controlling and reducing the formation of pathogenic biofilm on tooth surface is the key to the prevention and treatment of the biofilm-associated oral diseases. Antimicrobial peptides (AMPs), considered as possible future alternatives for conventional antibiotics, have been extensively studied for the control of bacterial infection. Due to the rapid dilution and degradation by human saliva, AMP preparations designed for oral use with longer retention and higher efficacy are in urgent need. To this end, a hydroxyapatite (HAp)-binding antimicrobial peptide (HBAMP), which is based on the fusion of a specific HAp-binding heptapeptide (HBP7) domain and a broad-spectrum antimicrobial peptide (KSLW) domain, has been developed in our laboratory. HBAMP was supposed to form a contact-active antibacterial interface on tooth surface to inhibit the formation of biofilms. In this study, we investigated its binding behaviour, antibacterial activity against bacteria in both planktonic and sessile states, enzymatic stability in human saliva, and cytocompatibility to human gingival fibroblasts (HGFs). Our findings suggest that HBAMP could adsorb on tooth surface to provide effective antibacterial activity with improved retention. This study provides a proof-of-concept on using conjugated molecules to promote antibacterial efficacy by synergistically actions of HBAMP free in solution and bound on tooth surface.
Collapse
Affiliation(s)
- Zhi-bin Huang
- Department of Stomatology, Zhongshan Hospital, Xiamen University, Xiamen 361004, P. R. China
| | - Xin Shi
- Centre of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jing Mao
- Centre of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Shi-qiang Gong
- Centre of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
27
|
Wang PY, Thissen H, Kingshott P. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater 2016; 45:31-59. [PMID: 27596488 DOI: 10.1016/j.actbio.2016.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
Abstract
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. STATEMENT OF SIGNIFICANCE This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials.
Collapse
|
28
|
Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Control Release 2016; 244:122-135. [PMID: 27794492 DOI: 10.1016/j.jconrel.2016.10.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/07/2023]
Abstract
Molecular signals in the form of growth factors are the main modulators of cell behavior. However, the use of growth factors in tissue engineering has several drawbacks, including their costs, difficult production, immunogenicity and short half-life. Furthermore, many of them are pleiotropic and, since a single growth factor can have different active domains, their effect is not always fully controllable. A very interesting alternative that has recently emerged is the use of biomimetic peptides. Sequences derived from the active domains of soluble or extracellular matrix proteins can be used to functionalize the biomaterials used as scaffolds for new tissue growth to either direct the attachment of cells or to be released as soluble ligands. Since these short peptides can be easily designed and cost-effectively synthesized in vitro, their use has opened up a world of new opportunities to obtain cheaper and more effective implants for regenerative medicine strategies. In this extensive review we will go through many of the most important peptides with potential interest for bone tissue engineering, not limiting to those that only mediate cell adhesion or induce the osteogenic differentiation of progenitor cells, but also focusing on those that direct angiogenesis because of its close relation with bone formation.
Collapse
Affiliation(s)
- Rick Visser
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain.
| | - Gustavo A Rico-Llanos
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| | - Hertta Pulkkinen
- BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jose Becerra
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| |
Collapse
|
29
|
Włodarczyk-Biegun MK, Werten MWT, Posadowska U, Storm IM, de Wolf FA, van den Beucken JJJP, Leeuwenburgh SCG, Cohen Stuart MA, Kamperman M. Nanofibrillar hydrogel scaffolds from recombinant protein-based polymers with integrin- and proteoglycan-binding domains. J Biomed Mater Res A 2016; 104:3082-3092. [PMID: 27449385 PMCID: PMC5129582 DOI: 10.1002/jbm.a.35839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/23/2016] [Accepted: 07/21/2016] [Indexed: 01/24/2023]
Abstract
This study describes the design, production, and testing of functionalized variants of a recombinant protein‐based polymer that forms nanofibrillar hydrogels with self‐healing properties. With a view to bone tissue engineering applications, we equipped these variants with N‐terminal extensions containing either (1) integrin‐binding (RGD) or (2) less commonly studied proteoglycan‐binding (KRSR) cell‐adhesive motifs. The polymers were efficiently produced as secreted proteins using the yeast Pichia pastoris and were essentially monodisperse. The pH‐responsive protein‐based polymers are soluble at low pH and self‐assemble into supramolecular fibrils and hydrogels at physiological pH. By mixing functionalized and nonfunctionalized proteins in different ratios, and adjusting pH, hydrogel scaffolds with the same protein concentration but varying content of the two types of cell‐adhesive motifs were readily obtained. The scaffolds were used for the two‐dimensional culture of MG‐63 osteoblastic cells. RGD domains had a slightly stronger effect than KRSR domains on adhesion, activity, and spreading. However, scaffolds featuring both functional domains revealed a clear synergistic effect on cell metabolic activity and spreading, and provided the highest final degree of cell confluency. The mixed functionalized hydrogels presented here thus allowed to tailor the osteoblastic cell response, offering prospects for their further development as scaffolds for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3082–3092, 2016.
Collapse
Affiliation(s)
| | - Marc W T Werten
- Wageningen UR Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands.
| | - Urszula Posadowska
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, NL-6708 WE Wageningen, The Netherlands.,Faculty of Materials Science and Ceramics, Department of Biomaterials, AGH University of Science and Technology, Al. A. Mickiewicza 30, Krakow, 30-059, Poland
| | - Ingeborg M Storm
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen UR Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | | | - Sander C G Leeuwenburgh
- Department of Biomaterials, Radboudumc, Philips Van Leydenlaan 25, NL-6525 EX Nijmegen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, NL-6708 WE Wageningen, The Netherlands
| | - Marleen Kamperman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, NL-6708 WE Wageningen, The Netherlands
| |
Collapse
|
30
|
Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV. The role of peptides in bone healing and regeneration: a systematic review. BMC Med 2016; 14:103. [PMID: 27400961 PMCID: PMC4940902 DOI: 10.1186/s12916-016-0646-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. METHODS A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. RESULTS Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. CONCLUSION Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Michalis Panteli
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | | | - Elena Jones
- Unit of Musculoskeletal Disease, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital, University of Leeds, LS9 7TF, Leeds, UK
| | - Giorgio Maria Calori
- Department of Trauma & Orthopaedics, School of Medicine, ISTITUTO ORTOPEDICO GAETANO PINI, Milan, Italy
| | - Peter V Giannoudis
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, LS7 4SA Leeds, West Yorkshire, Leeds, UK.
| |
Collapse
|
31
|
Bain JL, Bonvallet PP, Abou-Arraj RV, Schupbach P, Reddy MS, Bellis SL. Enhancement of the Regenerative Potential of Anorganic Bovine Bone Graft Utilizing a Polyglutamate-Modified BMP2 Peptide with Improved Binding to Calcium-Containing Materials. Tissue Eng Part A 2016; 21:2426-36. [PMID: 26176902 DOI: 10.1089/ten.tea.2015.0160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Autogenous bone is the gold standard material for bone grafting in craniofacial and orthopedic regenerative medicine. However, due to complications associated with harvesting donor bone, clinicians often use commercial graft materials that may lose their osteoinductivity due to processing. This study was aimed to functionalize one of these materials, anorganic bovine bone (ABB), with osteoinductive peptides to enhance regenerative capacity. Two peptides known to induce osteoblastic differentiation of mesenchymal stem cells were evaluated: (1) DGEA, an amino acid motif within collagen I and (2) a biomimetic peptide derived from bone morphogenic protein 2 (BMP2pep). To achieve directed coupling of the peptides to the graft surface, the peptides were engineered with a heptaglutamate domain (E7), which confers specific binding to calcium moieties within bone mineral. Peptides with the E7 domain exhibited greater anchoring to ABB than unmodified peptides, and E7 peptides were retained on ABB for at least 8 weeks in vivo. To assess the osteoinductive potential of the peptide-conjugated ABB, ectopic bone formation was evaluated utilizing a rat subcutaneous pouch model. ABB conjugated with full-length recombinant BMP2 (rBMP2) was also implanted as a model for current clinical treatments utilizing rBMP2 passively adsorbed to carriers. These studies showed that E7BMP2pep/ABB samples induced more new bone formation than all other peptides, and an equivalent amount of new bone as compared with rBMP2/ABB. A mandibular defect model was also used to examine intrabony healing of peptide-conjugated ABB. Bone healing was monitored at varying time points by positron emission tomography imaging with (18)F-NaF, and it was found that the E7BMP2pep/ABB group had greater bone metabolic activity than all other groups, including rBMP2/ABB. Importantly, animals implanted with rBMP2/ABB exhibited complications, including inflammation and formation of cataract-like lesions in the eye, whereas no side effects were observed with E7BMP2pep/ABB. Furthermore, histological analysis of the tissues revealed that grafts with rBMP2, but not E7BMP2pep, induced formation of adipose tissue in the defect area. Collectively, these results suggest that E7-modified BMP2-mimetic peptides may enhance the regenerative potential of commercial graft materials without the deleterious effects or high costs associated with rBMP2 treatments.
Collapse
Affiliation(s)
- Jennifer L Bain
- 1 Department of Periodontology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Paul P Bonvallet
- 2 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ramzi V Abou-Arraj
- 1 Department of Periodontology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Peter Schupbach
- 3 Service and Research Laboratory , Schupbach Ltd., Horgen, Switzerland
| | - Michael S Reddy
- 1 Department of Periodontology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Susan L Bellis
- 2 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
32
|
Pagel M, Hassert R, John T, Braun K, Wießler M, Abel B, Beck‐Sickinger AG. Multifunktionale Beschichtung verbessert Zelladhäsion auf Titan durch kooperativ wirkende Peptide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mareen Pagel
- Institut für Biochemie Universität Leipzig Brüderstraße 34 04103 Leipzig Deutschland
| | - Rayk Hassert
- Institut für Biochemie Universität Leipzig Brüderstraße 34 04103 Leipzig Deutschland
- Institut für Bioanalytische Chemie Universität Leipzig Deutscher Platz 5 04103 Leipzig Deutschland
| | - Torsten John
- Leibniz-Institut für Oberflächenmodifizierung (IOM) und Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie Universität Leipzig Permoserstraße 15 04318 Leipzig Deutschland
| | - Klaus Braun
- Deutsches Krebsforschungszentrum Abteilung Medizinische Physik in der Radiologie Im Neuenheimer Feld 280 69120 Heidelberg Deutschland
| | - Manfred Wießler
- Deutsches Krebsforschungszentrum Abteilung Medizinische Physik in der Radiologie Im Neuenheimer Feld 280 69120 Heidelberg Deutschland
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung (IOM) und Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie Universität Leipzig Permoserstraße 15 04318 Leipzig Deutschland
| | | |
Collapse
|
33
|
Pagel M, Hassert R, John T, Braun K, Wießler M, Abel B, Beck-Sickinger AG. Multifunctional Coating Improves Cell Adhesion on Titanium by using Cooperatively Acting Peptides. Angew Chem Int Ed Engl 2016; 55:4826-30. [PMID: 26938787 DOI: 10.1002/anie.201511781] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 11/08/2022]
Abstract
Promotion of cell adhesion on biomaterials is crucial for the long-term success of a titanium implant. Herein a novel concept is highlighted combining very stable and affine titanium surface adhesive properties with specific cell binding moieties in one molecule. A peptide containing L-3,4-dihydroxyphenylalanine was synthesized and affinity to titanium was investigated. Modification with a cyclic RGD peptide and a heparin binding peptide (HBP) was realized by an efficient on-resin combination of Diels-Alder reaction with inverse electron demand and Cu(I) catalyzed azide-alkyne cycloaddition. The peptide was fluorescently labeled by thiol Michael addition. Conjugating the cyclic RGD and HBP in one peptide gave improved spreading, proliferation, viability, and the formation of well-developed actin cytoskeleton and focal contacts of osteoblast-like cells.
Collapse
Affiliation(s)
- Mareen Pagel
- Institut für Biochemie, Universität Leipzig, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Rayk Hassert
- Institut für Biochemie, Universität Leipzig, Brüderstrasse 34, 04103, Leipzig, Germany.,Institut für Bioanalytische Chemie, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Torsten John
- Leibniz-Institut für Oberflächenmodifizierung (IOM), and Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Klaus Braun
- Deutsches Krebsforschungszentrum, Department Medizinische Physik in der Radiologie, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Manfred Wießler
- Deutsches Krebsforschungszentrum, Department Medizinische Physik in der Radiologie, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung (IOM), and Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | | |
Collapse
|
34
|
Bain JL, Culpepper BK, Reddy MS, Bellis SL. Comparing variable-length polyglutamate domains to anchor an osteoinductive collagen-mimetic peptide to diverse bone grafting materials. Int J Oral Maxillofac Implants 2015; 29:1437-45. [PMID: 25397807 DOI: 10.11607/jomi.3759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Allografts, xenografts, and alloplasts are commonly used in craniofacial medicine as alternatives to autogenous bone grafts; however, these materials lack important bone-inducing proteins. A method for enhancing the osteoinductive potential of these commercially available materials would provide a major clinical advance. In this study, a calcium-binding domain, polyglutamate, was added to an osteoinductive peptide derived from collagen type I, Asp-Gly-Glu-Ala (DGEA), to anchor the peptide onto four different materials: freeze-dried bone allograft (FDBA); anorganic bovine bone (ABB); β-tricalcium phosphate (β-TCP); and a calcium sulfate bone cement (CaSO4). The authors also examined whether peptide binding and retention could be tuned by altering the number of glutamate residues within the polyglutamate domain. MATERIALS AND METHODS DGEA or DGEA modified with diglutamate (E2DGEA), tetraglutamate (E4DGEA), or heptaglutamate (E7DGEA) were evaluated for binding and release to the grafting materials. Peptides were conjugated with a fluorescein isothiocyanate (FITC) tag to allow monitoring by fluorescent microscopy or through measurements of solution fluorescence. In vivo retention was evaluated by implanting graft materials coated with FITC-peptides into rat subcutaneous pouches. RESULTS Significantly more peptide was loaded onto the four graft materials as the number of glutamates increased, with E7DGEA exhibiting the greatest binding. There was also significantly greater retention of peptides with longer glutamate domains following a 3-day incubation with agitation. Importantly, E7DGEA peptides remained on the grafts after a 2-month implantation into skin pouches, a sufficient interval to influence bony healing. CONCLUSION Variable-length polyglutamate domains can be added to osteoinductive peptides to control the amount of peptide bound and rate of peptide released. The lack of methods for tunable coupling of biologics to commercial graft sources has been a major barrier toward developing materials that approach the clinical efficacy of autogenous bone. Modification of osteoinductive factors with polyglutamate domains constitutes a technically straightforward and cost-effective strategy for enhancing osteoinductivity of diverse graft products.
Collapse
|
35
|
Clark D, Wang X, Chang S, Czajka-Jakubowska A, Clarkson BH, Liu J. VEGF promotes osteogenic differentiation of ASCs on ordered fluorapatite surfaces. J Biomed Mater Res A 2015; 103:639-45. [PMID: 24797761 PMCID: PMC4221573 DOI: 10.1002/jbm.a.35215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 01/02/2023]
Abstract
Vascular endothelial growth factor (VEGF) has been reported to mediate both osteogenesis and angiogenesis in bone regeneration. We previously found an upregulation of VEGF in adipose-derived stem cells (ASCs) when obvious mineralization occurred on a novel fluorapatite (FA)-coated surfaces. This study investigated the effect of FA and VEGF on the growth, differentiation and mineralization of (ASC) grown on ordered FA surfaces. Cells grown on FA and treated with VEGF demonstrated osteogenic differentiation as measured with ALP staining, and obvious mineralization as measured by Alizarin red staining. A combined stimulating effect of FA and VEGF was seen using both indicators. VEGF signaling pathway perturbation using a specific VEGF receptor inhibitor showed the lowest levels of ALP and Alizarin red staining, which was partially rescued when the cells were grown on FA and/or treated with the addition of VEGF. The osteogenic differentiation of ASCs stimulated by these FA surfaces as well as VEGF has been shown to be mediated through, but probably not only, the VEGF signaling pathway. The enhancement of osteogenic differentiation and mineralization supports the potential use of therapeutic VEGF and FA coatings in bone regeneration.
Collapse
Affiliation(s)
- D Clark
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | | | | | | | |
Collapse
|
36
|
Lee WH, Loo CY, Rohanizadeh R. A review of chemical surface modification of bioceramics: Effects on protein adsorption and cellular response. Colloids Surf B Biointerfaces 2014; 122:823-834. [DOI: 10.1016/j.colsurfb.2014.07.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/23/2014] [Accepted: 07/17/2014] [Indexed: 12/31/2022]
|
37
|
Ye M, Mohanty P, Ghosh G. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:310-6. [PMID: 25280710 DOI: 10.1016/j.msec.2014.08.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 06/17/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023]
Abstract
Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Mao Ye
- Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, United States
| | - Pravansu Mohanty
- Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, United States
| | - Gargi Ghosh
- Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, United States.
| |
Collapse
|
38
|
Palchesko RN, Buckholtz GA, Romeo JD, Gawalt ES. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:398-406. [PMID: 24857508 DOI: 10.1016/j.msec.2014.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 02/20/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences.
Collapse
Affiliation(s)
- Rachelle N Palchesko
- Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Gavin A Buckholtz
- Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Jared D Romeo
- Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Ellen S Gawalt
- Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
39
|
Santos E, Garate A, Pedraz JL, Orive G, Hernández RM. The synergistic effects of the RGD density and the microenvironment on the behavior of encapsulated cells:In vitroandin vivodirect comparative study. J Biomed Mater Res A 2014; 102:3965-72. [DOI: 10.1002/jbm.a.35073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Edorta Santos
- NanoBioCel Group, Laboratory of Pharmaceutics; University of the Basque Country; School of Pharmacy; Vitoria Spain
- Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Vitoria Spain
| | - Ane Garate
- NanoBioCel Group, Laboratory of Pharmaceutics; University of the Basque Country; School of Pharmacy; Vitoria Spain
- Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Vitoria Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics; University of the Basque Country; School of Pharmacy; Vitoria Spain
- Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Vitoria Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics; University of the Basque Country; School of Pharmacy; Vitoria Spain
- Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Vitoria Spain
| | - Rosa María Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics; University of the Basque Country; School of Pharmacy; Vitoria Spain
- Biomedical Research Networking Center in Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Vitoria Spain
| |
Collapse
|
40
|
Kim JH, Jekarl DW, Kim M, Oh EJ, Kim Y, Park IY, Shin JC. Effects of ECM protein mimetics on adhesion and proliferation of chorion derived mesenchymal stem cells. Int J Med Sci 2014; 11:298-308. [PMID: 24516355 PMCID: PMC3917120 DOI: 10.7150/ijms.6672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/12/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We evaluated the effects of fibronectin, collagen, cadherin, and laminin based extracellular matrix (ECM) protein mimetics coated with mussel derived adhesive protein (MAP) on adhesion and proliferation of chorionic mesenchymal stem cells (cMSCs). METHODS Human placental chorionic tissues from term third-trimester pregnancies (n=3) were used. The cMSCs were cultured on rationally designed ECM protein mimetics coated with MAP on plastic surfaces with the addition of reduced fetal bovine serum (0.5%, 1% FBS). Adhesion capabilities were monitored by a real time cell analysis system (RTCA) utilizing an impedance method. Proliferation capabilities were monitored by RTCA and MTS assay. RESULTS Of the ECM protein mimetics tested, GRGDSP(FN) coated surfaces exhibited the highest adhesion and proliferation capabilities on RTCA at FBS concentration of 0.5% and 1%. When 0.5% FBS was added to ECM protein mimetics during the MTS assay, GRGDSP(FN), REDV(FN), and collagen mimetics, GPKGAAGEPGKP(ColI) showed higher cMSCs proliferation compared with the control. When 1% FBS was added, GRGDSP(FN) and TAIPSCPEGTVPLYS(ColIV) showed significant cMSCs proliferation capacity. CONCLUSIONS Fibronectin mimetics, GRGDSP(FN) amino acid sequence showed the highest adhesion and proliferation capabilities. In addition, results from RTCA assessment of cell viability correlated well with the tetrazolium-based MTS assay.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- 1. Department of Laboratory Medicine College of Medicine, The Catholic University of Korea, Seoul, South Korea; ; 3. Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong Wook Jekarl
- 1. Department of Laboratory Medicine College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myungshin Kim
- 1. Department of Laboratory Medicine College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Jee Oh
- 1. Department of Laboratory Medicine College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yonggoo Kim
- 1. Department of Laboratory Medicine College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Yang Park
- 2. Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Chul Shin
- 2. Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
41
|
The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system. Biomaterials 2013; 34:9352-64. [DOI: 10.1016/j.biomaterials.2013.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/17/2013] [Indexed: 01/24/2023]
|
42
|
Yang W, Xi X, Fang J, Liu P, Cai K. Influences of magnetized hydroxyapatite on the growth behaviors of osteoblasts and the mechanism from molecular dynamics simulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3753-9. [DOI: 10.1016/j.msec.2013.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 12/17/2022]
|
43
|
Dorozhkin SV. Calcium Orthophosphate-Based Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2013; 6:3840-3942. [PMID: 28788309 PMCID: PMC5452669 DOI: 10.3390/ma6093840] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
Various types of grafts have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A bit later, such synthetic biomaterials were called bioceramics. In principle, bioceramics can be prepared from diverse materials but this review is limited to calcium orthophosphate-based formulations only, which possess the specific advantages due to the chemical similarity to mammalian bones and teeth. During the past 40 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the calcium orthophosphate-based implants remain biologically stable once incorporated into the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed and such formulations became an integrated part of the tissue engineering approach. Now calcium orthophosphate scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous and harbor different biomolecules and/or cells. Therefore, current biomedical applications of calcium orthophosphate bioceramics include bone augmentations, artificial bone grafts, maxillofacial reconstruction, spinal fusion, periodontal disease repairs and bone fillers after tumor surgery. Perspective future applications comprise drug delivery and tissue engineering purposes because calcium orthophosphates appear to be promising carriers of growth factors, bioactive peptides and various types of cells.
Collapse
|
44
|
Liu X, Wang X, Wang X, Ren H, He J, Qiao L, Cui FZ. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater 2013; 9:6798-805. [PMID: 23380207 DOI: 10.1016/j.actbio.2013.01.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
A class of designer functionalized self-assembling peptide nanofiber scaffolds developed from self-assembling peptide RADA16-I (AcN-RADARADARADARADA-CONH2) has become increasingly attractive not only for studying spatial behaviors of cells, but also for developing approaches for a wide range of medical applications including regenerative medicine, rapid hemostasis and cell therapy. In this study, we report three functionalized self-assembling peptide hydrogels that serve as a three-dimensional (3-D) artificial microenvironment to control human adipose stem cell (hASC) behavior in vitro. Short peptide motifs SKPPGTSS (bone marrow homing motif), FHRRIKA (heparin-binding motif) and PRGDSGYRGDS (two-unit RGD cell adhesion motif) were used to extend the C-terminus of RADA16-I to obtain functionalized peptides. Atomic force microscopy confirmed the formation of self-assembling nanofibers in the mixture of RADA16-I peptide and functionalized peptides. The behaviors of hASCs cultured in 3-D peptide hydrogels, including migration, proliferation and growth factor-secretion ability, were studied. Our results showed that the functionalized peptide hydrogels were suitable 3-D scaffolds for hASC growth with higher cell proliferation, migration and the secretion of angiogenic growth factors compared with tissue culture plates and pure RADA16-I scaffolds. The present study suggests that these functionalized designer peptide hydrogels not only have promising applications for diverse tissue engineering and regenerative medicine applications as stem cell delivery vehicles, but also could be a biomimetic 3-D system to study nanobiomaterial-stem cell interactions and to direct stem cell behaviors.
Collapse
|
45
|
Culpepper BK, Webb WM, Bonvallet PP, Bellis SL. Tunable delivery of bioactive peptides from hydroxyapatite biomaterials and allograft bone using variable-length polyglutamate domains. J Biomed Mater Res A 2013; 102:1008-16. [PMID: 23625466 DOI: 10.1002/jbm.a.34766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/02/2013] [Accepted: 04/18/2013] [Indexed: 11/08/2022]
Abstract
Hydroxyapatite (HA) biomaterials and allograft bone are common alternatives to autogenous grafts; however, these materials lack the strong osteoinductive potential of autologous bone. Previous studies have established that polyglutamate domains, which bind selectively to HA, can be engineered onto bioactive peptides as a mechanism for coupling osteoinductive signals onto HA and allograft. In the current investigation, we adapted the polyglutamate approach to tailor delivery of a model collagen-derived peptide, Asp-Gly-Glu-Ala (DGEA), by manipulating the number of glutamates in the HA binding domain. Specifically, DGEA was modified with diglutamate (E2-DGEA), tetraglutamate (E4-DGEA), or heptaglutamate (E7-DGEA), and it was found that initial peptide binding to HA and allograft was significantly enhanced as the number of glutamates increased. We also determined that the rate of release of polyglutamate-DGEA from substrates over a 5-day interval increased proportionally as the number of glutamate residues was decreased. Additionally, we tuned the peptide release rate by creating mixtures of E2-DGEA, E4-DGEA, and E7-DGEA, and observed that release kinetics of the mixtures were distinct from pure solutions of each respective peptide. These collective results suggest that variable-length polyglutamate domains provide an effective mechanism for controlled delivery of osteoregenerative peptides on HA-containing bone graft materials.
Collapse
Affiliation(s)
- Bonnie K Culpepper
- Department of Biomedical Engineering, University of Alabama at Birmingham, Alabama
| | | | | | | |
Collapse
|
46
|
Mavropoulos E, Hausen M, Costa AM, Alves G, Mello A, Ospina CA, Mir M, Granjeiro JM, Rossi AM. The impact of the RGD peptide on osteoblast adhesion and spreading on zinc-substituted hydroxyapatite surface. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1271-1283. [PMID: 23494616 DOI: 10.1007/s10856-013-4851-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
The incorporation of zinc into the hydroxyapatite structure (ZnHA) has been proposed to stimulate osteoblast proliferation and differentiation. Another approach to improve cell adhesion and hydroxyapatite (HA) performance is coating HA with adhesive proteins or peptides such as RGD (arginine-glycine-aspartic acid). The present study investigated the adhesion of murine osteoblastic cells to non-sintered zinc-substituted HA disks before and after the adsorption of RGD. The incorporation of zinc into the HA structure simultaneously changed the topography of disk's surface on the nanoscale and the disk's surface chemistry. Fluorescence microscopy analyses using RGD conjugated to a fluorescein derivative demonstrated that ZnHA adsorbed higher amounts of RGD than non-substituted HA. Zinc incorporation into HA promoted cell adhesion and spreading, but no differences in the cell density, adhesion and spreading were detected when RGD was adsorbed onto ZnHA. The pre-treatment of disks with fetal bovine serum (FBS) greatly increased the cell density and cell surface area for all RGD-free groups, overcoming the positive contribution of zinc to cell adhesion. The presence of RGD on the ZnHA surface impaired the effects of FBS pre-treatment possibly due to competition between FBS proteins and RGD for surface binding sites.
Collapse
Affiliation(s)
- Elena Mavropoulos
- Brazilian Center for Physics Research, Xavier Sigaud 150, Urca, RJ 22290-180, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 2013; 65:471-96. [PMID: 22465488 DOI: 10.1016/j.addr.2012.03.009] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/23/2022]
Abstract
The development of smart biomaterials for tissue regeneration has become the focus of intense research interest. More opportunities are available by the composite approach of combining the biomaterials in the form of biopolymers and/or bioceramics either synthetic or natural. Strategies to provide smart capabilities to the composite biomaterials primarily seek to achieve matrices that are instructive/inductive to cells, or that stimulate/trigger target cell responses that are crucial in the tissue regeneration processes. Here, we review in-depth, recent developments concerning smart composite biomaterials available for delivery systems of biofactors and cells and scaffolding matrices in tissue engineering. Smart composite designs are possible by modulating the bulk and surface properties that mimic the native tissues, either in chemical (extracellular matrix molecules) or in physical properties (e.g. stiffness), or by introducing external therapeutic molecules (drugs, proteins and genes) within the structure in a way that allows sustainable and controllable delivery, even time-dependent and sequential delivery of multiple biofactors. Responsiveness to internal or external stimuli, including pH, temperature, ionic strength, and magnetism, is another promising means to improve the multifunctionality in smart scaffolds with on-demand delivery potential. These approaches will provide the next-generation platforms for designing three-dimensional matrices and delivery systems for tissue regenerative applications.
Collapse
|
48
|
Jäger M, Böge C, Janissen R, Rohrbeck D, Hülsen T, Lensing-Höhn S, Krauspe R, Herten M. Osteoblastic potency of bone marrow cells cultivated on functionalized biometals with cyclic RGD-peptide. J Biomed Mater Res A 2013; 101:2905-14. [DOI: 10.1002/jbm.a.34590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/03/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - C. Böge
- Orthopaedic Department; University of Duisburg-Essen; Germany
| | | | - D. Rohrbeck
- Institute of Molecular Physical Chemistry; Heinrich-Heine University Düsseldorf; Germany
| | - T. Hülsen
- Orthopaedic Department; University of Duisburg-Essen; Germany
| | - S. Lensing-Höhn
- Orthopaedic Department; Heinrich-Heine-University Medical School; Düsseldorf; Germany
| | - R. Krauspe
- Orthopaedic Department; Heinrich-Heine-University Medical School; Düsseldorf; Germany
| | - M. Herten
- Orthopaedic Department; Heinrich-Heine-University Medical School; Düsseldorf; Germany
| |
Collapse
|
49
|
WANG DAN, LIAO XIAOFU, QIN XU, SHI WEI, ZHOU BIN. A novel chimeric peptide binds MC3T3-E1 cells to titanium and enhances their proliferation and differentiation. Mol Med Rep 2013; 7:1437-41. [DOI: 10.3892/mmr.2013.1352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/01/2013] [Indexed: 11/05/2022] Open
|
50
|
Culpepper BK, Morris DS, Prevelige PE, Bellis SL. Engineering nanocages with polyglutamate domains for coupling to hydroxyapatite biomaterials and allograft bone. Biomaterials 2013; 34:2455-62. [PMID: 23312905 DOI: 10.1016/j.biomaterials.2012.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/22/2012] [Indexed: 02/01/2023]
Abstract
Hydroxyapatite (HA) is the principal constituent of bone mineral, and synthetic HA is widely used as a biomaterial for bone repair. Previous work has shown that polyglutamate domains bind selectively to HA and that these domains can be utilized to couple bioactive peptides onto many different HA-containing materials. In the current study we have adapted this technology to engineer polyglutamate domains into cargo-loaded nanocage structures derived from the P22 bacteriophage. P22 nanocages have demonstrated significant potential as a drug delivery system due to their stability, large capacity for loading with a diversity of proteins and other types of cargo, and ability to resist degradation by proteases. Site-directed mutagenesis was used to modify the primary coding sequence of the P22 coat protein to incorporate glutamate-rich regions. Relative to wild-type P22, the polyglutamate-modified nanocages (E2-P22) exhibited increased binding to ceramic HA disks, particulate HA and allograft bone. Furthermore, E2-P22 binding was HA selective, as evidenced by negligible binding of the nanocages to non-HA materials including polystyrene, agarose, and polycaprolactone (PCL). Taken together these results establish a new mechanism for the directed coupling of nanocage drug delivery systems to a variety of HA-containing materials commonly used in diverse bone therapies.
Collapse
Affiliation(s)
- Bonnie K Culpepper
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|