1
|
Pan D, Wang J, Wang H, Wu S, Guo J, Guo L, Sun L, Gu Y. Mapping the blueprint of artificial blood vessels research: a bibliometric analysis. Int J Surg 2025; 111:1014-1031. [PMID: 38913439 PMCID: PMC11745618 DOI: 10.1097/js9.0000000000001877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Vascular diseases represent a significant cause of disability and death worldwide. The demand for artificial blood vessels is increasing due to the scarce supply of healthy autologous vessels. Nevertheless, the literature in this area remains sparse and inconclusive. METHODS Bibliometrics is the study of quantitative analysis of publications and their patterns. This study conducts a bibliometric analysis of publications on artificial blood vessels in the 21st century, examining performance distribution, research trajectories, the evolution of research hotspots, and the exploration of the knowledge base. This approach provides comprehensive insights into the knowledge structure of the field. RESULTS The search retrieved 2060 articles, showing a consistent rise in the publication volume and average annual citation frequency related to artificial blood vessels research. The United States is at the forefront of high-quality publications and international collaborations. Among academic institutions, Yale University is a leading contributor. The dominant disciplines within the artificial blood vessels sector include engineering, biomedical sciences, materials science, biomaterials science, and surgery, with surgery experiencing the most rapid expansion. CONCLUSIONS This study is the inaugural effort to bibliometrically analyze and visualize the scholarly output in the domain of artificial blood vessels. It provides clinicians and researchers with a reliable synopsis of the field's current state, offering a reference point for existing research and suggesting new avenues for future investigations.
Collapse
Affiliation(s)
- Dikang Pan
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hui Wang
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sensen Wu
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianming Guo
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yongquan Gu
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Xiong Y, Lu X, Ma X, Cao J, Pan J, Li C, Zheng Y. Preparation of fibre-reinforced PLA-collagen@PLA-PCL@PCL-gelatin three-layer vascular graft by EDC/NHS cross-linking and its performance study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2343-2362. [PMID: 39037965 DOI: 10.1080/09205063.2024.2380567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024]
Abstract
In this study, a three-layer small diameter artificial vascular graft with a structure similar to that of natural blood vessels was first constructed by triple-step electrospinning technology, in which polylactic acid (PLA) and collagen (COL) were used for the inner layer, polylactic acid and polycaprolactone (PCL) was used for the middle layer and polycaprolactone and gelatin was used for the outer layer. The properties of the artificial vascular graft were adjusted by the EDC/NHS cross-linking agent through the reaction between the collagen or gelatine and EDC/NHS. The mechanical and hydrophilic properties of the cross-linked artificial vessels were substantially enhanced, with a maximum stress of 9.56 MPa in the axial direction and 9.31 MPa in the radial direction for the P/C (4:1) vascular graft, which exceeded that of many textile-based and natural vascular grafts. The increased hydrophilicity of the inner layer of the vessel before crosslinking was due to the addition of COL, and the inner layer of the artificial vessel after crosslinking had a substantial increase in hydrophilicity due to the production of a more hydrophilic urea derivative. The increased hydrophilicity led to easier cell adhesion to the inner layer of the artificial vessel, especially for the P/C (2:1) vascular graft, where the cell proliferation rate and adhesion were high due to COL incorporation and cross-linking. The three-layer vascular grafts studied did not lead to haemolysis. Therefore, the EDC/NHS cross-linked three-layer vascular graft had good mechanical properties, hydrophilicity, anticoagulation and could enhance cell adhesion and proliferation.
Collapse
Affiliation(s)
- Yue Xiong
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xingjian Lu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xiaoman Ma
- Zhejiang Accupath Smart Mfg Grp Co Ltd, Jiaxing, P.R. China
| | - Jun Cao
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Jiaqi Pan
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Chaorong Li
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yingying Zheng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Miyachi H, Tara S, Nakayama H, Hama R, Sugiura T, Reinhardt JW, Yi T, Lee YU, Lee AY, Miyamoto S, Shoji T, Nakazawa Y, Breuer CK, Shinoka T. Transmural macrophage migration into an arterial bioresorbable vascular graft promotes inflammatory-mediated response and collagen deposition for vascular remodeling. Acta Biomater 2024; 183:146-156. [PMID: 38838904 DOI: 10.1016/j.actbio.2024.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Macrophages are the primary cell type orchestrating bioresorbable vascular graft (BVG) remodeling and infiltrate from three sources: the adjacent native vessel, circulating blood, and transmural migration from outer surface of the graft. To elucidate the kinetics of macrophage infiltration into the BVG, we fabricated two different bilayer arterial BVGs consisting of a macroporous sponge layer and a microporous electrospun (ES) layer. The Outer ES graft was designed to reduce transmural cell infiltration from the outer surface and the Inner ES graft was designed to reduce cell infiltration from the circulation. These BVGs were implanted in mice as infrarenal abdominal aorta grafts and extracted at 1, 4, and 8 weeks (n = 5, 10, and 10 per group, respectively) for evaluation. Cell migration into BVGs was higher in the Inner ES graft than in the Outer ES graft. For Inner ES grafts, the majority of macrophage largely expressed a pro-inflammatory M1 phenotype but gradually changed to tissue-remodeling M2 macrophages. In contrast, in Outer ES grafts macrophages primarily maintained an M1 phenotype. The luminal surface endothelialized faster in the Inner ES graft; however, the smooth muscle cell layer was thicker in the Outer ES graft. Collagen fibers were more abundant and matured faster in the Inner ES graft than that in the Outer ES graft. In conclusion, compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs. STATEMENT OF SIGNIFICANCE: To elucidate the kinetics of macrophage infiltration into the bioresorbable vascular graft (BVG), two different bilayer arterial BVGs were implanted in mice as infrarenal abdominal aorta grafts. Cell migration into BVGs was higher in the inner electrospun graft which cells mainly infiltrate from outer surface than in the outer electrospun graft which cells mainly infiltrate from the circulating blood. In the inner electrospun grafts, the majority of macrophages changed from the M1 phenotype to the M2 phenotype, however, outer electrospun grafts maintained the M1 phenotype. Collagen fibers matured faster in the Inner electrospun graft. Compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs.
Collapse
Affiliation(s)
- Hideki Miyachi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Division of Cardiovascular Intensive Care, Nippon Medical School Hospital, Tokyo, Japan
| | - Shuhei Tara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Hidetaka Nakayama
- QOL Research Center Laboratory, Gunze Limited, Ayabe-Shi, Kyoto, Japan
| | - Rikako Hama
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tai Yi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Yong-Ung Lee
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Avione Y Lee
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
4
|
Szafron JM, Heng EE, Boyd J, Humphrey JD, Marsden AL. Hemodynamics and Wall Mechanics of Vascular Graft Failure. Arterioscler Thromb Vasc Biol 2024; 44:1065-1085. [PMID: 38572650 PMCID: PMC11043008 DOI: 10.1161/atvbaha.123.318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.
Collapse
Affiliation(s)
- Jason M Szafron
- Departments of Pediatrics (J.M.S., A.L.M.), Stanford University, CA
| | - Elbert E Heng
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jack Boyd
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
5
|
Sestito JM, Harris TAL, Wang Y. Structural descriptor and surrogate modeling for design of biodegradable scaffolds. J Mech Behav Biomed Mater 2024; 152:106415. [PMID: 38301521 DOI: 10.1016/j.jmbbm.2024.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/29/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Biodegradable scaffolds are important to regenerative medicine in that they provide an amicable environment for tissue regrowth. However, establishing structure-property (SP) relationships for scaffold design is challenging due to the complexity of the three-dimensional porous scaffold geometry. The complexity requires high-dimensional geometric descriptors. The training of such a SP surrogate model will need a large amount of experimental or simulation data. In this work, a schema of constructing SP relationship surrogates is developed to predict the degraded mechanical properties from the initial scaffold geometry. A new structure descriptor, the extended surfacelet transform (EST), is proposed to capture important details of pores associated with the degradation of scaffolds. The efficiency is further enhanced with principal component analysis to reduce the high-dimensional EST data into a low-dimensional representation. The schema also includes a kinetic Monte Carlo biodegradation model to simulate the biodegradation of polymer scaffolds and to generate the training data for the formation of SP relationships. The schema is demonstrated with the design of polycaprolactone biodegradable scaffolds by connecting the initial scaffold geometry to the degraded compressive modulus.
Collapse
Affiliation(s)
- Jesse M Sestito
- College of Engineering, Valparaiso University, Valparaiso, IN, 46383, USA.
| | - Tequila A L Harris
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yan Wang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Majidi M, Pakzad S, Salimi M, Azadbakht A, Hajighasemlou S, Amoupour M, Nokhbedehghan Z, Bonakdar S, Sineh Sepehr K, Pal Singh Chauhan N, Gholipourmalekabadi M. Macrophage cell morphology-imprinted substrates can modulate mesenchymal stem cell behaviors and macrophage M1/M2 polarization for wound healing applications. Biotechnol Bioeng 2023; 120:3638-3654. [PMID: 37668186 DOI: 10.1002/bit.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Mesenchymal stem cells and macrophages (MQ) are two very important cells involved in the normal wound healing process. It is well understood that topological cues and mechanical factors can lead to different responses in stem cells and MQ by influencing their shape, cytoskeleton proliferation, migration, and differentiation, which play an essential role in the success or failure of biomaterial implantation and more importantly wound healing. On the other hand, the polarization of MQ from proinflammatory (M1) to prohealing (M2) phenotypes has a critical role in the acceleration of wound healing. In this study, the morphology of different MQ subtypes (M0, M1, and M2) was imprinted on a silicon surface (polydimethylsiloxane [PDMS]) to prepare a nano-topography cell-imprinted substrate with the ability to induce anti-inflammatory effects on the mouse adipose-derived stem cells (ADSCs) and RAW264.7 monocyte cell line (MO). The gene expression profiles and flow cytometry of MQ revealed that the cell shape microstructure promoted the MQ phenotypes according to the specific shape of each pattern. The ELISA results were in agreement with the gene expression profiles. The ADSCs on the patterned PDMS exhibited remarkably different shapes from no-patterned PDMS. The MOs grown on M2 morphological patterns showed a significant increase in expression and section of anti-inflammatory cytokine compared with M0 and M1 patterns. The ADSCs homing in niches heavily deformed the cytoskeletal, which is probably why the gene expression and phenotype unexpectedly changed. In conclusion, wound dressings with M2 cell morphology-induced surfaces are suggested as excellent anti-inflammatory and antiscarring dressings.
Collapse
Affiliation(s)
- Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedreza Pakzad
- Food and Drug Laboratory Research Center, Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolnaser Azadbakht
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saieh Hajighasemlou
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nokhbedehghan
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Li MX, Wei QQ, Mo HL, Ren Y, Zhang W, Lu HJ, Joung YK. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res 2023; 27:58. [PMID: 37291675 PMCID: PMC10251629 DOI: 10.1186/s40824-023-00399-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Hui-Lin Mo
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China.
- School of Textile and Clothing, Nantong University, Nantong, 226019, China.
| | - Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Breuer T, Jimenez M, Humphrey JD, Shinoka T, Breuer CK. Tissue Engineering of Vascular Grafts: A Case Report From Bench to Bedside and Back. Arterioscler Thromb Vasc Biol 2023; 43:399-409. [PMID: 36633008 PMCID: PMC9974789 DOI: 10.1161/atvbaha.122.318236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
For over 25 years, our group has used regenerative medicine strategies to develop improved biomaterials for use in congenital heart surgery. Among other applications, we developed a tissue-engineered vascular graft (TEVG) by seeding tubular biodegradable polymeric scaffolds with autologous bone marrow-derived mononuclear cells. Results of our first-in-human study demonstrated feasibility as the TEVG transformed into a living vascular graft having an ability to grow, making it the first engineered graft with growth potential. Yet, outcomes of this first Food and Drug Administration-approved clinical trial evaluating safety revealed a prohibitively high incidence of early TEVG stenosis, preventing the widespread use of this promising technology. Mechanistic studies in mouse models provided important insight into the development of stenosis and enabled advanced computational models. Computational simulations suggested both a novel inflammation-driven, mechano-mediated process of in vivo TEVG development and an unexpected natural history, including spontaneous reversal of the stenosis. Based on these in vivo and in silico discoveries, we have been able to rationally design strategies for inhibiting TEVG stenosis that have been validated in preclinical large animal studies and translated to the clinic via a new Food and Drug Administration-approved clinical trial. This progress would not have been possible without the multidisciplinary approach, ranging from small to large animal models and computational simulations. This same process is expected to lead to further advances in scaffold design, and thus next generation TEVGs.
Collapse
Affiliation(s)
- Thomas Breuer
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | - Michael Jimenez
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | - Jay D Humphrey
- Yale University, School of Engineering and Applied Science, New Haven, CT (J.D.H.)
| | - Toshiharu Shinoka
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | | |
Collapse
|
9
|
Tang X, Yang F, Chu G, Li X, Fu Q, Zou M, Zhao P, Lu G. Characterizing the inherent activity of urinary bladder matrix for adhesion, migration, and activation of fibroblasts as compared with collagen-based synthetic scaffold. J Biomater Appl 2023; 37:1446-1457. [PMID: 36177498 DOI: 10.1177/08853282221130883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mechanism of action underlying the intriguing prominent bioactivity of urinary bladder matrix (UBM) for in situ tissue regeneration of soft tissue defects remains to be elucidated. It is speculated that the activity of UBM for cell adhesion, migration, and activation is inherent. The bioactivity of UBM for in situ tissue regeneration and its relation with the structure and intact soluble components of UBM were investigated in comparison to a collagen-based scaffold, PELNAC (PEL). We isolated the soluble component of the two materials with urea buffer, and evaluated the respective effect of these soluble components on the in vitro adhesion and migration of L929 fibroblasts. The spatiotemporal pattern of endogenous-cell ingrowth into the scaffolds and cell activation were investigated using a model of murine subcutaneous implantation. UBM is more capable of promoting the adhesion, migration, and proliferation of fibroblasts than PEL in a serum-independent manner. In vivo, as compared with PEL, UBM exhibits significantly enhanced activity for fast endogenous cell ingrowth and produces a more prominent pro-regenerative and pro-remodeling microenvironment by inducing the expression of TGF-β1, VEGF, MMP-9, and murine type I collagen. Overall, our results suggest the prominent bioactivity of UBM for in situ tissue regeneration is inherent.
Collapse
Affiliation(s)
- Xiaoyu Tang
- 66478Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Guoping Chu
- 199193Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoxiao Li
- 66478Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyan Fu
- 66374Jiangnan University, Wuxi, China
| | - Mingli Zou
- 66478Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Zhao
- 199193Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guozhong Lu
- 199193Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Mirhaidari GJ, Barker JC, Breuer CK, Reinhardt JW. Implanted Tissue-Engineered Vascular Graft Cell Isolation with Single-Cell RNA Sequencing Analysis. Tissue Eng Part C Methods 2023; 29:72-84. [PMID: 36719780 PMCID: PMC9968626 DOI: 10.1089/ten.tec.2022.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
The advent of single-cell RNA sequencing (scRNA-Seq) has brought with it the ability to gain greater insights into the cellular composition of tissues and heterogeneity in gene expression within specific cell types. For tissue-engineered blood vessels, this is particularly impactful to better understand how neotissue forms and remodels into tissue resembling a native vessel. A notable challenge, however, is the ability to separate cells from synthetic biomaterials to generate high-quality single-cell suspensions to interrogate the cellular composition of our tissue-engineered vascular grafts (TEVGs) during active remodeling in situ. We present here a simple, commercially available approach to separate cells within our TEVG from the residual scaffold for downstream use in a scRNA-Seq workflow. Utilizing this method, we identified the cell populations comprising explanted TEVGs and compared these with results from immunohistochemical analysis. The process began with explanted TEVGs undergoing traditional mechanical and enzymatic dissociation to separate cells from scaffold and extracellular matrix proteins. Magnetically labeled antibodies targeting murine origin cells were incubated with enzymatic digests of TEVGs containing cells and scaffold debris in suspension allowing for separation by utilizing a magnetic separator column. Single-cell suspensions were processed through 10 × Genomics and data were analyzed utilizing R to generate cell clusters. Expression data provided new insights into a diverse composition of phenotypically unique subclusters within the fibroblast, macrophage, smooth muscle cell, and endothelial cell populations contributing to the early neotissue remodeling stages of TEVGs. These populations were correlated qualitatively and quantitatively with immunohistochemistry highlighting for the first time the potential of scRNA-Seq to provide exquisite detail into the host cellular response to an implanted TEVG. These results additionally demonstrate magnetic cell isolation is an effective method for generating high-quality cell suspensions for scRNA-Seq. While this method was utilized for our group's TEVGs, it has broader applications to other implantable materials that use biodegradable synthetic materials as part of scaffold composition. Impact statement Single-cell RNA sequencing is an evolving technology with the ability to provide detailed information on the cellular composition of remodeling biomaterials in vivo. This present work details an effective approach for separating nondegraded biomaterials from cells for downstream RNA-sequencing analysis. We applied this method to implanted tissue-engineered vascular grafts and for the first time describe the cellular composition of the remodeling graft at a single-cell gene expression level. While this method was effective in our scaffold, it has broad applicability to other implanted biomaterials that necessitate separation of cell from residual scaffold materials for single-cell RNA sequencing.
Collapse
Affiliation(s)
- Gabriel J.M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jenny C. Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
11
|
Wang X, Chan V, Corridon PR. Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers (Basel) 2022; 14:4825. [PMID: 36432950 PMCID: PMC9695055 DOI: 10.3390/polym14224825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive and permanent damage to the vasculature leading to different pathogenesis calls for developing innovative therapeutics, including drugs, medical devices, and cell therapies. Innovative strategies to engineer bioartificial/biomimetic vessels have been extensively exploited as an effective replacement for vessels that have seriously malfunctioned. However, further studies in polymer chemistry, additive manufacturing, and rapid prototyping are required to generate highly engineered vascular segments that can be effectively integrated into the existing vasculature of patients. One recently developed approach involves designing and fabricating acellular vessel equivalents from novel polymeric materials. This review aims to assess the design criteria, engineering factors, and innovative approaches for the fabrication and characterization of biomimetic macro- and micro-scale vessels. At the same time, the engineering correlation between the physical properties of the polymer and biological functionalities of multiscale acellular vascular segments are thoroughly elucidated. Moreover, several emerging characterization techniques for probing the mechanical properties of tissue-engineered vascular grafts are revealed. Finally, significant challenges to the clinical transformation of the highly promising engineered vessels derived from polymers are identified, and unique perspectives on future research directions are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Peter R. Corridon
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
12
|
Saunders SK, Cole SY, Acuna Sierra V, Bracamonte JH, Toldo S, Soares JS. Evaluation of perfusion-driven cell seeding of small diameter engineered tissue vascular grafts with a custom-designed seed-and-culture bioreactor. PLoS One 2022; 17:e0269499. [PMID: 35709083 PMCID: PMC9202848 DOI: 10.1371/journal.pone.0269499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tissue engineering commonly entails combining autologous cell sources with biocompatible scaffolds for the replacement of damaged tissues in the body. Scaffolds provide functional support while also providing an ideal environment for the growth of new tissues until host integration is complete. To expedite tissue development, cells need to be distributed evenly within the scaffold. For scaffolds with a small diameter tubular geometry, like those used for vascular tissue engineering, seeding cells evenly along the luminal surface can be especially challenging. Perfusion-based cell seeding methods have been shown to promote increased uniformity in initial cell distribution onto porous scaffolds for a variety of tissue engineering applications. We investigate the seeding efficiency of a custom-designed perfusion-based seed-and-culture bioreactor through comparisons to a static injection counterpart method and a more traditional drip seeding method. Murine vascular smooth muscle cells were seeded onto porous tubular electrospun polycaprolactone scaffolds, 2 mm in diameter and 30 mm in length, using the three methods, and allowed to rest for 24 hours. Once harvested, scaffolds were evaluated longitudinally and circumferentially to assess the presence of viable cells using alamarBlue and live/dead cell assays and their distribution with immunohistochemistry and scanning electron microscopy. On average, bioreactor-mediated perfusion seeding achieved 35% more luminal surface coverage when compared to static methods. Viability assessment demonstrated that the total number of viable cells achieved across methods was comparable with slight advantage to the bioreactor-mediated perfusion-seeding method. The method described is a simple, low-cost method to consistently obtain even distribution of seeded cells onto the luminal surfaces of small diameter tubular scaffolds.
Collapse
Affiliation(s)
- Sarah K. Saunders
- Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sam Y. Cole
- Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Valeria Acuna Sierra
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Johane H. Bracamonte
- Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Stefano Toldo
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Joao S. Soares
- Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater 2022; 17:10.1088/1748-605X/ac5574. [PMID: 35168213 PMCID: PMC9159526 DOI: 10.1088/1748-605x/ac5574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Implanted biomaterials elicit a series of distinct immune and repair-like responses that are collectively known as the foreign body reaction (FBR). These include processes involving innate immune inflammatory cells and wound repair cells that contribute to the encapsulation of biomaterials with a dense collagenous and largely avascular capsule. Numerous studies have shown that the early phase is dominated by macrophages that fuse to form foreign body giant cells that are considered a hallmark of the FBR. With the advent of more precise cell characterization techniques, specific macrophage subsets have been identified and linked to more or less favorable outcomes. Moreover, studies comparing synthetic- and natural-based polymer biomaterials have allowed the identification of macrophage subtypes that distinguish between fibrotic and regenerative responses. More recently, cells associated with adaptive immunity have been shown to participate in the FBR to synthetic polymers. This suggests the existence of cross-talk between innate and adaptive immune cells that depends on the nature of the implants. However, the exact participation of adaptive immune cells, such as T and B cells, remains unclear. In fact, contradictory studies suggest either the independence or dependence of the FBR on these cells. Here, we review the evidence for the involvement of adaptive immunity in the FBR to synthetic polymers with a focus on cellular and molecular components. In addition, we examine the possibility that such biomaterials induce specific antibody responses resulting in the engagement of adaptive immune cells.
Collapse
Affiliation(s)
- Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University. New Haven CT 06405,Department of Pathology, Yale University. New Haven CT 06405,Vascular Biology and Therapeutics Program. Yale University. New Haven CT 06405
| | - Hyun-Je Kim
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Lauren Harkins
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Wanyun Tao
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Emily Deschenes
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| |
Collapse
|
14
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
15
|
Peritoneal Pre-conditioning Method for In Vivo Vascular Graft Maturation Utilizing a Porous Pouch. Methods Mol Biol 2021. [PMID: 34591301 DOI: 10.1007/978-1-0716-1708-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tissue-engineered vascular grafts (TEVGs) require strategies to allow graft remodeling but avoid stenosis and loss of graft mechanics. A variety of promising biomaterials and methods to incorporate cells have been tested, but intimal hyperplasia and graft thrombosis are still concerning when grafting in small-diameter arteries. Here, we describe a strategy using the peritoneal cavity as an "in vivo" bioreactor to recruit autologous cells to electrospun conduits, which can improve the in vivo response after aortic grafting. We focus on the methods for a novel hydrogel pouch design to enclose the electrospun conduits that can avoid peritoneal adhesion but still allow infiltration of peritoneal fluid and cells needed to provide benefits when subsequently grafting in the aorta.
Collapse
|
16
|
Transluminal compression increases mechanical stability, stiffness and endothelialization capacity of fibrin-based bioartificial blood vessels. J Mech Behav Biomed Mater 2021; 124:104835. [PMID: 34530301 DOI: 10.1016/j.jmbbm.2021.104835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023]
Abstract
Fibrin is used successfully as a biological matrix in various bioengineering approaches. Its unique combination of autologous availability, hemocompatibility and biological activity makes it an almost ideal matrix material for vascular tissue engineering. However, clinical application of fibrin-based bioartificial blood vessels is still limited due to insufficient mechanical stability and stiffness of fibrin matrices. Biomechanical properties of fibrin-based constructs can potentially be modified by adjusting matrix density. Thus, as an attempt to optimize strength and elasticity of fibrin matrices for vascular tissue engineering applications, we developed a simple and reproducible method for transluminal compression of small-diameter fibrin-based vessels: After initial polymerization of high-concentration fibrin matrices in a vascular mold, vessels were compressed using an intraluminal angioplasty balloon. Vessels compacted with different pressures were compared for ultimate strength, elastic and structural properties and cellularization capacity. Transluminal compression increased fibrin network density and facilitated rapid production of homogenous vessels with a length of 10 cm. Compared to non-compressed controls, compacted fibrin vessels showed superior maximal burst pressure (199.8 mmHg vs. 94.0 mmHg), physiological elastic properties similar to the elastic behavior of natural arteries and higher luminal endothelial cell coverage (98.6% vs. 34.6%). Thus, transluminal compaction represents a suitable technique to enhance biomechanical properties of fibrin-based bioartificial vessels while preserving the biological advantages of this promising biomaterial.
Collapse
|
17
|
Yamanaka H, Mahara A, Morimoto N, Yamaoka T. REDV-modified decellularized microvascular grafts for arterial and venous reconstruction. J Biomed Mater Res A 2021; 110:547-558. [PMID: 34486215 DOI: 10.1002/jbm.a.37305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/02/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
Recently, a decellularized microvascular graft (inner diameter: 0.6 mm) modified with the integrin α4β1 ligand, REDV, was developed to provide an alternative to autologous-vein grafting in reconstructive microsurgery, showing good early-stage patency under arterial flow in rats. This consecutive study evaluated its potential utility not only as an arterial substitute, but also as a venous substitute, using a rat-tail replantation model. Graft remodeling depending on hemodynamic status was also investigated. ACI rat tail arteries were decellularized via ultra-high-hydrostatic pressure treatment and modified with REDV to induce antithrombogenic interfaces and promote endothelialization after implantation. Grafts were implanted into the tail artery and vein to re-establish blood circulation in amputated Lewis rat tails (n = 12). The primary endpoint was the survival of replants. Secondary endpoints were graft patency, remodeling, and regeneration for 6 months. In all but three cases with technical errors or postoperative self-mutilation, tails survived without any evidence of ischemia or congestion. Six-month Kaplan-Meier patency was 100% for tail-artery implanted grafts and 62% for tail-vein implanted grafts. At 6 months, the neo-tunica media (thickness: 95.0 μm in tail-artery implanted grafts, 9.3 μm in tail-vein implanted grafts) was regenerated inside the neo-intima. In conclusion, the microvascular grafts functioned well both as arterial and venous paths of replanted-rat tails, with different remodeling under arterial and venous conditions.
Collapse
Affiliation(s)
- Hiroki Yamanaka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
18
|
Chang YC, Li J, Mirhaidari G, Zbinden J, Barker J, Blum K, Reinhardt J, Best C, Kelly J, Shoji T, Yi T, Breuer C. Zoledronate alters natural progression of tissue-engineered vascular grafts. FASEB J 2021; 35:e21849. [PMID: 34473380 DOI: 10.1096/fj.202001606rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Macrophages are a critical driver of neovessel formation in tissue-engineered vascular grafts (TEVGs), but also contribute to graft stenosis, a leading clinical trial complication. Macrophage depletion via liposomal delivery of clodronate, a first-generation bisphosphonate, mitigates stenosis, but simultaneously leads to a complete lack of tissue development in TEVGs. This result and the associated difficulty of utilizing liposomal delivery means that clodronate may not be an ideal means of preventing graft stenosis. Newer generation bisphosphonates, such as zoledronate, may have differential effects on graft development with more facile drug delivery. We sought to examine the effect of zoledronate on TEVG neotissue formation and its potential application for mitigating TEVG stenosis. Thus, mice implanted with TEVGs received zoledronate or no treatment and were monitored by serial ultrasound for graft dilation and stenosis. After two weeks, TEVGs were explanted for histological examination. The overall graft area and remaining graft material (polyglycolic-acid) were higher in the zoledronate treatment group. These effects were associated with a corresponding decrease in macrophage infiltration. In addition, zoledronate affected the deposition of collagen in TEVGs, specifically, total and mature collagen. These differences may be, in part, explained by a depletion of leukocytes within the bone marrow that subsequently led to a decrease in the number of tissue-infiltrating macrophages. TEVGs from zoledronate-treated mice demonstrated a significantly greater degree of smooth muscle cell presence. There was no statistical difference in graft patency between treatment and control groups. While zoledronate led to a decrease in the number of macrophages in the TEVGs, the severity of stenosis appears to have increased significantly. Zoledronate treatment demonstrates that the process of smooth muscle cell-mediated neointimal hyperplasia may occur separately from a macrophage-mediated mechanism.
Collapse
Affiliation(s)
- Yu-Chun Chang
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Junlang Li
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jacob Zbinden
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, USA
| | - Jenny Barker
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Plastic and Reconstructive Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Kevin Blum
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, USA
| | - James Reinhardt
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cameron Best
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - John Kelly
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher Breuer
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
19
|
Fayon A, Menu P, El Omar R. Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard. NPJ Regen Med 2021; 6:46. [PMID: 34385472 PMCID: PMC8361171 DOI: 10.1038/s41536-021-00155-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the lack of efficacy of synthetic vascular substitutes in the replacement of small-caliber arteries, vascular tissue engineering (VTE) has emerged as a promising solution to produce viable small-caliber tissue-engineered vascular grafts (TEVG). Previous studies have shown the importance of a cellular intimal layer at the luminal surface of TEVG to prevent thrombotic events. However, the cellularization of a TEVG seems to be a critical approach to consider in the development of a TEVG. To date, no standard cellularization method or cell type has been established to create the ideal TEVG by promoting its long-term patency and function. In this review, advances in VTE are described and discussed with a particular focus on the construction approaches of cellularized small-caliber TEVGs, the cell types used, as well as their preclinical and clinical applications.
Collapse
Affiliation(s)
- Adrien Fayon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Patrick Menu
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France.
| | - Reine El Omar
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France
| |
Collapse
|
20
|
Blum KM, Roby LC, Zbinden JC, Chang YC, Mirhaidari GJM, Reinhardt JW, Yi T, Barker JC, Breuer CK. Sex and Tamoxifen confound murine experimental studies in cardiovascular tissue engineering. Sci Rep 2021; 11:8037. [PMID: 33850181 PMCID: PMC8044102 DOI: 10.1038/s41598-021-87006-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
Tissue engineered vascular grafts hold promise for the creation of functional blood vessels from biodegradable scaffolds. Because the precise mechanisms regulating this process are still under investigation, inducible genetic mouse models are an important and widely used research tool. However, here we describe the importance of challenging the baseline assumption that tamoxifen is inert when used as a small molecule inducer in the context of cardiovascular tissue engineering. Employing a standard inferior vena cava vascular interposition graft model in C57BL/6 mice, we discovered differences in the immunologic response between control and tamoxifen-treated animals, including occlusion rate, macrophage infiltration and phenotype, the extent of foreign body giant cell development, and collagen deposition. Further, differences were noted between untreated males and females. Our findings demonstrate that the host-response to materials commonly used in cardiovascular tissue engineering is sex-specific and critically impacted by exposure to tamoxifen, necessitating careful model selection and interpretation of results.
Collapse
Affiliation(s)
- Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Lauren C Roby
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- College of Medicine, The Ohio State University, Columbus, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
| | - Tai Yi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
| | - Jenny C Barker
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA.
| |
Collapse
|
21
|
Leal BBJ, Wakabayashi N, Oyama K, Kamiya H, Braghirolli DI, Pranke P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front Cardiovasc Med 2021; 7:592361. [PMID: 33585576 PMCID: PMC7873993 DOI: 10.3389/fcvm.2020.592361] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the most common cause of death in the world. In severe cases, replacement or revascularization using vascular grafts are the treatment options. While several synthetic vascular grafts are clinically used with common approval for medium to large-caliber vessels, autologous vascular grafts are the only options clinically approved for small-caliber revascularizations. Autologous grafts have, however, some limitations in quantity and quality, and cause an invasiveness to patients when harvested. Therefore, the development of small-caliber synthetic vascular grafts (<5 mm) has been urged. Since small-caliber synthetic grafts made from the same materials as middle and large-caliber grafts have poor patency rates due to thrombus formation and intimal hyperplasia within the graft, newly innovative methodologies with vascular tissue engineering such as electrospinning, decellularization, lyophilization, and 3D printing, and novel polymers have been developed. This review article represents topics on the methodologies used in the development of scaffold-based vascular grafts and the polymers used in vitro and in vivo.
Collapse
Affiliation(s)
- Bruna B J Leal
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Naohiro Wakabayashi
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kyohei Oyama
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Kamiya
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Daikelly I Braghirolli
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Stem Cell Research Institute, Porto Alegre, Brazil
| |
Collapse
|
22
|
Mirhaidari GJ, Barker JC, Zbinden JC, Santantonio BM, Chang YC, Best CA, Reinhardt JW, Blum KM, Yi T, Breuer CK. Tissue Engineered Vascular Graft Recipient Interleukin 10 Status Is Critical for Preventing Thrombosis. Adv Healthc Mater 2020; 9:e2001094. [PMID: 33073543 PMCID: PMC7936649 DOI: 10.1002/adhm.202001094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Indexed: 01/07/2023]
Abstract
Tissue engineered vascular grafts (TEVGs) are a promising technology, but are hindered by occlusion. Seeding with bone-marrow derived mononuclear cells (BM-MNCs) mitigates occlusion, yet the precise mechanism remains unclear. Seeded cells disappear quickly and potentially mediate an anti-inflammatory effect through paracrine signaling. Here, a series of reciprocal genetic TEVG implantations plus recombinant protein treatment is reported to investigate what role interleukin-10, an anti-inflammatory cytokine, plays from both host and seeded cells. TEVGs seeded with BM-MNCs from wild-type and IL-10 KO mice, plus unseeded grafts, are implanted into wild-type and IL-10 KO mice. Wild-type mice with unseeded grafts also receive recombinant IL-10. Serial ultrasound evaluates occlusion and TEVGs are harvested at 14 d for immunohistochemical analysis. TEVGs in IL-10 KO mice have significantly higher occlusion incidence compared to wild-type mice attributed to acute (<3 d) thrombosis. Cell seeding rescues TEVGs in IL-10 KO mice comparable to wild-type patency. IL-10 from the host and seeded cells do not significantly influence graft inflammation and macrophage phenotype, yet IL-10 treatment shows interesting biologic effects including decreasing cell proliferation and increasing M2 macrophage polarization. IL-10 from the host is critical for preventing TEVG thrombosis and seeded BM-MNCs exert a significant anti-thrombotic effect in IL-10 KO mice.
Collapse
Affiliation(s)
- Gabriel J.M. Mirhaidari
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - Jenny C. Barker
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - Jacob C. Zbinden
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - Brevan M. Santantonio
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - Yu-Chun Chang
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - Cameron A. Best
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - James W. Reinhardt
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - Kevin M. Blum
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - Tai Yi
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| | - Christopher K. Breuer
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Research III, WB4160 A1, Columbus, OH, 43215, United States of America
| |
Collapse
|
23
|
Fu J, Ding X, Stowell CET, Wu YL, Wang Y. Slow degrading poly(glycerol sebacate) derivatives improve vascular graft remodeling in a rat carotid artery interposition model. Biomaterials 2020; 257:120251. [PMID: 32738658 PMCID: PMC8422746 DOI: 10.1016/j.biomaterials.2020.120251] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 01/22/2023]
Abstract
Porous synthetic grafts made of poly (glycerol sebacate) (PGS) can transform into autologous vascular conduits in vivo upon degradation of PGS. A long-held doctrine in tissue engineering is the necessity to match degradation of the scaffolds to tissue regeneration. Here, we tested the impact of degradation of PGS and its derivative in an interposition model of rat common carotid artery (CCA). Previous work indicates a complete degradation of PGS within approximately 2 weeks, likely at the fast end of the spectrum. Thus, the derivation of PGS focuses on delay degradation by conjugating the free hydroxy groups in PGS with a long chain carboxylic acid: palmitic acid, one of the most common lipid components. We evaluated two of the resultant palmitate-PGS (PPGS) in this study: one containing 9% palmitate (9-PPGS) and the other16% palmitate (16-PPGS). 16-PPGS grafts had the highest patency. Ultrasound imaging showed that the lumens of 16-PPGS grafts were similar to CCA and smaller than 9-PPGS and PGS grafts 12 weeks post-operation. Immunohistological and histological examination showed an endothelialized lumens in all three types of grafts within 4 weeks. Inflammatory responses to 16-PPGS grafts were limited to the adventitial space in contrast to a more diffusive infiltration in 9-PPGS and PGS grafts in week 4. Examination of calponin+ and αSMA+ cells revealed that 16-PPGS grafts remodeled into a distinctive bi-layered wall, while the walls of 9-PPGS grafts and PGS grafts only had one thick layer of smooth muscle-like cells. Correspondingly, the expression of collagen III and elastin displayed an identical layered structure in the remodeled 16-PPGS grafts, in contrast to a more spread distribution in 9-PPGS and PGS grafts. All the three types of grafts exhibited the same collagen content and burst pressure after 12 weeks of host remodeling. However, the compliance and elastin content of 16-PPGS grafts in week 12 were closest to those of CCA. Overall, placing the degradation of PGS derived elastomer to a window of 4-12 weeks results in vascular conduits closer to arteries in a rat carotid artery interposition model over a 12-week observation period.
Collapse
Affiliation(s)
- Jiayin Fu
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Ithaca, NY, 14853, USA
| | - Xiaochu Ding
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Ithaca, NY, 14853, USA
| | - Chelsea E T Stowell
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Ithaca, NY, 14853, USA
| | - Yen-Lin Wu
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Ithaca, NY, 14853, USA
| | - Yadong Wang
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Ithaca, NY, 14853, USA.
| |
Collapse
|
24
|
Ding X, Chen Y, Chao CA, Wu Y, Wang Y. Control the Mechanical Properties and Degradation of Poly(Glycerol Sebacate) by Substitution of the Hydroxyl Groups with Palmitates. Macromol Biosci 2020; 20:e2000101. [DOI: 10.1002/mabi.202000101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaochu Ding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Ying Chen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Corson Andrew Chao
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Yen‐Lin Wu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| |
Collapse
|
25
|
Fukunishi T, Ong CS, Yesantharao P, Best CA, Yi T, Zhang H, Mattson G, Boktor J, Nelson K, Shinoka T, Breuer CK, Johnson J, Hibino N. Different degradation rates of nanofiber vascular grafts in small and large animal models. J Tissue Eng Regen Med 2020; 14:203-214. [PMID: 31756767 DOI: 10.1002/term.2977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
Abstract
Nanofiber vascular grafts have been shown to create neovessels made of autologous tissue, by in vivo scaffold biodegradation over time. However, many studies on graft materials and biodegradation have been conducted in vitro or in small animal models, instead of large animal models, which demonstrate different degradation profiles. In this study, we compared the degradation profiles of nanofiber vascular grafts in a rat model and a sheep model, while controlling for the type of graft material, the duration of implantation, fabrication method, type of circulation (arterial/venous), and type of surgery (interposition graft). We found that there was significantly less remaining scaffold (i.e., faster degradation) in nanofiber vascular grafts implanted in the sheep model compared with the rat model, in both the arterial and the venous circulations, at 6 months postimplantation. In addition, there was more extracellular matrix deposition, more elastin formation, more mature collagen, and no calcification in the sheep model compared with the rat model. In conclusion, studies comparing degradation of vascular grafts in large and small animal models remain limited. For clinical translation of nanofiber vascular grafts, it is important to understand these differences.
Collapse
Affiliation(s)
- Takuma Fukunishi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD
| | - Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD
| | | | - Cameron A Best
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Tai Yi
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Huaitao Zhang
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD
| | - Gunnar Mattson
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD
| | - Joseph Boktor
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD
| | | | - Toshiharu Shinoka
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH
| | | | | | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|
26
|
Miyachi H, Tara S, Otsuru S, Yi T, Lee YU, Drews JD, Nakayama H, Miyamoto S, Sugiura T, Shoji T, Breuer CK, Shinoka T. Imatinib attenuates neotissue formation during vascular remodeling in an arterial bioresorbable vascular graft. JVS Vasc Sci 2020; 1:57-67. [PMID: 34223286 PMCID: PMC8248522 DOI: 10.1016/j.jvssci.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Bioresorbable vascular grafts (BVGs) can transform biologically into active blood vessels and represent an alternative to traditional synthetic conduits, which are prone to complications such as infection and thrombosis. Although platelet-derived growth factors and c-Kit positive cells play an important role in smooth muscle cell (SMC) migration and proliferation in vascular injury, atherosclerosis, or allograft, their roles in the vascular remodeling process of an arterial BVG remains unknown. Thus, we assessed the neottisue formation on arterial BVG remodeling by administrating imatinib, which is both a platelet-derived growth factor receptor kinase inhibitor and c-Kit receptor kinase inhibitor, in a murine model. Methods BVGs were composed of an inner poly(L-lactic-co-ε-caprolactone) copolymer sponge layer and an outer electrospun poly(L-lactic acid) nanofiber layer, which were implanted into the infrarenal abdominal aortas of C57BL/6 mice. After graft implantation, saline or 100 mg/kg of imatinib was administrated intraperitoneally daily for 2 weeks (n = 20 per group). Five mice in each group were scheduled to be humanely killed at 3 weeks and 15 at 8 weeks, and BVGs were explanted for histologic assessments. Results Graft patency during the 8-week observational period was not significantly different between groups (control, 86.7% vs imatinib, 80.0%; P > .999). Neotissue formation consisting of endothelialization, smooth muscle proliferation, and deposition of collagen and elastin was not observed in either group at 3 weeks. Similar endothelialization was achieved in both groups at 8 weeks, but thickness and percent area of neotissue formation were significantly higher in the control group than in the imatinib group, (thickness, 30.1 ± 7.2 μm vs 19.6 ± 4.5 μm [P = .001]; percent area, 9.8 ± 2.7% vs 6.8 ± 1.8% [P = .005]). Furthermore, SMC layer and deposition of collagen and elastin were better organized at 8 weeks in the control group compared with the imatinib group. The thickness of SMC layer and collagen fiber area were significantly greater at 8 weeks in the control group than in the imatinib group (P < .001 and P = .026, respectively). Because there was no difference in the inner diameter of explanted BVGs (831.7 ± 63.4 μm vs 841.8 ± 41.9 μm; P = .689), neotissue formation was thought to advance toward the outer portion of the BVG with degradation of the polymer scaffold. Conclusions Imatinib attenuates neotissue formation during vascular remodeling in arterial bioresorbable vascular grafts (BVGs) by inhibiting SMC layer formation and extracellular matrix deposition. This study demonstrated that imatinib attenuated neotissue formation during vascular remodeling in arterial Bioresorbable vascular graft (BVG) by inhibiting smooth muscle cell formation and extracellular matrix deposition. In addition, as imatinib did not modify the inner diameter of BVG, neotissue advanced circumferentially toward the outer portion of the neovessel. Currently, BVGs have not yet been clinically applied to the arterial circulation. The results of this study are helpful for the design of BVG that can achieve an optimal balance between polymer degradation and neotissue formation.
Collapse
Affiliation(s)
- Hideki Miyachi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiovascular Medicine, Nippon Medical School, Tokyo
| | - Shuhei Tara
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiovascular Medicine, Nippon Medical School, Tokyo
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore
| | - Tai Yi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Yong-Ung Lee
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | | | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus
| |
Collapse
|
27
|
Wang Z, Mithieux SM, Weiss AS. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv Healthc Mater 2019; 8:e1900742. [PMID: 31402593 DOI: 10.1002/adhm.201900742] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Impaired or damaged blood vessels can occur at all levels in the hierarchy of vascular systems from large vasculatures such as arteries and veins to meso- and microvasculatures such as arterioles, venules, and capillary networks. Vascular tissue engineering has become a promising approach for fabricating small-diameter vascular grafts for occlusive arteries. Vascularized tissue engineering aims to fabricate meso- and microvasculatures for the prevascularization of engineered tissues and organs. The ideal small-diameter vascular graft is biocompatible, bridgeable, and mechanically robust to maintain patency while promoting tissue remodeling. The desirable fabricated meso- and microvasculatures should rapidly integrate with the host blood vessels and allow nutrient and waste exchange throughout the construct after implantation. A number of techniques used, including engineering-based and cell-based approaches, to fabricate these synthetic vasculatures are herein explored, as well as the techniques developed to fabricate hierarchical structures that comprise multiple levels of vasculature.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Suzanne M. Mithieux
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
- Bosch Institute University of Sydney NSW 2006 Australia
- Sydney Nano Institute University of Sydney NSW 2006 Australia
| |
Collapse
|
28
|
Best CA, Szafron JM, Rocco KA, Zbinden J, Dean EW, Maxfield MW, Kurobe H, Tara S, Bagi PS, Udelsman BV, Khosravi R, Yi T, Shinoka T, Humphrey JD, Breuer CK. Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomater 2019; 94:183-194. [PMID: 31200116 PMCID: PMC6819998 DOI: 10.1016/j.actbio.2019.05.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
Electrospinning is commonly used to generate polymeric scaffolds for tissue engineering. Using this approach, we developed a small-diameter tissue engineered vascular graft (TEVG) composed of poly-ε-caprolactone-co-l-lactic acid (PCLA) fibers and longitudinally assessed its performance within both the venous and arterial circulations of immunodeficient (SCID/bg) mice. Based on in vitro analysis demonstrating complete loss of graft strength by 12 weeks, we evaluated neovessel formation in vivo over 6-, 12- and 24-week periods. Mid-term observations indicated physiologic graft function, characterized by 100% patency and luminal matching with adjoining native vessel in both the venous and arterial circulations. An active and robust remodeling process was characterized by a confluent endothelial cell monolayer, macrophage infiltrate, and extracellular matrix deposition and remodeling. Long-term follow-up of venous TEVGs at 24 weeks revealed viable neovessel formation beyond graft degradation when implanted in this high flow, low-pressure environment. Arterial TEVGs experienced catastrophic graft failure due to aneurysmal dilatation and rupture after 14 weeks. Scaffold parameters such as porosity, fiber diameter, and degradation rate informed a previously described computational model of vascular growth and remodeling, and simulations predicted the gross differential performance of the venous and arterial TEVGs over the 24-week time course. Taken together, these results highlight the requirement for in vivo implantation studies to extend past the critical time period of polymer degradation, the importance of differential neotissue deposition relative to the mechanical (pressure) environment, and further support the utility of predictive modeling in the design, use, and evaluation of TEVGs in vivo. STATEMENT OF SIGNIFICANCE: Herein, we apply a biodegradable electrospun vascular graft to the arterial and venous circulations of the mouse and follow recipients beyond the point of polymer degradation. While venous implants formed viable neovessels, arterial grafts experienced catastrophic rupture due to aneurysmal dilation. We then inform a previously developed computational model of tissue engineered vascular graft growth and remodeling with parameters specific to the electrospun scaffolds utilized in this study. Remarkably, model simulations predict the differential performance of the venous and arterial constructs over 24 weeks. We conclude that computational simulations should inform the rational selection of scaffold parameters to fabricate tissue engineered vascular grafts that must be followed in vivo over time courses extending beyond polymer degradation.
Collapse
Affiliation(s)
- Cameron A Best
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, United States.
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | | | - Jacob Zbinden
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Biomedical Engineering Graduate Program, The Ohio State University College of Engineering, Columbus, OH, United States
| | - Ethan W Dean
- Department of Orthopaedic Surgery, University of Florida, Gainesville, FL, United States
| | - Mark W Maxfield
- Department of Thoracic Surgery, University of Massachusetts Memorial Medical Center, Worcester, MA, United States
| | - Hirotsugu Kurobe
- Department of Cardiovascular Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shuhei Tara
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Paul S Bagi
- Department of Orthopaedic Surgery, Yale-New Haven Hospital, New Haven, CT, United States
| | - Brooks V Udelsman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Tai Yi
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Cardiac Surgery, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Christopher K Breuer
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
29
|
Agarwal R, Blum KM, Musgrave A, Onwuka EA, Yi T, Reinhardt JW, A Best C, Breuer CK. Degradation and in vivo evaluation of polycaprolactone, poly(ε-caprolactone-co-L-lactide), and poly-L-lactic acid as scaffold sealant polymers for murine tissue-engineered vascular grafts. Regen Med 2019; 14:627-637. [PMID: 31342857 DOI: 10.2217/rme-2018-0069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: This study evaluates scaffold degradation and neotissue formation as a function of sealant polymer composition in tissue-engineered vascular grafts (TEVGs). Materials & methods: Scaffolds fabricated from polyglycolic acid core and sealant composed of polycaprolactone (PCL), poly-L-lactic-acid (PLLA) or 50:50 copolymer poly(ε-caprolactone-co-L-lactide) (PCLA) were analyzed in vitro using accelerated degradation and scanning electron microscopy, and in vivo following implantation in a murine inferior vena cava interposition model. Results: In vitro and in vivo characterization revealed statistically greater degradation of PCLA compared with both PCL and PLLA scaffolds, with similar neotissue formation across all groups. The wall thickness of PLLA TEVGs was statistically greater than PCL TEVGs at 2 weeks postimplant. Conclusion: Results of this study can be used to inform the rational design of future TEVGs.
Collapse
Affiliation(s)
- Riddhima Agarwal
- Center for Regenerative Medicine at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Kevin M Blum
- Center for Regenerative Medicine at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Andrew Musgrave
- Center for Regenerative Medicine at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Ekene A Onwuka
- Center for Regenerative Medicine at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Tai Yi
- Center for Regenerative Medicine at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - James W Reinhardt
- Center for Regenerative Medicine at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Cameron A Best
- Center for Regenerative Medicine at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| |
Collapse
|
30
|
Reinhardt JW, Rosado JDDR, Barker JC, Lee YU, Best CA, Yi T, Zeng Q, Partida-Sanchez S, Shinoka T, Breuer CK. Early natural history of neotissue formation in tissue-engineered vascular grafts in a murine model. Regen Med 2019; 14:389-408. [PMID: 31180275 DOI: 10.2217/rme-2018-0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aim: To characterize early events in neotissue formation during the first 2 weeks after vascular scaffold implantation. Materials & methods: Biodegradable polymeric scaffolds were implanted as abdominal inferior vena cava interposition grafts in wild-type mice. Results: All scaffolds explanted at day 1 contained a platelet-rich mural thrombus. Within the first few days, the majority of cell infiltration appeared to be from myeloid cells at the peritoneal surface with modest infiltration along the lumen. Host reaction to the graft was distinct between the scaffold and mural thrombus; the scaffold stimulated an escalating foreign body reaction, whereas the thrombus was quickly remodeled into collagen-rich neotissue. Conclusion: Mural thrombi remodel into neotissue that persistently occludes the lumen of vascular grafts.
Collapse
Affiliation(s)
- James W Reinhardt
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Juan de Dios Ruiz Rosado
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jenny C Barker
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yong-Ung Lee
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cameron A Best
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Tai Yi
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Qiang Zeng
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher K Breuer
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
31
|
Miyachi H, Reinhardt JW, Otsuru S, Tara S, Nakayama H, Yi T, Lee YU, Miyamoto S, Shoji T, Sugiura T, Breuer CK, Shinoka T. Bone marrow-derived mononuclear cell seeded bioresorbable vascular graft improves acute graft patency by inhibiting thrombus formation via platelet adhesion. Int J Cardiol 2019; 266:61-66. [PMID: 29887474 PMCID: PMC6061926 DOI: 10.1016/j.ijcard.2018.01.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/28/2017] [Accepted: 01/15/2018] [Indexed: 01/22/2023]
Abstract
Background: Acute thrombosis is a crucial cause of bioresorbable vascular graft (BVG) failure. Bone marrow-derived mononuclear cell (BM-MNC)-seeded BVGs demonstrated high graft patency, however, the effect of seeded BM-MNCs against thrombosis remains to be elucidated. Thus, we evaluated an antithrombotic effect of BM-MNC-seeding and utilized platelet-depletion mouse models to evaluate the contribution of platelets to acute thrombosis of BVGs. Methods and results: BVGs were composed of poly (glycolic acid) mesh sealed with poly (l-lactideco-ε-caprolactone). BM-MNC-seeded BVGs and unseeded BVGs were implanted to wild type C57BL/6 mice (n = 10/group) as inferior vena cava interposition conduits. To evaluate platelet effect on acute thrombosis, c-Mpl–/– mice and Pf4-Cre+; iDTR mice with decreased platelet number were also implanted with unseeded BVGs (n = 10/group). BVG patency was evaluated at 2, 4, and 8 weeks by ultrasound. BM-MNC-seeded BVGs demonstrated a significantly higher patency rate than unseeded BVGs during the acute phase (2-week, 90% vs 30%, p = .020), and patency rates of these grafts were sustained until week 8. Similar to BM-MNC-seeded BVGs, C-Mpl−/− and Pf4-Cre+; iDTR mice also showed favorable graft patency (2-week, 90% and 80%, respectively) during the acute phase. However, the patency rate of Pf4-Cre+; iDTR mice decreased gradually after DTR treatment as platelet number recovered to baseline. An in vitro study revealed BM-MNC-seeding significantly inhibited platelet adhesion to BVGs compared to unseeded BVGs, (1.75 ± 0.45 vs 8.69 ± 0.68 × 103 platelets/mm2, p < .001). Conclusions: BM-MNC-seeding and the reduction in platelet number prevented BVG thrombosis and improved BVG patency, and those results might be caused by inhibiting platelet adhesion to the BVG.
Collapse
Affiliation(s)
- Hideki Miyachi
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - James W Reinhardt
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shuhei Tara
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Hidetaka Nakayama
- QOL Research Center Laboratory, Gunze Limited, Ayabe-Shi, Kyoto, Japan
| | - Tai Yi
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yong-Ung Lee
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shinka Miyamoto
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshihiro Shoji
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tadahisa Sugiura
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
32
|
Stowell CET, Wang Y. Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials 2018; 173:71-86. [PMID: 29772461 PMCID: PMC6492619 DOI: 10.1016/j.biomaterials.2018.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Abstract
Traditional tissue-engineered vascular grafts have yet to gain wide clinical use. The difficulty of scaling production of these cell- or biologic-based products has hindered commercialization. In situ tissue engineering bypasses such logistical challenges by using acellular resorbable scaffolds. Upon implant, the scaffolds become remodeled by host cells. This review describes the scientific and translational advantages of acellular, synthetic vascular grafts. It surveys in vivo results obtained with acellular synthetics over their fifty years of technological development. Finally, it discusses emerging principles, highlights strategic considerations for designers, and identifies questions needing additional research.
Collapse
Affiliation(s)
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, USA.
| |
Collapse
|
33
|
Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts. Ann Biomed Eng 2018; 46:1938-1950. [PMID: 29987541 DOI: 10.1007/s10439-018-2086-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
In vivo development of a neovessel from an implanted biodegradable polymeric scaffold depends on a delicate balance between polymer degradation and native matrix deposition. Studies in mice suggest that this balance is dictated by immuno-driven and mechanotransduction-mediated processes, with neotissue increasingly balancing the hemodynamically induced loads as the polymer degrades. Computational models of neovessel development can help delineate relative time-dependent contributions of the immunobiological and mechanobiological processes that determine graft success or failure. In this paper, we compare computational results informed by long-term studies of neovessel development in immuno-compromised and immuno-competent mice. Simulations suggest that an early exuberant inflammatory response can limit subsequent mechano-sensing by synthetic intramural cells and thereby attenuate the desired long-term mechano-mediated production of matrix. Simulations also highlight key inflammatory differences in the two mouse models, which allow grafts in the immuno-compromised mouse to better match the biomechanical properties of the native vessel. Finally, the predicted inflammatory time courses revealed critical periods of graft remodeling. We submit that computational modeling can help uncover mechanisms of observed neovessel development and improve the design of the scaffold or its clinical use.
Collapse
|
34
|
Stacy MR, Best CA, Maxfield MW, Qiu M, Naito Y, Kurobe H, Mahler N, Rocco KA, Sinusas AJ, Shinoka T, Sampath S, Breuer CK. Magnetic Resonance Imaging of Shear Stress and Wall Thickness in Tissue-Engineered Vascular Grafts. Tissue Eng Part C Methods 2018; 24:465-473. [PMID: 29978768 DOI: 10.1089/ten.tec.2018.0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Tissue-engineered vascular grafts (TEVGs) have demonstrated potential for treating congenital heart disease (CHD); however, quantitative imaging for tracking functional and structural remodeling of TEVGs has not been applied. Therefore, we evaluated the potential of magnetic resonance (MR) imaging for assessing TEVG wall shear stress (WSS) and wall thickness in a large animal model. METHODS Cell-seeded (n = 3) or unseeded (n = 3) TEVGs were implanted as inferior vena cava interposition grafts in juvenile lambs. Six months following implantation, two-dimensional phase-contrast MR imaging was performed at 3 slice locations (proximal, middle, and distal) to assess normalized WSS (i.e., WSS-to-cross sectional area). T2-weighted MR imaging was performed to assess TEVG wall thickness. Histology was qualitatively assessed, whereas immunohistochemistry was semiquantitatively assessed for smooth muscle cells (αSMA), macrophage lineage cells (CD11b), and matrix metalloproteinase activity (MMP-2 and MMP-9). Picrosirius Red staining was performed to quantify collagen content. RESULTS TEVG wall thickness was significantly higher for proximal, middle, and distal slices in unseeded versus cell-seeded grafts. Significantly higher WSS values existed for proximal versus distal slice locations for cell-seeded TEVGs, whereas no differences in WSS existed between slices for unseeded TEVGs. Additionally, no differences in WSS existed between cell-seeded and unseeded groups. Both groups demonstrated elastin formation, without vascular calcification. Unseeded TEVGs possessed greater content of smooth muscle cells when compared with cell-seeded TEVGs. No differences in macrophage, MMP activity, or collagen content existed between groups. CONCLUSION MR imaging allows for in vivo assessment of functional and anatomical characteristics of TEVGs and may provide a nonionizing approach that is clinically translatable to children undergoing treatment for CHD.
Collapse
Affiliation(s)
- Mitchel R Stacy
- 1 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut.,2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Cameron A Best
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Mark W Maxfield
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Maolin Qiu
- 4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Yuji Naito
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Hirotsugu Kurobe
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Nathan Mahler
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Kevin A Rocco
- 5 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Albert J Sinusas
- 1 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut.,4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Toshiharu Shinoka
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Smita Sampath
- 4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Christopher K Breuer
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
35
|
Fratini P, Rigoglio NN, Matias GDSS, Carreira ACO, Rici REG, Miglino MA. Canine Placenta Recellularized Using Yolk Sac Cells with Vascular Endothelial Growth Factor. Biores Open Access 2018; 7:101-106. [PMID: 30065855 PMCID: PMC6056259 DOI: 10.1089/biores.2018.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regenerative medicine has been growing because of the emergent need for tissues/organs for transplants and restorative surgeries. Biological scaffolds are important tools to try to solve this problem. The one used in this reserach was developed by an acellular biological scaffold from canine placenta with a rich source of cellular matrix. After decellularization, the cellular matrix demonstrated structural preservation with the presence of important functional proteins such as collagen, fibronectin, and laminin. We used cells transduced with vascular endothelial growth factor (VEGF) to recellularize this scaffold. It was succeeded by seeding the cells in nonadherent plaques in the presence of the sterelized placenta scaffold. Cells were adhered to the scaffold when analyzed by immunocytochemistry and scanning electron microscopy, both showing sprouting of yolk sac VEGF (YSVEGF) cells. This recellularized scaffold is a promissory biomaterial for repairing injured areas where neovascularization is required.
Collapse
Affiliation(s)
- Paula Fratini
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nathia Nathaly Rigoglio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia O Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,NUCEL (Cell and Molecular Therapy Center) and NETCEM (Center for Studies in Cell and Molecular Therapy), Medical Clinics Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,Department of Biotechnology, Interunits Graduate Program in Biotechnology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Rose Eli Grassi Rici
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Ruiz-Rosado JDD, Lee YU, Mahler N, Yi T, Robledo-Avila F, Martinez-Saucedo D, Lee AY, Shoji T, Heuer E, Yates AR, Pober JS, Shinoka T, Partida-Sanchez S, Breuer CK. Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts. FASEB J 2018; 32:fj201800458. [PMID: 29906242 PMCID: PMC6219835 DOI: 10.1096/fj.201800458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 12/24/2022]
Abstract
We previously developed a tissue-engineered vascular graft (TEVG) made by seeding autologous cells onto a biodegradable tubular scaffold, in an attempt to create a living vascular graft with growth potential for use in children undergoing congenital heart surgery. Results of our clinical trial showed that the TEVG possesses growth capacity but that its widespread clinical use is not yet advisable due to the high incidence of TEVG stenosis. In animal models, TEVG stenosis is caused by increased monocytic cell recruitment and its classic ("M1") activation. Here, we report on the source and regulation of these monocytes. TEVGs were implanted in wild-type, CCR2 knockout ( Ccr2-/-), splenectomized, and spleen graft recipient mice. We found that bone marrow-derived Ly6C+hi monocytes released from sequestration by the spleen are the source of mononuclear cells infiltrating the TEVG during the acute phase of neovessel formation. Furthermore, short-term administration of losartan (0.6 g/L, 2 wk), an angiotensin II type 1 receptor antagonist, significantly reduced the macrophage populations (Ly6C+/-/F480+) in the scaffolds and improved long-term patency in TEVGs. Notably, the combined effect of bone marrow-derived mononuclear cell seeding with short-term losartan treatment completely prevented the development of TEVG stenosis. Our results provide support for pharmacologic treatment with losartan as a strategy to modulate monocyte infiltration into the grafts and thus prevent TEVG stenosis.-Ruiz-Rosado, J. D. D., Lee, Y.-U., Mahler, N., Yi, T., Robledo-Avila, F., Martinez-Saucedo, D., Lee, A. Y., Shoji, T., Heuer, E., Yates, A. R., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts.
Collapse
Affiliation(s)
- Juan de Dios Ruiz-Rosado
- Tissue Engineering Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Yong-Ung Lee
- Tissue Engineering Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Nathan Mahler
- Tissue Engineering Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Tissue Engineering Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | - Avione Y. Lee
- Tissue Engineering Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Toshihiro Shoji
- Tissue Engineering Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Eric Heuer
- Tissue Engineering Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Andrew R. Yates
- Section of Cardiology, Department of Pediatrics, Nationwide Children’s Hospital–The Ohio State University, Columbus, Ohio, USA
- Section of Critical Care, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Jordan S. Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Toshiharu Shinoka
- Tissue Engineering Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | | |
Collapse
|
37
|
Abstract
New technologies and science have contributed to improved surgical outcomes in patients with congenital cardiovascular diseases. However, current materials display shortcomings, such as risk of infection and lack of growth capacity when applied to the pediatric patient population. Tissue engineering has the potential to address these limitations as the ideal tissue engineered vascular graft (TEVG) would be durable, biocompatible, nonthrombogenic, and ultimately remodel into native tissue. The traditional TEVG paradigm consists of a scaffold, cell source, and the integration of the scaffold and cells via seeding. The subsequent remodeling process is driven by cellular adhesion and proliferation, as well as, biochemical and mechanical signaling. Clinical trials have displayed encouraging results, but graft stenosis is observed as a frequent complication. Recent investigations have suggested that a host's immune response plays a vital role in neotissue formation. Current and future studies will focus on modulating host immunity as a means of reducing the incidence of stenosis.
Collapse
Affiliation(s)
- Toshihiro Shoji
- The Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- The Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
38
|
Yu E, Mi HY, Zhang J, Thomson JA, Turng LS. Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. J Biomed Mater Res A 2018; 106:985-996. [PMID: 29143442 PMCID: PMC5826852 DOI: 10.1002/jbm.a.36297] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
Abstract
A new electrospinning approach for fabricating vascular grafts with a layered, circumferentially aligned, and micro-wavy fibrous structure similar to natural elastic tissues has been developed. The customized electrospinning collector was able to generate wavy fibers using the dynamic "jump rope" collecting process, which also solved the sample removal problem for mandrel-type collectors. In this study, natural silk fibroin and synthetic thermoplastic polyurethane (TPU) were combined at different weight ratios to produce hybrid small-diameter vascular grafts. The purpose of combining these two materials was to leverage the bioactivity and tunable mechanical properties of these natural and synthetic materials. Results showed that the electrospun fiber morphology was highly influenced by the material compositions and solvents employed. All of the TPU/fibroin hybrid grafts had mechanical properties comparable to natural blood vessels. The circumferentially aligned and wavy biomimetic configuration provided the grafts with a sufficient toe region and the capacity for long-term usage under repeated dilatation and contraction. Cell culture tests with human endothelial cells (EC) also revealed high cell viability and good biocompatibility for these grafts. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 985-996, 2018.
Collapse
Affiliation(s)
- Emily Yu
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA, 53706
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, USA, 53715
| | - Hao-Yang Mi
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA, 53706
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, USA, 53715
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, China
| | - Jue Zhang
- Morgridge Institute for Research, WI, USA, 53715
| | | | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA, 53706
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, USA, 53715
| |
Collapse
|
39
|
Prediction of circumferential compliance and burst strength of polymeric vascular grafts. J Mech Behav Biomed Mater 2018; 79:332-340. [DOI: 10.1016/j.jmbbm.2017.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022]
|
40
|
Gade PS, Lee K, Pfaff BN, Wang Y, Robertson AM. Degradation and erosion mechanisms of bioresorbable porous acellular vascular grafts: an in vitro investigation. J R Soc Interface 2018; 14:rsif.2017.0102. [PMID: 28701504 DOI: 10.1098/rsif.2017.0102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/16/2017] [Indexed: 02/02/2023] Open
Abstract
A fundamental mechanism of in situ tissue regeneration from biodegradable synthetic acellular vascular grafts is the effective interplay between graft degradation, erosion and the production of extracellular matrix. In order to understand this crucial process of graft erosion and degradation, we conducted an in vitro investigation of grafts (n = 4 at days 1, 4, 7, 10 each) exposed to enzymatic degradation. Herein, we provide constitutive relationships for mass loss and mechanical properties based on much-needed experimental data. Furthermore, we formulate a mathematical model to provide a physics-based framework for understanding graft erosion. A novel finding is that despite their porous nature, grafts lost mass exponentially via surface erosion demonstrating a 20% reduction in outer diameter and no significant change in apparent density. A diffusion based, concentration gradient-driven mechanistic model of mass loss through surface erosion was introduced which can be extended to an in vivo setting through the use of two degradation parameters. Furthermore, notably, mechanical properties of degrading grafts did not scale with mass loss. Thus, we introduced a damage function scaling a neo-Hookean model to describe mechanical properties of the degrading graft; a refinement to existing mass-dependent growth and remodelling (G&R) models. This framework can be used to improve accuracy of well-established G&R theories in biomechanics; tools that predict evolving structure-function relationships of neotissues and guide graft design.
Collapse
Affiliation(s)
- Piyusha S Gade
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Keewon Lee
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Blaise N Pfaff
- Department of Chemical Engineering, Pennsylvania State University, PA, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh, PA, USA.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| | - Anne M Robertson
- Department of Bioengineering, University of Pittsburgh, PA, USA .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA, USA
| |
Collapse
|
41
|
Tu F, Liu Y, Li H, Shi P, Hao Y, Wu Y, Yi H, Yin Y, Wang J. Vascular Cell Co-Culture on Silk Fibroin Matrix. Polymers (Basel) 2018; 10:E39. [PMID: 30966074 PMCID: PMC6414862 DOI: 10.3390/polym10010039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/21/2023] Open
Abstract
Silk fibroin (SF), a natural polymer material possessing excellent biocompatibility and biodegradability, and has been widely used in biomedical applications. In order to explore the behavior of vascular cells by co-culturing on regenerated SF matrix for use as artificial blood vessels, human aorta vascular smooth muscle cells (HAVSMCs) were co-cultured with human arterial fibroblasts (HAFs) or human umbilical vein endothelial cells (HUVECs) on SF films and SF tubular scaffolds (SFTSs). Analysis of cell morphology and deoxyribonucleic acid (DNA) content showed that HUVECs, HAVSMCs and HAFs adhered and spread well, and exhibited high proliferative activity whether cultured alone or in co-culture. Immunofluorescence and scanning electron microscopy (SEM) analysis showed that HUVECs and HAFs co-existed well with HAVSMCs on SF films or SFTSs. Cytokine expression determined by reverse transcription-polymerase chain reaction (RT-PCR) indicated that the expression levels of α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) in HAVSMCs were inhibited on SF films or SFTSs, but expression could be obviously promoted by co-culture with HUVECs or HAFs, especially that of SM-MHC. On SF films, the expression of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (CD31) in HUVECs was promoted, and the expression levels of both increased obviously when co-cultured with HAVSMCs, with the expression levels of VEGF increasing with increasing incubation time. The expression levels of VEGF and CD31 in cells co-cultured on SFTSs improved significantly from day 3 compared with the mono-culture group. These results were beneficial to the mechanism analysis on vascular cell colonization and vascular tissue repair after in vivo transplantation of SFTSs.
Collapse
Affiliation(s)
- Fangfang Tu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yunfei Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Helei Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Pange Shi
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yunxia Hao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yue Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Honggen Yi
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yin Yin
- Laboratory Animal Research Center, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Jiannan Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
42
|
Maxfield MW, Stacy MR, Kurobe H, Tara S, Yi T, Cleary MA, Zhuang ZW, Rodriguez-Davalos MI, Emre SH, Iwakiri Y, Shinoka T, Breuer CK. Novel application and serial evaluation of tissue-engineered portal vein grafts in a murine model. Regen Med 2017; 12:929-938. [PMID: 29215317 PMCID: PMC5827823 DOI: 10.2217/rme-2017-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIM Surgical management of pediatric extrahepatic portal vein obstruction requires meso-Rex bypass using autologous or synthetic grafts. Tissue-engineered vascular grafts (TEVGs) provide an alternative, but no validated animal models using portal TEVGs exist. Herein, we preclinically assess TEVGs as portal vein bypass grafts. MATERIALS & METHODS TEVGs were implanted as portal vein interposition conduits in SCID-beige mice, monitored by ultrasound and micro-computed tomography, and histologically assessed postmortem at 12 months. RESULTS TEVGs remained patent for 12 months. Histologic analysis demonstrated formation of neovessels that resembled native portal veins, with similar content of smooth muscle cells, collagen type III and elastin. CONCLUSION TEVGs are feasible portal vein conduits in a murine model. Further preclinical evaluation of TEVGs may facilitate pediatric clinical translation.
Collapse
Affiliation(s)
- Mark W Maxfield
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Mitchel R Stacy
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hirotsugu Kurobe
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Shuhei Tara
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tai Yi
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Muriel A Cleary
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen W Zhuang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Manuel I Rodriguez-Davalos
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Sukru H Emre
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Toshiharu Shinoka
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher K Breuer
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
43
|
Justin AW, Saeb-Parsy K, Markaki AE, Vallier L, Sampaziotis F. Advances in the generation of bioengineered bile ducts. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1532-1538. [PMID: 29097260 DOI: 10.1016/j.bbadis.2017.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
The generation of bioengineered biliary tissue could contribute to the management of some of the most impactful cholangiopathies associated with liver transplantation, such as biliary atresia or ischemic cholangiopathy. Recent advances in tissue engineering and in vitro cholangiocyte culture have made the achievement of this goal possible. Here we provide an overview of these developments and review the progress towards the generation and transplantation of bioengineered bile ducts. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Athina E Markaki
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Fotios Sampaziotis
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
44
|
Aussel A, Montembault A, Malaise S, Foulc MP, Faure W, Cornet S, Aid R, Chaouat M, Delair T, Letourneur D, David L, Bordenave L. In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development. J Cardiovasc Transl Res 2017; 10:480-488. [PMID: 28762052 DOI: 10.1007/s12265-017-9763-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
Vascular grafts made of synthetic polymers perform poorly in cardiac and peripheral bypass applications. In these applications, chitosan-based materials can be produced and shaped to provide a novel scaffold for vascular tissue engineering. The goal of this study was to evaluate in vitro the mechanical properties of a novel chitosan formulation to assess its potential for this scaffold. Two chitosan-based hydrogel tubes were produced by modulating chitosan concentration. Based on the standard ISO 7198:1998, the hydrogel tubes were characterized in vitro in terms of suture retention strength, tensile strength, compliance, and burst pressure. By increasing chitosan concentration, suture retention value increased to reach 1.1 N; average burst strength and elastic moduli also increased significantly. The compliance seemed to exhibit a low value for chitosan tubes of high concentration. By modulating chitosan concentration, we produced scaffolds with suitable mechanical properties to be implanted in vivo and withstand physiological blood pressures.
Collapse
Affiliation(s)
- Audrey Aussel
- University Bordeaux, 33000, Bordeaux, France
- INSERM, Bioingénierie tissulaire, U1026, 33000, Bordeaux, France
- CHU de Bordeaux, 33000, Bordeaux, France
| | - Alexandra Montembault
- University Lyon, Université Lyon 1, Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, 69622, Villeurbanne Cedex, France
| | - Sébastien Malaise
- University Lyon, Université Lyon 1, Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, 69622, Villeurbanne Cedex, France
| | | | - William Faure
- Rescoll, 8 Allée Geoffroy Saint-Hilaire, 33600, Pessac, France
| | | | - Rachida Aid
- INSERM, U1148, Laboratoire de recherche vasculaire translationnelle, 75000, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, 75000, Paris, France
| | - Marc Chaouat
- INSERM, U1148, Laboratoire de recherche vasculaire translationnelle, 75000, Paris, France
| | - Thierry Delair
- University Lyon, Université Lyon 1, Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, 69622, Villeurbanne Cedex, France
| | - Didier Letourneur
- INSERM, U1148, Laboratoire de recherche vasculaire translationnelle, 75000, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, 75000, Paris, France
| | - Laurent David
- University Lyon, Université Lyon 1, Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, 69622, Villeurbanne Cedex, France
| | - Laurence Bordenave
- University Bordeaux, 33000, Bordeaux, France.
- INSERM, Bioingénierie tissulaire, U1026, 33000, Bordeaux, France.
- CHU de Bordeaux, 33000, Bordeaux, France.
- CHU de Bordeaux, CIC 1401, 33000, Bordeaux, France.
| |
Collapse
|
45
|
van Haaften EE, Bouten CVC, Kurniawan NA. Vascular Mechanobiology: Towards Control of In Situ Regeneration. Cells 2017; 6:E19. [PMID: 28671618 PMCID: PMC5617965 DOI: 10.3390/cells6030019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
The paradigm of regenerative medicine has recently shifted from in vitro to in situ tissue engineering: implanting a cell-free, biodegradable, off-the-shelf available scaffold and inducing the development of functional tissue by utilizing the regenerative potential of the body itself. This approach offers a prospect of not only alleviating the clinical demand for autologous vessels but also circumventing the current challenges with synthetic grafts. In order to move towards a hypothesis-driven engineering approach, we review three crucial aspects that need to be taken into account when regenerating vessels: (1) the structure-function relation for attaining mechanical homeostasis of vascular tissues, (2) the environmental cues governing cell function, and (3) the available experimental platforms to test instructive scaffolds for in situ tissue engineering. The understanding of cellular responses to environmental cues leads to the development of computational models to predict tissue formation and maturation, which are validated using experimental platforms recapitulating the (patho)physiological micro-environment. With the current advances, a progressive shift is anticipated towards a rational and effective approach of building instructive scaffolds for in situ vascular tissue regeneration.
Collapse
Affiliation(s)
- Eline E van Haaften
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
46
|
Drews JD, Miyachi H, Shinoka T. Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status. Trends Cardiovasc Med 2017; 27:521-531. [PMID: 28754230 DOI: 10.1016/j.tcm.2017.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 01/22/2023]
Abstract
Congenital heart disease is a leading cause of death in the newborn period, and man-made grafts currently used for reconstruction are associated with multiple complications. Tissue engineering can provide an alternative source of vascular tissue in congenital cardiac surgery. Clinical trials have been successful overall, but the most frequent complication is graft stenosis. Recent studies in animal models have indicated the important role of the recipient׳s immune response in neotissue formation, and that modulating the immune response can reduce the incidence of stenosis.
Collapse
Affiliation(s)
- Joseph D Drews
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH
| | - Hideki Miyachi
- Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH; Department of Cardiovascular Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Toshiharu Shinoka
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH.
| |
Collapse
|
47
|
Fukunishi T, Best CA, Ong CS, Groehl T, Reinhardt J, Yi T, Miyachi H, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Eng Part A 2017; 24:135-144. [PMID: 28486019 DOI: 10.1089/ten.tea.2017.0044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Electrospinning is a promising technology that provides biodegradable nanofiber scaffolds for cardiovascular tissue engineering. However, success with these materials has been limited, and the optimal combination of scaffold parameters for a tissue-engineered vascular graft (TEVG) remains elusive. The purpose of the present study is to evaluate the effect of bone marrow mononuclear cell (BM-MNC) seeding in electrospun scaffolds to support the rational design of optimized TEVGs. METHODS Nanofiber scaffolds were fabricated from co-electrospinning a solution of polyglycolic acid and a solution of poly(ι-lactide-co-ɛ-caprolactone) and characterized with scanning electron microscopy. Platelet activation and cell seeding efficiency were assessed by ATP secretion and DNA assays, respectively. Cell-free and BM-MNC seeded scaffolds were implanted in C57BL/6 mice (n = 15/group) as infrarenal inferior vena cava (IVC) interposition conduits. Animals were followed with serial ultrasonography for 6 months, after which grafts were harvested for evaluation of patency and neotissue formation by histology and immunohistochemistry (n = 10/group) and PCR (n = 5/group) analyses. RESULTS BM-MNC seeding of electrospun scaffolds prevented stenosis compared with unseeded scaffolds (seeded: 9/10 patent vs. unseeded: 1/10 patent, p = 0.0003). Seeded vascular grafts demonstrated concentric laminated smooth muscle cells, a confluent endothelial monolayer, and a collagen-rich extracellular matrix. Platelet-derived ATP, a marker of platelet activation, was significantly reduced after incubating thrombin-activated platelets in the presence of seeded scaffolds compared with unseeded scaffolds (p < 0.0001). In addition, reduced macrophage infiltration and a higher M2 macrophage percentage were observed in seeded grafts. CONCLUSIONS The beneficial effects of BM-MNC seeding apply to electrospun TEVG scaffolds by attenuating stenosis through the regulation of platelet activation and inflammatory macrophage function, leading to well-organized neotissue formation. BM-MNC seeding is a valuable technique that can be used in the rational design of optimal TEVG scaffolds.
Collapse
Affiliation(s)
- Takuma Fukunishi
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Cameron A Best
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Chin Siang Ong
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | | | - James Reinhardt
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Tai Yi
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Hideki Miyachi
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Huaitao Zhang
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Toshiharu Shinoka
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Christopher K Breuer
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Jed Johnson
- 3 Nanofiber Solutions, Inc. , Columbus, Ohio
| | - Narutoshi Hibino
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
48
|
Onwuka E, Best C, Sawyer A, Yi T, Heuer E, Sams M, Wiet M, Zheng H, Kyriakides T, Breuer C. The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft. Regen Med 2017; 12:249-261. [PMID: 28524773 DOI: 10.2217/rme-2016-0141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Inflammatory myeloid lineage cells mediate neotissue formation in tissue-engineered vascular grafts, but the molecular mechanism is not completely understood. We examined the role of vasculogenic PDGF-B in tissue-engineered vascular graft neotissue development. MATERIALS & METHODS Myeloid cell-specific PDGF-B knockout mice (PDGF-KO) were generated using bone marrow transplantation, and scaffolds were implanted as inferior vena cava interposition grafts in either PDGF-KO or wild-type mice. RESULTS After 2 weeks, grafts from PDGF-KO mice had more remaining scaffold polymer and less intimal neotissue development. Increased macrophage apoptosis, decreased smooth muscle cell proliferation and decreased collagen content was also observed. CONCLUSION Myeloid cell-derived PDGF contributes to vascular neotissue formation by regulating macrophage apoptosis, smooth muscle cell proliferation and extracellular matrix deposition.
Collapse
Affiliation(s)
- Ekene Onwuka
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cameron Best
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew Sawyer
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Tai Yi
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Eric Heuer
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Malik Sams
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Wiet
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hong Zheng
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Themis Kyriakides
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher Breuer
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
49
|
Marcolin C, Draghi L, Tanzi M, Faré S. Electrospun silk fibroin-gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:80. [PMID: 28397163 DOI: 10.1007/s10856-017-5884-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/12/2017] [Indexed: 06/07/2023]
Abstract
In this work an innovative method to obtain natural and biocompatible small diameter tubular structures is proposed. The biocompatibility and good mechanical properties of electrospun silk fibroin tubular matrices (SFts), extensively studied for tissue engineering applications, have been coupled with the excellent cell interaction properties of gelatin. In fact, an innovative non-cytotoxic gelatin gel, crosslinked in mild conditions via a Michael-type addition reaction, has been used to coat SFt matrices and obtain SFt/gel structures (I.D. = 6 mm). SFts/gel exhibited homogeneous gelatin coating on the electrospun fibrous tubular structure. Circumferential tensile tests performed on SFts/gel showed mechanical properties comparable to those of natural blood vessels in terms of UTS, compliance and viscoelastic behavior. Finally, SFt/gel in vitro cytocompatibility was confirmed by the good viability and spread morphology of L929 fibroblasts up to 7 days. These results demonstrated that SFt/gel is a promising off-the-shelf graft for small diameter blood vessel regeneration.
Collapse
Affiliation(s)
- Chiara Marcolin
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy
- Local Unit Politecnico di Milano, INSTM, Milano, Italy
| | | | - Silvia Faré
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. Da Vinci 32, Milano, Italy.
- Local Unit Politecnico di Milano, INSTM, Milano, Italy.
| |
Collapse
|
50
|
Sugiura T, Agarwal R, Tara S, Yi T, Lee YU, Breuer CK, Weiss AS, Shinoka T. Tropoelastin inhibits intimal hyperplasia of mouse bioresorbable arterial vascular grafts. Acta Biomater 2017; 52:74-80. [PMID: 28025048 DOI: 10.1016/j.actbio.2016.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
Abstract
Neointimal hyperplasia, which results from the activation, proliferation and migration of vascular smooth muscle cells (SMCs), is a detrimental condition for vascular stents or vascular grafts that leads to stenosis. Preventing neointimal hyperplasia of vascular grafts is critically important for the success of arterial vascular grafts. We hypothesized that tropoelastin seeding onto the luminal surface of the graft would prevent neointimal hyperplasia through suppressing neointimal smooth muscle cell proliferation. In this study, we investigated the efficacy of tropoelastin seeding in preventing neointimal hyperplasia of bioresorbable arterial vascular grafts. Poly (glycolic acid) (PGA) fiber mesh coated with poly (l-lactic-co-ε-caprolactone) (PLCL) scaffolds reinforced by poly (l-lactic acid) (PLA) nano-fibers were prepared as bioresorbable arterial grafts. Tropoelastin was then seeded onto the luminal surface of the grafts. Tropoelastin significantly reduced the thickness of the intimal layer. This effect was mainly due to a substantial reduction the number of cells that stained positive for SMC (α-SMA) and PCNA in the vessel walls. Mature elastin and collagen type I and III were unchanged with tropoelastin treatment. This study demonstrates that tropoelastin seeding is beneficial in preventing SMC proliferation and neointimal hyperplasia in bioresorbable arterial vascular grafts. STATEMENT OF SIGNIFICANCE Small resorbable vascular grafts can block due to the over-proliferation of smooth muscle cells in neointimal hyperplasia. We show here that the proliferation of these cells is restricted in this type of graft. This is achieved with a simple dip, non-covalent coating of tropoelastin. It is in principle amendable to other grafts and is therefore an attractive process. This study is particularly significant because: (1) it shows that smooth muscle cell proliferation can be reduced while still accommodating the growth of endothelial cells, (2) small vascular grafts with an internal diameter of less than 1mm are amenable to this process, and (3) this process works for resorbable grafts.
Collapse
|