1
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
2
|
Huang Y, Zhao H, Wang Y, Bi S, Zhou K, Li H, Zhou C, Wang Y, Wu W, Peng B, Tang J, Pan B, Wang B, Chen Z, Li Z, Zhang Z. The application and progress of tissue engineering and biomaterial scaffolds for total auricular reconstruction in microtia. Front Bioeng Biotechnol 2023; 11:1089031. [PMID: 37811379 PMCID: PMC10556751 DOI: 10.3389/fbioe.2023.1089031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/21/2023] [Indexed: 10/10/2023] Open
Abstract
Microtia is a congenital deformity of the ear with an incidence of about 0.8-4.2 per 10,000 births. Total auricular reconstruction is the preferred treatment of microtia at present, and one of the core technologies is the preparation of cartilage scaffolds. Autologous costal cartilage is recognized as the best material source for constructing scaffold platforms. However, costal cartilage harvest can lead to donor-site injuries such as pneumothorax, postoperative pain, chest wall scar and deformity. Therefore, with the need of alternative to autologous cartilage, in vitro and in vivo studies of biomaterial scaffolds and cartilage tissue engineering have gradually become novel research hot points in auricular reconstruction research. Tissue-engineered cartilage possesses obvious advantages including non-rejection, minimally invasive or non-invasive, the potential of large-scale production to ensure sufficient donors and controllable morphology. Exploration and advancements of tissue-engineered cartilaginous framework are also emerging in aspects including three-dimensional biomaterial scaffolds, acquisition of seed cells and chondrocytes, 3D printing techniques, inducing factors for chondrogenesis and so on, which has greatly promoted the research process of biomaterial substitute. This review discussed the development, current application and research progress of cartilage tissue engineering in auricular reconstruction, particularly the usage and creation of biomaterial scaffolds. The development and selection of various types of seed cells and inducing factors to stimulate chondrogenic differentiation in auricular cartilage were also highlighted. There are still confronted challenges before the clinical application becomes widely available for patients, and its long-term effect remains to be evaluated. We hope to provide guidance for future research directions of biomaterials as an alternative to autologous cartilage in ear reconstruction, and finally benefit the transformation and clinical application of cartilage tissue engineering and biomaterials in microtia treatment.
Collapse
Affiliation(s)
- Yeqian Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanxing Zhao
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hairui Li
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yudong Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Peng
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Luo Y, Xiao M, Almaqrami BS, Kang H, Shao Z, Chen X, Zhang Y. Regenerated silk fibroin based on small aperture scaffolds and marginal sealing hydrogel for osteochondral defect repair. Biomater Res 2023; 27:50. [PMID: 37208690 DOI: 10.1186/s40824-023-00370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Osteochondral defects pose an enormous challenge without satisfactory repair strategy to date. In particular, the lateral integration of neo-cartilage into the surrounding native cartilage is a difficult and inadequately addressed problem determining tissue repair's success. METHODS Regenerated silk fibroin (RSF) based on small aperture scaffolds was prepared with n-butanol innovatively. Then, the rabbit knee chondrocytes and bone mesenchymal stem cells (BMSCs) were cultured on RSF scaffolds, and after induction of chondrogenic differentiation, cell-scaffold complexes strengthened by a 14 wt% RSF solution were prepared for in vivo experiments. RESULTS A porous scaffold and an RSF sealant exhibiting biocompatibility and excellent adhesive properties are developed and confirmed to promote chondrocyte migration and differentiation. Thus, osteochondral repair and superior horizontal integration are achieved in vivo with this composite. CONCLUSIONS Overall, the new approach of marginal sealing around the RSF scaffolds exhibits preeminent repair results, confirming the ability of this novel graft to facilitate simultaneous regeneration of cartilage-subchondral bone.
Collapse
Affiliation(s)
- Yinyue Luo
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, China
| | - Menglin Xiao
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | | | - Hong Kang
- Department of Temporomandibular Joint and Occlusion, School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, 730013, China
| | - Zhengzhong Shao
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Xin Chen
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China.
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China.
| | - Ying Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, China.
| |
Collapse
|
4
|
Pang L, Jin H, Lu Z, Xie F, Shen H, Li X, Zhang X, Jiang X, Wu L, Zhang M, Zhang T, Zhai Y, Zhang Y, Guan H, Su J, Li M, Gao J. Treatment with Mesenchymal Stem Cell-Derived Nanovesicle-Containing Gelatin Methacryloyl Hydrogels Alleviates Osteoarthritis by Modulating Chondrogenesis and Macrophage Polarization. Adv Healthc Mater 2023:e2300315. [PMID: 36848378 DOI: 10.1002/adhm.202300315] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Osteoarthritis is a degenerative disorder that can severely affect joints, and new treatment strategies are urgently needed. Administration of mesenchymal stem cell (MSC)-derived exosomes is a promising therapeutic strategy in osteoarthritis treatment. However, the poor yield of exosomes is an obstacle to the use of this modality in the clinic. Herein, a promising strategy is developed to fabricate high-yield exosome-mimicking MSC-derived nanovesicles (MSC-NVs) with enhanced regenerative and anti-inflammatory capabilities. MSC-NVs are prepared using an extrusion approach and are found to increase chondrocyte and human bone marrow MSC differentiation, proliferation, and migration, in addition to inducing M2 macrophage polarization. Furthermore, gelatin methacryloyl (GelMA) hydrogels loaded with MSC-NVs (GelMA-NVs) are formulated, which exhibit sustained release of MSC-NVs and are shown to be biocompatible with excellent mechanical properties. In a mouse osteoarthritis model constructed by surgical destabilization of the medial meniscus (DMM), GelMA-NVs effectively ameliorate osteoarthritis severity, reduce the secretion of catabolic factors, and enhance matrix synthesis. Furthermore, GelMA-NVs induce M2 macrophage polarization and inflammatory response inhibition in vivo. The findings demonstrate that GelMA-NVs hold promise for osteoarthritis treatment through modulation of chondrogenesis and macrophage polarization.
Collapse
Affiliation(s)
- Liying Pang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.,Department of Laboratory Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, China.,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hong Jin
- Department of Laboratory Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhengmao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Huaxing Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinying Li
- Department of Laboratory Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Xianghe Jiang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yonghua Zhai
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yuanyuan Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Huilin Guan
- Department of Scientific Research, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Department of Orthopaedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200010, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Wu H, Chen G, Zhang G, Lv Q, Gu D, Dai M. Mechanism of vascular endothelial cell-derived exosomes modified with vascular endothelial growth factor in steroid-induced femoral head necrosis. Biomed Mater 2023; 18. [PMID: 36794758 DOI: 10.1088/1748-605x/acb412] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023]
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is an intractable orthopedic disease. This study investigated the regulatory effect and molecular mechanism of vascular endothelial cell (VEC)-derived exosomes (Exos) modified with vascular endothelial growth factor (VEGF) in osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in SANFH. VECs were culturedin vitroand transfected with adenovirus Adv-VEGF plasmids. Exos were extracted and identified.In vitro/vivoSANFH models were established and treated with VEGF-modified VEC-Exos (VEGF-VEC-Exos). The internalization of Exos by BMSCs, proliferation and osteogenic and adipogenic differentiation of BMSCs were determined by the uptake test, cell counting kit-8 (CCK-8) assay, alizarin red staining, and oil red O staining. Meanwhile, the mRNA level of VEGF, the appearance of the femoral head, and histological analysis were assessed by reverse transcription quantitative polymerase chain reaction and hematoxylin-eosin staining. Moreover, the protein levels of VEGF, osteogenic markers, adipogenic markers, and mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinases (ERK) pathway-related indicators were examined by Western blotting, along with evaluation of the VEGF levels in femur tissues by immunohistochemistry. Glucocorticoid (GC) induced adipogenic differentiation of BMSCs and inhibited osteogenic differentiation. VEGF-VEC-Exos accelerated the osteogenic differentiation of GC-induced BMSCs and inhibited adipogenic differentiation. VEGF-VEC-Exos activated the MAPK/ERK pathway in GC-induced BMSCs. VEGF-VEC-Exos promoted osteoblast differentiation and suppressed adipogenic differentiation of BMSCs by activating the MAPK/ERK pathway. VEGF-VEC-Exos accelerated bone formation and restrained adipogenesis in SANFH rats. VEGF-VEC-Exos carried VEGF into BMSCs and motivated the MAPK/ERK pathway, thereby promoting osteoblast differentiation of BMSCs in SANFH, inhibiting adipogenic differentiation, and alleviating SANFH.
Collapse
Affiliation(s)
- Hongliang Wu
- Department of Orthopedics, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, People's Republic of China
| | - Guocheng Chen
- Department of Orthopedics, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, People's Republic of China
| | - Guibao Zhang
- Department of Orthopedics, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, People's Republic of China
| | - Qiang Lv
- Department of Orthopedics, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, People's Republic of China
| | - Di Gu
- Department of Orthopedics, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, People's Republic of China
| | - Minhua Dai
- Department of Orthopedics, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, People's Republic of China
| |
Collapse
|
6
|
He Y, Wang W, Luo P, Wang Y, He Z, Dong W, Jia M, Yu X, Yang B, Wang J. Mettl3 regulates hypertrophic differentiation of chondrocytes through modulating Dmp1 mRNA via Ythdf1-mediated m 6A modification. Bone 2022; 164:116522. [PMID: 35981698 DOI: 10.1016/j.bone.2022.116522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
As the main cells in endochondral osteogenesis, chondrocytes have limited self-repair ability due to weak proliferation activity, low density, and dedifferentiation tendency. Here, a thorough inquiry about the effect and underlying mechanisms of methyltransferase like-3 (Mettl3) on chondrocytes was made. Functionally, it was indicated that Mettl3 promoted the proliferation and hypertrophic differentiation of chondrocytes. Mechanically, Dmp1 (dentin matrix protein 1) was proved to be the downstream direct target of Mettl3 for m6A modification to regulate the differentiation of chondrocytes through bioinformatics analysis and correlated experiments. The Reader protein Ythdf1 mediated Dmp1 mRNA catalyzed by Mettl3. In vivo, the formation of subcutaneous ectopic cartilage-like tissue further supported the in vitro results. In conclusion, the gene regulation of Mettl3/m6A/Ythdf1/Dmp1 axis in hypertrophic differentiation of chondrocytes for the development of endochondral osteogenesis may supply a promising treatment strategy for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Wang
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
7
|
Otto IA, Bernal PN, Rikkers M, van Rijen MH, Mensinga A, Kon M, Breugem CC, Levato R, Malda J. Human Adult, Pediatric and Microtia Auricular Cartilage harbor Fibronectin-adhering Progenitor Cells with Regenerative Ear Reconstruction Potential. iScience 2022; 25:104979. [PMID: 36105583 PMCID: PMC9464889 DOI: 10.1016/j.isci.2022.104979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/19/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Iris A. Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Margot Rikkers
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Mattie H.P. van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Anneloes Mensinga
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Moshe Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Corstiaan C. Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, 1105 ZA, the Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| |
Collapse
|
8
|
Hou M, Tian B, Bai B, Ci Z, Liu Y, Zhang Y, Zhou G, Cao Y. Dominant role of in situ native cartilage niche for determining the cartilage type regenerated by BMSCs. Bioact Mater 2022; 13:149-160. [PMID: 35224298 PMCID: PMC8843973 DOI: 10.1016/j.bioactmat.2021.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Baoxing Tian
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Baoshuai Bai
- National Tissue Engineering Center of China, Shanghai, PR China
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, PR China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, PR China
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, PR China
| | - Yu Liu
- National Tissue Engineering Center of China, Shanghai, PR China
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, PR China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, PR China
- Corresponding author. Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
- Corresponding author. Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011, PR China.
| |
Collapse
|
9
|
Dong X, Askinas C, Kim J, Sherman JE, Bonassar LJ, Spector J. Efficient engineering of human auricular cartilage through mesenchymal stem cell chaperoning. J Tissue Eng Regen Med 2022; 16:825-835. [PMID: 35689509 DOI: 10.1002/term.3332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 01/08/2023]
Abstract
A major challenge to the clinical translation of tissue-engineered ear scaffolds for ear reconstruction is the limited auricular chondrocyte (hAuC) yield available from patients. Starting with a relatively small number of chondrocytes in culture results in dedifferentiation and loss of phenotype with subsequent expansion. To significantly decrease the number of chondrocytes required for human elastic cartilage engineering, we co-cultured human mesenchymal stem cells (hMSCs) with HAuCs to promote healthy elastic cartilage formation. HAuCs along with human bone marrow-derived hMSCs were encapsulated into 1% Type I collagen at 25 million/mL total cell density with different ratios (HAuCs/hMSCs: 10/90, 25/75, 50/50) and then injected into customized 3D-printed polylactic acid (PLA) ridged external scaffolds, which simulate the shape of the auricular helical rim, and implanted subcutaneously in nude rats for 1, 3 and 6 months. The explanted constructs demonstrated near complete volume preservation and topography maintenance of the ridged "helical" feature after 6 months with all ratios. Cartilaginous appearing tissue formed within scaffolds by 3 months, verified by histologic analysis demonstrating mature elastic cartilage within the constructs with chondrocytes seen in lacunae within a Type II collagen and proteoglycan-enriched matrix, and surrounded by a neoperichondrial external layer. Compressive mechanical properties comparable to human elastic cartilage were achieved after 6 months. Co-implantation of hAuCs and hMSCs in collagen within an external scaffold efficiently produced shaped human elastic cartilage without volume loss even when hAuC comprised only 10% of the implanted cell population, marking a crucial step toward the clinical translation of auricular tissue engineering.
Collapse
Affiliation(s)
- Xue Dong
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Carly Askinas
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Jongkil Kim
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - John E Sherman
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Jason Spector
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA.,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Chen K, Chen H, Gao H, Zhou W, Zheng S, Chen Y, Zhang S, Yao Y. Effect of passage number of genetically modified TGF-β3 expressing primary chondrocytes on the chondrogenesis of ATDC5 cells in a 3D coculture system. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac489e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Due to the lack of blood vessels, nerves and lymphatics, articular cartilage is difficult to repair once damaged. Tissue engineering is considered to be a potential strategy for cartilage regeneration. Successful tissue engineering strategies depend on the effective combination of biomaterials, seed cells and biological factors. In our previous study, a genetically modified coculture system with chondrocytes and ATDC5 cells in an alginate hydrogel has exhibited a superior ability to enhance chondrogenesis. In this study, we further evaluated the influence of chondrocytes at various passages on chondrogenesis in the coculture system. The results demonstrated that transfection efficiency was hardly influenced by the passage of chondrocytes. The coculture system with passage 5 (P5) chondrocytes had a better effect on chondrogenesis of ATDC 5 cells, while chondrocytes in this coculture system presented higher levels of dedifferentiation than other groups with P1 or P3 chondrocytes. Therefore, P5 chondrocytes were shown to be more suitable for the coculture system, as they accumulated in sufficient cell numbers with more passages and had a higher level of dedifferentiation, which was prone to form a favorable niche for chondrogenesis of ATDC5 cells. This study may provide fresh insights for future cartilage tissue engineering strategies with a combination of a coculture system and advanced biomaterials.
Collapse
|
11
|
Voga M, Majdic G. Articular Cartilage Regeneration in Veterinary Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:23-55. [DOI: 10.1007/5584_2022_717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
González Vázquez AG, Blokpoel Ferreras LA, Bennett KE, Casey SM, Brama PAJ, O'Brien FJ. Systematic Comparison of Biomaterials-Based Strategies for Osteochondral and Chondral Repair in Large Animal Models. Adv Healthc Mater 2021; 10:e2100878. [PMID: 34405587 PMCID: PMC11468758 DOI: 10.1002/adhm.202100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Joint repair remains a major challenge in orthopaedics. Recent progress in biomaterial design has led to the fabrication of a plethora of promising devices. Pre-clinical testing of any joint repair strategy typically requires the use of large animal models (e.g., sheep, goat, pig or horse). Despite the key role of such models in clinical translation, there is still a lack of consensus regarding optimal experimental design, making it difficult to draw conclusions on their efficacy. In this context, the authors performed a systematic literature review and a risk of bias assessment on large animal models published between 2010 and 2020, to identify key experimental parameters that significantly affect the biomaterial therapeutic outcome and clinical translation potential (including defect localization, animal age/maturity, selection of controls, cell-free versus cell-laden). They determined that mechanically strong biomaterials perform better at the femoral condyles; while highlighted the importance of including native tissue controls to better evaluate the quality of the newly formed tissue. Finally, in cell-laded biomaterials, the pre-culture conditions played a more important role in defect repair than the cell type. In summary, here they present a systematic evaluation on how the experimental design of preclinical models influences biomaterial-based therapeutic outcomes in joint repair.
Collapse
Affiliation(s)
- Arlyng G. González Vázquez
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Lia A. Blokpoel Ferreras
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | | | - Sarah M. Casey
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Pieter AJ Brama
- School of Veterinary MedicineUniversity College Dublin (UCD)Dublin4 D04 V1W8Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin (TCD)Dublin2 D02 PN40Ireland
| |
Collapse
|
13
|
Chiesa-Estomba CM, Aiastui A, González-Fernández I, Hernáez-Moya R, Rodiño C, Delgado A, Garces JP, Paredes-Puente J, Aldazabal J, Altuna X, Izeta A. Three-Dimensional Bioprinting Scaffolding for Nasal Cartilage Defects: A Systematic Review. Tissue Eng Regen Med 2021; 18:343-353. [PMID: 33864626 PMCID: PMC8169726 DOI: 10.1007/s13770-021-00331-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, three-dimensional (3D)-printing of tissue-engineered cartilaginous scaffolds is intended to close the surgical gap and provide bio-printed tissue designed to fit the specific geometric and functional requirements of each cartilage defect, avoiding donor site morbidity and offering a personalizing therapy. METHODS To investigate the role of 3D-bioprinting scaffolding for nasal cartilage defects repair a systematic review of the electronic databases for 3D-Bioprinting articles pertaining to nasal cartilage bio-modelling was performed. The primary focus was to investigate cellular source, type of scaffold utilization, biochemical evaluation, histological analysis, in-vitro study, in-vivo study, animal model used, length of research, and placement of experimental construct and translational investigation. RESULTS From 1011 publications, 16 studies were kept for analysis. About cellular sources described, most studies used primary chondrocyte cultures. The cartilage used for cell isolation was mostly nasal septum. The most common biomaterial used for scaffold creation was polycaprolactone alone or in combination. About mechanical evaluation, we found a high heterogeneity, making it difficult to extract any solid conclusion. Regarding biological and histological characteristics of each scaffold, we found that the expression of collagen type I, collagen Type II and other ECM components were the most common patterns evaluated through immunohistochemistry on in-vitro and in-vivo studies. Only two studies made an orthotopic placement of the scaffolds. However, in none of the studies analyzed, the scaffold was placed in a subperichondrial pocket to rigorously simulate the cartilage environment. In contrast, scaffolds were implanted in a subcutaneous plane in almost all of the studies included. CONCLUSION The role of 3D-bioprinting scaffolding for nasal cartilage defects repair is growing field. Despite the amount of information collected in the last years and the first surgical applications described recently in humans. Further investigations are needed due to the heterogeneity on mechanical evaluation parameters, the high level of heterotopic scaffold implantation and the need for quantitative histological data.
Collapse
Affiliation(s)
- Carlos M Chiesa-Estomba
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain.
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | | | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Claudia Rodiño
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Alba Delgado
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Juan P Garces
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Department of Pathology, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Jacobo Paredes-Puente
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Javier Aldazabal
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Xabier Altuna
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| |
Collapse
|
14
|
Cheng S, Liu X, Gong F, Ding X, Zhou X, Liu C, Zhao F, Li X, Shi J. Dexamethasone promotes the endoplasmic reticulum stress response of bone marrow mesenchymal stem cells by activating the PERK-Nrf2 signaling pathway. Pharmacol Res Perspect 2021; 9:e00791. [PMID: 34038621 PMCID: PMC8153378 DOI: 10.1002/prp2.791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of steroid-induced avascular necrosis of femoral head (SANFH) is complex, and there is a lack of effective early prevention method. The aim of the present study was to evaluate the effect of dexamethasone (DEX) on the biological behavior of bone marrow mesenchymal stem cells (BMSCs) and to explore the possibility of DEX in the clinical treatment of SANFH. The effect of DEX on the proliferation of BMSCs was evaluated by Counting Kit-8 assay, western blot assay, and enzyme-linked immunosorbent assay. Flow cytometry and western blot assay were performed to detect the effect of DEX on the apoptosis of BMSCs. Quantitative real-time PCR and western blot assay were performed to detect the effect of DEX on the expression of endoplasmic reticulum stress (ERS)-related genes. Immunoblotting analysis was conducted for detecting the nuclear-cytoplasmic distribution of Nrf2. DEX could significantly inhibit the proliferation of BMSCs and promote apoptosis of BMSCs. DEX could increase the expression of PERK, ATF6, and IRE1a, and induce nuclear translocation of Nrf2. The addition of ML385 could reverse the effect of DEX on BMSCs. DEX could activate the PERK-Nrf2 pathway to promote ERS and finally affect the cell proliferation and apoptosis of BMSCs.
Collapse
Affiliation(s)
- Suoli Cheng
- Department of Orthopaedics, Ningxia Medical University, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Xueqin Liu
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Fan Gong
- Department of Orthopaedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Xiaoling Ding
- Department of Digestive System, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Xuebing Zhou
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Cuiyun Liu
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fei Zhao
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoliang Li
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiandang Shi
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
15
|
Brose TZ, Kubosch EJ, Schmal H, Stoddart MJ, Armiento AR. Crosstalk Between Mesenchymal Stromal Cells and Chondrocytes: The Hidden Therapeutic Potential for Cartilage Regeneration. Stem Cell Rev Rep 2021; 17:1647-1665. [PMID: 33954877 DOI: 10.1007/s12015-021-10170-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
Abstract
Cartilage injuries following trauma create a puzzling clinical scenario. The finite reparative potential of articular cartilage is well known, and injuries are associated with an increased risk of osteoarthritis. Cell-based therapies have spotlighted chondrocytes and mesenchymal stromal cells (MSCs) as the functional unit of articular cartilage and the progenitor cells, respectively. The available clinical treatments cannot reproduce the biomechanical properties of articular cartilage and call for continuous investigations into alternative approaches. Co-cultures of chondrocytes and MSCs are an attractive in vitro system to step closer to the in vivo multicellular environment's complexity. Research on the mechanisms of interaction between both cell types will reveal essential cues to understand cartilage regeneration. This review describes the latest discoveries on these interactions, along with advantages and main challenges in vitro and in vivo. The successful clinical translation of in vitro studies requires establishing rigorous standards and clinically relevant research models and an organ-targeting therapeutic strategy.
Collapse
Affiliation(s)
- Teresa Z Brose
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland.,Department of Orthopaedics and Trauma Surgery, Medical Centre, Faculty of Medicine, Albert Ludwigs University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
| | - Eva J Kubosch
- Department of Orthopaedics and Trauma Surgery, Medical Centre, Faculty of Medicine, Albert Ludwigs University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopaedics and Trauma Surgery, Medical Centre, Faculty of Medicine, Albert Ludwigs University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland.,Department of Orthopaedics and Trauma Surgery, Medical Centre, Faculty of Medicine, Albert Ludwigs University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
| | - Angela R Armiento
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland.
| |
Collapse
|
16
|
Cai X, Daniels O, Cucchiarini M, Madry H. Ectopic models recapitulating morphological and functional features of articular cartilage. Ann Anat 2021; 237:151721. [PMID: 33753232 DOI: 10.1016/j.aanat.2021.151721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Articular cartilage is an extremely specialized connective tissue which covers all diarthrodial joints. Implantation of chondrogenic cells without or with additional biomaterial scaffolds in ectopic locationsin vivo generates substitutes of cartilage with structural and functional characteristics that are used in fundamental investigations while also serving as a basis for translational studies. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant ectopic models, among which subcutaneous, intramuscular, and kidney capsule transplantation and elaborates on implanted cells and biomaterial scaffolds and on their use to recapitulate morphological and functional features of articular cartilage. Although the absence of a physiological joint environment and biomechanical stimuli is the major limiting factor, ectopic models are an established component for articular cartilage research aiming to generate a bridge between in vitro data and the clinically more relevant translational orthotopic in vivo models when their limitations are considered.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Oliver Daniels
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
17
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
18
|
Bagher Z, Asgari N, Bozorgmehr P, Kamrava SK, Alizadeh R, Seifalian A. Will Tissue-Engineering Strategies Bring New Hope for the Reconstruction of Nasal Septal Cartilage? Curr Stem Cell Res Ther 2020; 15:144-154. [PMID: 31830895 DOI: 10.2174/1574888x14666191212160757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023]
Abstract
The nasal septal cartilage plays an important role in the growth of midface and as a vertical strut preventing the collapse of the nasal bones. The repair of nasal cartilage defects remains a major challenge in reconstructive surgery. The tissue engineering strategy in the development of tissue has opened a new perspective to generate functional tissue for transplantation. Given the poor regenerative properties of cartilage and a limited amount of autologous cartilage availability, intense interest has evoked for tissue engineering approaches for cartilage development to provide better outcomes for patients who require nasal septal reconstruction. Despite numerous attempts to substitute the shapely hyaline cartilage in the nasal cartilages, many significant challenges remained unanswered. The aim of this research was to carry out a critical review of the literature on research work carried out on the development of septal cartilage using a tissue engineering approach, concerning different cell sources, scaffolds and growth factors, as well as its clinical pathway and trials have already been carried out.
Collapse
Affiliation(s)
- Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Negin Asgari
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Parisa Bozorgmehr
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) The London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
19
|
Rorick CB, Mitchell JA, Bledsoe RH, Floren ML, Wilkins RM. Cryopreserved, Thin, Laser-Etched Osteochondral Allograft maintains the functional components of articular cartilage after 2 years of storage. J Orthop Surg Res 2020; 15:521. [PMID: 33176819 PMCID: PMC7659100 DOI: 10.1186/s13018-020-02049-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite improvements in treatment options and techniques, articular cartilage repair continues to be a challenge for orthopedic surgeons. This study provides data to support that the 2-year Cryopreserved, Thin, Laser-Etched Osteochondral Allograft (T-LE Allograft) embodies the necessary viable cells, protein signaling, and extracellular matrix (ECM) scaffold found in fresh cartilage in order to facilitate a positive clinical outcome for cartilage defect replacement and repair. METHODS Viability testing was performed by digestion of the graft, and cells were counted using a trypan blue assay. Growth factor and ECM protein content was quantified using biochemical assays. A fixation model was introduced to assess tissue outgrowth capability and cellular metabolic activity in vitro. Histological and immunofluorescence staining were employed to confirm tissue architecture, cellular outgrowth, and presence of ECM. The effects of the T-LE Allograft to signal bone marrow-derived mesenchymal stem cell (BM-MSC) migration and chondrogenic differentiation were evaluated using in vitro co-culture assays. Immunogenicity testing was completed using flow cytometry analysis of cells obtained from digested T-LE Allografts and fresh articular cartilage. RESULTS Average viability of the T-LE Allograft post-thaw was found to be 94.97 ± 3.38%, compared to 98.83 ± 0.43% for fresh articular cartilage. Explant studies from the in vitro fixation model confirmed the long-term viability and proliferative capacity of these chondrocytes. Growth factor and ECM proteins were quantified for the T-LE Allograft revealing similar profiles to fresh articular cartilage. Cellular signaling of the T-LE Allograft and fresh articular cartilage both exhibited similar outcomes in co-culture for migration and differentiation of BM-MSCs. Flow cytometry testing confirmed the T-LE Allograft is immune-privileged as it is negative for immunogenic markers and positive for chondrogenic markers. CONCLUSIONS Using our novel, proprietary cryopreservation method, the T-LE Allograft, retains excellent cellular viability, with native-like growth factor and ECM composition of healthy cartilage after 2 years of storage at - 80 °C. The successful cryopreservation of the T-LE Allograft alleviates the limited availably of conventionally used fresh osteochondral allograft (OCA), by providing a readily available and simple to use allograft solution. The results presented in this paper supports clinical data that the T-LE Allograft can be a successful option for repairing chondral defects.
Collapse
Affiliation(s)
- Carolyn B Rorick
- Innovation Department, AlloSource, 6278 S Troy Circle, Centennial, CO, 80111, USA.
| | - Jordyn A Mitchell
- Innovation Department, AlloSource, 6278 S Troy Circle, Centennial, CO, 80111, USA
| | - Ruth H Bledsoe
- Innovation Department, AlloSource, 6278 S Troy Circle, Centennial, CO, 80111, USA
| | - Michael L Floren
- Innovation Department, AlloSource, 6278 S Troy Circle, Centennial, CO, 80111, USA
| | - Ross M Wilkins
- Innovation Department, AlloSource, 6278 S Troy Circle, Centennial, CO, 80111, USA
| |
Collapse
|
20
|
Ma K, Zhu B, Wang Z, Cai P, He M, Ye D, Yan G, Zheng L, Yang L, Zhao J. Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy. J Nanobiotechnology 2020; 18:163. [PMID: 33167997 PMCID: PMC7653755 DOI: 10.1186/s12951-020-00708-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/09/2020] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Umbilical cord mesenchymal stem cell (HUCMSC)-based therapies were previously utilised for cartilage regeneration because of the chondrogenic potential of MSCs. However, chondrogenic differentiation of HUCMSCs is limited by the administration of growth factors like TGF-β that may cause cartilage hypertrophy. It has been reported that extracellular vesicles (EVs) could modulate the phenotypic expression of stem cells. However, the role of human chondrogenic-derived EVs (C-EVs) in chondrogenic differentiation of HUCMSCs has not been reported. RESULTS We successfully isolated C-EVs from human multi-finger cartilage and found that C-EVs efficiently promoted the proliferation and chondrogenic differentiation of HUCMSCs, evidenced by highly expressed aggrecan (ACAN), COL2A, and SOX-9. Moreover, the expression of the fibrotic marker COL1A and hypertrophic marker COL10 was significantly lower than that induced by TGF-β. In vivo, C-EVs induced HUCMSCs accelerated the repair of the rabbit model of knee cartilage defect. Furthermore, C-EVs led to an increase in autophagosomes during the process of chondrogenic differentiation, indicating that C-EVs promote cartilage regeneration through the activation of autophagy. CONCLUSIONS C-EVs play an essential role in fostering chondrogenic differentiation and proliferation of HUCMSCs, which may be beneficial for articular cartilage repair.
Collapse
Affiliation(s)
- Ke Ma
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zetao Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Peian Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingwei He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danyan Ye
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Research Centre for Translational Medicine, Shantou University Medical College, Shantou, China
| | - Guohua Yan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lujun Yang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Research Centre for Translational Medicine, Shantou University Medical College, Shantou, China
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Razali RA, Lokanathan Y, Chowdhury SR, Yahaya NHM, Saim AB, Ruszymah BHI. Human chondrocyte-conditioned medium promotes chondrogenesis of bone marrow stem cells. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Cell-based therapy for osteoarthritis requires culturing of good quality cells, especially with a chondrogenic lineage, for implantation.
Objective
To investigate the ability of chondrocyte-conditioned medium (CCM) to induced chondrogenesis.
Methods
Bone marrow mesenchymal stem cells (BMSCs) were subjected to chondrogenic induction using CCM and chondrocyte induction medium (CIM). The optimal condition for the collection of CCM was evaluated by quantifying the concentration of secreted proteins. The chondrogenic efficiency of BMSCs induced by CCM (iCCM) was evaluated using immunocytochemical analysis, Safranin-O staining, and gene expression.
Results
Protein quantification revealed that CCM obtained from cells at passage 3 at the 72 h collection point had the greatest amount of protein. Supplementation of CCM results in the aggregation of BMSCs; however, no clumping was visible as in iCIM. The expression of collagen type 2 was detected as early as day 7 for all groups except for non-induced BMSCs; however, the level of expression decreased with culture time. Similarly, all tested groups showed positive staining for Safranin-O as early as day 7. The induction of BMSCs by CCM caused the down-regulation of collagen type 1, along with the up-regulation of the collagen type 2, ACP and SOX9 genes.
Conclusion
The optimum CCM to induce BMSC into chondrocytes was collected at passage 3 after 72 h and was used in a 50:50 ratio of CCM to fresh medium.
Collapse
Affiliation(s)
- Rabiatul Adawiyah Razali
- Department of Physiology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Yogeswaran Lokanathan
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedic and Traumatology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose and Throat Consultant Clinic, Ampang Puteri Specialist Hospital , Selangor , Malaysia
| | - Bt Hj Idrus Ruszymah
- Department of Physiology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
22
|
Hu H, Dong L, Bu Z, Shen Y, Luo J, Zhang H, Zhao S, Lv F, Liu Z. miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration. J Extracell Vesicles 2020; 9:1778883. [PMID: 32939233 PMCID: PMC7480606 DOI: 10.1080/20013078.2020.1778883] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage has limited self-regenerative capacity and the therapeutic methods for cartilage defects are still dissatisfactory in clinic. Recent studies showed that exosomes derived from mesenchymal stem cells promoted chondrogenesis by delivering bioactive substances to the recipient cells, indicating exosomes might be a novel method for repairing cartilage defect. Herein, we investigated the role and mechanism of human umbilical cord mesenchymal stem cells derived small extracellular vesicles (hUC-MSCs-sEVs) on cartilage regeneration. In vitro results showed that hUC-MSCs-sEVs promoted the migration, proliferation and differentiation of chondrocytes and human bone marrow mesenchymal stem cells (hBMSCs). MiRNA microarray showed that miR-23a-3p was the most highly expressed among the various miRNAs contained in hUC-MSCs-sEVs. Our data revealed that hUC-MSCs-sEVs promoted cartilage regeneration by transferring miR-23a-3p to suppress the level of PTEN and elevate expression of AKT. Moreover, we fabricated Gelatin methacrylate (Gelma)/nanoclay hydrogel (Gel-nano) for sustained release of sEVs, which was biocompatible and exhibited excellent mechanical property. In vivo results showed that hUC-MSCs-sEVs containing Gelma/nanoclay hydrogel (Gel-nano-sEVs) effectively promoted cartilage regeneration. These results indicated that Gel-nano-sEVs have a promising capacity to stimulate chondrogenesis and heal cartilage defects, and also provided valuable data for understanding the role and mechanism of hUC-MSCs-sEVs in cartilage regeneration.
Collapse
Affiliation(s)
- Hongxing Hu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lanlan Dong
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, China
| | - Ziheng Bu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Yifan Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Science and School of Life Science, East China Normal University, Shanghai, China
| | - Hang Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, China
| | - Shichang Zhao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Science and School of Life Science, East China Normal University, Shanghai, China.,Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Zhongtang Liu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Zheng C, Bai C, Sun Q, Zhang F, Yu Q, Zhao X, Kang S, Li J, Jia Y. Long noncoding RNA XIST regulates osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting miR-9-5p. Mech Dev 2020; 162:103612. [DOI: 10.1016/j.mod.2020.103612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
|
24
|
Increased Expression of Sox9 during Balance of BMSCs/Chondrocyte Bricks in Platelet-Rich Plasma Promotes Construction of a Stable 3-D Chondrogenesis Microenvironment for BMSCs. Stem Cells Int 2020; 2020:5492059. [PMID: 32565827 PMCID: PMC7271054 DOI: 10.1155/2020/5492059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
Sox9 is an intrinsic transcription factor related to the determination and maintenance of chondrogenic lineage of bone marrow mesenchymal stem cells (BMSCs). In recent research, we have proved that fragmented chondrocyte aggregates (cell bricks) could promote chondrogenesis of BMSCs in vivo. However, it is still unknown whether the ratio of BMSCs/chondrocyte bricks has a significant influence on 3-D cartilage regeneration and related molecular mechanism. To address this issue, the current study subcutaneously injected three groups of cell complex with different rabbit BMSCs/chondrocyte bricks' ratios (1 : 2, 1 : 1, and 2 : 1) into nude mice. Gross morphology observation, histological and immunohistochemical assays, biochemical analysis, gene expression analysis, and western blot were used to compare the influence of different BMSCs/chondrocyte bricks' ratios on the properties of tissue-engineered cartilage and explore the related molecular mechanism. The constructs of 1 : 1 BMSCs/chondrocyte bricks, (B1CB1) group resulted in persistent chondrogenesis with appropriate morphology and adequate central nutritional perfusion without ossification. The related mechanism is that increased expression of Sox9 in the B1C1 group promoted chondrogenesis and inhibited the osteogenesis of BMSCs through upregulating Col-II as well as downregulating RUNX2 and downstream of Col-X and Col-I by upregulating Nkx3.2. This study demonstrated that BMSCs/chondrocyte bricks 1:1 should be a suitable ratio and the Sox9-Nkx3.2-RUNX2 pathway was a related mechanism which played an important role in the niche for stable chondrogenesis of BMSCs constructed by chondrocyte bricks and PRP.
Collapse
|
25
|
Implantation of mesenchymal stem cells in combination with allogenic cartilage improves cartilage regeneration and clinical outcomes in patients with concomitant high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2020; 28:544-554. [PMID: 31549208 DOI: 10.1007/s00167-019-05729-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/16/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE This study aimed to compare the clinical, radiological, and second-look arthroscopic outcomes of implanting mesenchymal stem cells (MSCs) alone and together with allogenic cartilage in patients treated with concomitant high tibial oteotomy (HTO) for varus knee osteoarthritis. METHODS Eighty patients treated with cartilage repair procedures and concomitant HTO were prospectively randomized into two groups: MSC implantation (MSC group), and MSC implantation with allogenic cartilage (MSC-AC group). Clinical outcomes were evaluated using the Lysholm Score and the Knee Injury and Osteoarthritis Outcome Score (KOOS) at preoperative and every follow-up visit. Radiological outcomes were evaluated by measuring the femorotibial angle and posterior tibial slope. During second-look arthroscopy, cartilage regeneration was evaluated according to the Kanamiya grade. RESULTS Clinical outcomes at the second-look arthroscopy (mean 12.5 months [MSC group] and 12.4 months [MSC-AC group]) improved significantly in both groups (P < 0.001 for all). Clinical outcomes from the second-look arthroscopy to the final follow-up (mean 27.3 months [MSC group] and 27.8 months [MSC-AC group]) improved further only in the MSC-AC group (P < 0.05 for all). Overall, the Kanamiya grades, which were significantly correlated with clinical outcomes, were significantly higher in the MSC-AC group than in the MSC group. Radiological outcomes at final follow-up revealed improved knee joint alignments relative to preoperative conditions but without significant correlation between clinical outcomes and Kanamiya grade in either group (n.s. for all). CONCLUSION Implantation of MSCs with allogenic cartilage is superior to implantation of MSCs alone in cartilage regeneration accompanied with better clinical outcomes. LEVEL OF EVIDENCE Therapeutic study, level II.
Collapse
|
26
|
Jing H, Zhang X, Luo K, Luo Q, Yin M, Wang W, Zhu Z, Zheng J, He X. miR-381-abundant small extracellular vesicles derived from kartogenin-preconditioned mesenchymal stem cells promote chondrogenesis of MSCs by targeting TAOK1. Biomaterials 2020; 231:119682. [DOI: 10.1016/j.biomaterials.2019.119682] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
|
27
|
Frejo L, Grande DA. 3D-bioprinted tracheal reconstruction: an overview. Bioelectron Med 2019; 5:15. [PMID: 32232104 PMCID: PMC7098220 DOI: 10.1186/s42234-019-0031-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 11/10/2022] Open
Abstract
Congenital tracheomalacia and tracheal stenosis are commonly seen in premature infants. In adulthood, are typically related with chronic obstructive pulmonary disease, and can occur secondarily from tracheostomy, prolong intubation, trauma, infection and tumors. Both conditions are life-threatening when not managed properly. There are still some surgical limitations for certain pathologies, however tissue engineering is a promising approach to treat massive airway dysfunctions. 3D-bioprinting have contributed to current preclinical and clinical efforts in airway reconstruction. Several strategies have been used to overcome the difficulty of airway reconstruction such as scaffold materials, construct designs, cellular types, biologic components, hydrogels and animal models used in tracheal reconstruction. Nevertheless, additional long-term in vivo studies need to be performed to assess the efficacy and safety of tissue-engineered tracheal grafts in terms of mechanical properties, behavior and, the possibility of further stenosis development.
Collapse
Affiliation(s)
- Lidia Frejo
- Orthopaedic Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Division of Otolaryngology and Communicative Disorders-Pediatric Otolaryngology, Long Island Jewish Medical Center New Hyde Park, New York, USA
| | - Daniel A. Grande
- Orthopaedic Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
28
|
Bhardwaj N, Singh YP, Mandal BB. Silk Fibroin Scaffold-Based 3D Co-Culture Model for Modulation of Chondrogenesis without Hypertrophy via Reciprocal Cross-talk and Paracrine Signaling. ACS Biomater Sci Eng 2019; 5:5240-5254. [DOI: 10.1021/acsbiomaterials.9b00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nandana Bhardwaj
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781125, India
| | - Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
29
|
Zhu H, Xie C, Chen P, Pu K. Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. Curr Med Chem 2019; 26:1389-1405. [PMID: 28933283 DOI: 10.2174/0929867324666170921103152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as one of the avant-garde strategies for cancer treatment. Photoacoustic (PA) imaging is a new hybrid imaging modality that shows great promise for real-time in vivo monitoring of biological processes with deep tissue penetration and high spatial resolution. To enhance therapeutic efficacy, reduce side effects and minimize the probability of over-medication, it is necessary to use imaging and diagnostic methods to identify the ideal therapeutic window and track the therapeutic outcome. With this regard, nanotheranostics with the ability to conduct PA imaging and PTT/PDT are emerging. This review summarizes the recent progress of organic nanomaterials including nearinfrared (NIR) dyes and semiconducting polymer nanoparticles (SPNs) in PA imaging guided cancer phototherapy, and also addresses their present challenges and potential in clinical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| |
Collapse
|
30
|
Zhu Y, Kong L, Farhadi F, Xia W, Chang J, He Y, Li H. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Biomaterials 2019; 192:149-158. [DOI: 10.1016/j.biomaterials.2018.11.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023]
|
31
|
Campbell K, Naire S, Kuiper JH. A mathematical model of cartilage regeneration after chondrocyte and stem cell implantation - II: the effects of co-implantation. J Tissue Eng 2019; 10:2041731419827792. [PMID: 30906519 PMCID: PMC6421605 DOI: 10.1177/2041731419827792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/22/2018] [Indexed: 12/31/2022] Open
Abstract
We present a mathematical model of cartilage regeneration after cell therapy, to show how co-implantation of stem cells (mesenchymal stem cells) and chondrocytes into a cartilage defect can impact chondral healing. The key mechanisms involved in the regeneration process are simulated by modelling cell proliferation, migration and differentiation, nutrient diffusion and Extracellular Matrix (ECM) synthesis at the defect site, both spatially and temporally. In addition, we model the interaction between mesenchymal stem cells and chondrocytes by including growth factors. In Part I of this work, we have shown that matrix formation was enhanced at early times when mesenchymal stem cell-to-chondrocyte interactions due to the effects of growth factors were considered. In this article, we show that the additional effect of co-implanting mesenchymal stem cells and chondrocytes further enhances matrix production within the first year in comparison to implanting only chondrocytes or only mesenchymal stem cells. This could potentially reduce healing time allowing the patient to become mobile sooner after surgery.
Collapse
Affiliation(s)
- Kelly Campbell
- School of Computing and Mathematics, Keele University, Keele, UK
| | - Shailesh Naire
- School of Computing and Mathematics, Keele University, Keele, UK
| | - Jan Herman Kuiper
- Institute for Science and Technology in Medicine, Keele University, Keele, UK
- Robert Jones and Agnes Hunt Orthopaedic & District Hospital NHS Trust, Oswestry, UK
| |
Collapse
|
32
|
|
33
|
Chen Y, Xue K, Zhang X, Zheng Z, Liu K. Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells. Stem Cell Res Ther 2018; 9:318. [PMID: 30463592 PMCID: PMC6249792 DOI: 10.1186/s13287-018-1047-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/30/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Developing cartilage constructed with the appropriate matrix composition and persistent chondrogenesis remains an enduring challenge in cartilage defects. Cartilage progenitor cell (CPC)-based tissue engineering has attracted recent attention because of its strong chondrogenic differentiation capacity. However, due to the lack of a suitable chondrogenic niche, the clinical application of CPC-regenerated cartilage in the subcutaneous environment remains a challenge. In this study, exosomes derived from chondrocytes (CC-Exos) were used to provide the CPC constructs with a cartilage signal in subcutaneous environments for efficient ectopic cartilage regeneration. METHODS Rabbit CPC-alginate constructs were prepared and implanted subcutaneously in nude mice. CC-Exos were injected into the constructs at the same dose (30 μg exosomes per 100 μL injection) after surgery and thereafter weekly for a period of 12 weeks. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) were used as the positive control. The mice in the negative control were administered with the same volume of PBS. At 4 and 12 weeks after implantation, the potential of CC-Exos and BMSC-Exos to promote chondrogenesis and stability of cartilage tissue in a subcutaneous environment were analyzed by histology, immunostaining, and protein analysis. The influences of BMSC-Exos and CC-Exos on chondrogenesis and angiogenic characteristics in vitro were assessed via coculturing with CPCs and human umbilical vein endothelial cells. RESULTS The CC-Exos injection increased collagen deposition and minimized vascular ingrowth in engineered constructs, which efficiently and reproducibly developed into cartilage. The generated cartilage was phenotypically stable with minimal hypertrophy and vessel ingrowth up to 12 weeks, while the cartilage formed with BMSC-Exos was characterized by hypertrophic differentiation accompanied by vascular ingrowth. In vitro experiments indicated that CC-Exos stimulated CPCs proliferation and increased expression of chondrogenesis markers while inhibiting angiogenesis. CONCLUSIONS These findings suggest that the novel CC-Exos provides the preferable niche in directing stable ectopic chondrogenesis of CPCs. The use of CC-Exos may represent an off-the-shelf and cell-free therapeutic approach for promoting cartilage regeneration in the subcutaneous environment.
Collapse
Affiliation(s)
- Yahong Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, People's Republic of China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, People's Republic of China
| | - Xiaodie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, People's Republic of China
| | - Zhiwei Zheng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, People's Republic of China. .,National Clinical Research Center for Oral Diseases, 639 ZhiZaoJu Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 ZhiZaoJu Road, Shanghai, 200011, People's Republic of China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
34
|
Abstract
INTRODUCTION Cartilage tissue engineering has rapidly developed in recent decades, exhibiting promising potential to regenerate and repair cartilage. However, the origin of a large amount of a suitable seed cell source is the major bottleneck for the further clinical application of cartilage tissue engineering. The use of a monoculture of passaged chondrocytes or mesenchymal stem cells results in undesired outcomes, such as fibrocartilage formation and hypertrophy. In the last two decades, co-cultures of chondrocytes and a variety of mesenchymal stem cells have been intensively investigated in vitro and in vivo, shedding light on the perspective of co-culture in cartilage tissue engineering. AREAS COVERED We summarize the recent literature on the application of heterologous cell co-culture systems in cartilage tissue engineering and compare the differences between direct and indirect co-culture systems as well as discuss the underlying mechanisms. EXPERT OPINION Co-culture system is proven to address many issues encountered by monocultures in cartilage tissue engineering, including reducing the number of chondrocytes needed and alleviating the dedifferentiation of chondrocytes. With the further development and knowledge of biomaterials, cartilage tissue engineering that combines the co-culture system and advanced biomaterials is expected to solve the difficult problem regarding the regeneration of functional cartilage.
Collapse
Affiliation(s)
- Jianyu Zou
- a Department of Joint Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong key laboratory of orthopaedic technology and implant materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Bo Bai
- a Department of Joint Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong key laboratory of orthopaedic technology and implant materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Yongchang Yao
- a Department of Joint Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong key laboratory of orthopaedic technology and implant materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
35
|
Sun H, Huang Y, Zhang L, Li B, Wang X. Co-culture of bone marrow stromal cells and chondrocytes in vivo for the repair of the goat condylar cartilage defects. Exp Ther Med 2018; 16:2969-2977. [PMID: 30214515 PMCID: PMC6125981 DOI: 10.3892/etm.2018.6551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/11/2017] [Indexed: 01/14/2023] Open
Abstract
This study explored the feasibility of inducing the differentiation of BMSCs into chondrocytes through co-culture with chondrocytes in hydrogel constructs (Pluronic F-127 gel) in vivo for the repair of goat mandibular condylar cartilage defects. Chondrocytes and BMSCs were isolated from goat auricular cartilage and bone marrow, respectively, and were mixed at a ratio of 3:7. BMSCs were labelled with green fluorescence protein (GFP) using a retrovirus vector for tracing. Mixed cells were re-suspended in 30% Pluronic F-127 at a concentration of 5×107 cells/ml to form a gel-cell complex. The gel-cell complex was implanted into the temporomandibular joint condylar articular cartilage defects. The whole temporomandibular joint and adjacent tissues were harvested at 4, 8, and 12 weeks after surgery, and gross observation, histology and collagen II expression were evaluated. In the co-culture group, cartilage-like tissues were formed, and abundant type II collagen could be detected by immunohistochemistry in the condylar cartilage defects. Confocal microscopy revealed that implanted GFP-labelled BMSCs were embedded in cartilage-like tissues. The co-culture system described herein provides a chondrogenic microenvironment to induce the chondrogenic differentiation of BMSCs in vivo without any additional cellular factors.
Collapse
Affiliation(s)
- Hao Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Yue Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Biao Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| |
Collapse
|
36
|
Morrison RJ, Nasser HB, Kashlan KN, Zopf DA, Milner DJ, Flanangan CL, Wheeler MB, Green GE, Hollister SJ. Co-culture of adipose-derived stem cells and chondrocytes on three-dimensionally printed bioscaffolds for craniofacial cartilage engineering. Laryngoscope 2018; 128:E251-E257. [PMID: 29668079 PMCID: PMC6105552 DOI: 10.1002/lary.27200] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Reconstruction of craniofacial cartilagenous defects are among the most challenging surgical procedures in facial plastic surgery. Bioengineered craniofacial cartilage holds immense potential to surpass current reconstructive options, but limitations to clinical translation exist. We endeavored to determine the viability of utilizing adipose-derived stem cell-chondrocyte co-culture and three-dimensional (3D) printing to produce 3D bioscaffolds for cartilage tissue engineering. We describe a feasibility study revealing a novel approach for cartilage tissue engineering with in vitro and in vivo animal data. METHODS Porcine adipose-derived stem cells and chondrocytes were isolated and co-seeded at 1:1, 2:1, 5:1, 10:1, and 0:1 experimental ratios in a hyaluronic acid/collagen hydrogel in the pores of 3D-printed polycaprolactone scaffolds to form 3D bioscaffolds for cartilage tissue engineering. Bioscaffolds were cultured in vitro without growth factors for 4 weeks and then implanted into the subcutaneous tissue of athymic rats for an additional 4 weeks before sacrifice. Bioscaffolds were subjected to histologic, immunohistochemical, and biochemical analysis. RESULTS Successful production of cartilage was achieved using a co-culture model of adipose-derived stem cells and chondrocytes without the use of exogenous growth factors. Histology demonstrated cartilage growth for all experimental ratios at the post-in vivo time point confirmed with type II collagen immunohistochemistry. There was no difference in sulfated-glycosaminoglycan production between experimental groups. CONCLUSION Tissue-engineered cartilage was successfully produced on 3D-printed bioresorbable scaffolds using an adipose-derived stem cell and chondrocyte co-culture technique. This potentiates co-culture as a solution for several key barriers to a clinically translatable cartilage tissue engineering process. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E251-E257, 2018.
Collapse
Affiliation(s)
- Robert J. Morrison
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hassan B. Nasser
- Department of Otolaryngology-Head & Neck Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Khaled N. Kashlan
- Department of Otolaryngology-Head & Neck Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - David A. Zopf
- Department of Otolaryngology-Head & Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J. Milner
- Carel R. Woese Institute for Genomic Biology, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Colleen L. Flanangan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew B. Wheeler
- Carel R. Woese Institute for Genomic Biology, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Glenn E. Green
- Department of Otolaryngology-Head & Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Scott J. Hollister
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Wallace A. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
37
|
Hiemer B, Krogull M, Bender T, Ziebart J, Krueger S, Bader R, Jonitz-Heincke A. Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia. Mol Med Rep 2018; 18:2133-2141. [PMID: 29916541 PMCID: PMC6072227 DOI: 10.3892/mmr.2018.9174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
During joint movement and mechanical loading, electric potentials occur within cartilage tissue guiding cell development and regeneration. Exposure of cartilage exogenous electric stimulation (ES) may imitate these endogenous electric fields and promote healing processes. Therefore, the present study investigated the influence of electric fields on human chondrocytes, mesenchymal stem cells and the co-culture of the two. Human chondrocytes isolated from articular cartilage obtained post-mortally and human mesenchymal stem cells derived from bone marrow (BM-MSCs) were seeded onto a collagen-based scaffold separately or as co-culture. Following incubation with the growth factors over 3 days, ES was performed using titanium electrodes applying an alternating electric field (700 mV, 1 kHz). Cells were exposed to an electric field over 7 days under either hypoxic or normoxic culture conditions. Following this, metabolic activity was investigated and synthesis rates of extracellular matrix proteins were analyzed. ES did not influence metabolic activity of chondrocytes or BM-MSCs. Gene expression analyses demonstrated that ES increased the expression of collagen type II mRNA and aggrecan mRNA in human chondrocytes under hypoxic culture conditions. Likewise, collagen type II synthesis was significantly increased following exposure to electric fields under hypoxia. BM-MSCs and the co-culture of chondrocytes and BM-MSCs revealed a similar though weaker response regarding the expression of cartilage matrix proteins. The electrode setup may be a valuable tool to investigate the influence of ES on human chondrocytes and BM-MSCs contributing to fundamental knowledge including future applications of ES in cartilage repair.
Collapse
Affiliation(s)
- Bettina Hiemer
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Martin Krogull
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Thomas Bender
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Josefin Ziebart
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Simone Krueger
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| |
Collapse
|
38
|
Pleumeekers MM, Nimeskern L, Koevoet JLM, Karperien M, Stok KS, van Osch GJVM. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture. PLoS One 2018; 13:e0190744. [PMID: 29489829 PMCID: PMC5830031 DOI: 10.1371/journal.pone.0190744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIMS Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. METHODS hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. RESULTS The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. CONCLUSIONS This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.
Collapse
Affiliation(s)
- M. M. Pleumeekers
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - L. Nimeskern
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - J. L. M. Koevoet
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - M. Karperien
- Department of Tissue Regeneration, MIRA-institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - K. S. Stok
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - G. J. V. M. van Osch
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
39
|
Bao X, Li Z, Liu H, Feng K, Yin F, Li H, Qin J. Stimulation of chondrocytes and chondroinduced mesenchymal stem cells by osteoinduced mesenchymal stem cells under a fluid flow stimulus on an integrated microfluidic device. Mol Med Rep 2018; 17:2277-2288. [PMID: 29207069 PMCID: PMC5783459 DOI: 10.3892/mmr.2017.8153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the stimulation of osteoinduced mesenchymal stem cells (MSCs) into chondrogenically predifferentiated MSCs and chondrocytes in a mechanical environment. A novel two‑layer microfluidic chip was used to mimic the interstitial flow in the superficial zones of articular cartilage. The morphology, proliferation rate and the expression of collagen I, collagen II and aggrecan of chondrocytes and chondro‑MSCs were investigated. The results revealed that the cells in the bottom layer were influenced by the top layer's osteoinduced MSCs and the bottom layer's shear flow. The expression of collagen I, which may signify the effect of the shear stress on the dedifferentiation change, was weakened by the stimulation of osteoinduced MSCs on the top layer. The expression of collagen II and aggrecan was increased in the fluidic environment by osteoinduced MSCs. These results indicate that osteoinduced MSCs have a significant effect on the phenotype of chondro‑MSCs and chondrocytes in the fluidic microenvironment. The present study described a simple and promising way to rapidly evaluate cell responses to other cells in a fluidic environment, which may help to better promote the utilization of MSCs and chondrocytes in tissue engineering.
Collapse
Affiliation(s)
- Xuanwen Bao
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Zhongyu Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Hui Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Ke Feng
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Fangchao Yin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Hongjing Li
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Jianhua Qin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
40
|
Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds. Int J Mol Sci 2018; 19:ijms19020370. [PMID: 29373507 PMCID: PMC5855592 DOI: 10.3390/ijms19020370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
In this study, we first used gelatin/chondroitin-6-sulfate/hyaluronan/chitosan highly elastic cryogels, which showed total recovery from large strains during repeated compression cycles, as 3D scaffolds to study the effects of cyclic dynamic compressive loading on chondrocyte gene expression and extracellular matrix (ECM) production. Dynamic culture of porcine chondrocytes was studied at 1 Hz, 10% to 40% strain and 1 to 9 h/day stimulation duration, in a mechanical-driven multi-chamber bioreactor for 14 days. From the experimental results, we could identify the optimum dynamic culture condition (20% and 3 h/day) to enhance the chondrocytic phenotype of chondrocytes from the expression of marker (Col I, Col II, Col X, TNF-α, TGF-β1 and IGF-1) genes by quantitative real-time polymerase chain reactions (qRT-PCR) and production of ECM (GAGs and Col II) by biochemical analysis and immunofluorescence staining. With up-regulated growth factor (TGF-β1 and IGF-1) genes, co-culture of chondrocytes with porcine adipose-derived stem cells (ASCs) was employed to facilitate chondrogenic differentiation of ASCs during dynamic culture in cryogel scaffolds. By replacing half of the chondrocytes with ASCs during co-culture, we could obtain similar production of ECM (GAGs and Col II) and expression of Col II, but reduced expression of Col I, Col X and TNF-α. Subcutaneous implantation of cells/scaffold constructs in nude mice after mono-culture (chondrocytes or ASCs) or co-culture (chondrocytes + ASCs) and subject to static or dynamic culture condition in vitro for 14 days was tested for tissue-engineering applications. The constructs were retrieved 8 weeks post-implantation for histological analysis by Alcian blue, Safranin O and Col II immunohistochemical staining. The most abundant ectopic cartilage tissue was found for the chondrocytes and chondrocytes + ASCs groups using dynamic culture, which showed similar neo-cartilage formation capability with half of the chondrocytes replaced by ASCs for co-culture. This combined co-culture/dynamic culture strategy is expected to cut down the amount of donor chondrocytes needed for cartilage-tissue engineering.
Collapse
|
41
|
Critchley SE, Eswaramoorthy R, Kelly DJ. Low‐oxygen conditions promote synergistic increases in chondrogenesis during co‐culture of human osteoarthritic stem cells and chondrocytes. J Tissue Eng Regen Med 2018; 12:1074-1084. [DOI: 10.1002/term.2608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Susan E. Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Rajalakshmanan Eswaramoorthy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Department of AnatomyRoyal College of Surgeons in Ireland Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| |
Collapse
|
42
|
Cheng Z, Landish B, Chi Z, Nannan C, Jingyu D, Sen L, Xiangjin L. 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:244-252. [DOI: 10.1016/j.msec.2017.08.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022]
|
43
|
Apelgren P, Amoroso M, Lindahl A, Brantsing C, Rotter N, Gatenholm P, Kölby L. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One 2017; 12:e0189428. [PMID: 29236765 PMCID: PMC5728520 DOI: 10.1371/journal.pone.0189428] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022] Open
Abstract
Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.
Collapse
Affiliation(s)
- Peter Apelgren
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, Sahlgrenska Academy, Göteborg, Sweden
| | - Matteo Amoroso
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, Sahlgrenska Academy, Göteborg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Sahlgrenska Academy, Göteborg, Sweden
| | - Camilla Brantsing
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Sahlgrenska Academy, Göteborg, Sweden
| | - Nicole Rotter
- Department of Otorhinolaryngology, University Medical Centre Ulm, Ulm, Germany
| | - Paul Gatenholm
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, Sahlgrenska Academy, Göteborg, Sweden
| |
Collapse
|
44
|
Xu L, Wu Y, Liu Y, Zhou Y, Ye Z, Tan WS. Non-contact Coculture Reveals a Comprehensive Response of Chondrocytes Induced by Mesenchymal Stem Cells Through Trophic Secretion. Tissue Eng Regen Med 2017; 15:37-48. [PMID: 30603533 DOI: 10.1007/s13770-017-0084-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022] Open
Abstract
Coculture between mesenchymal stem cells (MSCs) and chondrocytes has significant implications in cartilage regeneration. However, a conclusive understanding remains elusive. Previously, we reported that rabbit bone marrow-derived MSCs (rbBMSCs) could downregulate the differentiated phenotype of rabbit articular chondrocytes (rbACs) in a non-contact coculture system for the first time. In the present study, a systemic investigation was performed to understand the biological characteristics of chondrocytes in coculture with MSCs. Firstly, cells (MSCs and chondrocytes) from different origins were cocultured in transwell system. Different chondrocytes, when cocultured with different MSCs respectively, consistently demonstrated stimulated proliferation, transformed morphology and declined glycosaminoglycan secretion of chondrocytes. Next, cell surface molecules and the global gene expression of rbACs were characterized. It was found that cocultured rbACs showed a distinct surface molecule profile and global gene expression compared to both dedifferentiated rbACs and rbBMSCs. In the end, cocultured rbACs were passaged and induced to undergo the chondrogenic redifferentiation. Better growth and chondrogenesis ability were confirmed compared with control cells without coculture. Together, chondrocytes display comprehensive changes in coculture with MSCs and the cocultured rbACs are beneficial for cartilage repair.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Yuxi Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Yanli Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei-Long Road, P. O. Box 309#, Shanghai, 200237 People's Republic of China
| |
Collapse
|
45
|
Yao Y, Huang Y, Qian D, Zhang S, Chen Y, Bai B. Effect of Various Ratios of Co‐Cultured ATDC5 Cells and Chondrocytes on the Expression of Cartilaginous Phenotype in Microcavitary Alginate Hydrogel. J Cell Biochem 2017; 118:3607-3615. [DOI: 10.1002/jcb.26218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Yongchang Yao
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Yuyang Huang
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Dongyang Qian
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Shujiang Zhang
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Yi Chen
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| | - Bo Bai
- Department of Joint SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
- Guangdong key laboratory of orthopaedic technology and implant materialsGuangzhou510120China
| |
Collapse
|
46
|
Li D, Zhu L, Liu Y, Yin Z, Liu Y, Liu F, He A, Feng S, Zhang Y, Zhang Z, Zhang W, Liu W, Cao Y, Zhou G. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet. Acta Biomater 2017; 54:321-332. [PMID: 28342879 DOI: 10.1016/j.actbio.2017.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/16/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. STATEMENT OF SIGNIFICANCE In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by high-density culture of chondrocytes in vitro could cearte a chondrogenic niche in subcutaneous environment and efficiently retain the chondrogenic phenotype of in vitro BMSC engineered cartilage (vitro-BEC). Furthermore, cell tracing results revealed that the regenerated cartilage mainly derived from the implanted vitro-BEC. The current study not only proposes a novel research model for microenvironment simulation but also provides a useful strategy for stable ectopic cartilage regeneration of stem cells.
Collapse
Affiliation(s)
- Dan Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yu Liu
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Zongqi Yin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Fangjun Liu
- Research Institute of Plastic Surgery, Plastic Surgery Hospital, Wei Fang Medical College, Weifang, Shandong, PR China
| | - Aijuan He
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Zhiyong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China; Research Institute of Plastic Surgery, Plastic Surgery Hospital, Wei Fang Medical College, Weifang, Shandong, PR China.
| |
Collapse
|
47
|
Moradi L, Vasei M, Dehghan MM, Majidi M, Farzad Mohajeri S, Bonakdar S. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Biomaterials 2017; 126:18-30. [PMID: 28242519 DOI: 10.1016/j.biomaterials.2017.02.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
The meniscus has poor intrinsic regenerative capacity and its damage inevitably leads to articular cartilage degeneration. We focused on evaluating the effects of Polyvinyl alcohol/Chitosan (PVA/Ch) scaffold seeded by adipose-derived mesenchymal stem cell (ASC) and articular chondrocytes (AC) in meniscus regeneration. The PVA/Ch scaffolds with different molar contents of Ch (Ch1, Ch2, Ch4 and Ch8) were cross-linked by pre-polyurethane chains. By increasing amount of Ch tensile modulus was increased from 83.51 MPa for Ch1 to 110 MPa for Ch8 while toughness showed decrease from 0.33 mJ/mm3 in Ch1 to 0.11 mJ/mm3 in Ch8 constructs. Moreover, swelling ratio and degradation rate increased with an increase in Ch amount. Scanning electron microscopy imaging was performed for pore size measurement and cell attachment. At day 21, Ch4 construct seeded by AC showed the highest expression with 24.3 and 22.64 folds increase in collagen II and aggrecan (p ≤ 0.05), respectively. Since, the mechanical properties, water uptake and degradation rate of Ch4 and Ch8 compositions had no statistically significant differences, Ch4 was selected for in vivo study. New Zealand rabbits were underwent unilateral total medial meniscectomy and AC/scaffold, ASC/scaffold, AC-ASC (co-culture)/scaffold and cell-free scaffold were engrafted. At 7 months post-implantation, macroscopic, histologic, and immunofluorescent studies for regenerated meniscus revealed better results in AC/scaffold group followed by AC-ASC/scaffold and ASC/scaffold groups. In the cell-free scaffold group, there was no obvious meniscus regeneration. Articular cartilages were best preserved in AC/scaffold group. The best histological score was observed in AC/scaffold group. Our results support that Ch4 scaffold seeded by AC alone can successfully regenerate meniscus in tearing injury and ASC has no significant contribution in the healing process.
Collapse
Affiliation(s)
- Lida Moradi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Vasei
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Molecular and Cell Biology Laboratory, Department of Pathology, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad M Dehghan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
48
|
Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci Rep 2017; 7:40489. [PMID: 28084417 PMCID: PMC5234019 DOI: 10.1038/srep40489] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022] Open
Abstract
Functional reconstruction of large osteochondral defects is always a major challenge in articular surgery. Some studies have reported the feasibility of repairing articular osteochondral defects using bone marrow stromal cells (BMSCs) and biodegradable scaffolds. However, no significant breakthroughs have been achieved in clinical translation due to the instability of in vivo cartilage regeneration based on direct cell-scaffold construct implantation. To overcome the disadvantages of direct cell-scaffold construct implantation, the current study proposed an in vitro cartilage regeneration strategy, providing relatively mature cartilage-like tissue with superior mechanical properties. Our strategy involved in vitro cartilage engineering, repair of osteochondral defects, and evaluation of in vivo repair efficacy. The results demonstrated that BMSC engineered cartilage in vitro (BEC-vitro) presented a time-depended maturation process. The implantation of BEC-vitro alone could successfully realize tissue-specific repair of osteochondral defects with both cartilage and subchondral bone. Furthermore, the maturity level of BEC-vitro had significant influence on the repaired results. These results indicated that in vitro cartilage regeneration using BMSCs is a promising strategy for functional reconstruction of osteochondral defect, thus promoting the clinical translation of cartilage regeneration techniques incorporating BMSCs.
Collapse
|
49
|
Ouyang A, Cerchiari AE, Tang X, Liebenberg E, Alliston T, Gartner ZJ, Lotz JC. Effects of cell type and configuration on anabolic and catabolic activity in 3D co-culture of mesenchymal stem cells and nucleus pulposus cells. J Orthop Res 2017; 35:61-73. [PMID: 27699833 PMCID: PMC5258652 DOI: 10.1002/jor.23452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/24/2016] [Indexed: 02/04/2023]
Abstract
Tissue engineering constructs to treat intervertebral disc degeneration must adapt to the hypoxic and inflammatory degenerative disc microenvironment. The objective of this study was to determine the effects of two key design factors, cell type and cell configuration, on the regenerative potential of nucleus pulposus cell (NPC) and mesenchymal stem cell (MSC) constructs. Anabolic and catabolic activity was quantified in constructs of varying cell type (NPCs, MSCs, and a 50:50 co-culture) and varying configuration (individual cells and micropellets). Anabolic and catabolic outcomes were both dependent on cell type. Gene expression of Agg and Col2A1, glycosaminoglycan (GAG) content, and aggrecan immunohistochemistry (IHC), were significantly higher in NPC-only and co-culture groups than in MSC-only groups, with NPC-only groups exhibiting the highest anabolic gene expression levels. However, NPC-only constructs also responded to inflammation and hypoxia with significant upregulation of catabolic genes (MMP-1, MMP-9, MMP-13, and ADAMTS-5). MSC-only groups were unaffected by degenerative media conditions, and co-culture with MSCs modulated catabolic induction of the NPCs. Culturing cells in a micropellet configuration dramatically reduced catabolic induction in co-culture and NPC-only groups. Co-culture micropellets, which take advantage of both cell type and configuration effects, had the most immunomodulatory response, with a significant decrease in MMP-13 and ADAMTS-5 expression in hypoxic and inflammatory media conditions. Co-culture micropellets were also found to self-organize into bilaminar formations with an MSC core and NPC outer layer. Further understanding of these cell type and configuration effects can improve tissue engineering designs. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:61-73, 2017.
Collapse
Affiliation(s)
- Ann Ouyang
- University of California; San Francisco California
| | | | - Xinyan Tang
- University of California; San Francisco California
| | | | | | | | | |
Collapse
|
50
|
Morrison KA, Cohen BP, Asanbe O, Dong X, Harper A, Bonassar LJ, Spector JA. Optimizing cell sourcing for clinical translation of tissue engineered ears. Biofabrication 2016; 9:015004. [PMID: 27917821 DOI: 10.1088/1758-5090/9/1/015004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background . Currently, the major impediment to clinical translation of our previously described platform for the fabrication of high fidelity, patient-specific tissue engineered ears is the development of a clinically optimal cell sourcing strategy. A limited autologous auricular chondrocyte (AuC) supply in conjunction with rapid chondrocyte de-differentiation during in vitro expansion currently makes clinical translation more challenging. Mesenchymal stem cells (MSCs) offer significant promise due to their inherent chondrogenic potential, and large availability through minimally invasive procedures. Herein, we demonstrate the promise of AuC/MSC co-culture to fabricate elastic cartilage using 50% fewer AuC than standard approaches. METHODS Bovine auricular chondrocytes (bAuC) and bovine MSC (bMSC) were encapsulated within 10 mg ml-1 type I collagen hydrogels in ratios of bAuC:bMSC 100:0, 50:50, and 0:100 at a density of 25 million cells ml-1 hydrogel. One mm thick collagen sheet gels were fabricated, and thereafter, 8 mm diameter discs were extracted using a biopsy punch. Discs were implanted subcutaneously in the dorsa of nude mice (NU/NU) and harvested after 1 and 3 months. RESULTS Gross analysis of explanted discs revealed bAuC:bMSC co-culture discs maintained their size and shape, and exhibited native auricular cartilage-like elasticity after 1 and 3 months of implantation. Co-culture discs developed into auricular cartilage, with viable chondrocytes within lacunae, copious proteoglycan and elastic fiber deposition, and a distinct perichondrial layer. Biochemical analysis confirmed that co-culture discs deposited critical cartilage molecular components more readily than did both bAuC and bMSC discs after 1 and 3 months, and proteoglycan content significantly increased between 1 and 3 months. CONCLUSION We have successfully demonstrated an innovative cell sourcing strategy that facilitates our efforts to achieve clinical translation of our high fidelity, patient-specific ears for auricular reconstruction utilizing only half of the requisite auricular chondrocytes to fabricate mature elastic cartilage.
Collapse
Affiliation(s)
- Kerry A Morrison
- Laboratory for Bioregenerative Medicine and Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|