1
|
Coca-Hidalgo JJ, Recillas-Mota M, Fernández-Quiroz D, Lizardi-Mendoza J, Peniche-Covas C, Goycoolea FM, Argüelles-Monal WM. Study of the Thermal Phase Transition of Poly( N,N-diethylacrylamide- co- N-ethylacrylamide) Random Copolymers in Aqueous Solution. Polymers (Basel) 2024; 16:1575. [PMID: 38891521 PMCID: PMC11175111 DOI: 10.3390/polym16111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
N-alkyl-substituted polyacrylamides exhibit a thermal coil-to-globule transition in aqueous solution driven by an increase in hydrophobic interactions with rising temperature. With the aim of understanding the role of N-alkyl substituents in the thermal transition, this study focuses on the molecular interactions underlying the phase transition of poly(N,N-diethylacrylamide-co-N-ethylacrylamide) random copolymers. Poly(N,N-diethylacrylamide) (PDEAm), poly(N-ethylacrylamide) (PNEAm), and their random copolymers were synthesized by free radical polymerization and their chemical structure characterized spectroscopically. It was found that the values of the cloud-point temperature increased with PNEAm content, and particle aggregation processes took place, increasing the negative charge density on their surface. The cloud-point temperature of each copolymer decreased with respect to the theoretical values calculated assuming an absence of interactions. It is attributed to the formation of intra- and interchain hydrogen bonding in aqueous solutions. These interactions favor the formation of more hydrophobic macromolecular segments, thereby promoting the cooperative nature of the transition. These results definitively reveal the dominant mechanism occurring during the phase transition in the aqueous solutions of these copolymers.
Collapse
Affiliation(s)
- José Javier Coca-Hidalgo
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; (J.J.C.-H.); (M.R.-M.); (J.L.-M.)
| | - Maricarmen Recillas-Mota
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; (J.J.C.-H.); (M.R.-M.); (J.L.-M.)
| | - Daniel Fernández-Quiroz
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; (J.J.C.-H.); (M.R.-M.); (J.L.-M.)
| | | | | | - Waldo M. Argüelles-Monal
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; (J.J.C.-H.); (M.R.-M.); (J.L.-M.)
| |
Collapse
|
2
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
3
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
4
|
Cho E, Qiao Y, Chen C, Xu J, Cai J, Li Y, Zhao J. Injectable FHE+BP composites hydrogel with enhanced regenerative capacity of tendon-bone interface for anterior cruciate ligament reconstruction. Front Bioeng Biotechnol 2023; 11:1117090. [PMID: 36911205 PMCID: PMC9996450 DOI: 10.3389/fbioe.2023.1117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Features of black phosphorous (BP) nano sheets such as enhancing mineralization and reducing cytotoxicity in bone regeneration field have been reported. Thermo-responsive FHE hydrogel (mainly composed of oxidized hyaluronic acid (OHA), poly-ε-L-lysine (ε-EPL) and F127) also showed a desired outcome in skin regeneration due to its stability and antibacterial benefits. This study investigated the application of BP-FHE hydrogel in anterior cruciate ligament reconstruction (ACLR) both in in vitro and in vivo, and addressed its effects on tendon and bone healing. This BP-FHE hydrogel is expected to bring the benefits of both components (thermo-sensitivity, induced osteogenesis and easy delivery) to optimize the clinical application of ACLR and enhance the recovery. Our in vitro results confirmed the potential role of BP-FHE via significantly increased rBMSC attachment, proliferation and osteogenic differentiation with ARS and PCR analysis. Moreover, In vivo results indicated that BP-FHE hydrogels can successfully optimize the recovery of ACLR through enhancing osteogenesis and improving the integration of tendon and bone interface. Further results of Biomechanical testing and Micro-CT analysis [bone tunnel area (mm2) and bone volume/total volume (%)] demonstrated that BP can indeed accelerate bone ingrowth. Additionally, histological staining (H&E, Masson and Safranin O/fast green) and immunohistochemical analysis (COL I, COL III and BMP-2) strongly supported the ability of BP to promote tendon-bone healing after ACLR in murine animal models.
Collapse
Affiliation(s)
- Eunshinae Cho
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Changan Chen
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yamin Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| |
Collapse
|
5
|
Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Intelligent Hydrogels in Myocardial Regeneration and Engineering. Gels 2022; 8:576. [PMID: 36135287 PMCID: PMC9498403 DOI: 10.3390/gels8090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomyocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenvironment, resulting in intelligent hydrogels. This review delves into the perspectives of various intelligent hydrogels and evidence from successful models of hydrogel-assisted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
6
|
Rocker AJ, Cavasin M, Johnson NR, Shandas R, Park D. Sulfonated Thermoresponsive Injectable Gel for Sequential Release of Therapeutic Proteins to Protect Cardiac Function after Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3883-3898. [PMID: 35950643 DOI: 10.1021/acsbiomaterials.2c00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myocardial infarction causes cardiomyocyte death and persistent inflammatory responses, which generate adverse pathological remodeling. Delivering therapeutic proteins from injectable materials in a controlled-release manner may present an effective biomedical approach for treating this disease. A thermoresponsive injectable gel composed of chitosan, conjugated with poly(N-isopropylacrylamide) and sulfonate groups, was developed for spatiotemporal protein delivery to protect cardiac function after myocardial infarction. The thermoresponsive gel delivered vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), and platelet-derived growth factor (PDGF) in a sequential and sustained manner in vitro. An acute myocardial infarction mouse model was used to evaluate polymer biocompatibility and to determine therapeutic effects from the delivery system on cardiac function. Immunohistochemistry showed biocompatibility of the hydrogel, while the controlled delivery of the proteins reduced macrophage infiltration and increased vascularization. Echocardiography showed an improvement in ejection fraction and fractional shortening after injecting the thermal gel and proteins. A factorial design of experimental study was implemented to optimize the delivery system for the best combination and doses of proteins for further increasing stable vascularization and reducing inflammation using a subcutaneous injection mouse model. The results showed that VEGF, IL-10, and FGF-2 demonstrated significant contributions toward promoting long-term vascularization, while PDGF's effect was minimal.
Collapse
Affiliation(s)
- Adam J Rocker
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Maria Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Noah R Johnson
- Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
7
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
8
|
Cao J, He G, Ning X, Chen X, Fan L, Yang M, Yin Y, Cai W. Preparation and properties of O-chitosan quaternary ammonium salt/polyvinyl alcohol/graphene oxide dual self-healing hydrogel. Carbohydr Polym 2022; 287:119318. [DOI: 10.1016/j.carbpol.2022.119318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023]
|
9
|
Ghofrani A, Taghavi L, Khalilivavdareh B, Rohani Shirvan A, Nouri A. Additive manufacturing and advanced functionalities of cardiac patches: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Ghovvati M, Kharaziha M, Ardehali R, Annabi N. Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2022; 11:e2200055. [PMID: 35368150 PMCID: PMC9262872 DOI: 10.1002/adhm.202200055] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/12/2022] [Indexed: 12/19/2022]
Abstract
Implantable cardiac patches and injectable hydrogels are among the most promising therapies for cardiac tissue regeneration following myocardial infarction. Incorporating electrical conductivity into these patches and hydrogels is found to be an efficient method to improve cardiac tissue function. Conductive nanomaterials such as carbon nanotube, graphene oxide, gold nanorod, as well as conductive polymers such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate are appealing because they possess the electroconductive properties of semiconductors with ease of processing and have potential to restore electrical signaling propagation through the infarct area. Numerous studies have utilized these materials for regeneration of biological tissues that possess electrical activities, such as cardiac tissue. In this review, recent studies on the use of electroconductive materials for cardiac tissue engineering and their fabrication methods are summarized. Moreover, recent advances in developing electroconductive materials for delivering therapeutic agents as one of emerging approaches for treating heart diseases and regenerating damaged cardiac tissues are highlighted.
Collapse
Affiliation(s)
- Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073482. [PMID: 35408844 PMCID: PMC8998628 DOI: 10.3390/ijms23073482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.
Collapse
|
12
|
Doxorubicin delivery systems with an acetylacetone-based block in cholesterol-terminated copolymers: diverse activity against estrogen-dependent and estrogen-independent breast cancer cells. Chem Phys Lipids 2022; 245:105194. [DOI: 10.1016/j.chemphyslip.2022.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022]
|
13
|
Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, Nikkhah M. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater 2022; 139:118-140. [PMID: 34455109 PMCID: PMC8935982 DOI: 10.1016/j.actbio.2021.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Masoud Hasany
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
Heffernan JM, Overstreet DJ, Vernon BL, McLemore RY, Nagy T, Moore RC, Badha VS, Childers EP, Nguyen MB, Gentry DD, Calara FM, Saunders WB, Feltis T, McLaren AC. In vivo evaluation of temperature-responsive antimicrobial-loaded PNIPAAm hydrogels for prevention of surgical site infection. J Biomed Mater Res B Appl Biomater 2022; 110:103-114. [PMID: 34128323 PMCID: PMC8608705 DOI: 10.1002/jbm.b.34894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023]
Abstract
Surgical site infections (SSIs) are a persistent clinical challenge. Local antimicrobial delivery may reduce the risk of SSI by increasing drug concentrations and distribution in vulnerable surgical sites compared to what is achieved using systemic antimicrobial prophylaxis alone. In this work, we describe a comprehensive in vivo evaluation of the safety and efficacy of poly(N-isopropylacrylamide-co-dimethylbutyrolactone acrylamide-co-Jeffamine M-1000 acrylamide) [PNDJ], an injectable temperature-responsive hydrogel carrier for antimicrobial delivery in surgical sites. Biodistribution data indicate that PNDJ is primarily cleared via the liver and kidneys following drug delivery. Antimicrobial-loaded PNDJ was generally well-tolerated locally and systemically when applied in bone, muscle, articulating joints, and intraperitoneal space, although mild renal toxicity consistent with the released antimicrobials was identified at high doses in rats. Dosing of PNDJ at bone-implant interfaces did not affect normal tissue healing and function of orthopedic implants in a transcortical plug model in rabbits and in canine total hip arthroplasty. Finally, PNDJ was effective at preventing recurrence of implant-associated MSSA and MRSA osteomyelitis in rabbits, showing a trend toward outperforming commercially available antimicrobial-loaded bone cement and systemic antimicrobial administration. These studies indicate that antimicrobial-loaded PNDJ hydrogels are well-tolerated and could reduce incidence of SSI in a variety of surgical procedures.
Collapse
Affiliation(s)
| | - Derek J Overstreet
- Sonoran Biosciences, Tempe, AZ,School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Brent L Vernon
- Sonoran Biosciences, Tempe, AZ,School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Ryan Y McLemore
- Sonoran Biosciences, Tempe, AZ,University of Arizona College of Medicine, Phoenix, AZ,Systems Planning and Analysis, Inc. Alexandria, VA
| | - Tamas Nagy
- College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Rex C Moore
- Sonoran Biosciences, Tempe, AZ,School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Vajra S Badha
- Sonoran Biosciences, Tempe, AZ,School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ
| | | | - Michael B Nguyen
- Sonoran Biosciences, Tempe, AZ,School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Daniel D Gentry
- Sonoran Biosciences, Tempe, AZ,School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ
| | | | - W Brian Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX
| | | | - Alex C McLaren
- Sonoran Biosciences, Tempe, AZ,School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ,University of Arizona College of Medicine, Phoenix, AZ
| |
Collapse
|
15
|
Abstract
Self-assembling peptides (SAPs), which form hydrogels through physical cross-linking of soluble structures, are an intriguing class of materials that have been applied as tissue engineering scaffolds and drug delivery vehicles. For feasible application of these tissue mimetics via minimally invasive delivery, their bulk mechanical properties must be compatible with current delivery strategies. However, injectable SAPs which possess shear-thinning capacity, as well as the ability to reassemble after cessation of shearing can be technically challenging to generate. Many SAPs either clog the high-gauge needle/catheter at high concentration during delivery or are incapable of reassembly following delivery. In this chapter, we provide a detailed protocol for topological control of enzyme-responsive peptide-based hydrogels that enable the user to access both advantages. These materials are formulated as sterically constrained cyclic peptide progelators to temporarily disrupt self-assembly during injection-based delivery, which avoids issues with clogging of needles and catheters as well as nearby vasculature. Proteolytic cleavage by enzymes produced at the target tissue induces progelator linearization and hydrogelation. The scope of this approach is demonstrated by their ability to flow through a catheter without clogging and activated gelation upon exposure to target enzymes.
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Mary F Cassidy
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Pharmacology, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Pearce HA, Jiang EY, Swain JWR, Navara AM, Guo JL, Kim YS, Woehr A, Hartgerink JD, Mikos AG. Evaluating the physicochemical effects of conjugating peptides into thermogelling hydrogels for regenerative biomaterials applications. Regen Biomater 2021; 8:rbab073. [PMID: 34934509 PMCID: PMC8684499 DOI: 10.1093/rb/rbab073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Thermogelling hydrogels, such as poly(N-isopropylacrylamide) [P(NiPAAm)], provide tunable constructs leveraged in many regenerative biomaterial applications. Recently, our lab developed the crosslinker poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol), which crosslinks P(NiPAAm-co-glycidyl methacrylate) via thiol-epoxy reaction and can be functionalized with azide-terminated peptides via alkyne-azide click chemistry. This study's aim was to evaluate the impact of peptides on the physicochemical properties of the hydrogels. The physicochemical properties of the hydrogels including the lower critical solution temperature, crosslinking times, swelling, degradation, peptide release and cytocompatibility were evaluated. The gels bearing peptides increased equilibrium swelling indicating hydrophilicity of the hydrogel components. Comparable sol fractions were found for all groups, indicating that inclusion of peptides does not impact crosslinking. Moreover, the inclusion of a matrix metalloproteinase-sensitive peptide allowed elucidation of whether release of peptides from the network was driven by hydrolysis or enzymatic cleavage. The hydrophilicity of the network determined by the swelling behavior was demonstrated to be the most important factor in dictating hydrogel behavior over time. This study demonstrates the importance of characterizing the impact of additives on the physicochemical properties of hydrogels. These characteristics are key in determining design considerations for future in vitro and in vivo studies for tissue regeneration.
Collapse
Affiliation(s)
- Hannah A Pearce
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Joseph W R Swain
- Depatment of Chemistry, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Adam M Navara
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Jason L Guo
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Andrew Woehr
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
- Depatment of Chemistry, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| |
Collapse
|
17
|
Khazaei S, Soleimani M, Tafti SHA, Aghdam RM, Hojati Z. Improvement of Heart Function After Transplantation of Encapsulated Stem Cells Induced with miR-1/Myocd in Myocardial Infarction Model of Rat. Cell Transplant 2021; 30:9636897211048786. [PMID: 34606735 PMCID: PMC8493326 DOI: 10.1177/09636897211048786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease is one of the most common causes of death worldwide. Mesenchymal stem cells (MSCs) are one of the most common sources in cell-based therapies in heart regeneration. There are several methods to differentiate MSCs into cardiac-like cells, such as gene induction. Moreover, using a three-dimensional (3D) culture, such as hydrogels increases efficiency of differentiation. In the current study, mouse adipose-derived MSCs were co-transduced with lentiviruses containing microRNA-1 (miR-1) and Myocardin (Myocd). Then, expression of cardiac markers, such as NK2 homeobox 5(Nkx2-5), GATA binding protein 4 (Gata4), and troponin T type 2 (Tnnt2) was investigated, at both gene and protein levels in two-dimensional (2D) culture and chitosan/collagen hydrogel (CS/CO) as a 3D culture. Additionally, after induction of myocardial infarction (MI) in rats, a patch containing the encapsulated induced cardiomyocytes (iCM/P) was implanted to MI zone. Subsequently, 30 days after MI induction, echocardiography, immunohistochemistry staining, and histological examination were performed to evaluate cardiac function. The results of quantitative real -time polymerase chain reaction (qRT-PCR) and immunocytochemistry showed that co-induction of miR-1 and Myocd in MSCs followed by 3D culture of transduced cells increased expression of cardiac markers. Besides, results of in vivo study implicated that heart function was improved in MI model of rats in iCM/P-treated group. The results suggested that miR-1/Myocd induction combined with encapsulation of transduced cells in CS/CO hydrogel increased efficiency of MSCs differentiation into iCMs and could improve heart function in MI model of rats after implantation.
Collapse
Affiliation(s)
- Samaneh Khazaei
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| | - Masoud Soleimani
- Tissue Engineering and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Tissue Engineering and Nanomedicine Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Hojati
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| |
Collapse
|
18
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
19
|
Malektaj H, Imani R, Siadati MH. Study of injectable PNIPAAm hydrogels containing niosomal angiogenetic drug delivery system for potential cardiac tissue regeneration. Biomed Mater 2021; 16. [PMID: 33482656 DOI: 10.1088/1748-605x/abdef8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Nowadays, heart disease, especially myocardial infarction, is one of the most astoundingly unfortunate causes of mortality in the world. That is why special attention has been paid toward tissue engineering techniques for curing and regeneration of heart tissue. In this study, poly(N-isopropyl acrylamide) (PNIPAAm), a temperature-sensitive injectable hydrogel, was selected as a minimally invasive scaffold to accommodate, carry, and release of niosomal rosuvastatin to the inflicted area for inducing angiogenesis and thus accelerating the healing process. The characteristics of PNIPAAm were studied by scanning electron microscopy, rheology tests, and Fourier transform infrared spectroscopy. The properties of the niosomal rosuvastatin release system, including particle size distribution, zeta potential, encapsulation efficiency (EE), and drug release, were also studied. The results showed that niosomes (358 nm) had a drug EE of 78% and a loading capacity of 53%. The drug was sustainably released from the system up to about 54% in 5 d. Cellular studies showed no toxicity to the endothelial cell lines, and the niosomal drug with a concentration of 7.5 nM enhanced cell proliferation, and cell migration increased from 72% to 90% compared to the control sample. Therefore, the controlled-release of niosomal rosuvastatin enhanced angiogenesis in a dose-dependent manner. Taken together, these advantages suggest that PNIPAAm-based niosomal hydrogel provides a promising candidate as an angiogentic injectable scaffold for potential cardiac tissue regeneration.
Collapse
Affiliation(s)
- Haniyeh Malektaj
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - M Hossein Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
20
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Therapies to prevent post-infarction remodelling: From repair to regeneration. Biomaterials 2021; 275:120906. [PMID: 34139506 DOI: 10.1016/j.biomaterials.2021.120906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Myocardial infarction is the first cause of worldwide mortality, with an increasing incidence also reported in developing countries. Over the past decades, preclinical research and clinical trials continually tested the efficacy of cellular and acellular-based treatments. However, none of them resulted in a drug or device currently used in combination with either percutaneous coronary intervention or coronary artery bypass graft. Inflammatory, proliferation and remodelling phases follow the ischaemic event in the myocardial tissue. Only recently, single-cell sequencing analyses provided insights into the specific cell populations which determine the final fibrotic deposition in the affected region. In this review, ischaemia, inflammation, fibrosis, angiogenesis, cellular stress and fundamental cellular and molecular components are evaluated as therapeutic targets. Given the emerging evidence of biomaterial-based systems, the increasing use of injectable hydrogels/scaffolds and epicardial patches is reported both as acellular and cellularised/functionalised treatments. Since several variables influence the outcome of any experimented treatment, we return to the pathological basis with an unbiased view towards any specific process or cellular component. Thus, by evaluating the benefits and limitations of the approaches based on these targets, the reader can weigh the rationale of each of the strategies that reached the clinical trials stage. As recent studies focused on the relevance of the extracellular matrix in modulating ischaemic remodelling and enhancing myocardial regeneration, we aim to portray current trends in the field with this review. Finally, approaches towards feasible translational studies that are as yet unexplored are also suggested.
Collapse
|
22
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
23
|
Fujimoto KL, Yamawaki-Ogata A, Uto K, Usui A, Narita Y, Ebara M. Long term efficacy and fate of a right ventricular outflow tract replacement using an elastomeric cardiac patch consisting of caprolactone and D,L-lactide copolymers. Acta Biomater 2021; 123:222-229. [PMID: 33476828 DOI: 10.1016/j.actbio.2021.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
For decades, researchers have investigated the ideal material for clinical use in the cardiovascular field. Several substitute materials are used clinically, but each has drawbacks. Recently we developed biodegradable and elastic poly(ε-caprolactone-co-D,L-lactide) (P(CL-DLLA)) copolymers by adjusting the CL/DLLA composition, and evaluated the long-term efficacy and outcomes of these copolymers when used for right ventricular outflow tract (RVOT) replacement. This P(CL-DLLA) material was processed into a circular patch and used to replace a surgical defect in the RVOT of adult rats. Control rats were implanted with expanded polytetrafluoroethylene (ePTFE). Histologic evaluation was performed at 8, 24, and 48 weeks post-surgery. All animals survived the surgery with no aneurysm formation or thrombus. In all periods, ePTFE demonstrated fibrous tissue. In contrast, at 8 weeks P(CL-DLLA) showed infiltration of macrophages and fibroblast-like cells into the remaining material. At 24 weeks, P(CL-DLLA) was absorbed completely, and muscle-like tissue was present with positive staining for α-sarcomeric actinin and cardiac troponin T (cTnT). At 48 weeks, the cTnT-positive area had increased. The biodegradable and elastic P(CL-DLLA) induced cardiac regeneration throughout the 48-week study period. Future application of this material as a cardiovascular scaffold seems promising. STATEMENT OF SIGNIFICANCE: Biomaterials for reconstruction of tissue deficiencies in cardiovascular surgery require having suitable mechanical properties for cardiac tissue and biodegradation resulting in native tissue growth. Several biodegradable polymers such as poly-ε-caprolactone (PCL) and polylactic acid (PLA) have excellent biocompatibility and already been widely used clinically. In general, PCL and PLA are quite mechanically rigid. Meanwhile, significant elasticity is required in the high-pressure environment of the heart while the material is being replaced by new tissue. The present study provides a novel four-armed crosslinked poly(ε-caprolactone-co-D,L-lactide) (i.e., P(CL-DLLA)) material for cardiac patch, which was demonstrated properties including tissue-compatible, super-elastic nature, that made it suitable for long-term, in vivo RVOT repair. This super-elastic biomaterial could be useful for reconstruction of various muscular tissues deficiencies.
Collapse
|
24
|
Sali SS, Gould ML, Qasim M, Ali MA. Biodegradable methacrylated casein for cardiac tissue engineering applications. J Mater Chem B 2021; 9:1557-1567. [PMID: 33491722 DOI: 10.1039/d0tb02496a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Casein is a naturally derived amino group (-NH2) rich protein, that enables surface functionalization leading to hydrophilicity, which in turn facilitates better cell adhesion. Casein obtained from either commercial β-casein rich skim milk (A2 milk) or dissolved air flotation (DAF) technology was tested for its potential for tissue engineering applications in a comparative study. A novel biodegradable biomaterial was synthesized from casein by chemically modifying with methacrylic anhydride (MA) and combined with polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blend. The resulting methacrylated casein (CasMA) with the two polymers was processed into porous scaffolds with low and high MA concentrations to demonstrate CasMA's ease of modification and reproducibility. Fourier Transform Infrared Microscopy (FTIR) and Proton Nuclear Magnetic Resonance (1H NMR) revealed the presence of all the components and the successful modification of casein. The rheological and morphological analysis presented viscous behaviour and columnar hollow tube-like microstructures in agreement with the biomaterials' swelling and biodegradation behaviour. The live/dead in vitro assay showed high cell viability that agreed with the cell proliferation (MTT) assay in vitro, which indicated increased proliferation upon casein modification at appropriate biomaterial concentrations and volumes. This study not only showed a possible mechanism of casein methacrylation but also presented the potential use of waste materials like DAF-casein as a value-added product for tissue engineering applications.
Collapse
Affiliation(s)
- Sonali Sudhir Sali
- Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9016, New Zealand.
| | - Maree L Gould
- Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9016, New Zealand.
| | - Muhammad Qasim
- Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9016, New Zealand. and Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - M Azam Ali
- Centre for Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
25
|
Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111517. [DOI: 10.1016/j.msec.2020.111517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
|
26
|
Rosellini E, Barbani N, Frati C, Madeddu D, Massai D, Morbiducci U, Lazzeri L, Falco A, Graiani G, Lagrasta C, Audenino A, Cascone MG, Quaini F. IGF-1 loaded injectable microspheres for potential repair of the infarcted myocardium. J Biomater Appl 2020; 35:762-775. [PMID: 32772783 DOI: 10.1177/0885328220948501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of injectable scaffolds to repair the infarcted heart is receiving great interest. Thermosensitive polymers, in situ polymerization, in situ cross-linking, and self-assembling peptides are the most investigated approaches to obtain injectability.Aim of the present work was the preparation and characterization of a novel bioactive scaffold, in form of injectable microspheres, for cardiac repair. Gellan/gelatin microspheres were prepared by a water-in-oil emulsion and loaded by adsorption with Insulin-like growth factor 1 to promote tissue regeneration. Obtained microspheres underwent morphological, physicochemical and biological characterization, including cell culture tests in static and dynamic conditions and in vivo tests. Morphological analysis of the microspheres showed a spherical shape, a microporous surface and an average diameter of 66 ± 17µm (under dry conditions) and 123 ± 24 µm (under wet conditions). Chemical Imaging analysis pointed out a homogeneous distribution of gellan, gelatin and Insulin-like growth factor-1 within the microsphere matrix. In vitro cell culture tests showed that the microspheres promoted rat cardiac progenitor cells adhesion, and cluster formation. After dynamic suspension culture within an impeller-free bioreactor, cells still adhered to microspheres, spreading their cytoplasm over microsphere surface. Intramyocardial administration of microspheres in a cryoinjury rat model attenuated chamber dilatation, myocardial damage and fibrosis and improved cell homing.Overall, the findings of this study confirm that the produced microspheres display morphological, physicochemical, functional and biological properties potentially adequate for future applications as injectable scaffold for cardiac tissue engineering.
Collapse
Affiliation(s)
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Luigi Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gallia Graiani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Costanza Lagrasta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alberto Audenino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | | | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
27
|
Matsuzaki Y, Miyamoto S, Miyachi H, Sugiura T, Reinhardt JW, Yu-Chun C, Zbinden J, Breuer CK, Shinoka T. The evaluation of a tissue-engineered cardiac patch seeded with hips derived cardiac progenitor cells in a rat left ventricular model. PLoS One 2020; 15:e0234087. [PMID: 32511282 PMCID: PMC7279601 DOI: 10.1371/journal.pone.0234087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ventricular septal perforation and left ventricular aneurysm are examples of potentially fatal complications of myocardial infarction. While various artificial materials are used in the repair of these issues, the possibility of associated infection and calcification is non-negligible. Cell-seeded biodegradable tissue-engineered patches may be a potential solution. This study evaluated the feasibility of a new left ventricular patch rat model to study neotissue formation in biodegradable cardiac patches. METHODS Human induced pluripotent stem cell-derived cardiac progenitor cells (hiPS-CPCs) were cultured onto biodegradable patches composed of polyglycolic acid and a 50:50 poly (l-lactide-co-ε-caprolactone) copolymer for one week. After culturing, patches were implanted into left ventricular walls of male athymic rats. Unseeded controls were also used (n = 10/group). Heart conditions were followed by echocardiography and patches were subsequently explanted at 1, 2, 6, and 9 months post-implantation for histological evaluation. RESULT Throughout the study, no patches ruptured demonstrating the ability to withstand the high pressure left ventricular system. One month after transplantation, the seeded patch did not stain positive for human nuclei. However, many new blood vessels formed within patches with significantly greater vessels in the seeded group at the 6 month time point. Echocardiography showed no significant difference in left ventricular contraction rate between the two groups. Calcification was found inside patches after 6 months, but there was no significant difference between groups. CONCLUSION We have developed a surgical method to implant a bioabsorbable scaffold into the left ventricular environment of rats with a high survival rate. Seeded hiPS-CPCs did not differentiate into cardiomyocytes, but the greater number of new blood vessels in seeded patches suggests the presence of cell seeding early in the remodeling process might provide a prolonged effect on neotissue formation. This experiment will contribute to the development of a treatment model for left ventricular failure using iPS cells in the future.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Shinka Miyamoto
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Hideki Miyachi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - James W. Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Chang Yu-Chun
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Jacob Zbinden
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States of America
| |
Collapse
|
28
|
Ziminska M, Wilson JJ, McErlean E, Dunne N, McCarthy HO. Synthesis and Evaluation of a Thermoresponsive Degradable Chitosan-Grafted PNIPAAm Hydrogel as a "Smart" Gene Delivery System. MATERIALS 2020; 13:ma13112530. [PMID: 32498464 PMCID: PMC7321466 DOI: 10.3390/ma13112530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Thermoresponsive hydrogels demonstrate tremendous potential as sustained drug delivery systems. However, progress has been limited as formulation of a stable biodegradable thermosensitive hydrogel remains a significant challenge. In this study, free radical polymerization was exploited to formulate a biodegradable thermosensitive hydrogel characterized by sustained drug release. Highly deacetylated chitosan and N-isopropylacrylamide with distinctive physical properties were employed to achieve a stable, hydrogel network at body temperature. The percentage of chitosan was altered within the copolymer formulations and the subsequent physical properties were characterized using 1H-NMR, FTIR, and TGA. Viscoelastic, swelling, and degradation properties were also interrogated. The thermoresponsive hydrogels were loaded with RALA/pEGFP-N1 nanoparticles and release was examined. There was sustained release of nanoparticles over three weeks and, more importantly, the nucleic acid cargo remained functional and this was confirmed by successful transfection of the NCTC-929 fibroblast cell line. This tailored thermoresponsive hydrogel offers an option for sustained delivery of macromolecules over a prolonged considerable period.
Collapse
Affiliation(s)
- Monika Ziminska
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
| | - Jordan J. Wilson
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Chemistry and Chemical Engineering, Queen’s University of Belfast, Belfast BT9 5AG, UK
| | - Emma McErlean
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
| | - Nicholas Dunne
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 9, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (N.D.); (H.O.M.); Tel.: +353-(0)1-7005712 (N.D.); +44-(0)28-90972149/1993 (H.O.M.)
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
- Correspondence: (N.D.); (H.O.M.); Tel.: +353-(0)1-7005712 (N.D.); +44-(0)28-90972149/1993 (H.O.M.)
| |
Collapse
|
29
|
Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. ADVANCED THERAPEUTICS 2020; 3:1900182. [PMID: 33665356 PMCID: PMC7928435 DOI: 10.1002/adtp.201900182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease resulting from irreversible death of cardiomyocytes (CMs) and weakening of the heart blood-pumping function. Stem cell-based therapies have been studied for MI treatment over the last two decades with promising outcome. In this review, we critically summarize the past work in this field to elucidate the advantages and disadvantages of treating MI using pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells, and cardiac progenitor cells. The main advantage of the latter is their cytokine production capability to modulate immune responses and control the progression of healing. However, human adult stem cells have very limited (if not 'no') capacity to differentiate into functional CMs in vitro or in vivo. In contrast, PSCs can be differentiated into functional CMs although the protocols for the cardiac differentiation of PSCs are mainly for adherent cells under 2D culture. Derivation of PSC-CMs in 3D, allowing for large-scale production of CMs via modulation of the Wnt/β-catenin signal pathway with defined chemicals and medium, may be desired for clinical translation. Furthermore, the technology of purification and maturation of the PSC-CMs may need further improvements to eliminate teratoma formation after in vivo implantation of the PSC-CMs for treating MI. In addition, in vitro derived PSC-CMs may have mechanical and electrical mismatch with the patient's cardiac tissue, which causes arrhythmia. This supports the use of PSC-derived cells committed to cardiac lineage without beating for implantation to treat MI. In this case, the PSC derived cells may utilize the mechanical, electrical, and chemical cues in the heart to further differentiate into mature/functional CMs in situ. Another major challenge facing stem cell therapy of MI is the low retention/survival of stem cells or their derivatives (e.g., PSC-CMs) in the heart for MI treatment after injection in vivo. This may be resolved by using biomaterials to engineer stem cells for reduced immunogenicity, immobilization of the cells in the heart, and increased integration with the host cardiac tissue. Biomaterials have also been applied in the derivation of CMs in vitro to increase the efficiency and maturation of differentiation. Collectively, a lot has been learned from the past failure of simply injecting intact stem cells or their derivatives in vivo for treating MI, and bioengineering stem cells with biomaterials is expected to be a valuable strategy for advancing stem cell therapy towards its widespread application for treating MI in the clinic.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Hakun
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
30
|
Estrada AC, Yoshida K, Clarke SA, Holmes JW. Longitudinal Reinforcement of Acute Myocardial Infarcts Improves Function by Transmurally Redistributing Stretch and Stress. J Biomech Eng 2020; 142:021009. [PMID: 31201738 PMCID: PMC7104755 DOI: 10.1115/1.4044030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/04/2019] [Indexed: 01/20/2023]
Abstract
A wide range of emerging therapies, from surgical restraint to biomaterial injection to tissue engineering, aim to improve heart function and limit adverse remodeling following myocardial infarction (MI). We previously showed that longitudinal surgical reinforcement of large anterior infarcts in dogs could significantly enhance systolic function without restricting diastolic function, but the underlying mechanisms for this improvement are poorly understood. The goal of this study was to construct a finite element model that could match our previously published data on changes in regional strains and left ventricular function following longitudinal surgical reinforcement, then use the model to explore potential mechanisms for the improvement in systolic function we observed. The model presented here, implemented in febio, matches all the key features of our experiments, including diastolic remodeling strains in the ischemic region, small shifts in the end-diastolic pressure-volume relationship (EDPVR), and large changes in the end-systolic pressure-volume relationship (ESPVR) in response to ischemia and to patch application. Detailed examination of model strains and stresses suggests that longitudinal reinforcement reduces peak diastolic fiber stretch and systolic fiber stress in the remote myocardium and shifts those peaks away from the endocardial surface by reshaping the left ventricle (LV). These findings could help to guide the development of novel therapies to improve post-MI function by providing specific design objectives.
Collapse
Affiliation(s)
- Ana Cristina Estrada
- Department of Biomedical Engineering, University of
Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908
| | - Kyoko Yoshida
- Department of Biomedical Engineering, University of
Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908
| | - Samantha A. Clarke
- Department of Biomedical Engineering, University of
Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of
Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908; Department of Medicine, School of
Medicine, University of Virginia, P.O. Box
800759, Health System, Charlottesville, VA 22908; Robert M. Berne
Cardiovascular Research Center, University of Virginia,
P.O. Box 800759, Health System, Charlottesville, VA
22908; The Center for Engineering in Medicine, University
of Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908
| |
Collapse
|
31
|
Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C. Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications. Front Chem 2020; 8:19. [PMID: 32083052 PMCID: PMC7005785 DOI: 10.3389/fchem.2020.00019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Self-assembled temperature-induced injectable hydrogels fabricated via self-assembly of polymer smart-blocks have been widely investigated as drug delivery systems and platforms for tissue regeneration. Polymer smart-blocks that can be self-assembly play an important role in fabrication of hydrogels because they can self-assemble to induce the gelation of their copolymer in aqueous solution. The self-assembly occurs in response to an external stimulus change, such as temperature, pH, glucose, ionic strength, light, magnetic field, electric field, or their combination, which results in property transformations like hydrophobicity, ionization, and conformational change. The self-assembly smart-block based copolymers exist as a solution in aqueous media at certain conditions that are suitable for mixing with bioactive molecules and/or cells. However, this solution turns into a hydrogel due to the self-assembly of the smart-blocks under exposure to an external stimulus change in vitro or injection into the living body for a controllable release of loaded bioactive molecules or serving as a biomaterial scaffold for tissue regeneration. This work reports current scenery in the development of these self-assembly smart-blocks for fabrication of temperature-induced injectable physically cross-linked hydrogels and their potential application as drug delivery systems and platforms for tissue engineering.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Le Hoang Sinh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Dai Phu Huynh
- Faculty of Materials Technology and Polymer Research Center, Ho Chi Minh City University of Technology, VNU HCM, Ho Chi Minh City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Cong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
32
|
Firoozi S, Pahlavan S, Ghanian MH, Rabbani S, Tavakol S, Barekat M, Yakhkeshi S, Mahmoudi E, Soleymani M, Baharvand H. A Cell-Free SDKP-Conjugated Self-Assembling Peptide Hydrogel Sufficient for Improvement of Myocardial Infarction. Biomolecules 2020; 10:E205. [PMID: 32019267 PMCID: PMC7072713 DOI: 10.3390/biom10020205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/25/2020] [Indexed: 01/01/2023] Open
Abstract
Biomaterials in conjunction with stem cell therapy have recently attracted attention as a new therapeutic approach for myocardial infarction (MI), with the aim to solve the delivery challenges that exist with transplanted cells. Self-assembling peptide (SAP) hydrogels comprise a promising class of synthetic biomaterials with cardiac-compatible properties such as mild gelation, injectability, rehealing ability, and potential for sequence modification. Herein, we developed an SAP hydrogel composed of a self-assembling gel-forming core sequence (RADA) modified with SDKP motif with pro-angiogenic and anti-fibrotic activity to be used as a cardioprotective scaffold. The RADA-SDKP hydrogel was intramyocardially injected into the infarct border zone of a rat model of MI induced by left anterior descending artery (LAD) ligation as a cell-free or a cell-delivering scaffold for bone marrow mesenchymal stem cells (BM-MSCs). The left ventricular ejection fraction (LVEF) was markedly improved after transplantation of either free hydrogel or cell-laden hydrogel. This cardiac functional repair coincided very well with substantially lower fibrotic tissue formation, expanded microvasculature, and lower inflammatory response in the infarct area. Interestingly, BM-MSCs alone or in combination with hydrogel could not surpass the cardiac repair effects of the SDKP-modified SAP hydrogel. Taken together, we suggest that the RADA-SDKP hydrogel can be a promising cell-free construct that has the capability for functional restoration in the instances of acute myocardial infarction (AMI) that might minimize the safety concerns of cardiac cell therapy and facilitate clinical extrapolation.
Collapse
Affiliation(s)
- Saman Firoozi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (S.P.); (S.Y.)
| | - Mohammad-Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (S.P.); (S.Y.)
| | - Elena Mahmoudi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Mansoureh Soleymani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (S.P.); (S.Y.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1461968151, Iran
| |
Collapse
|
33
|
Wang X, Wang Y, Yan M, Liang X, Zhao N, Ma Y, Gao Y. Thermosensitive Hydrogel Based on Poly(2-Ethyl-2-Oxazoline)-Poly(D,L-Lactide)-Poly(2-Ethyl-2-Oxazoline) for Sustained Salmon Calcitonin Delivery. AAPS PharmSciTech 2020; 21:71. [PMID: 31953574 DOI: 10.1208/s12249-020-1619-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
This study developed a thermosensitive hydrogel based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide)-poly(2-ethyl-2-oxazoline) (PPP) for the delivery of salmon calcitonin to improve the hypocalcemic effect. The tube inversion and rheological tests revealed that the copolymer solution underwent temperature-dependent sol-gel-sol transitions. Observation by scanning electron microscopy (SEM) showed that the hydrogel exhibited a porous three-dimensional network. The swelling test demonstrated that there was a maximum swelling ratio at low temperature (25°C) as compared with the high temperature (37°C). In vitro release revealed that the PPP hydrogel were capable of sustained release of salmon calcitonin (sCT). The in vivo biodegradability study indicated the good degradability of PPP hydrogel. More importantly, the in vivo retention time of the hydrogel in situ was significantly prolonged after subcutaneous injection of the PPP hydrogel compared to the F127 hydrogel. In vivo pharmacodynamics analysis showed that the hypocalcemic effect of both PPP and F127 hydrogel was significantly greater than that of sCT solution, and the mean serum Ca reduction effect could be maintained for 24 h of PPP hydrogel, indicating that PPP hydrogel could achieve a significant enhanced hypocalcemic effect. In conclusion, the PPP hydrogel has been shown to be prospective as a controlled release carrier for injection delivery of protein drugs.
Collapse
|
34
|
Feng J, Wu Y, Chen W, Li J, Wang X, Chen Y, Yu Y, Shen Z, Zhang Y. Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J Mater Chem B 2019; 8:308-315. [PMID: 31808500 DOI: 10.1039/c9tb01971e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low circulating levels of insulin-like growth factor 1 (IGF-1) have been correlated with an increased risk for cardiovascular diseases in humans. In this work, an injectable alginate hydrogel containing silk fibroin (SF) microspheres with the capability to sustain the release of IGF-1 was prepared to induce myocardial repair after myocardial infarction (MI). First, IGF-1 was physically adsorbed onto SF microspheres prepared by the coaxial needle system, and these IGF-1-containing microspheres were subsequently encapsulated into sodium alginate solutions at different concentrations (1.0-2.5%). Finally, this solution was crosslinked with 0.68% calcium gluconate solution to prepare the composite injectable hydrogel. The composite hydrogel prepared using a sodium alginate solution at a concentration of 1.5% could promote proliferation of H9C2 cardiomyocytes and reduce the cellular apoptosis rate under hypoxic conditions. The enzyme-linked immunosorbent assay results indicated that SF microspheres as microcarriers could effectively enhance the sustained release of IGF-1 from the hydrogels, causing the composite hydrogel to possess a better sustained release ability than the system without the SF microspheres. Moreover, echocardiography, hematoxylin-eosin staining, and Masson trichrome staining results indicated that an intramyocardial injection of the composite hydrogel into the peripheral region of a MI rat model could reduce the infarct size and improve the cardiac function after 28 days. The applications of such a composite hydrogel may comprise a powerful platform in cardiac tissue engineering.
Collapse
Affiliation(s)
- Jianguo Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China and The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, P. R. China
| | - Yong Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Weiqian Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Jingjing Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Xiaoyu Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| |
Collapse
|
35
|
Matsumura Y, Zhu Y, Jiang H, D'Amore A, Luketich SK, Charwat V, Yoshizumi T, Sato H, Yang B, Uchibori T, Healy KE, Wagner WR. Intramyocardial injection of a fully synthetic hydrogel attenuates left ventricular remodeling post myocardial infarction. Biomaterials 2019; 217:119289. [DOI: 10.1016/j.biomaterials.2019.119289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
|
36
|
Carlini AS, Gaetani R, Braden RL, Luo C, Christman KL, Gianneschi NC. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat Commun 2019; 10:1735. [PMID: 30988291 PMCID: PMC6465301 DOI: 10.1038/s41467-019-09587-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Injectable biopolymer hydrogels have gained attention for use as scaffolds to promote cardiac function and prevent negative left ventricular (LV) remodeling post-myocardial infarction (MI). However, most hydrogels tested in preclinical studies are not candidates for minimally invasive catheter delivery due to excess material viscosity, rapid gelation times, and/or concerns regarding hemocompatibility and potential for embolism. We describe a platform technology for progelator materials formulated as sterically constrained cyclic peptides which flow freely for low resistance injection, and rapidly assemble into hydrogels when linearized by disease-associated enzymes. Their utility in vivo is demonstrated by their ability to flow through a syringe and gel at the site of MI in rat models. Additionally, synthetic functionalization enables these materials to flow through a cardiac injection catheter without clogging, without compromising hemocompatibility or cytotoxicity. These studies set the stage for the development of structurally dynamic biomaterials for therapeutic hydrogel delivery to the MI.
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Simpson Querrey Institute for BioNanotechnology, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Roberto Gaetani
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rebecca L Braden
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Colin Luo
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karen L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Simpson Querrey Institute for BioNanotechnology, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
37
|
Cohn D, Sloutski A, Elyashiv A, Varma VB, Ramanujan R. In Situ Generated Medical Devices. Adv Healthc Mater 2019; 8:e1801066. [PMID: 30828989 DOI: 10.1002/adhm.201801066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Medical devices play a major role in all areas of modern medicine, largely contributing to the success of clinical procedures and to the health of patients worldwide. They span from simple commodity products such as gauzes and catheters, to highly advanced implants, e.g., heart valves and vascular grafts. In situ generated devices are an important family of devices that are formed at their site of clinical function that have distinct advantages. Among them, since they are formed within the body, they only require minimally invasive procedures, avoiding the pain and risks associated with open surgery. These devices also display enhanced conformability to local tissues and can reach sites that otherwise are inaccessible. This review aims at shedding light on the unique features of in situ generated devices and to underscore leading trends in the field, as they are reflected by key developments recently in the field over the last several years. Since the uniqueness of these devices stems from their in situ generation, the way they are formed is crucial. It is because of this fact that in this review, the medical devices are classified depending on whether their in situ generation entails chemical or physical phenomena.
Collapse
Affiliation(s)
- Daniel Cohn
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Aaron Sloutski
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ariel Elyashiv
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Vijaykumar B. Varma
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Raju Ramanujan
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| |
Collapse
|
38
|
Ferrini A, Stevens MM, Sattler S, Rosenthal N. Toward Regeneration of the Heart: Bioengineering Strategies for Immunomodulation. Front Cardiovasc Med 2019; 6:26. [PMID: 30949485 PMCID: PMC6437044 DOI: 10.3389/fcvm.2019.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Myocardial Infarction (MI) is the most common cardiovascular disease. An average-sized MI causes the loss of up to 1 billion cardiomyocytes and the adult heart lacks the capacity to replace them. Although post-MI treatment has dramatically improved survival rates over the last few decades, more than 20% of patients affected by MI will subsequently develop heart failure (HF), an incurable condition where the contracting myocardium is transformed into an akinetic, fibrotic scar, unable to meet the body's need for blood supply. Excessive inflammation and persistent immune auto-reactivity have been suggested to contribute to post-MI tissue damage and exacerbate HF development. Two newly emerging fields of biomedical research, immunomodulatory therapies and cardiac bioengineering, provide potential options to target the causative mechanisms underlying HF development. Combining these two fields to develop biomaterials for delivery of immunomodulatory bioactive molecules holds great promise for HF therapy. Specifically, minimally invasive delivery of injectable hydrogels, loaded with bioactive factors with angiogenic, proliferative, anti-apoptotic and immunomodulatory functions, is a promising route for influencing the cascade of immune events post-MI, preventing adverse left ventricular remodeling, and offering protection from early inflammation to fibrosis. Here we provide an updated overview on the main injectable hydrogel systems and bioactive factors that have been tested in animal models with promising results and discuss the challenges to be addressed for accelerating the development of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Arianna Ferrini
- Department of Materials, Imperial College London, London, United Kingdom,National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, United Kingdom,Department of Bioengineering, Imperial College London, London, United Kingdom,Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Nadia Rosenthal
- National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom,The Jackson Laboratory, Bar Harbor, ME, United States,*Correspondence: Nadia Rosenthal
| |
Collapse
|
39
|
Kim H, Kim Y, Park J, Hwang NS, Lee YK, Hwang Y. Recent Advances in Engineered Stem Cell-Derived Cell Sheets for Tissue Regeneration. Polymers (Basel) 2019; 11:E209. [PMID: 30960193 PMCID: PMC6419010 DOI: 10.3390/polym11020209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The substantial progress made in the field of stem cell-based therapy has shown its significant potential applications for the regeneration of defective tissues and organs. Although previous studies have yielded promising results, several limitations remain and should be overcome for translating stem cell-based therapies to clinics. As a possible solution to current bottlenecks, cell sheet engineering (CSE) is an efficient scaffold-free method for harvesting intact cell sheets without the use of proteolytic enzymes, and may be able to accelerate the adoption of stem cell-based treatments for damaged tissues and organs regeneration. CSE uses a temperature-responsive polymer-immobilized surface to form unique, scaffold-free cell sheets composed of one or more cell layers maintained with important intercellular junctions, cell-secreted extracellular matrices, and other important cell surface proteins, which can be achieved by changing the surrounding temperature. These three-dimensional cell sheet-based tissues can be designed for use in clinical applications to target-specific tissue regeneration. This review will highlight the principles, progress, and clinical relevance of current approaches in the cell sheet-based technology, focusing on stem cell-based therapies for bone, periodontal, skin, and vascularized muscles.
Collapse
Affiliation(s)
- Hyunbum Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea.
- The BioMax Institute of Seoul National University, Seoul 08826, Korea.
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Jihyun Park
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea.
- The BioMax Institute of Seoul National University, Seoul 08826, Korea.
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| |
Collapse
|
40
|
Lee DJ, Cavasin MA, Rocker AJ, Soranno DE, Meng X, Shandas R, Park D. An injectable sulfonated reversible thermal gel for therapeutic angiogenesis to protect cardiac function after a myocardial infarction. J Biol Eng 2019; 13:6. [PMID: 30675179 PMCID: PMC6337754 DOI: 10.1186/s13036-019-0142-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cardiovascular disease and myocardial infarction are associated with high mortality and morbidity and a more effective treatment remains a major clinical need. The intramyocardial injection of biomaterials has been investigated as a potential treatment for heart failure by providing mechanical support to the myocardium and reducing stress on cardiomyocytes. Another treatment approach that has been explored is therapeutic angiogenesis that requires careful spatiotemporal control of angiogenic drug delivery. An injectable sulfonated reversible thermal gel composed of a polyurea conjugated with poly(N-isopropylacrylamide) and sulfonate groups has been developed for intramyocardial injection with angiogenic factors for the protection of cardiac function after a myocardial infarction. RESULTS The thermal gel allowed for the sustained, localized release of VEGF in vivo with intramyocardial injection after two weeks. A myocardial infarction reperfusion injury model was used to evaluate therapeutic benefits to cardiac function and vascularization. Echocardiography presented improved cardiac function, infarct size and ventricular wall thinning were reduced, and immunohistochemistry showed improved vascularization with thermal gel injections. The thermal gel alone showed cardioprotective and vascularization properties, and slightly improved further with the additional delivery of VEGF. An inflammatory response evaluation demonstrated the infiltration of macrophages due to the myocardial infarction was more significant compared to the foreign body inflammatory response to the thermal gel. Detecting DNA fragments of apoptotic cells also demonstrated potential anti-apoptotic effects of the thermal gel. CONCLUSION The intramyocardial injection of the sulfonated reversible thermal gel has cardioprotective and vascularization properties for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- David J. Lee
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Maria A. Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Adam J. Rocker
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Danielle E. Soranno
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
41
|
Wang Y, Li Y, Yu X, Long Q, Zhang T. Synthesis of a photocurable acrylated poly(ethylene glycol)-co-poly(xylitol sebacate) copolymers hydrogel 3D printing ink for tissue engineering. RSC Adv 2019; 9:18394-18405. [PMID: 35515220 PMCID: PMC9064739 DOI: 10.1039/c9ra03637g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/30/2019] [Indexed: 02/05/2023] Open
Abstract
Photocurable hydrogel scaffolds for tissue engineering must have excellent biocompatibility, tunable mechanical characteristics, and be biodegradable at a controllable rate. Hydrogels developed as ink for 3D printing require several other properties such as optimal viscosity and shorter photocrosslinking time to ensure continuous extrusion and to avoid untimely collapse of the printed structure. Here, a novel photocurable hydrogel made of acrylated poly(ethylene glycol)-co-poly(xylitol sebacate) (PEXS-A) is developed for tissue engineering and 3D printing applications. Synthesis of PEXS-A hydrogel with equilibrated water content above 90% is achieved via a quick and facile photopolymerization process. Changing the acrylation ratio of the PEXS-A hydrogel has an impact on its crosslinking density, mechanical properties and degradation rate, thus highlighting PEXS-A tunability. PEXS-A could be employed as ink as demonstrated by the 3D printing of a 30-layers cubic grid with high structural integrity. Furthermore, 3T3 fibroblast cells encapsulated into PEXS-A during photocrosslinking maintain a viability of 93.76% after seven days, which showed the good biocompatibility of this novel hydrogel. These results indicate that PEXS-A hydrogel could have multiple applications including as 3D printing ink and as tissue engineering scaffold. A novel acrylated poly(ethylene glycol)-co-poly(xylitol sebacate) (PEXS-A) hydrogel for 3D printing ink and cell encapsulation for tissue engineering application.![]()
Collapse
Affiliation(s)
- Yicai Wang
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- China
| | - Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- China
| | - Qizhi Long
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- China
- State Key Laboratory of Silicate Materials for Architectures
| |
Collapse
|
42
|
Niu H, Li X, Li H, Fan Z, Ma J, Guan J. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomater 2019; 83:96-108. [PMID: 30541703 PMCID: PMC6296825 DOI: 10.1016/j.actbio.2018.10.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Stem cell therapy is a promising approach to regenerate ischemic cardiovascular tissues yet experiences low efficacy. One of the major causes is inferior cell retention in tissues. Injectable cell carriers that can quickly solidify upon injection into tissues so as to immediately increase viscosity have potential to largely improve cell retention. A family of injectable, fast gelling, and thermosensitive hydrogels were developed for delivering stem cells into heart and skeletal muscle tissues. The hydrogels were also photoluminescent with low photobleaching, allowing for non-invasively tracking hydrogel biodistribution and retention by fluorescent imaging. The hydrogels were polymerized by N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), 1-vinyl-2-pyrrolidinone (VP), and acrylate-oligolactide (AOLA), followed by conjugation with hypericin (HYP). The hydrogel solutions had thermal transition temperatures around room temperature, and were readily injectable at 4 °C. The solutions were able to quickly solidify within 7 s at 37 °C. The formed gels were highly flexible possessing similar moduli as the heart and skeletal muscle tissues. In vitro, hydrogel fluorescence intensity decreased proportionally to weight loss. After being injected into thigh muscles, the hydrogel can be detected by an in vivo imaging system for 4 weeks. The hydrogels showed excellent biocompatibility in vitro and in vivo, and can stimulate mesenchymal stem cell (MSC) proliferation and paracrine effects. The fast gelling hydrogel remarkably increased MSC retention in thigh muscles compared to slow gelling collagen, and non-gelling PBS. These hydrogels have potential to efficiently deliver stem cells into tissues. Hydrogel degradation can be non-invasively and real-time tracked. STATEMENT OF SIGNIFICANCE: Low cell retention in tissues represents one of the major causes for limited therapeutic efficacy in stem cell therapy. A family of injectable, fast gelling, and thermosensitive hydrogels that can quickly solidify upon injection into tissues were developed to improve cell retention. The hydrogels were also photoluminescent, allowing for non-invasively and real-time tracking hydrogel biodistribution and retention by fluorescent imaging.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Haichang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
43
|
Perera MM, Fischesser DM, Molkentin JD, Ayres N. Stiffness of thermoresponsive gelatin-based dynamic hydrogels affects fibroblast activation. Polym Chem 2019. [DOI: 10.1039/c9py01424a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix dynamics can influence fibroblast activation.
Collapse
Affiliation(s)
- M. Mario Perera
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Demetria M. Fischesser
- Cincinnati Children's Hospital Medical Center
- Division of Molecular Cardiovascular Biology
- Cincinnati
- USA
| | - Jeffery D. Molkentin
- Cincinnati Children's Hospital Medical Center
- Division of Molecular Cardiovascular Biology
- Cincinnati
- USA
| | - Neil Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
44
|
Han Y, Yang W, Cui W, Yang K, Wang X, Chen Y, Deng L, Zhao Y, Jin W. Retracted Article: Development of functional hydrogels for heart failure. J Mater Chem B 2019; 7:1563-1580. [DOI: 10.1039/c8tb02591f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogel-based approaches were reviewed for cardiac tissue engineering and myocardial regeneration in ischemia-induced heart failure, with an emphasis on functional studies, translational status, and clinical advancements.
Collapse
Affiliation(s)
- Yanxin Han
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenbo Yang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Ke Yang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Xiaoqun Wang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Yanjia Chen
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Yuanjin Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wei Jin
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| |
Collapse
|
45
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Yao Y, Liao W, Yu R, Du Y, Zhang T, Peng Q. Potentials of combining nanomaterials and stem cell therapy in myocardial repair. Nanomedicine (Lond) 2018; 13:1623-1638. [PMID: 30028249 DOI: 10.2217/nnm-2018-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiac diseases have become the leading cause of death worldwide. Developing efficient strategies to treat such diseases is of great urgency. Stem cell-based regeneration medicine offers a novel approach for heart repair. However, low retention and poor survival rate of engrafted cells limit its applications. Nanomaterials have shown great potentials in addressing above issues due to nanoparticles-bio interactions. Therefore, combining nanomaterials and stem cell therapy is of great interest and significance for heart repair. Herein, we provide a comprehensive understanding of the applications of four types of nanomaterials (nanogels, polymeric nanomaterials, inorganic nanomaterials and exosomes) in stem cell therapy for myocardial repair. In addition, we launch an initial discussion on current problems and more importantly, possible solutions for myocardial repair.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruichao Yu
- Department of Pathophysiology & Molecular Pharmacology, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA
| | - Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Pal A, Vernon BL, Nikkhah M. Therapeutic neovascularization promoted by injectable hydrogels. Bioact Mater 2018; 3:389-400. [PMID: 30003178 PMCID: PMC6038261 DOI: 10.1016/j.bioactmat.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/27/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of therapeutic neovascularization is to repair ischemic tissues via formation of new blood vessels by delivery of angiogenic growth factors, stem cells or expansion of pre-existing cells. For efficient neovascularization, controlled release of growth factors is particularly necessary since bolus injection of molecules generally lead to a poor outcome due to inadequate retention within the injured site. In this regard, injectable hydrogels, made of natural, synthetic or hybrid biomaterials, have become a promising solution for efficient delivery of angiogenic factors or stem and progenitor cells for in situ tissue repair, regeneration and neovascularization. This review article will broadly discuss the state-of-the-art in the development of injectable hydrogels from natural and synthetic precursors, and their applications in ischemic tissue repair and wound healing. We will cover a wide range of in vitro and in vivo studies in testing the functionalities of the engineered injectable hydrogels in promoting tissue repair and neovascularization. We will also discuss some of the injectable hydrogels that exhibit self-healing properties by promoting neovascularization without the presence of angiogenic factors.
Collapse
Affiliation(s)
| | - Brent L. Vernon
- School of Biological and Health Systems Engineering, Arizona State University, Arizona 85281, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Arizona 85281, USA
| |
Collapse
|
48
|
Cui X, Tang J, Hartanto Y, Zhang J, Bi J, Dai S, Qiao SZ, Cheng K, Zhang H. NIPAM-based Microgel Microenvironment Regulates the Therapeutic Function of Cardiac Stromal Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37783-37796. [PMID: 30360109 PMCID: PMC7034655 DOI: 10.1021/acsami.8b09757] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To tune the chemical, physical, and mechanical microenvironment for cardiac stromal cells to treat acute myocardial infarction (MI), we prepared a series of thermally responsive microgels with different surface charges (positive, negative, and neutral) and different degrees of hydrophilicity, as well as functional groups (carboxyl, hydroxyl, amino, and methyl). These microgels were used as injectable hydrogels to create an optimized microenvironment for cardiac stromal cells (CSCs). Our results indicated that a hydrophilic and negatively charged microenvironment created from poly( N-isopropylacrylamide- co-itaconic acid) was favorable for maintaining high viability of CSCs, promoting CSC proliferation and facilitating the formation of CSC spheroids. A large number of growth factors, such as vascular endothelial growth factor (VEGF), insulin-like growth factor I (IGF-1), and stromal-derived factor-1 (SDF-1) were released from the spheroids, promoting neonatal rat cardiomyocyte activation and survival. After injecting the poly( N-isopropylacrylamide- co-itaconic acid) microgel into mice, we examined their acute inflammation and T-cell immune reactions. The microgel itself did not elicit obvious immune response. We then injected the same microgel-encapsulated with CSCs into MI mice. The result revealed the treatment-promoted MI heart repair through angiogenesis and inhibition of apoptosis with an improved cell retention rate. This study will open a door for tailoring poly( N-isopropylacrylamide)-based microgel as a delivery vehicle for CSC therapy.
Collapse
Affiliation(s)
- Xiaolin Cui
- School of Chemical Engineering, The University of Adelaide, Adelaide 5000, Australia
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yusak Hartanto
- School of Chemical Engineering, The University of Adelaide, Adelaide 5000, Australia
| | - Jiabin Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide 5000, Australia
| | - Jingxiu Bi
- School of Chemical Engineering, The University of Adelaide, Adelaide 5000, Australia
| | - Sheng Dai
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Shi Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide 5000, Australia
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Corresponding Authors: (K.C.). . (H.Z.)
| | - Hu Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide 5000, Australia
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
- Corresponding Authors: (K.C.). . (H.Z.)
| |
Collapse
|
49
|
Fleming JM, Yeyeodu ST, McLaughlin A, Schuman D, Taylor DK. In Situ Drug Delivery to Breast Cancer-Associated Extracellular Matrix. ACS Chem Biol 2018; 13:2825-2840. [PMID: 30183254 DOI: 10.1021/acschembio.8b00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) contributes to tumor progression through changes induced by tumor and stromal cell signals that promote increased ECM density and stiffness. The increase in ECM stiffness is known to promote tumor cell invasion into surrounding tissues and metastasis. In addition, this scar-like ECM creates a protective barrier around the tumor that reduces the effectiveness of innate and synthetic antitumor agents. Herein, clinically approved breast cancer therapies as well as novel experimental approaches that target the ECM are discussed, including in situ hydrogel drug delivery systems, an emerging technology the delivers toxic chemotherapeutics, gene-silencing microRNAs, and tumor suppressing immune cells directly inside the tumor. Intratumor delivery of therapeutic agents has the potential to drastically reduce systemic side effects experienced by the patient and increase the efficacy of these agents. This review also describes the opposing effects of ECM degradation on tumor progression, where some studies report improved drug delivery and delayed cancer progression and others report enhanced metastasis and decreased patient survival. Given the recent increase in ECM-targeting drugs entering preclinical and clinical trials, understanding and addressing the factors that impact the effect of the ECM on tumor progression is imperative for the sake of patient safety and survival outcome.
Collapse
Affiliation(s)
- Jodie M. Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States
| | - Susan T. Yeyeodu
- Charles River Discovery Services, Morrisville, North Carolina, United States
| | - Ashley McLaughlin
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States
| | - Darren Schuman
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States
| | - Darlene K. Taylor
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States
| |
Collapse
|
50
|
Shimizu Y, Polavarapu R, Eskla K, Pantner Y, Nicholson CK, Ishii M, Brunnhoelzl D, Mauria R, Husain A, Naqvi N, Murohara T, Calvert JW. Impact of Lymphangiogenesis on Cardiac Remodeling After Ischemia and Reperfusion Injury. J Am Heart Assoc 2018; 7:e009565. [PMID: 30371303 PMCID: PMC6404883 DOI: 10.1161/jaha.118.009565] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Background Lymphatic vessels interconnect with blood vessels to form an elaborate system that aids in the control of tissue pressure and edema formation. Although the lymphatic system has been known to exist in a heart, little is known about the role the cardiac lymphatic system plays in the development of heart failure. Methods and Results Mice (C57 BL /6J, male, 8 to 12 weeks of age) were subjected to either myocardial ischemia or myocardial ischemia and reperfusion for up to 28 days. Analysis revealed that both models increased the protein expression of vascular endothelial growth factor C and VEGF receptor 3 starting at 1 day after the onset of injury, whereas a significant increase in lymphatic vessel density was observed starting at 3 days. Further studies aimed to determine the consequences of inhibiting the endogenous lymphangiogenesis response on the development of heart failure. Using 2 different pharmacological approaches, we found that inhibiting VEGF receptor 3 with MAZ -51 and blocking endogenous vascular endothelial growth factor C with a neutralizing antibody blunted the increase in lymphatic vessel density, blunted lymphatic transport, increased inflammation, increased edema, and increased cardiac dysfunction. Subsequent studies revealed that augmentation of the endogenous lymphangiogenesis response with vascular endothelial growth factor C treatment reduced inflammation, reduced edema, and improved cardiac dysfunction. Conclusions These results suggest that the endogenous lymphangiogenesis response plays an adaptive role in the development of ischemic-induced heart failure and supports the emerging concept that therapeutic lymphangiogenesis is a promising new approach for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yuuki Shimizu
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Rohini Polavarapu
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Kattri‐Liis Eskla
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Yvanna Pantner
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Chad K. Nicholson
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Masakazu Ishii
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Daniel Brunnhoelzl
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Rohit Mauria
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Ahsan Husain
- Division of CardiologyDepartment of MedicineEmory University School of MedicineAtlantaGA
| | - Nawazish Naqvi
- Division of CardiologyDepartment of MedicineEmory University School of MedicineAtlantaGA
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - John W. Calvert
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| |
Collapse
|