1
|
Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, Zhou W, Liu T, Yu S. Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration. J Mater Chem B 2024; 12:10516-10549. [PMID: 39311411 DOI: 10.1039/d4tb01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Titanium-based implants, renowned for their excellent mechanical properties, corrosion resistance, and biocompatibility, have found widespread application as premier implant materials in the medical field. However, as bioinert materials, they often face challenges such as implant failure caused by bacterial infections and inadequate osseointegration post-implantation. Thus, to address these issues, researchers have developed various surface modification techniques to enhance the surface properties and bioactivity of titanium-based implants. This review aims to outline several key surface modification methods for titanium-based implants, including acid etching, sol-gel method, chemical vapor deposition, electrochemical techniques, layer-by-layer self-assembly, and chemical grafting. It briefly summarizes the advantages, limitations, and potential applications of these technologies, presenting readers with a comprehensive perspective on the latest advances and trends in the surface modification of titanium-based implants.
Collapse
Affiliation(s)
- Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Xiaotong Lu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tian Bai
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tao Liu
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| |
Collapse
|
2
|
Moret CS, Masri SE, Schelker BL, Friederich NF, Hirschmann MT. Unexpected early loosening of rectangular straight femoral Zweymüller stems with an alumina-reduced surface after total hip arthroplasty-a prospective, double-blind, randomized controlled trial. J Orthop Traumatol 2024; 25:12. [PMID: 38430413 PMCID: PMC10908941 DOI: 10.1186/s10195-023-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/27/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Alumina particles from the grit blasting of Ti-alloy stems are suspected to contribute to aseptic loosening. An alumina-reduced stem surface was hypothesized to improve osseointegration and show comparable short-term outcomes to those of a standard stem. METHODS In this prospective, double-blind, randomized trial, 26 standard (STD) and 27 experimental new technology (NT) stems were implanted. The latter were additionally treated by acid etching and ice blasting to remove alumina particles from the grit-blasting process. Follow-up occurred at 12 and 24 months. Bone mineral density (BMD) around the stem was measured by a dual-energy x-ray absorptiometry device (DEXA). Radiographs were reviewed for alterations. Clinical scoring comprised the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Harris Hip Score (HHS). Survival rates were calculated up to 50 months. RESULTS Lower mean BMD and more severe cortical hypertrophies were found in the NT group. At 12 months, radiolucent lines were observed mostly in the metaphyseal zone for both groups, with a progression tendency in the NT group at 24 months. At 12 months, pain scores and the WOMAC total and physical activity scores were significantly lower in the NT group, without any differences thereafter. The number of NT stem revisions amounted to 6 (24%) and 11 (41%) at 24 and 50 months, respectively. CONCLUSION In the NT group, unexpected catastrophic failure rates of 41% caused by early aseptic loosening were noted within 50 months. Compared with the STD stems, NT stems lead to poor clinical and radiographic results. LEVEL OF EVIDENCE II. TRIAL REGISTRATION NCT05053048.
Collapse
Affiliation(s)
- Céline S Moret
- Department of Orthopaedic Surgery and Traumatology, Kantonsspital Baselland, CH-4101, Bruderholz, Switzerland.
| | - Salim El Masri
- Department of Orthopaedic Surgery and Traumatology, Rhön Klinikum Campus, 97616, Bad Neustadt an Der Saale, Germany
| | - Benjamin L Schelker
- Department of Orthopaedic Surgery and Traumatology, Kantonsspital Baselland, CH-4101, Bruderholz, Switzerland
| | - Niklaus F Friederich
- Department of Orthopaedic Surgery and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Michael T Hirschmann
- Department of Orthopaedic Surgery and Traumatology, Kantonsspital Baselland, CH-4101, Bruderholz, Switzerland
| |
Collapse
|
3
|
Ma L, Li M, Komasa S, Hontsu S, Hashimoto Y, Okazaki J, Maekawa K. Effect of Er:YAG Pulsed Laser-Deposited Hydroxyapatite Film on Titanium Implants on M2 Macrophage Polarization In Vitro and Osteogenesis In Vivo. Int J Mol Sci 2023; 25:349. [PMID: 38203519 PMCID: PMC10778790 DOI: 10.3390/ijms25010349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In a previous study, we successfully coated hydroxyapatite (HAp) onto titanium (Ti) plates using the erbium-doped yttrium aluminum garnet pulsed-laser deposition (Er:YAG-PLD) method. In this study, we performed further experiments to validate the in vitro osteogenic properties, macrophage polarization, and in vivo osseointegration activity of HAp-coated Ti (HAp-Ti) plates and screws. Briefly, we coated a HAp film onto the surfaces of Ti plates and screws via Er:YAG-PLD. The surface morphological, elemental, and crystallographic analyses confirmed the successful surface coating. The macrophage polarization and osteogenic induction were evaluated in macrophages and rat bone marrow mesenchymal stem cells, and the in vivo osteogenic properties were studied. The results showed that needle-shaped nano-HAp promoted the early expression of osteogenic and immunogenic genes in the macrophages and induced excellent M2 polarization properties. The calcium deposition and osteocalcin production were significantly higher in the HAp-Ti than in the uncoated Ti. The implantation into rat femurs revealed that the HAp-coated materials had superior osteoinductive and osseointegration activities compared with the Ti, as assessed by microcomputed tomography and histology. Thus, HAp film on sandblasted Ti plates and screws via Er:YAG-PLD enhances hard-tissue differentiation, macrophage polarization, and new bone formation in tissues surrounding implants both in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Ma
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| | - Min Li
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| | - Shigeki Hontsu
- Department of Biomedical Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Japan;
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan;
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| | - Kenji Maekawa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata 573-1121, Japan; (L.M.); (M.L.); (J.O.); (K.M.)
| |
Collapse
|
4
|
Wang L, Xu C, Meng K, Xia Y, Zhang Y, Lian J, Wang X, Zhao B. Biomimetic Hydroxyapatite Composite Coatings with a Variable Morphology Mediated by Silk Fibroin and Its Derived Peptides Enhance the Bioactivity on Titanium. ACS Biomater Sci Eng 2023; 9:165-181. [PMID: 36472618 DOI: 10.1021/acsbiomaterials.2c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various modifications performed on titanium alloy surfaces are shown to improve osteointegration and promote the long-term success of implants. In this work, a bioactive nanostructured hydroxyapatite (HA) composite coating with a variable morphology mediated by silk fibroin (SF) and its derived peptides (Cs) was prepared. Numerous experimental techniques were used to characterize the constructed coatings in terms of morphology, roughness, hydrophilicity, protein adsorption, in vitro biomineralization, and adhesion strength. The mixed protein layer with different contents of SF and Cs exhibited different secondary structures at different temperatures, effectively mediating the electrodeposited HA layer with different characteristics and finally forming proteins/HA composite coatings with versatile morphologies. The addition of Cs significantly improved the hydrophilicity and protein adsorption capacity of the composite coatings, while the electrodeposition of the HA layer effectively enhanced the adhesion between the composite coatings and Ti surface. In the in vitro mineralization experiments, all the composite coatings exhibited excellent apatite formation ability. Moreover, the composite coatings showed excellent cell growth and proliferation activity. Osteogenic induction experiments revealed that the coating could significantly increase the expression of specific osteogenic markers, including ALP, Col-I, Runx-2, and OCN. Overall, the proposed modification of the Ti implant surface by protein/HA coatings had good potential for clinical applications in enhancing bone induction and osteogenic activity of implants.
Collapse
Affiliation(s)
- Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Changzhen Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Kejing Meng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Yijing Xia
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Yufang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Jing Lian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Xing Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| |
Collapse
|
5
|
Influence of Magnesium Content on the Physico-Chemical Properties of Hydroxyapatite Electrochemically Deposited on a Nanostructured Titanium Surface. COATINGS 2022. [DOI: 10.3390/coatings12081097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this research was to obtain hydroxyapatite (HAp)-based coatings doped with different concentrations of Mg on a Ti nanostructured surface through electrochemical techniques and to evaluate the influence of Mg content on the properties of HAp. The undoped and doped HAp-based coatings were electrochemically deposited in galvanostatic pulsed mode on titania nanotubes with a diameter of ~72 nm, being designed to enhance the adhesion of the HAp coatings to the Ti substrate. The obtained materials were investigated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), and Fourier-Transform Infra-Red spectroscopy (FTIR). The adhesion of the coatings to the substrate was also evaluated with the help of the “tape-test” and the micro-scratch test. The morphology (SEM) of all the coatings is made of very thin and narrow ribbon-like crystals, with some alterations with respect to the Mg amount in the coatings. Thus, a concentration of 1 mM of Mg in the electrolyte leads to wider and thicker ribbon-like crystals, while a concentration of 1.5 mM in the electrolyte generated a morphology that resembles the undoped HAp. Both phase composition (XRD) and chemical bonds (FTIR) analysis proved the formation of HAp in all coatings. Moreover, according to XRD, all coatings have a strong orientation toward the (002) plane. Irrespective of the Mg content, all coatings registered an average roughness between approx. 500 and 600 nm, while the coating thickness increased after addition of Mg, from a value of 9.6 μm, for the undoped HAp, to 11.3 μm and ~13.7 μm for H/Mg1 and H/Mg2, respectively. In terms of adhesion, it was shown that the coatings a H/Mg2 had a poorer adhesion when compared to H/Mg1 and the undoped HAp (H), which registered similar adhesion, indicating that a concentration of 1.5 mM of Mg in the electrolyte reduces the adhesion of the Hap-based coatings to the nanostructured surface. The obtained results indicated that Mg concentrations up to 1 mM in the electrolyte can enhance the properties of HAp-based coatings electrochemically deposited on a nanostructured surface, while even a slightly higher concentration of 1.5 mM can negatively impact the characteristics of HAp coatings.
Collapse
|
6
|
Zakir M, Laiho T, Granroth S, Kukk E, Chu CH, Tsoi JKH, Matinlinna JP. A novel dual surface modification on titanium in dental use: characterization and topography. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Zakir
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry Dar Al Uloom University Riyadh Saudi Arabia
| | - Taina Laiho
- University of Turku, Department of Physics and Astronomy, FI‐20014 Turku, Finland & KeinoX Oy Turku Finland
| | - Sari Granroth
- University of Turku, Department of Physics and Astronomy Turku Finland
| | - Edwin Kukk
- University of Turku, Department of Physics and Astronomy Turku Finland
| | - C. H. Chu
- The University of Hong Kong, Restorative Dental Sciences, Faculty of Dentistry Hong Kong
| | - James K. H. Tsoi
- University of Hong Kong, Faculty of Dentistry, Applied Oral Sciences & Community Dental Care, Dental Materials Science Hong Kong
| | - Jukka P. Matinlinna
- University of Hong Kong, Faculty of Dentistry, Applied Oral Sciences & Community Dental Care, Dental Materials Science, Hong Kong & University of Manchester, Division of Dentistry, School of Medical Sciences Manchester UK
| |
Collapse
|
7
|
Wang A, Yuan W, Song Y, Zang Y, Yu Y. Osseointegration Effect of Micro-Nano Implants Loaded With Kaempferol in Osteoporotic Rats. Front Bioeng Biotechnol 2022; 10:842014. [PMID: 35284417 PMCID: PMC8905647 DOI: 10.3389/fbioe.2022.842014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 01/22/2023] Open
Abstract
Objective: To investigate the effect of osseointegration of kaempferol loaded on the surface of micro-nanomorphic implants in ovariectomized rats. Methods: Titanium flakes were polished to obtain the PT group, anodized and acid-etched to obtain the NT and WNT groups, loaded with kaempferol to obtain the KNT and KWNT groups, and spin-coated on chitosan-gelatin composite film to obtain the KNT-CG and KWNT-CG groups. In vitro experiments were performed to observe the physicochemical properties of the titanium tablets in each group through scanning electron microscopy and contact angle experiments. The cytotoxicity and drug release pattern were observed using CCK-8 and drug release assays. An osteoporosis rat model was established. Pure titanium implants were divided into PT, NT, WNT, KNT-CG, and KWNT-CG groups after the same treatment and used in the in vivo experiments and then implanted in the femur of mice in each group. After 4 weeks, all samples were collected for toluidine blue staining, micro-computed tomography scanning, and bone morphometry analysis to evaluate their osteogenic properties. Results: According to scanning electron microscopy, the surface of the titanium flakes had a micro-nano morphology in the WNT group and the KNT and KWNT groups were functionally loaded with kaempferol. In CCK-8 and drug release experiments, the loaded kaempferol and gelatin composite membranes showed no significant toxic effects on cells. The drug release time in the KNT-CG and KWNT-CG groups was significantly longer than that in the KNT and KWNT groups, with the release time in the KWNT-CG group reaching 15 days. In vivo experiments micro-computed tomography and bone morphometry analysis showed that the osteoporosis model had been successfully constructed. The bone volume fraction around the implant increased. Toluidine blue staining showed new bone formation and a significantly increased number of bone trabeculae. Conclusion: Kaempferol micro-nanocomposite coating improved the osseointegration ability of implants in osteoporotic rats.
Collapse
Affiliation(s)
- Anyue Wang
- Department of Stomatology, School of Stomatology of Qingdao University, Qingdao, China
| | | | - Yu Song
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yanjun Zang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yanling Yu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Yanling Yu,
| |
Collapse
|
8
|
Zhang J, Zhu SS, Jiang N. Effect of micro/nanoscaled Ti phosphate/Ti oxide hybrid coating on the osseointegration of Ti implants. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:531-539. [PMID: 34636200 DOI: 10.7518/hxkq.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study was performed to fabricate a bionic coating with titanium (Ti) phosphate to promote the osseointegration of Ti substrate implants. METHODS Phosphorylated micro/nanocoating was prepared on the surface of pure titanium (i.e., TiP-Ti) by hydrothermal process under special pressure, and the untreated smooth pure titanium (cp-Ti) was selected as the control. To evaluate the characteristics of the coating surface, scanning electron microscopy, X-ray diffraction, atomic force microscopy, and contact-angle measurement were performed. In addition, the effects of TiP-Ti on the proliferation, adhesion, and differentiation of rat bone marrow mesenchymal stem cells (BMSCs) were investigated by using in vitro cytology. Finally, TiP-Ti implants were implanted into the rat tibia, and the effect of TiP-Ti on the osseointegration in the host was evaluated after 12 weeks. RESULTS The TiP-Ti surface presented a bionic structure with coexisting nanoscale 3D spatial structure and microscale pores. In vitro experiments showed that the BMSCs had enhanced adhesion, proliferation, and osteogenic differentiation on the TiP-Ti surface. Furthermore, in vivo, TiP-Ti showed considerably stronger osseointegration compared with pure titanium, and the ultimate shear strength and maximum pushing force were significantly improved. CONCLUSIONS A bionic structure with TiP-Ti micro/nanoscale coating was successfully fabricated, indicating a promising method for modifying the surface of implants.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Song-Song Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Li K, Lu X, Liu S, Wu X, Xie Y, Zheng X. Boron-incorporated micro/nano-topographical calcium silicate coating dictates osteo/angio-genesis and inflammatory response toward enhanced osseointegration. Biol Trace Elem Res 2021; 199:3801-3816. [PMID: 33405083 DOI: 10.1007/s12011-020-02517-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Orthopedic implant coatings with optimal surface features to achieve favorable osteo/angio-genesis and inflammatory response would be of great importance. However, to date, few coatings are capable of fully satisfying these requirements. In this work, to take advantage of the structural complexity of micro/nano-topography and benefits of biological trace elements, two types of boron-containing nanostructures (nanoflakes and nanolamellars) were introduced onto plasma-sprayed calcium silicate (F-BCS and L-BCS) coatings via hydrothermal treatment. The C-CS coating using deionized water as hydrothermal medium served as control. Boron-incorporated CS coating stimulated osteoblastic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Specifically, the combination of β1 integrin-vinculin-mediated cell spreading and activation of bone morphogenetic protein signaling pathway acted synergistically to cause significant upregulation of runt-related transcription factor 2 (RUNX2) protein and Runx2 gene expression in BMSCs on the F-BCS coating surface, which induced the transcription of downstream osteogenic differentiation marker genes. F-BCS coating allowed specific boron ion release, which favored angiogenesis as evidenced by the enhanced migration and tube formation of human umbilical vein endothelial cells in the coating extract. Boron-incorporated coatings significantly suppressed the expression of toll-like receptor adaptor genes in RAW264.7 macrophages and subsequently the degradation of nuclear factor-κB inhibitor α, accompanied by the inactivation of the downstream pro-inflammatory genes. In vivo experiments confirmed that F-BCS-coated Ti implant possessed enhanced osseointegration compared with L-BCS- and C-CS-coated implants. These data highlighted the synergistic effect of specific nanotopography and boron release from orthopedic implant coating on improvement of osseointegration.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiang Lu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaodong Wu
- Department of Orthopedic, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
10
|
The Calcium Phosphate Modified Titanium Implant Combined With Platelet-Rich Plasma Treatment Promotes Implant Stabilization in an Osteoporotic Model. J Craniofac Surg 2021; 32:603-608. [PMID: 33704991 DOI: 10.1097/scs.0000000000006836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Osteoporosis as a kind of systemic bone metabolic disease has become one of the most prevalent diseases among the middle- and old-age, characterized with low bone mass and disruptive osseous microenvironment. The poor bone condition both in quantity and quality makes it daunting for osteoporotic patients who are submitted to dental implantation, joint replacement therapy, or orthopedic surgery. Since calcium phosphate (CaP) and platelet-rich plasma (PRP) treatment, all have improving the effect on bone regeneration. Inspired by this fact, the authors introduced a kind of novel implant with CaP modified surface by HPT (hydrothermal & pressure) treatment in this study. After producing, the authors tested its physicochemical properties through scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS) and contact-angle measurement. Then the authors desired to investigate the effect of this CaP-modified implant on bone regeneration and stabilization maintenance combined with PRP treatment by establishing an osteoporotic rat model. After 3 months of surgery, the authors collected all the specimens and evaluated new bone formation by micro-computed tomography (micro-CT) analysis, biomechanical test, and histologic assessment. All the results in vivo experiment showed the CaP modified implant combined with PRP treatment could improve the osteoinductive effect under osteoporotic condition, leading to better maintenance for stabilization between bone and implant interface, which might be rendered as a promising clinical method for osteoporotic patients when they receive orthopedic surgeries.
Collapse
|
11
|
Wang L, Gao Z, Su Y, Liu Q, Ge Y, Shan Z. Osseointegration of a novel dental implant in canine. Sci Rep 2021; 11:4317. [PMID: 33619303 PMCID: PMC7900171 DOI: 10.1038/s41598-021-83700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/05/2021] [Indexed: 01/20/2023] Open
Abstract
This study aimed to compare and verify the osseointegration performance of a novel implant (NI) in vivo, which could provide a useful scientific basis for the further development of NIs. Thirty-two NIs treated with hydrofluoric acid and anodization and sixteen control implants (CIs) were placed in the mandibles of 8 beagles. Micro-CT showed that the trabecular number (Tb.N) significantly increased and trabecular separation (Tb.Sp) significantly decreased in the NIs at 2 weeks. Significant differences were found in the trabecular thickness, Tb.N, Tb.Sp, bone surface/bone volume ratio, and bone volume/total volume ratio between the two groups from the 2nd–4th weeks. However, there were no significant differences between the two groups in the bone volume density at 2, 4, 8, or 12 weeks or bone-implant contact at 2 or 4 weeks, but the BIC in the CIs was higher than that in the NIs at the 8th and 12th weeks. Meanwhile, the histological staining showed a similar osseointegration process between the two groups over time. Overall, the NIs could be used as new potential implants after further improvement.
Collapse
Affiliation(s)
- Lingxiao Wang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China
| | - Zhenhua Gao
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China
| | - Yucheng Su
- Department of Stomatology, Chinese Academy of Medical Science & Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, 100032, People's Republic of China.,Beijing Citident Stomatology Hospital, Beijing, 100032, People's Republic of China
| | - Qian Liu
- Beijing Citident Stomatology Hospital, Beijing, 100032, People's Republic of China
| | - Yi Ge
- Department of Stomatology, Chinese Academy of Medical Science & Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, 100032, People's Republic of China.
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
12
|
Oliveira FC, Carvalho JO, Magalhães LSSM, da Silva JM, Pereira SR, Gomes Júnior AL, Soares LM, Cariman LIC, da Silva RI, Viana BC, Silva-Filho EC, Afewerki S, da Cunha HN, Vega ML, Marciano FR, Lobo AO. Biomineralization inspired engineering of nanobiomaterials promoting bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111776. [PMID: 33545906 DOI: 10.1016/j.msec.2020.111776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
A biomineralization processes is disclosed for engineering nanomaterials that support bone repair. The material was fabricated through a hot press process using electrospun poly(lactic acid) (PLA) matrix covered with hybrid composites of carbon nanotubes/graphene nanoribbons (GNR) and nanohydroxyapatite (nHA). Various scaffolds were devised [nHA/PLA, PLA/GNR, and PLA/nHA/GNR (1 and 3%)] and their structure and morphology characterized through Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), and Atomic force microscope (AFM). Moreover, thorough biocompatibility and toxicity studies were performed. Here, in vivo studies on toxicity and cytotoxicity were conducted in aqueous dispersions of the biomaterials at concentrations of 30, 60, and 120 μg/mL using the Allium cepa test. Further toxicity studies were performed through hemolysis toxicity tests and genotoxicity tests evaluating the damage index and damage frequencies of DNAs through comet assays with samples of the animals' peripheral blood, marrow, and liver. Additionally, the regenerative activity of the scaffolds was analyzed by measuring the cortical tibiae of rats oophorectomized implanted with the biomaterials. Biochemical analyzes [glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), urea, calcium, phosphorus, and alkaline phosphatase (ALP)] were also performed on blood samples. The results suggested a toxicity and cytotoxicity level for the GNR biomaterials at a concentration of 60 and 120 μg/mL, but non-toxicity and cytotoxicity for the 30 μg/mL concentration. The scaffolds obtained at a concentration of 0.3 mg/cm2 were not toxic in the hemolysis test and demonstrated no cytotoxicity, genotoxicity, and mutagenicity in the blood, marrow, and liver analyzes of the animals, corroborating data from the biochemical markers of GPT, GOT, and urea. Tissue regeneration was performed in all groups and was more pronounced in the group containing the combination of nHA/GNR (3%), which is consistent with the data obtained for the calcium, serum phosphorus, and ALP concentrations. Consequently, the study indicates that the engineered nanobiomaterial is a promising candidate for bone tissue repair and regenerative applications. STATEMENT OF SIGNIFICANCE: The scientific contribution of this study is the engineering of a synthetic hybrid biomaterial, in nanoscale by a pressing and heating process. A biodegradable polymeric matrix was covered on both sides with a carbonated hybrid bioceramic/graphene nanoribbons (GNR), which has hydrophilic characteristics, with chemical elements stoichiometrically similar to bone mineral composition. The nanomaterial displayed promising bone regeneration ability, which is the first example to be used in an osteoporotic animal model. Moreover, detailed biocompatibility and toxicity studies were performed on the nanomaterials and their compositions, which is of great interest for the scientific community.
Collapse
Affiliation(s)
- Francilio Carvalho Oliveira
- Instituto Científico e Tecnológico, Universidade Brasil, 08230-030 Itaquera, São Paulo, Brazil; Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil; Faculdade Estácio Teresina, Teresina, PI 64046-700, Brazil
| | - Jancineide Oliveira Carvalho
- Instituto Científico e Tecnológico, Universidade Brasil, 08230-030 Itaquera, São Paulo, Brazil; Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Leila S S M Magalhães
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Juliana Marques da Silva
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Saronny Rose Pereira
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Antonio Luiz Gomes Júnior
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | | | - Laynna Ingrid Cruz Cariman
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Ruan Inácio da Silva
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Bartolomeu C Viana
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil; Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Edson Cavalcanti Silva-Filho
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Health Science and Technology, Harvard University - Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Helder Nunes da Cunha
- Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Maria Leticia Vega
- Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | | | - Anderson Oliveira Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
13
|
Zhang J, Wang YN, Jia T, Huang H, Zhang D, Xu X. Genipin and insulin combined treatment improves implant osseointegration in type 2 diabetic rats. J Orthop Surg Res 2021; 16:59. [PMID: 33446235 PMCID: PMC7809857 DOI: 10.1186/s13018-021-02210-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has a harmful effect on the stability and osseointegration of dental implants. T2DM induces mitochondrial damage by inhibiting AMPK signaling, resulting in oxidative stress and poor osteogenesis in the peri-implant bone area. Genipin is a major component of gardenia fruits with strong antioxidant, anti-inflammation, and antidiabetic actions, and it also can activate mitochondrial quality control via the AMPK pathway. The purpose of this study was to investigate the effects of genipin and insulin treatment on implant osseointegration in T2DM rats and explore the underlying mechanisms. METHODS Streptozotocin-induced diabetic rats received implant surgery in their femurs and were then assigned to five groups that were subjected to different treatments for three months: control group, T2DM group, insulin-treated T2DM group (10 IU/kg), genipin-treated T2DM group (50 mg/kg), and the genipin and insulin combination-treated T2DM group. Then, we regularly assessed the weight and glucose levels of the animals. Rats were euthanized at 3 months after the implantation procedure, and the femora were harvested for microscopic computerized tomography analysis, biomechanical tests, and different histomorphometric assessment. RESULTS The results indicated that the highest blood glucose and oxidative stress levels were measured for the T2DM group, resulting in the poorest osseointegration. The combination-treated T2DM group mitigated hyperglycemia and normalized, reactivated AMPK signaling, and alleviated oxidative stress as well as reversed the negative effect of osseointegration. There were beneficial changes observed in the T2DM-genipin and T2DM-insulin groups, but these were less in comparison to the combination treatment group. CONCLUSION Our study suggests that treatment with genipin in combination with insulin could be an effective method for promoting implant osseointegration in T2DM rats, which may be related to AMPK signaling.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China
| | - Haiyun Huang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China.
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
14
|
Lu M, Chen H, Yuan B, Zhou Y, Min L, Xiao Z, Yang X, Zhu X, Tu C, Zhang X. The morphological effect of nanostructured hydroxyapatite coatings on the osteoinduction and osteogenic capacity of porous titanium. NANOSCALE 2020; 12:24085-24099. [PMID: 33241829 DOI: 10.1039/d0nr06306a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Weak osteogenic activity affects the long-term fixation and lifespan of titanium (Ti) implants. Surface modification along with a built-in porous structure is a highly considerable approach to improve the osteoinduction and osseointegration capacity of Ti. Herein, the osteoinduction and osteogenic activities of electrochemically deposited (ED) nanoplate-like, nanorod-like and nanoneedle-like hydroxyapatite (HA) coatings (named EDHA-P, EDHA-R, and EDHA-N, respectively) were evaluated in vitro and in vivo by comparison with those of acid/alkali (AA) treatment. The results revealed that the apatite forming ability of all nanostructured EDHA coatings was excellent, and only 12 h of soaking in SBF was needed to induce a complete layer of apatite. More serum proteins adsorbed on EDHA-P than others. In cellular experiments, different from those on EDHA-R and EDHA-N, the cells on EDHA-P presented a polygonal shape with lamellipodia extension, and thus exhibited a relatively larger spreading area. Furthermore, EDHA-P was more favorable for the enhancement of the proliferation and ALP activity of BMSCs, and the up-regulation of OPN gene expression. Based on the good biological performance in vitro, EDHA-P was selected to further evaluate its osteoinduction and osteogenic activities in vivo by comparison with AA treatment. Interestingly, a greater ability of ectopic osteoinduction was observed in the EDHA-P group compared to that in the AA group. At the osseous site, EDHA-P promoted more bone on/ingrowth, and had a higher area percentage of newly formed bone in the bone-implant interface and inner pores of the implants than in the AA group. Thus, a nanoplate-like HA coating has good potential in improving the osteoinductivity and osteogenic activity of porous Ti implants in clinical applications.
Collapse
Affiliation(s)
- Minxun Lu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bai J, Wang H, Chen H, Ge G, Wang M, Gao A, Tong L, Xu Y, Yang H, Pan G, Chu PK, Geng D. Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation. Biomaterials 2020; 255:120197. [DOI: 10.1016/j.biomaterials.2020.120197] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
|
16
|
Zheng Z, Ao X, Xie P, Wu J, Dong Y, Yu D, Wang J, Zhu Z, Xu HHK, Chen W. Effects of novel non-thermal atmospheric plasma treatment of titanium on physical and biological improvements and in vivo osseointegration in rats. Sci Rep 2020; 10:10637. [PMID: 32606349 PMCID: PMC7327023 DOI: 10.1038/s41598-020-67678-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium (Ti) has achieved extensive applications due to its excellent biocompatibility and mechanical properties. Plasma can enhance surface hydrophilia of Ti with decreased carbon contamination. The traditional conditions using a single gas plasma was for longer treatment time and more prone to being contaminated. We designed and developed novel and universal apparatus and methods with a special clamping device of non-thermal atmospheric plasma (NTAP) treatment using mixed gas for Ti surface activation. We systematically and quantitatively investigated the effective effects of NTAP-Ti. The surface water contact angle decreased by 100%, the carbon content decreased by 80% and oxygen content increased by 50% in the novel NTAP-Ti surfaces. NTAP treatment accelerated the attachment, spread, proliferation, osteogenic differentiation and mineralization of MC3T3-E1 mouse preosteoblasts in vitro. The percentage of bone-to-implant contact increased by 25–40%, and the osteoclasts and bone resorption were suppressed by 50% in NTAP-Ti in vivo. In conclusion, NTAP-Ti substantially enhanced the physical and biological effects and integration with bone. The novel and universal apparatus and methods with a special clamping device using gas mixtures are promising for implant activation by swiftly and effectively changing the Ti surface to a hydrophilic one to enhance dental and orthopedic applications.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Yuqing Dong
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Deping Yu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Li K, Liu S, Hu T, Razanau I, Wu X, Ao H, Huang L, Xie Y, Zheng X. Optimized Nanointerface Engineering of Micro/Nanostructured Titanium Implants to Enhance Cell-Nanotopography Interactions and Osseointegration. ACS Biomater Sci Eng 2020; 6:969-983. [PMID: 33464841 DOI: 10.1021/acsbiomaterials.9b01717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success of orthopedic implants requires rapid and complete osseointegration which relies on an implant surface with optimal features. To enhance cellular function in response to the implant surface, micro- and nanoscale topography have been suggested as essential. The aim of this study was to identify an optimized Ti nanostructure and to introduce it onto a titanium plasma-sprayed titanium implant (denoted NTPS-Ti) to confer enhanced immunomodulatory properties for optimal osseointegration. To this end, three types of titania nanostructures, namely, nanowires, nanonests, and nanoflakes, were achieved on hydrothermally prepared Ti substrates. The nanowire surface modulated protein conformation and directed integrin binding and specificity in such a way as to augment the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and induce a desirable osteoimmune response of RAW264.7 macrophages. In a coculture system, BMSCs on the optimized micro/nanosurface exerted enhanced effects on nonactivated or lipopolysaccharide-stimulated macrophages, causing them to adopt a less inflammatory macrophage profile. The enhanced immunomodulatory properties of BMSCs grown on NTPS-Ti depended on a ROCK-medicated cyclooxygenase-2 (COX2) pathway to increase prostaglandin E2 (PGE2) production, as evidenced by decreased production of PGE2 and concurrent inhibition of immunomodulatory properties after treatment with ROCK or COX2 inhibitors. In vivo evaluation showed that the NTPS-Ti implant resulted in enhanced osseointegration compared with the TPS-Ti and Ti implants. The results obtained in our study may provide a prospective approach for enhancing osseointegration and supporting the application of micro/nanostructured Ti implants.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Ihar Razanau
- Science and Technology Park of BNTU "Polytechnic", Minsk 220013, Belarus
| | - Xiaodong Wu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P. R. China
| | - Haiyong Ao
- School of Materials Science and Engineering, East China Jiao Tong University, Nanchang 330013, P. R. China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
18
|
Grubova IY, Surmeneva MA, Surmenev RA, Neyts EC. Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite–titanium biocomposite: a first-principles study. RSC Adv 2020; 10:37800-37805. [PMID: 35515192 PMCID: PMC9057198 DOI: 10.1039/d0ra06006b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
Hydroxyapatite (HAP) is frequently used as biocompatible coating on Ti-based implants. In this context, the HAP-Ti adhesion is of crucial importance. Here, we report ab initio calculations to investigate the influence of Si incorporation into the amorphous calcium-phosphate (a-HAP) structure on the interfacial bonding mechanism between the a-HAP coating and an amorphous titanium dioxide (a-TiO2) substrate, contrasting two different density functionals: PBE-GGA, and DFT-D3, which are capable of describing the influence of the van der Waals (vdW) interactions. In particular, we discuss the effect of dispersion on the work of adhesion (Wad), equilibrium geometries, and charge density difference (CDD). We find that replacement of P by Si in a-HAP (a-Si-HAP) with the creation of OH vacancies as charge compensation results in a significant increase in the bond strength between the coating and substrate in the case of using the PBE-GGA functional. However, including the vdW interactions shows that these forces considerably contribute to the Wad. We show that the difference (Wad − Wad(vdW)) is on average more than 1.1 J m−2 and 0.5 J m−2 for a-HAP/a-TiO2 and a-Si-HAP/a-TiO2, respectively. These results reveal that including vdW interactions is essential for accurately describing the chemical bonding at the a-HAP/a-TiO2 interface. Dispersion interactions play a significant role in altering the bonding strength of the hydroxyapatite coating to the substrate, and such interactions is critical in molecular simulations.![]()
Collapse
Affiliation(s)
- Irina Yu. Grubova
- Research Center for Physical Materials Science and Composite Materials
- Research School of Chemistry & Applied Biomedical Sciences
- National Research Tomsk Polytechnic University
- 634050 Tomsk
- Russia
| | - Maria A. Surmeneva
- Research Center for Physical Materials Science and Composite Materials
- Research School of Chemistry & Applied Biomedical Sciences
- National Research Tomsk Polytechnic University
- 634050 Tomsk
- Russia
| | - Roman A. Surmenev
- Research Center for Physical Materials Science and Composite Materials
- Research School of Chemistry & Applied Biomedical Sciences
- National Research Tomsk Polytechnic University
- 634050 Tomsk
- Russia
| | - Erik C. Neyts
- Department of Chemistry
- PLASMANT Research Group
- NANOlab Center of Excellence
- University of Antwerp
- B-2610 Wilrijk
| |
Collapse
|
19
|
Wang YN, Jia T, Zhang J, Lan J, Zhang D, Xu X. PTPN2 improves implant osseointegration in T2DM via inducing the dephosphorylation of ERK. Exp Biol Med (Maywood) 2019; 244:1493-1503. [PMID: 31615285 DOI: 10.1177/1535370219883419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is considered to compromise implant osseointegration. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates glucose metabolism, systemic inflammation, and bone regeneration. This study aimed to investigate the role of PTPN2 in implant osseointegration in T2DM and explore the potential mechanisms. Streptozotocin-induced diabetic rats received implant surgery, with or without local overexpression of PTPN2 for three months, and implant osseointegration was examined by histological evaluation, micro-CT analysis, pull-out test, and scanning electron microscope. Rat bone marrow stem cells (RBMSCs) were isolated and exposed to high glucose, and osteogenic differentiation was evaluated by alizarin red staining, ALP assay, and Western blot analysis. Overexpression of PTPN2 could improve impaired implant osseointegration in T2DM rats and promote osteogenic differentiation of RBMSCs in high glucose. In addition, p-ERK level in RBMSCs was increased in high glucose and decreased after PTPN2 overexpression. These results suggest that PTPN2 promotes implant osseointegration in T2DM rats and enhances osteogenesis of RBMSCs in high glucose medium via inducing the dephosphorylation of ERK. PTPN2 may be a novel target for the therapy of impaired implant osseointegration in T2DM patients. Impact statement Using both in vivo and in vitro approaches, we made important findings that PTPN2 promoted implant osseointegration in T2DM rats and enhanced osteogenesis of RBMSCs in high glucose medium. The positive effects of PTPN2 on osteogenesis are related to the dephosphorylation of ERK and the inhibition of MAPK/ERK pathway. PTPN2 may be a novel target for the therapy of impaired implant osseointegration in T2DM patients.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong 250012, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong 250012, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong 250012, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong 250012, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong 250012, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong 250012, China
| | - Jiajia Zhang
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong 250012, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong 250012, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong 250012, China
| | - Jing Lan
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong 250012, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong 250012, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong 250012, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong 250012, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong 250012, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong 250012, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong 250012, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong 250012, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong 250012, China
| |
Collapse
|
20
|
Jiang N, Guo Z, Sun D, Ay B, Li Y, Yang Y, Tan P, Zhang L, Zhu S. Exploring the mechanism behind improved osteointegration of phosphorylated titanium implants with hierarchically structured topography. Colloids Surf B Biointerfaces 2019; 184:110520. [PMID: 31590052 DOI: 10.1016/j.colsurfb.2019.110520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 02/05/2023]
Abstract
Titanium (Ti) and its alloys have been frequently used in dental and orthopedic implants, but the undesired oxide layer easily formed on the surface tends to be the cause of implant failure for Ti-based implants. To address this problem, we herein prepared a phosphorylated Ti coating (TiP-Ti) with a micro/nano hierarchically structured topography on commercially pure Ti implants by a hydrothermal method to improve its osteointegration capacity. The surface morphology, chemical composition, and biological activity were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact-angle measurement, and protein adsorption assay. Osteointegration of TiP-Ti implants in rat tibia was investigated by biomechanical testing, micro-CT and histological analyses. We further explored the proposed mechanism which improves osteointegration of TiP-Ti implants by proliferation, adhesion, and differentiation assays of rat bone marrow mesenchymal stem cells (BMSCs). Our results demonstrated that the improved osteointegration mainly benefited from the better spread and adhesion of BMSCs on the micro/nano hierarchically structured TiP-Ti surfaces compared to hydroxyapatite coated Ti (HA-Ti), the positive control, and untreated Ti (untreated-Ti), the negative control. In conclusion, TiP-Ti surface is a promising candidate implant surface design to accelerate the osteointegration of Ti-based implants in biomedical applications.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Zhijun Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Dan Sun
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast BT7 1NN, UK
| | - Birol Ay
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E3, Canada
| | - Yubao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
21
|
Huang B, Ye J, Zeng X, Gong P. Effects of capsaicin-induced sensory denervation on early implant osseointegration in adult rats. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181082. [PMID: 30800361 PMCID: PMC6366164 DOI: 10.1098/rsos.181082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023]
Abstract
The presence of nerve endings around implants is well-known, but the interaction between the peripheral nervous system and the osseointegration of implants has not been thoroughly elucidated to date. The purpose of this study was to test the effects of selective sensory denervation on early implant osseointegration. Forty male Sprague-Dawley rats were divided randomly into two groups, group A and group B, and they were treated with capsaicin and normal saline, respectively. One week later, titanium implants were placed in the bilateral femurs of the rats. Three and six weeks after implantation, histological examination, microcomputed tomography and biomechanical testing were performed to observe the effect of sensory denervation on implant osseointegration. At three weeks and six weeks, bone area, trabecular bone volume/total bone volume and bone density were significantly lower in group A than in group B. Similarly, the bone-implant contact rate, trabecular number and trabecular thickness were clearly lower in group A than in group B at three weeks. However, the trabecular separation spacing in group A was greater than that in group B at both time points. Biomechanical testing revealed that the implant-bone binding ability of group A was significantly lower than that in group B. The research demonstrated that sensory innervation played an important role in the formation of osseointegration. Selective-sensory denervation could reduce osseointegration and lower the binding force of the bone and the implant.
Collapse
Affiliation(s)
- Bo Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jun Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai, People's Republic of China
- Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Xiaohua Zeng
- Stomatology Department, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ping Gong
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
22
|
Jiang N, Guo Z, Sun D, Li Y, Yang Y, Chen C, Zhang L, Zhu S. Promoting Osseointegration of Ti Implants through Micro/Nanoscaled Hierarchical Ti Phosphate/Ti Oxide Hybrid Coating. ACS NANO 2018; 12:7883-7891. [PMID: 29979574 DOI: 10.1021/acsnano.8b02227] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, micro/nanoscaled hierarchical hybrid coatings containing titanium (Ti) phosphate and Ti oxide have been fabricated with the aim of promoting osseointegration of Ti-based implants. Three representative surface coatings, namely, micro/nanograss Ti (P-G-Ti), micro/nanoclump Ti, (P-C-Ti), and micro/nanorod Ti (P-R-Ti), have been produced. In-depth investigations into the coating surface morphology, topography, chemical composition, and the surface/cell interaction have been carried out using scanning electron microscopy, transmission electron microscope, X-ray photoelectron spectroscopy, X-ray diffraction, contact-angle measurement, and protein adsorption assay. In addition, in vitro performance of the coating (cell proliferation, adhesion, and differentiation) has been evaluated using rat bone marrow stromal cells (BMSCs), and in vivo assessments have been carried out based on a rat tibia implantation model. All the hybrid coating modified implants demonstrated enhanced protein adsorption and BMSC viability, adhesion and differentiation, with P-G-Ti showing the best bioactivity among all samples. Subsequent i n vivo osseointegration tests confirmed that P-G-Ti has induced a much stronger interfacial bonding with the host tissue, indicated by the 2-fold increase in the ultimate shear strength and over 6-fold increase in the maximum push-out force compared to unmodified Ti implants. The state-of-the-art coating technology proposed for Ti-based implants in this study holds great potential in advancing medical devices for next-generation healthcare technology.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Zhijun Guo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast BT7 1NN, U.K
| | - Dan Sun
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast BT7 1NN, U.K
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Chen Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
23
|
Yuan B, Cheng Q, Zhao R, Zhu X, Yang X, Yang X, Zhang K, Song Y, Zhang X. Comparison of osteointegration property between PEKK and PEEK: Effects of surface structure and chemistry. Biomaterials 2018; 170:116-126. [DOI: 10.1016/j.biomaterials.2018.04.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
|
24
|
Zhou R, Han Y, Cao J, Li M, Jin G, Luo H, Zhang L, Su B. Electrically bioactive coating on Ti with bi-layered SnO2–TiO2 hetero-structure for improving osteointegration. J Mater Chem B 2018; 6:3989-3998. [DOI: 10.1039/c8tb00709h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SnO2–TiO2 surface with the bi-layered structure on Ti provides internal electric stimulation to promote osteointegration of implant.
Collapse
Affiliation(s)
- Rui Zhou
- State Key Laboratory for Mechanical Behavior of Materials
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
- Bristol Dental School
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Jianyun Cao
- School of Materials
- University of Manchester
- Manchester M13 9PL
- UK
| | - Ming Li
- Honghui Hospital
- Xi’an Jiaotong University College of Medicine
- Xi’an 710054
- P. R. China
| | - Guorui Jin
- Bioinspired Engineering and Biomechanics Center
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Haoteng Luo
- State Key Laboratory for Mechanical Behavior of Materials
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Lizhai Zhang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Bo Su
- Bristol Dental School
- University of Bristol
- Bristol BS1 2LY
- UK
| |
Collapse
|
25
|
A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model. Sci Rep 2017; 7:16270. [PMID: 29176604 PMCID: PMC5701240 DOI: 10.1038/s41598-017-16465-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to determine the correlation between bone volume density (BV/TV) around a titanium implant determined by micro-computed tomography (micro-CT) and bone area density (BA/TA) measurements obtained using histomorphometry. An intramedullary rat femur implant model was evaluated to compare raw titanium implants with plasma electrolytic oxidation (PEO)-coated titanium implants. Titanium and PEO-treated titanium pins were inserted into rat femurs under general anesthesia. The animals were sacrificed and femurs harvested at 0, 2, 4 and 6 weeks, and subsequently, histomorphometry and micro-CT were performed. BV/TV and BA/TA values were strongly and positively correlated at all time points and locations (with all correlation coefficients being >0.8 and with P < 0.001). BV/TV and BA/TA were significantly higher proximal to the growth plate than distal to the growth plate, with estimated differences of 14.10% (P < 0.001) and 11.95% (P < 0.001), respectively. BV/TV and BA/TA were significantly higher on the PEO-coated surface than on the raw titanium surface, with estimated differences of 3.20% (P = 0.044) and 4.10% (P = 0.018), respectively. Therefore, quantitative micro-CT analysis of BV/TV is correlated with BA/TA determined by histomorphometry when artifacts around titanium implants are minimized by a region of interest modification.
Collapse
|
26
|
Cheng B, Niu Q, Cui Y, Jiang W, Zhao Y, Kong L. Effects of different hierarchical hybrid micro/nanostructure surfaces on implant osseointegration. Clin Implant Dent Relat Res 2017; 19:539-548. [PMID: 28090744 DOI: 10.1111/cid.12471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/29/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hierarchical hybrid micro/nanostructure implant surfaces are considered to better mimic the hierarchical structure of bone and the nanostructures substantively influence osseointegration through managing cell behaviors. PURPOSE To enhance implant osseointegration for further clinical application, we evaluated the material properties and osseointegration effects of hierarchical surfaces with different nano-morphologies, using a rat model. MATERIALS AND METHODS Two representative surface fabrication methods, hydrofluoric (HF) acid etching combined with anodization (HF + AN) or magnetron sputtering (HF + MS), were selected. Sample material properties were evaluated by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and epoxy resin docking tensile test. Implants with different surfaces were inserted into the distal femurs of rats. After 12 weeks, osseointegration was examined by microcomputed tomography (micro-CT), histological, and biomechanical tests. RESULTS Tensile testing demonstrated high bonding strength at coating/implant in the HF + MS group. Micro-CT revealed increased bone volume/total volume and significantly reduced trabecular separation in HF + MS versus other groups. Histological analysis showed significantly higher HF + MS bone-to-implant contact (74.78 ± 4.40%) versus HF + AN (65.11 ± 5.10%) and machined samples (56.03 ± 3.23%). The maximal HF + MS pull-out force increased by 33.7% versus HF + AN. CONCLUSIONS These results indicated that HF + MS surfaces exhibited superior material property in terms of bonding strength and favorable implant osseointegration compared to other groups.
Collapse
Affiliation(s)
- Bingkun Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi, 710032, China.,Department of Oral and Maxillofacial Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Qiang Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yajun Cui
- Orthopedic Research Laboratory, Boston Children's Hospital, 300 Longwood AVE, Boston, MA, 02115, USA
| | - Wei Jiang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yunzhuan Zhao
- Department of Oral and Maxillofacial Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
27
|
Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion. PLoS One 2016; 11:e0165296. [PMID: 27824875 PMCID: PMC5100918 DOI: 10.1371/journal.pone.0165296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.
Collapse
|
28
|
Akhavan B, Wise SG, Bilek MMM. Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10835-10843. [PMID: 27676094 DOI: 10.1021/acs.langmuir.6b02901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although plasma polymerization is traditionally considered as a substrate-independent process, we present evidence that the propensity of a substrate to form carbide bonds regulates the growth mechanisms of plasma polymer (PP) films. The manner by which the first layers of PP films grow determines the adhesion and robustness of the film. Zirconium, titanium, and silicon substrates were used to study the early stages of PP film formation from a mixture of acetylene, nitrogen, and argon precursor gases. The correlation of initial growth mechanisms with the robustness of the films was evaluated through incubation of coated substrates in simulated body fluid (SBF) at 37° for 2 months. It was demonstrated that the excellent zirconium/titanium-PP film adhesion is linked to the formation of metallic carbide and oxycarbide bonds during the initial stages of film formation, where a 2D-like, layer-by-layer (Frank-van der Merwe) manner of growth was observed. On the contrary, the lower propensity of the silicon surface to form carbides leads to a 3D, island-like (Volmer-Weber) growth mode that creates a sponge-like interphase near the substrate, resulting in inferior adhesion and poor film stability in SBF. Our findings shed light on the growth mechanisms of the first layers of PP films and challenge the property of substrate independence typically attributed to plasma polymerized coatings.
Collapse
Affiliation(s)
- Behnam Akhavan
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Steven G Wise
- The Heart Research Institute , Sydney, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Marcela M M Bilek
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
29
|
Kokubo T, Yamaguchi S. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys. Acta Biomater 2016; 44:16-30. [PMID: 27521496 DOI: 10.1016/j.actbio.2016.08.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Until the discovery of the bone-bonding activity of Bioglass by Hench et al. in the early 1970s, it had not been demonstrated that a synthetic material could bond to living bone without eliciting a foreign body reaction. Since then, various kinds of materials based on calcium phosphate, such as sintered hydroxyapatite and β-tricalcium phosphate have also been shown to bond to living bone. Until the discovery of the bone-bonding activity of Ti metal formed with a sodium titanate surface layer by the present authors in 1996, it had not been shown that a metallic material could bond to living bone. Since then, various kinds of surface-modified Ti metal and its alloys have been found to bond to living bone. Until the discovery of the osteoinduction of porous hydroxyapatite by Yamasaki in 1990, it was unknown whether a synthetic material could induce bone formation even in muscle tissue. Since then, various kinds of porous calcium phosphate ceramics have been shown to induce osteoinduction. Until the discovery of osteoinduction induced by a porous Ti metal formed with a titanium oxide surface layer by Fujibayashi et al. in 2004, it had been unclear whether porous metals would be able to induce osteoinduction. These novel bioactive materials have been developed by systematic research into the apatite formation that occurs on surface-modified Ti metal and its related materials in an acellular simulated body fluid (SBF) having ion concentrations almost equal to those of human blood plasma. Some of the novel bioactive materials based on Ti metal are already in clinical use or clinical trials, such as artificial hip joints and spinal fusion devices. In the present paper, we review how these novel bioactive materials based on Ti metal have been developed based on an evaluation of apatite formation in SBF. Without the SBF evaluation, these novel bioactive materials would most likely never have been developed. STATEMENT OF SIGNIFICANCE On the basis of systematic study of apatite formation on a material in a simulated body fluid, various kinds of novel bioactive materials possessing not only bone-bonding activity and but also various other functions such as bone growth promotion, antibacterial activity and osteoinduction have been developed. Some of them are already successfully applied to clinical applications or trials for artificial hip joints and spinal fusion devices. It is shown in the present paper how these novel bioactive materials have been developed.
Collapse
Affiliation(s)
- Tadashi Kokubo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8901, Japan.
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8901, Japan
| |
Collapse
|
30
|
Jiang N, Du P, Qu W, Li L, Liu Z, Zhu S. The synergistic effect of TiO 2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats. Int J Nanomedicine 2016; 11:4719-4733. [PMID: 27695328 PMCID: PMC5033614 DOI: 10.2147/ijn.s113375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP) treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM), atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and suppressed osteoclastogenesis with increased expression of OPG and decreased levels of RANKL. These promising results show that PRP treatment combined with a TiO2-nanomodified surface can improve titanium-implant biomechanical stability in ovariectomized rats, suggesting a beneficial effect to support the success of implants in osteoporotic bone.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu; Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Pinggong Du
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Weidong Qu
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Lin Li
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Zhonghao Liu
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu
| |
Collapse
|
31
|
Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications. Biointerphases 2016; 11:011013. [PMID: 26984234 DOI: 10.1116/1.4944061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the authors tested the hypotheses that plasma electrolytic oxidation (PEO) and glow-discharge plasma (GDP) would improve the electrochemical, physical, chemical, and mechanical properties of commercially pure titanium (cpTi), and that blood protein adsorption on plasma-treated surfaces would increase. Machined and sandblasted surfaces were used as controls. Standard electrochemical tests were conducted in artificial saliva (pHs of 3.0, 6.5, and 9.0) and simulated body fluid. Surfaces were characterized by scanning electron microscopy, energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, atomic force microscopy, x-ray diffraction, profilometry, Vickers microhardness, and surface energy. For biological assay, the adsorption of blood serum proteins (i.e., albumin, fibrinogen, and fibronectin) was tested. Higher values of polarization resistance and lower values of capacitance were noted for the PEO and GDP groups (p < 0.05). Acidic artificial saliva reduced the corrosion resistance of cpTi (p < 0.05). PEO and GDP treatments improved the surface properties by enrichment of the surface chemistry with bioactive elements and increased surface energy. PEO produced a porous oxide layer (5-μm thickness), while GDP created a very thin oxide layer (0.76-μm thickness). For the PEO group, the authors noted rutile and anatase crystalline structures that may be responsible for the corrosion barrier improvement and increased microhardness values. Plasma treatments were able to enhance the surface properties and electrochemical stability of titanium, while increasing protein adsorption levels.
Collapse
|
32
|
Grubova I, Priamushko T, Chudinova E, Surmeneva M, Korneva O, Epple M, Prymak O, Shulepov I, Surmenev R. Formation and Characterization of Crystalline Hydroxyapatite Coating with the (002) Texture. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1757-899x/116/1/012016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Jiang N, Zhu S, Li J, Zhang L, Liao Y, Hu J. Development of a novel biomimetic micro/nano-hierarchical interface for enhancement of osseointegration. RSC Adv 2016. [DOI: 10.1039/c6ra03183h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study, a novel biomimetic micro/nano-hierarchical interface was obtained and an unexpected trabecular bone-like interface was given.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Jihua Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Li Zhang
- Research Center for Nano-Biomaterials
- Analytical and Testing Center
- Sichuan University
- Chengdu
- China
| | - Yunmao Liao
- Research Center for Nano-Biomaterials
- Analytical and Testing Center
- Sichuan University
- Chengdu
- China
| | - Jing Hu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| |
Collapse
|
34
|
Effects of fluoride-ion-implanted titanium surface on the cytocompatibility in vitro and osseointegatation in vivo for dental implant applications. Colloids Surf B Biointerfaces 2015; 136:752-60. [DOI: 10.1016/j.colsurfb.2015.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 08/20/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
|
35
|
Kokubo T, Yamaguchi S. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions. Front Bioeng Biotechnol 2015; 3:176. [PMID: 26579517 PMCID: PMC4621495 DOI: 10.3389/fbioe.2015.00176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022] Open
Abstract
The present authors' systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone. The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer.
Collapse
Affiliation(s)
- Tadashi Kokubo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University , Kasugai , Japan
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University , Kasugai , Japan
| |
Collapse
|
36
|
Kokubo T, Yamaguchi S. Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments. Open Biomed Eng J 2015; 9:29-41. [PMID: 25893014 PMCID: PMC4391211 DOI: 10.2174/1874120701509010029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/26/2022] Open
Abstract
To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device.
Collapse
Affiliation(s)
- Tadashi Kokubo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University 1200 Matsumoto-chow, Kasugai, Aichi 487-8501 Japan
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University 1200 Matsumoto-chow, Kasugai, Aichi 487-8501 Japan
| |
Collapse
|
37
|
Effects of calcium phosphate nanocrystals on osseointegration of titanium implant in irradiated bone. BIOMED RESEARCH INTERNATIONAL 2015; 2015:783894. [PMID: 25685809 PMCID: PMC4317600 DOI: 10.1155/2015/783894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/08/2014] [Indexed: 01/26/2023]
Abstract
Radiotherapy may compromise the integration of implant and cause implant loss. Implant surface modifications have the possibility of promoting cell attachment, cell growth, and bone formation which ultimately enhance the osseointegration process. The present study aimed to investigate the effects of calcium phosphate nanocrystals on implant osseointegration in irradiated bone. Sixteen rabbits were randomly assigned into control and nano-CaP groups, receiving implants with dual acid-etched surface or dual acid-etched surface discretely deposited of nanoscale calcium-phosphate crystals, respectively. The left leg of all the rabbits received 15 Gy radiation, followed by implants placement one week after. Four animals in each group were sacrificed after 4 and 12 weeks, respectively. Implant stability quotient (ISQ), ratio of bone volume to total volume (BV/TV), bone growth rate, and bone-to-implant contact (BIC) were evaluated. The nano-CaP group showed significantly higher ISQ (week 12, P = 0.031) and bone growth rate (week 6, P = 0.021; week 9, P = 0.001) than that in control group. No significant differences in BV/TV and BIC were found between two groups. Titanium implant surface modified with CaP nanocrystals provides a potential alternative to improve bone healing around implant in irradiated bone.
Collapse
|
38
|
Li Y, Fu Q, Qi Y, Shen M, Niu Q, Hu K, Kong L. Effect of a hierarchical hybrid micro/nanorough strontium-loaded surface on osseointegration in osteoporosis. RSC Adv 2015. [DOI: 10.1039/c5ra04914h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study evaluated the effect of a hierarchical hybrid micro/nanorough titanium strontium-loaded (MNT-Sr) surface on osseointegration under osteoporotic conditions.
Collapse
Affiliation(s)
- Yongfeng Li
- State Key Laboratory of Military Stomatology
- Department of Oral and Maxillofacial Surgery
- School of Stomatology
- The Fourth Military Medical University
- Xi'an 710032
| | - Qian Fu
- State Key Laboratory of Military Stomatology
- Department of Oral and Maxillofacial Surgery
- School of Stomatology
- The Fourth Military Medical University
- Xi'an 710032
| | - Yaping Qi
- Department of Oral and Maxillofacial Surgery
- School of Stomatology
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- PR China
| | - Mingming Shen
- Department of Oral and Maxillofacial Surgery
- School of Stomatology
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- PR China
| | - Qiang Niu
- State Key Laboratory of Military Stomatology
- Department of Oral and Maxillofacial Surgery
- School of Stomatology
- The Fourth Military Medical University
- Xi'an 710032
| | - Kaijin Hu
- State Key Laboratory of Military Stomatology
- Department of Oral and Maxillofacial Surgery
- School of Stomatology
- The Fourth Military Medical University
- Xi'an 710032
| | - Liang Kong
- State Key Laboratory of Military Stomatology
- Department of Oral and Maxillofacial Surgery
- School of Stomatology
- The Fourth Military Medical University
- Xi'an 710032
| |
Collapse
|
39
|
Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1809-18. [DOI: 10.1016/j.nano.2014.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023]
|
40
|
Veronesi F, Pagani S, Della Bella E, Giavaresi G, Fini M. Estrogen deficiency does not decrease the in vitro osteogenic potential of rat adipose-derived mesenchymal stem cells. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9647. [PMID: 24687841 PMCID: PMC4082606 DOI: 10.1007/s11357-014-9647-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/18/2014] [Indexed: 05/13/2023]
Abstract
Osteoporosis due to estrogen deficiency is an increasing bone health issue worldwide: new strategies are being studied for regenerative medicine of bone pathologies in these patients. The most commonly used cells for tissue engineering therapy are the bone marrow mesenchymal stem cells (BMSCs), but they might be negatively affected by aging and estrogen deficiency. Besides the general advantages of adipose-derived mesenchymal stem cells (ADSCs) over BMSCs, ADSCs also seem to be less affected by aging than BMSCs, but in the literature, little is known about ADSCs in estrogen deficiency. The present study investigated the in vitro behavior of ADSCs, isolated from healthy (SHAM) and estrogen-deficient (OVX) rats. Phenotype, clonogenicity, viability, and osteogenic differentiation, at both cellular and molecular levels, were evaluated with or without osteogenic stimuli. Pro-inflammatory cytokines, growth factors, and adipogenic differentiation markers were also analyzed. There were no significant differences between OVX and SHAM ADSCs in some analyzed parameters. In addition, clonogenicity, osteopontin (Spp1) gene expression, alkaline phosphatase (ALP) activity at 2 weeks of culture, total collagen (COLL), osteocalcin (Bglap) gene expression and production, and matrix mineralization were significantly higher in OVX than in SHAM ADSCs. Besides the increase in some osteogenic markers, peroxisome proliferator-activated receptor gamma (Pparg) gene was also more expressed in OVX in osteogenic medium, with a concomitant estrogen receptor 1 (Esr1) gene expression decrease. These results underlined that ADSCs were not affected by estrogen deficiency in an osteogenic microenvironment.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, 40136, Bologna, Italy,
| | | | | | | | | |
Collapse
|
41
|
Pham VH. Improving osseointegration of Co-Cr by nanostructured titanium coatings. SPRINGERPLUS 2014; 3:197. [PMID: 24809001 PMCID: PMC4012034 DOI: 10.1186/2193-1801-3-197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/08/2014] [Indexed: 11/10/2022]
Abstract
This study reports the deposition of nanostructured Ti films on Co-Cr substrates to improve their surface characteristics and biocompatibility. The microstructure of the Ti films was controlled by application of negative substrate bias voltages. The surface roughness of Co-Cr implants was increased significantly after Ti coatings. The nanostructured Ti films are found to improve osteointergration of Co-Cr implants as indicated by enhancing cellular attachment, proliferation and differentiation, which was attributed mainly to the application of a biocompatible Ti coating, possessed a higher surface area for cell attachments and growth.
Collapse
Affiliation(s)
- Vuong-Hung Pham
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 01, Dai Co Viet road, Hanoi, Vietnam
| |
Collapse
|
42
|
Zhou H, Zou S, Lan Y, Fei W, Jiang R, Hu J. Smad7 modulates TGFβ signaling during cranial suture development to maintain suture patency. J Bone Miner Res 2014; 29:716-24. [PMID: 23959527 DOI: 10.1002/jbmr.2066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/27/2013] [Accepted: 07/29/2013] [Indexed: 02/05/2023]
Abstract
Craniosynostosis, the premature fusion of one or more sutures between the calvarial bones, is a common birth defect. Mutations in genes encoding receptors for the transforming growth factor-beta (TGFβ) family of signaling molecules have been associated with craniosynostosis, but how TGFβ signaling is regulated during suture development is not known. In the present study, we found that expression of Smad2 and Smad3, intracellular mediators of canonical TGFβ signaling, gradually increases during early postnatal suture development in rat in both the coronal suture (CS), which remains patent throughout life, and the posterior frontal suture (PFS), which undergoes programmed closure by postnatal day 22. The amounts of phosphorylated Smad2 and Smad3 proteins showed a similar gradual increase in the PFS and CS, but in the CS, Smad2/3 activation was suppressed after neonatal day 10. The suppression of Smad2/3 activation in the CS correlated with upregulation of Smad7 expression. We demonstrate that siRNA-mediated knockdown of Smad7 caused increased phosphorylation of Smad2 and Smad3 and induced osseous obliteration of the CS from postnatal days 10 to 22. The Smad7 siRNA-induced CS closure was associated with significantly increased levels of Fgf10 and phosphorylated ERK1/2 in the suture mesenchyme. Moreover, addition of the Erk1/2 inhibitor U0126 partially blocked Smad7-siRNA-induced CS closure. These findings suggest that canonical TGFβ signaling induces suture closure at least in part through activation of FGF and ERK signaling and that Smad7 plays an important role in maintaining suture patency by suppressing canonical TGFβ signaling during suture development.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, Sichuan Provincial People's Hospital, Sichuan Provincial Academy of Medical Science, Chengdu, China
| | | | | | | | | | | |
Collapse
|
43
|
Wu YY, Yu T, Yang XY, Li F, Ma L, Yang Y, Liu XG, Wang YY, Gong P. Vitamin D3 and insulin combined treatment promotes titanium implant osseointegration in diabetes mellitus rats. Bone 2013; 52:1-8. [PMID: 22985888 DOI: 10.1016/j.bone.2012.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 01/08/2023]
Abstract
This study investigated the effect of insulin and vitamin D(3) (VD(3)) treatment on implant osseointegration in diabetic mellitus (DM) rats. DM was induced by administration of streptozotocin in rats, which received implants insertion in the femur. Then animals were subjected to different treatment and divided to the following group: control, diabetic, insulin-treated diabetic, VD(3)-treated diabetic, insulin and VD(3) combination-treated diabetic rats. The glucose levels and weight of rats were periodically evaluated, and serum 25(OH)D(3) levels in rats were measured at the end of the experiment. Animals were sacrificed at 12 weeks after surgery, the peri-implant trabecular microstructure, implant fixation and implant osseointegration were measured by microscopic computerized tomography (micro-CT) evaluation, push-out test and histomorphometric analysis. Diabetic rats displayed significantly higher blood glucose level, lower body weight, lower serum 25(OH)D(3) levels, and less implant osseointegration than controls. Insulin treatment showed restorative effect on body weight and serum 25(OH)D(3) levels of diabetic rats, but the blood glucose level in diabetic rats were still substantially higher compared to controls after 14 days therapy of insulin. Combined treatment restored hyperglycemia in diabetic rats to be normal, and reversed the impaired osseointegration capacity of implants, with the bone volume ratio and percent osseointegration increased by 1.37-fold and 1.6-fold in micro-CT evaluation, the maximal push-out force and ultimate shear strength by 1.3-fold and 2.1-fold in push-out test, and the bone-to-implant contact and bone area ratio increased by 2.57-fold and 1.44-fold in histomorphometric analysis. Monotreatment also enhanced implant fixation, but less. These results indicated that insulin and VD(3) combined treatment may be an effective approach to enhance implant fixation in diabetic rats, but whether the results could be extrapolated to human needs further study.
Collapse
Affiliation(s)
- Ying-ying Wu
- State Key Laboratory of Oral Disease, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu 610041, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thalji G, Gretzer C, Cooper LF. Comparative molecular assessment of early osseointegration in implant-adherent cells. Bone 2013; 52:444-53. [PMID: 22884725 DOI: 10.1016/j.bone.2012.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The objective of our study is to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface superimposed featured implants. MATERIALS AND METHODS Thirty-two titanium implants with surface topographies exhibiting a micro roughened (AT-II) and nanosurface superimposed featured implants (AT-I) were placed in the tibiae of 8 rats and subsequently harvested at 2 and 4 days after placement. Total RNA was isolated from cells adherent to retrieved implants. A whole genome microarray using the Affymetrix Rat Gene 1.1 ST Array followed by validation of select genes through qRT-PCR was used to describe the gene expression profiles that were differentially regulated by the implant surfaces. RESULTS While significant differences at the gene level were not noted when comparing the two-implant surfaces at each time point, the microarray identified several genes that were differentially regulated at day 4 vs. day 2 for both implant surfaces. A total of 649 genes were differentially regulated at day 4 vs. day 2 in AT-I and 392 genes in AT-II implants. Functionally relevant categories related to ossification, skeletal system development, osteoblast differentiation, bone development, bone mineralization and biomineral tissue development were upregulated and more prominent at AT-I (day 4 vs. day 2) compared to AT-II. Analysis of the downregulated gene lists (day 4 vs. day 2) with average fold change >2 (were not statistically significant) revealed the biological processes involved with the inflammatory/immune response gene expression. The number of genes that were associated with the inflammatory/immune response category was greater for AT-I than AT-II. CONCLUSIONS The presence of nanosurface features modulated in vivo bone response. Gene regulation implicating osteogenesis as well as the inflammatory/immune responses that occur as a function of surface topography may affect bone mass shortly after implant placement.
Collapse
Affiliation(s)
- Ghadeer Thalji
- Department of Prosthodontics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
45
|
Thoma DS, Martin IS, Mühlemann S, Jung RE. Systematic review of pre-clinical models assessing implant integration in locally compromised sites and/or systemically compromised animals. J Clin Periodontol 2012; 39 Suppl 12:37-62. [PMID: 22533946 DOI: 10.1111/j.1600-051x.2011.01833.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim was to systematically search the dental literature for pre-clinical models assessing implant integration in locally compromised sites (part 1) and systemically compromised animals (part 2), and to evaluate the quality of reporting of included publications. METHODS A Medline search (1966-2011) was performed, complimented by additional hand searching. The quality of reporting of the included publications was evaluated using the 20 items of the ARRIVE (Animals in Research In Vivo Experiments) guidelines. RESULTS One-hundred and seventy-six (part 1; mean ARRIVE score = 15.6 ± 2.4) and 104 (part 2; 16.2 ± 1.9) studies met the inclusion criteria. The overall mean score for all included studies amounted to 15.8 ± 2.2. Housing (38.3%), allocation of animals (37.9%), numbers analysed (50%) and adverse events (51.4%) of the ARRIVE guidelines were the least reported. Statistically significant differences in mean ARRIVE scores were found depending on the publication date (p < 0.05), with the highest score of 16.7 ± 1.6 for studies published within the last 2 years. CONCLUSIONS A large number of studies met the inclusion criteria. The ARRIVE scores revealed heterogeneity and missing information for selected items in more than 50% of the publications. The quality of reporting shifted towards better-reported pre-clinical trials within recent years.
Collapse
Affiliation(s)
- Daniel S Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
46
|
In vitro osteogenic properties of two dental implant surfaces. Int J Biomater 2012; 2012:181024. [PMID: 23118752 PMCID: PMC3478747 DOI: 10.1155/2012/181024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 12/31/2022] Open
Abstract
Current dental implant research aims at understanding the biological basis for successful implant therapy. The aim of the study was to perform a full characterization of the effect of two commercial titanium (Ti) surfaces, OsseoSpeed and TiOblast, on the behaviour of mouse preosteoblast MC3T3-E1 cells. The effect of these Ti surfaces was compared with tissue culture plastic (TCP). In vitro experiments were performed to evaluate cytotoxicity, cell morphology and proliferation, alkaline phosphatase activity, gene expression, and release of a wide array of osteoblast markers. No differences were observed on cell viability and cell proliferation. However, changes were observed in cell shape after 2 days, with a more branched morphology on OsseoSpeed compared to TiOblast. Moreover, OsseoSpeed surface increased BMP-2 secretion after 2 days, and this was followed by increased IGF-I, BSP, and osterix gene expression and mineralization compared to TiOblast after 14 days. As compared to the gold standard TCP, both Ti surfaces induced higher osteocalcin and OPG release than TCP and differential temporal gene expression of osteogenic markers. The results demonstrate that the gain of using OsseoSpeed surface is an improved osteoblast differentiation and mineralization, without additional effects on cell viability or proliferation.
Collapse
|
47
|
Identification of early response genes to roughness and fluoride modification of titanium implants in human osteoblasts. IMPLANT DENT 2012; 21:141-9. [PMID: 22382752 DOI: 10.1097/id.0b013e31824a06b4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Tissue response after implantation determines the success of the healing process. This response is not only dependent on the chemical properties of the implant surface but also by the surface topography or its roughness. Although in vitro and in vivo studies show improved results with rough- and fluoride-modified implants, the mechanisms behind these findings are still unknown. METHODS AND MATERIALS Here, we have used a two-step procedure to identify novel genes related to the early response of primary human osteoblasts to roughness and fluoride-modified titanium implants. RESULTS Two hundred seventeen genes responding to roughness were identified by microarray analysis and 198 genes responding to fluoride, 33 genes were common. Those identified genes related to bone and mineralization were further investigated by real-time reverse-transcriptase polymerase chain reaction. After 1 day of culture, toll-like receptor 3, ankylosis-progressive homolog, decorin, osteocalcin, and runt-related transcription factor-2 were classified as responsive genes to roughness; Distal-less homeobox-2 and Tuftelin-1 as responsive genes to fluoride treatment. Responsive genes to both treatments were collagen type I, parathyroid hormone-like hormone, hairy and enhancer of split-1, follistatin, ectonucleotide pyrophosphatase/phosphodiesterase-1, and thyroid hormone receptor-alpha. CONCLUSION Our strategy was useful for identifying novel genes that might be involved in the early response of osteoblasts to rough and fluoride-modified titanium implants.
Collapse
|
48
|
Alghamdi HS, Junker R, Bronkhorst EM, Jansen JA. Bone regeneration related to calcium phosphate-coated implants in osteoporotic animal models: a meta-analysis. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:383-95. [PMID: 22519708 DOI: 10.1089/ten.teb.2012.0130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Osteoporosis is a frequent human metabolic bone disorder. Prospectively, global ageing of populations will lead to a major increase of subjects being diagnosed with osteoporosis and in need for dental rehabilitation. However, as local osteoporosis of the jaws affects bone quantity and quality of edentulous regions, osseointegration of dental implants might be hampered. Consequently, calcium phosphate ceramic-coated implants have been suggested to compensate for low bone quantity/density and for impaired bone healing in osteoporosis. Nonetheless, up to now no meta-analytical assessment of the relevant preclinical literature to quantify such a possible positive effect has been undertaken. MATERIALS AND METHODS PubMed search, limited to animal models, to identify a possible positive effect of calcium phosphate-coated implants on bone regeneration, was carried out. Further, the reference lists of related review articles and publications selected for inclusion in this review were systematically screened. The primary outcome variables were bone-to-implant contact percentage as assessed histomorphometrically and mechanical stability testing. RESULTS The electronic search in the database of the National Library of Medicine resulted in the identification of 2704 titles. These titles were initially screened by the two independent reviewers for possible inclusion, resulting in further consideration of 51 publications. Screening the abstracts led to 22 full-text articles. From these articles, 16 reports were excluded. Finally, six of these original research reports could be selected for evaluation. Additionally, eight publications were identified by manual search. Thus, a total of 14 articles were included for analysis. CONCLUSIONS It was concluded that (1) in osteoporotic animal models calcium phosphate ceramic-coated implants are associated with improved bone-to-implant healing as compared to noncoated implants. Moreover, (2) essentially due to quality characteristics of the analyzed original research articles a negative impact of osteoporosis on bone-to-implant healing could not be confirmed. Besides, (3) the established positive bone-to-implant healing effect of calcium phosphate ceramic coatings does not differ between osteoporotic and nonosteoporotic, healthy animal models.
Collapse
Affiliation(s)
- Hamdan S Alghamdi
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
49
|
Gao Y, Li Y, Xiao J, Xu L, Hu K, Kong L. Effects of microrough and hierarchical hybrid micro/nanorough surface implants on osseointegration in ovariectomized rats: A longitudinal in vivo microcomputed tomography evaluation. J Biomed Mater Res A 2012; 100:2159-67. [DOI: 10.1002/jbm.a.34129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/05/2012] [Accepted: 02/15/2012] [Indexed: 01/24/2023]
|
50
|
Li Y, Li X, Song G, Chen K, Yin G, Hu J. Effects of strontium ranelate on osseointegration of titanium implant in osteoporotic rats. Clin Oral Implants Res 2011; 23:1038-44. [PMID: 22117625 DOI: 10.1111/j.1600-0501.2011.02252.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 01/12/2023]
Affiliation(s)
- Yunfeng Li
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery; West China College of Stomatology; Sichuan University; Chengdu; China
| | - Xudong Li
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery; West China College of Stomatology; Sichuan University; Chengdu; China
| | - Guodong Song
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery; West China College of Stomatology; Sichuan University; Chengdu; China
| | - Kan Chen
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery; West China College of Stomatology; Sichuan University; Chengdu; China
| | - Guozhu Yin
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery; West China College of Stomatology; Sichuan University; Chengdu; China
| | - Jing Hu
- The State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery; West China College of Stomatology; Sichuan University; Chengdu; China
| |
Collapse
|