1
|
Li Z, Gao Y, Chen X, Xu L, Li Z, Chai R. Study on Recovery Strategy of Hearing Loss & SGN Regeneration Under Physical Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410919. [PMID: 39716878 PMCID: PMC11791950 DOI: 10.1002/advs.202410919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Indexed: 12/25/2024]
Abstract
The World Health Organization (WHO) reports that by 2050, nearly 2.5 billion people are expected to have some degree of hearing loss (HL) and at least 700 million will need hearing rehabilitation. Therefore, there is an urgent need to develop treatment strategies for HL. At present, the main treatment strategies for HL are hearing aids and cochlear implants (CIs), which cannot achieve a radical cure for HL. Relevant studies have shown that the most fundamental treatment strategy for sensorineural hearing loss (SNHL) is to regenerate hair cells and spiral ganglion neurons (SGNs) through stem cells to repair the structure and function of cochlea. In addition, physical stimulation strategies, such as electricity, light, and magnetism have also been used to promote SGN regeneration. This review systematically introduces the classification, principle and latest progress of the existing hearing treatment strategies and summarizes the advantages and disadvantages of each strategy. The research progress of physical regulation mechanism is discussed in detail. Finally, the problems in HL repair strategies are summarized and the future development direction is prospected, which could provide new ideas and technologies for the optimization of hearing treatment strategies and the research of SGN repair and regeneration through physical regulation.
Collapse
Affiliation(s)
- Zhe Li
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Yijia Gao
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Xingyu Chen
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Renjie Chai
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| |
Collapse
|
2
|
Abu Elella MH, Kamel AM, López-Maldonado EA, Uzondu SW, Abdallah HM. A review of recent progress in alginate-based nanocomposite materials for tissue engineering applications. Int J Biol Macromol 2025; 297:139840. [PMID: 39814276 DOI: 10.1016/j.ijbiomac.2025.139840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications. This review thoroughly overviews various nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanomaterials, MXenes, and hydroxyapatite, that modify alginate-based nanocomposites. It covers multiple preparation techniques, including layer-by-layer assembly, blending, 3D printing, and in situ synthesis. These techniques apply to tissue engineering applications, including bone tissue engineering, cardiac tissue engineering, neural tissue engineering, wound healing, and skin regeneration. Additionally, it highlights current advancements, challenges, and future perspectives.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Amira M Kamel
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico
| | | | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
3
|
Beck CL, Kunze A. Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell-Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406678. [PMID: 39460486 DOI: 10.1002/smll.202406678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca2+) influx, leading to modulation of activity observed through Ca2+ event rates. Inhibiting particle uptake or altering nanoparticle exposure time reduced the neuronal response to nanomagnetic forces, exposing the requirement of nanoparticle uptake to induce the Ca2+ response. In highly active cortical networks, iNMF robustly modulates synchronous network activity, which is lasting and repeatable. Using pharmacological blockers, it is shown that iNMF activates mechanosensitive ion channels to induce the Ca2+ influx. Then, in contrast to transient mechanically evoked neuronal activity, iNMF activates Ca2+-activated potassium (KCa) channels to stabilize the neuronal membrane potential and induce network activity shifts. The findings reveal the potential of magnetic nanoparticle-mediated mechanical stimulation to modulate neuronal circuit dynamics, providing insights into the biophysics of neuronal computation.
Collapse
Affiliation(s)
- Connor L Beck
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA
- Montana Nanotechnology Facility, Montana State University, Bozeman, MT, 59717, USA
- Optical Technology Center, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
4
|
Redolfi Riva E, Özkan M, Stellacci F, Micera S. Combining external physical stimuli and nanostructured materials for upregulating pro-regenerative cellular pathways in peripheral nerve repair. Front Cell Dev Biol 2024; 12:1491260. [PMID: 39568507 PMCID: PMC11576468 DOI: 10.3389/fcell.2024.1491260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Peripheral nerve repair remains a major clinical challenge, particularly in the pursuit of therapeutic approaches that ensure adequate recovery of patient's activity of daily living. Autografts are the gold standard in clinical practice for restoring lost sensorimotor functions nowadays. However, autografts have notable drawbacks, including dimensional mismatches and the need to sacrifice one function to restore another. Engineered nerve guidance conduits have therefore emerged as promising alternatives. While these conduits show surgical potential, their clinical use is currently limited to the repair of minor injuries, as their ability to reinnervate limiting gap lesions is still unsatisfactory. Therefore, improving patient functional recovery requires a deeper understanding of the cellular mechanisms involved in peripheral nerve regeneration and the development of therapeutic strategies that can precisely modulate these processes. Interest has grown in the use of external energy sources, such as light, ultrasound, electrical, and magnetic fields, to activate cellular pathways related to proliferation, differentiation, and migration. Recent research has explored combining these energy sources with tailored nanostructured materials as nanotransducers to enhance selectivity towards the target cells. This review aims to present the recent findings on this innovative strategy, discussing its potential to support nerve regeneration and its viability as an alternative to autologous transplantation.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- Department of Excellence in Robotics and AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Melis Özkan
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Bioengineering and Global Health Institute, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Department of Excellence in Robotics and AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Tanaka YK, Ogra Y. Single-Cell Analysis of Elemental Contents by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2082-2089. [PMID: 39141521 DOI: 10.1021/jasms.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Elemental analysis at the single-cell level is an emerging technique in the field of inductively coupled plasma mass spectrometry (ICP-MS). In comparison to the analysis of cell suspensions by fast time-resolved analysis, single-cell sampling by laser ablation (LA) allows the discriminatory analysis of single cells according to their size and morphology. In this study, we evaluated the changes in elemental contents in a single cell through differentiation of rat adrenal pheochromocytoma into neuron-like cells by LA-ICP-MS. The contents of seven essential minerals were increased about 2-3 times after the differentiation. In addition, we evaluated the degree of differentiation at the single-cell level by means of imaging cytometry after immunofluorescence staining of microtubule-associated protein 2 (Map2), a neuron-specific protein. The fluorescence intensities of Alexa Fluor 488-conjugated secondary antibody against the anti-Map2 primary antibody showed large variations among the cells after the onset of differentiation. Although the average fluorescence intensity was increased through the differentiation, there were still less-matured neuron-like cells that exhibited a lower fluorescence intensity after 5 days of differentiation. Since a positive correlation between the fluorescence intensity and the cell size in area was found, we separately measured the elemental contents in the less-matured smaller cells and well-matured larger cells by LA-ICP-MS. The larger cells had higher elemental contents than the smaller cells, indicating that the essential minerals are highly required at a later stage of differentiation.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
6
|
Rossi A, Furlani F, Bassi G, Cunha C, Lunghi A, Molinari F, Teran FJ, Lista F, Bianchi M, Piperno A, Montesi M, Panseri S. Contactless magnetically responsive injectable hydrogel for aligned tissue regeneration. Mater Today Bio 2024; 27:101110. [PMID: 39211510 PMCID: PMC11360152 DOI: 10.1016/j.mtbio.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular alignment plays a pivotal role in several human tissues, including skeletal muscle, spinal cord and tendon. Various techniques have been developed to control cellular alignment using 3D biomaterials. However, the majority of 3D-aligned scaffolds require invasive surgery for implantation. In contrast, injectable hydrogels provide a non-invasive delivery method, gaining considerable attention for the treatment of diverse conditions, including osteochondral lesions, volumetric muscle loss, and traumatic brain injury. We engineered a biomimetic hydrogel with magnetic responsiveness by combining gellan gum, hyaluronic acid, collagen, and magnetic nanoparticles (MNPs). Collagen type I was paired with MNPs to form magnetic collagen bundles (MCollB), allowing the orientation control of these bundles within the hydrogel matrix through the application of a remote low-intensity magnetic field. This resulted in the creation of an anisotropic architecture. The hydrogel mechanical properties were comparable to those of human soft tissues, such as skeletal muscle, and proof of the aligned hydrogel concept was demonstrated. In vitro findings confirmed the absence of toxicity and pro-inflammatory effects. Notably, an increased fibroblast cell proliferation and pro-regenerative activation of macrophages were observed. The in-vivo study further validated the hydrogel biocompatibility and demonstrated the feasibility of injection with rapid in situ gelation. Consequently, this magnetically controlled injectable hydrogel exhibits significant promise as a minimally invasive, rapid gelling and effective treatment for regenerating various aligned human tissues.
Collapse
Affiliation(s)
- Arianna Rossi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Franco Furlani
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of G. D'Annunzio, Department of Neurosciences, Imaging and Clinical Sciences. Via Luigi Polacchi, 11, 66100 Chieti, Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde. Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia 44121 Ferrara, Italy
- Section of Physiology, Università di Ferrara 44121 Ferrara, Italy
| | - Filippo Molinari
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Francisco J. Teran
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Nanotech Solutions, Ctra Madrid23, 40150 Villacastín, Spain
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia 44125 Modena, Italy
| | - Anna Piperno
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| |
Collapse
|
7
|
Guan W, Gao H, Liu Y, Sun S, Li G. Application of magnetism in tissue regeneration: recent progress and future prospects. Regen Biomater 2024; 11:rbae048. [PMID: 38939044 PMCID: PMC11208728 DOI: 10.1093/rb/rbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.
Collapse
Affiliation(s)
- Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Abedini S, Pourseyedi S, Zolala J, Mohammadi H, Abdolshahi R. Green synthesis of Superparamagnetic Iron Oxide and Silver Nanoparticles in Satureja hortensis Leave Extract: Evaluation of Antifungal Effects on Botryosphaeriaceae Species. Curr Microbiol 2024; 81:149. [PMID: 38642138 DOI: 10.1007/s00284-024-03647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 04/22/2024]
Abstract
In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.
Collapse
Affiliation(s)
- Sara Abedini
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahram Pourseyedi
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Jafar Zolala
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Mohammadi
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
10
|
Lu J, Wang M, Meng Y, An W, Wang X, Sun G, Wang H, Liu W. Current advances in biomaterials for inner ear cell regeneration. Front Neurosci 2024; 17:1334162. [PMID: 38282621 PMCID: PMC10811200 DOI: 10.3389/fnins.2023.1334162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Inner ear cell regeneration from stem/progenitor cells provides potential therapeutic strategies for the restoration of sensorineural hearing loss (SNHL), however, the efficiency of regeneration is low and the functions of differentiated cells are not yet mature. Biomaterials have been used in inner ear cell regeneration to construct a more physiologically relevant 3D culture system which mimics the stem cell microenvironment and facilitates cellular interactions. Currently, these biomaterials include hydrogel, conductive materials, magneto-responsive materials, photo-responsive materials, etc. We analyzed the characteristics and described the advantages and limitations of these materials. Furthermore, we reviewed the mechanisms by which biomaterials with different physicochemical properties act on the inner ear cell regeneration and depicted the current status of the material selection based on their characteristics to achieve the reconstruction of the auditory circuits. The application of biomaterials in inner ear cell regeneration offers promising opportunities for the reconstruction of the auditory circuits and the restoration of hearing, yet biomaterials should be strategically explored and combined according to the obstacles to be solved in the inner ear cell regeneration research.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
11
|
Bolandghamat S, Behnam‐Rassouli M. Iron role paradox in nerve degeneration and regeneration. Physiol Rep 2024; 12:e15908. [PMID: 38176709 PMCID: PMC10766496 DOI: 10.14814/phy2.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Iron accumulates in the neural tissue during peripheral nerve degeneration. Some studies have already been suggested that iron facilitates Wallerian degeneration (WD) events such as Schwann cell de-differentiation. On the other hand, intracellular iron levels remain elevated during nerve regeneration and gradually decrease. Iron enhances Schwann cell differentiation and axonal outgrowth. Therefore, there seems to be a paradox in the role of iron during nerve degeneration and regeneration. We explain this contradiction by suggesting that the increase in intracellular iron concentration during peripheral nerve degeneration is likely to prepare neural cells for the initiation of regeneration. Changes in iron levels are the result of changes in the expression of iron homeostasis proteins. In this review, we will first discuss the changes in the iron/iron homeostasis protein levels during peripheral nerve degeneration and regeneration and then explain how iron is related to nerve regeneration. This data may help better understand the mechanisms of peripheral nerve repair and find a solution to prevent or slow the progression of peripheral neuropathies.
Collapse
Affiliation(s)
- Samira Bolandghamat
- Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
| | | |
Collapse
|
12
|
Georgas E, Yuan M, Chen J, Wang Y, Qin YX. Bioactive superparamagnetic iron oxide-gold nanoparticles regulated by a dynamic magnetic field induce neuronal Ca2+ influx and differentiation. Bioact Mater 2023; 26:478-489. [PMID: 37090028 PMCID: PMC10113789 DOI: 10.1016/j.bioactmat.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 04/08/2023] Open
Abstract
Treating neurodegenerative diseases, e.g., Alzheimer's Disease, remains a significant challenge due to the limited neuroregeneration rate in the brain. The objective of this study is to evaluate the hypothesis that external magnetic field (MF) stimulation of nerve growth factor functionalized superparamagnetic iron oxide-gold (NGF-SPIO-Au) nanoparticles (NPs) can induce Ca2+ influx, membrane depolarization, and enhance neuron differentiation with dynamic MF (DMF) outperforming static MF (SMF) regulation. We showed the that total intracellular Ca2+ influx of PC-12 cells was improved by 300% and 535% by the stimulation of DMF (1 Hz, 0.5 T, 30min) with NGF-SPIO-Au NPs compared to DMF alone and SMF with NGF-SPIO-Au NPs, respectively, which was attributed to successive membrane depolarization. Cellular uptake performed with the application of sodium azide proved that DMF enhanced cellular uptake of NGF-SPIO-Au NPs via endocytosis. In addition, DMF upregulated both the neural differentiation marker (β3-tubulin) and the cell adhesive molecule (integrin-β1) with the existence of NGF-SPIO-Au NPs, while SMF did not show these effects. The results imply that noninvasive DMF-stimulated NPs can regulate intracellular Ca2+ influx and enhance neuron differentiation and neuroregeneration rate.
Collapse
Affiliation(s)
- Elias Georgas
- Department of Biomedical Engineering, The State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Muzhaozi Yuan
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Jingfan Chen
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Ya Wang
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Yi-Xian Qin
- Department of Biomedical Engineering, The State University of New York at Stony Brook, Stony Brook, NY, United States
- Corresponding author. Department of Biomedical Engineering, The State University of New York at Stony Brook, Stony Brook, NY, United States.
| |
Collapse
|
13
|
Yang CY, Meng Z, Yang K, He Z, Hou Z, Yang J, Lu J, Cao Z, Yang S, Chai Y, Zhao H, Zhao L, Sun X, Wang G, Wang X. External magnetic field non-invasively stimulates spinal cord regeneration in rat via a magnetic-responsive aligned fibrin hydrogel. Biofabrication 2023; 15:035022. [PMID: 37279745 DOI: 10.1088/1758-5090/acdbec] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Magnetic stimulation is becoming an attractive approach to promote neuroprotection, neurogenesis, axonal regeneration, and functional recovery in both the central nervous system and peripheral nervous system disorders owing to its painless, non-invasive, and deep penetration characteristics. Here, a magnetic-responsive aligned fibrin hydrogel (MAFG) was developed to import and amplify the extrinsic magnetic field (MF) locally to stimulate spinal cord regeneration in combination with the beneficial topographical and biochemical cues of aligned fibrin hydrogel (AFG). Magnetic nanoparticles (MNPs) were embedded uniformly in AFG during electrospinning to endow it magnetic-responsive feature, with saturation magnetization of 21.79 emu g-1. It is found that the MNPs under the MF could enhance cell proliferation and neurotrophin secretion of PC12 cellsin vitro. The MAFG that was implanted into a rat with 2 mm complete transected spinal cord injury (SCI) effectively enhanced neural regeneration and angiogenesis in the lesion area, thus leading to significant recovery of motor function under the MF (MAFG@MF). This study suggests a new multimodal tissue engineering strategy based on multifunctional biomaterials that deliver multimodal regulatory signals with the integration of aligned topography, biochemical cues, and extrinsic MF stimulation for spinal cord regeneration following severe SCI.
Collapse
Affiliation(s)
- Chun-Yi Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhe Meng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Kaiyuan Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhijun He
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhaohui Hou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jingsong Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yi Chai
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - He Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
14
|
Ma X, Yang W, Nie P, Zhang Z, Chen Z, Wei H. Implantation of skin-derived precursor Schwann cells improves erectile function in a bilateral cavernous nerve injury rat model. Basic Clin Androl 2023; 33:11. [PMID: 37198550 DOI: 10.1186/s12610-023-00187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND This study was conducted to investigate the therapeutic potential of the skin-derived precursor Schwann cells for the treatment of erectile dysfunction in a rat model of bilateral cavernous nerve injury. RESULTS The skin-derived precursor Schwann cells-treatment significantly restored erectile functions, accelerated the recovery of endothelial and smooth muscle tissues in the penis, and promoted nerve repair. The expression of p-Smad2/3 decreased after the treatment, which indicated significantly reduced fibrosis in the corpus cavernosum. CONCLUSIONS Implantation of skin-derived precursor Schwann cells is an effective therapeutic strategy for treating erectile dysfunction induced by bilateral cavernous nerve injury.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Pan Nie
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Zhenbin Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Fan Z, Wen X, Ding X, Wang Q, Wang S, Yu W. Advances in biotechnology and clinical therapy in the field of peripheral nerve regeneration based on magnetism. Front Neurol 2023; 14:1079757. [PMID: 36970536 PMCID: PMC10036769 DOI: 10.3389/fneur.2023.1079757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/07/2023] [Indexed: 03/12/2023] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common neurological diseases. Recent studies on nerve cells have provided new ideas for the regeneration of peripheral nerves and treatment of physical trauma or degenerative disease-induced loss of sensory and motor neuron functions. Accumulating evidence suggested that magnetic fields might have a significant impact on the growth of nerve cells. Studies have investigated different magnetic field properties (static or pulsed magnetic field) and intensities, various magnetic nanoparticle-encapsulating cytokines based on superparamagnetism, magnetically functionalized nanofibers, and their relevant mechanisms and clinical applications. This review provides an overview of these aspects as well as their future developmental prospects in related fields.
Collapse
|
16
|
Bianchini M, Micera S, Redolfi Riva E. Recent Advances in Polymeric Drug Delivery Systems for Peripheral Nerve Regeneration. Pharmaceutics 2023; 15:pharmaceutics15020640. [PMID: 36839962 PMCID: PMC9965241 DOI: 10.3390/pharmaceutics15020640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
When a traumatic event causes complete denervation, muscle functional recovery is highly compromised. A possible solution to this issue is the implantation of a biodegradable polymeric tubular scaffold, providing a biomimetic environment to support the nerve regeneration process. However, in the case of consistent peripheral nerve damage, the regeneration capabilities are poor. Hence, a crucial challenge in this field is the development of biodegradable micro- nanostructured polymeric carriers for controlled and sustained release of molecules to enhance nerve regeneration. The aim of these systems is to favor the cellular processes that support nerve regeneration to increase the functional recovery outcome. Drug delivery systems (DDSs) are interesting solutions in the nerve regeneration framework, due to the possibility of specifically targeting the active principle within the site of interest, maximizing its therapeutical efficacy. The scope of this review is to highlight the recent advances regarding the study of biodegradable polymeric DDS for nerve regeneration and to discuss their potential to enhance regenerative performance in those clinical scenarios characterized by severe nerve damage.
Collapse
Affiliation(s)
- Marta Bianchini
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1000 Lausanne, Switzerland
| | - Eugenio Redolfi Riva
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Correspondence:
| |
Collapse
|
17
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
18
|
Lee SY, Thow SY, Abdullah S, Ng MH, Mohamed Haflah NH. Advancement of Electrospun Nerve Conduit for Peripheral Nerve Regeneration: A Systematic Review (2016-2021). Int J Nanomedicine 2022; 17:6723-6758. [PMID: 36600878 PMCID: PMC9805954 DOI: 10.2147/ijn.s362144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/05/2022] [Indexed: 12/29/2022] Open
Abstract
Peripheral nerve injury (PNI) is a worldwide problem which hugely affects the quality of patients' life. Nerve conduits are now the alternative for treatment of PNI to mimic the gold standard, autologous nerve graft. In that case, with the advantages of electrospun micro- or nano-fibers nerve conduit, the peripheral nerve growth can be escalated, in a better way. In this systematic review, we focused on 39 preclinical studies of electrospun nerve conduit, which include the in vitro and in vivo evaluation from animal peripheral nerve defect models, to provide an update on the progress of the development of electrospun nerve conduit over the last 5 years (2016-2021). The physical characteristics, biocompatibility, functional and morphological outcomes of nerve conduits from different studies would be compared, to give a better strategy for treatment of PNI.
Collapse
Affiliation(s)
- Shin Yee Lee
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Soon Yong Thow
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Shalimar Abdullah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Min Hwei Ng
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Nor Hazla Mohamed Haflah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur,Correspondence: Nor Hazla Mohamed Haflah, Department of Orthopedic & Traumatology’s Faculty of Medicine, UKM, Cheras, Kuala Lumpur, Tel +6012-3031316, Email
| |
Collapse
|
19
|
Zarei M, Esmaeili A, Zarrabi A, Zarepour A. Superparamagnetic Iron Oxide Nanoparticles and Curcumin Equally Promote Neuronal Branching Morphogenesis in the Absence of Nerve Growth Factor in PC12 Cells. Pharmaceutics 2022; 14:pharmaceutics14122692. [PMID: 36559186 PMCID: PMC9788162 DOI: 10.3390/pharmaceutics14122692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Regeneration of the damaged neurons in neurological disorders and returning their activities are two of the main purposes of neuromedicine. Combination use of specific nanoformulations with a therapeutic compound could be a good candidate for neuroregeneration applications. Accordingly, this research aims to utilize the combination of curcumin, as a neurogenesis agent, with dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate their effects on PC12 cellsʹ neuronal branching morphogenesis in the absence of nerve growth factor. Therefore, the effects of each component alone and in combination form on the cytotoxicity, neurogenesis, and neural branching morphogenesis were evaluated using MTT assay, immunofluorescence staining, and inverted microscopy, respectively. Results confirmed the effectiveness of the biocompatible iron oxide nanoparticles (with a size of about 100 nm) in improving the percentage of neural branching (p < 0.01) in PC12 cells. In addition, the combination use of these nanoparticles with curcumin could enhance the effect of curcumin on neurogenesis (p < 0.01). These results suggest that SPIONs in combination with curcumin could act as an inducing factor on PC12 neurogenesis in the absence of nerve growth factor and could offer a novel therapeutic approach to the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahshid Zarei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
- Correspondence: ; Tel.: +98-31-37932490
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
20
|
Bakhtiary N, Pezeshki-Modaress M, Najmoddin N. Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Cho S, Shon MJ, Son B, Eun GS, Yoon TY, Park TH. Tension exerted on cells by magnetic nanoparticles regulates differentiation of human mesenchymal stem cells. BIOMATERIALS ADVANCES 2022; 139:213028. [PMID: 35882121 DOI: 10.1016/j.bioadv.2022.213028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Cells can 'sense' physical cues in the surrounding microenvironment and 'react' by changing their function. Previous studies have focused on regulating the physical properties of the matrix, such as stiffness and topography, thus changing the tension 'felt' by the cell as a result. In this study, by directly applying a quantified magnetic force to the cell, a correlation between differentiation and tension was shown. The magnetic force, quantified by magnetic tweezers, was applied by incorporating magnetotactic bacteria-isolated magnetic nanoparticles (MNPs) in human mesenchymal stem cells. As the applied tension increased, the expression levels of osteogenic differentiation marker genes and proteins were proportionally upregulated. Additionally, the translocation of YAP and RUNX2, deformation of nucleus, and activation of the MAPK signaling pathway were observed in tension-based osteogenic differentiation. Our findings provide a platform for the quantitative control of tension, a key factor in stem cell differentiation, between cells and the matrix using MNPs. Furthermore, these findings improve the understanding of osteogenic differentiation by mechanotransduction.
Collapse
Affiliation(s)
- Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min Ju Shon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Boram Son
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Gee Sung Eun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
22
|
Kim SHL, Cho S, Kim S, Kwon J, Lee J, Koh RH, Park JH, Lee H, Park TH, Hwang NS. Cellular direct conversion by cell penetrable OCT4-30Kc19 protein and BMP4 growth factor. Biomater Res 2022; 26:33. [PMID: 35836274 PMCID: PMC9281139 DOI: 10.1186/s40824-022-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background The number of patients suffering from osteoporosis is increasing as the elderly population increases. The demand for investigating bone regeneration strategies naturally arises. One of the approaches to induce bone regeneration is somatic cell transdifferentiation. Among the transcriptional regulators for transdifferentiation, octamer-binding transcription factor 4 (OCT4) is famous for its role in the regulation of pluripotency of stem cells. Bone morphogenetic protein 4 (BMP4) is another factor that is known to have a significant role in osteogenic differentiation. Previous studies have achieved transdifferentiation of cells into osteoblasts using viral and plasmid deliveries of these factors. Although these methods are efficient, viral and plasmid transfection have safety issues such as permanent gene incorporations and bacterial DNA insertions. Herein, we developed a cell penetrating protein-based strategy to induce transdifferentiation of endothelial cells into osteoblasts via nuclear delivery of OCT4 recombinant protein combined with the BMP4 treatment. For the nuclear delivery of OCT4 protein, we fused the protein with 30Kc19, a cell-penetrating and protein stabilizing protein derived from a silkworm hemolymph of Bombyx mori with low cytotoxic properties. This study proposes a promising cell-based therapy without any safety issues that existing transdifferentiation approaches had. Methods OCT4-30Kc19 protein with high penetrating activities and stability was synthesized for a protein-based osteogenic transdifferentiation system. Cells were treated with OCT4-30Kc19 and BMP4 to evaluate their cellular penetrating activity, cytotoxicity, osteogenic and angiogenic potentials in vitro. The osteogenic potential of 3D cell spheroids was also analyzed. In addition, in vivo cell delivery into subcutaneous tissue and cranial defect model was performed. Results OCT4-30Kc19 protein was produced in a soluble and stable form. OCT4-30Kc19 efficiently penetrated cells and were localized in intracellular compartments and the nucleus. Cells delivered with OCT4-30Kc19 protein combined with BMP4 showed increased osteogenesis, both in 2D and 3D culture, and showed increased angiogenesis capacity in vitro. Results from in vivo subcutaneous tissue delivery of cell-seeded scaffolds confirmed enhanced osteogenic properties of transdifferentiated HUVECs via treatment with both OCT4-30Kc19 and BMP4. In addition, in vivo mouse cranial defect experiment demonstrated successful bone regeneration of HUVECs pretreated with both OCT4-30Kc19 and BMP4. Conclusions Using a protein-based transdifferentiation method allows an alternative approach without utilizing any genetic modification strategies, thus providing a possibility for safer use of cell-based therapies in clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00280-8.
Collapse
Affiliation(s)
- Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Medicine, Standford University, 450 Serra Mall, Standford, 94305, USA
| | - Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seoyeon Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Janet Kwon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Jaeyoung Lee
- Department of Biomedical Science, Kangwon National University, Gangwon-do, Chuncheon, 24321, Republic of Korea
| | - Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.,Max/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Gangwon-do, Chuncheon, 24321, Republic of Korea
| | - Hwajin Lee
- School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea. .,Uppthera, BRC Laboratory, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea. .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Max/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea. .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Max/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
23
|
Ren J, Tang X, Wang T, Wei X, Zhang J, Lu L, Liu Y, Yang B. A Dual-Modal Magnetic Resonance/Photoacoustic Imaging Tracer for Long-Term High-Precision Tracking and Facilitating Repair of Peripheral Nerve Injuries. Adv Healthc Mater 2022; 11:e2200183. [PMID: 35306758 DOI: 10.1002/adhm.202200183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/05/2022] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing is considered a crucial technique to assess the axonal regeneration level after injury, but traditional tracers do not meet the needs of in vivo neural tracing in deep tissues. Magnetic resonance (MR) and photoacoustic (PA) imaging have high spatial resolution, great penetration depth, and rich contrast. Fe3 O4 nanoparticles may work well as a dual-modal diagnosis probe for neural tracers, with the potential to improve nerve regeneration. The present study combines antegrade neural tracing imaging therapy for the peripheral nervous system. Fe3 O4 @COOH nanoparticles are successfully conjugated with biotinylated dextran amine (BDA) to produce antegrade nano-neural tracers, which are encapsulated by microfluidic droplets to control leakage and allow sustained, slow release. They have many notable advantages over traditional tracers, including dual-modal real-time MR/PA imaging in vivo, long-duration release effect, and limitation of uncontrolled leakage. These multifunctional anterograde neural tracers have potential neurotherapeutic function, are reliable and may be used as a new platform for peripheral nerve injury imaging and treatment integration.
Collapse
Affiliation(s)
- Jingyan Ren
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xiaoduo Tang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Tao Wang
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xin Wei
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Junhu Zhang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Laijin Lu
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Yang Liu
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Bai Yang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| |
Collapse
|
24
|
Neuron Compatibility and Antioxidant Activity of Barium Titanate and Lithium Niobate Nanoparticles. Int J Mol Sci 2022; 23:ijms23031761. [PMID: 35163681 PMCID: PMC8836423 DOI: 10.3390/ijms23031761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The biocompatibility and the antioxidant activity of barium titanate (BaTiO3) and lithium niobate (LiNbO3) were investigated on a neuronal cell line, the PC12, to explore the possibility of using piezoelectric nanoparticles in the treatment of inner ear diseases, avoiding damage to neurons, the most delicate and sensitive human cells. The cytocompatibility of the compounds was verified by analysing cell viability, cell morphology, apoptotic markers, oxidative stress and neurite outgrowth. The results showed that BaTiO3 and LiNbO3 nanoparticles do not affect the viability, morphological features, cytochrome c distribution and production of reactive oxygen species (ROS) by PC12 cells, and stimulate neurite branching. These data suggest the biocompatibility of BaTiO3 and LiNbO3 nanoparticles, and that they could be suitable candidates to improve the efficiency of new implantable hearing devices without damaging the neuronal cells.
Collapse
|
25
|
The effect of tacrolimus-containing polyethylene glycol-modified maghemite nanospheres on reducing oxidative stress and accelerating the healing spinal cord injury of rats based on increasing M2 macrophages. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Kim Y, Lim H, Lee E, Ki G, Seo Y. Synergistic effect of electromagnetic fields and nanomagnetic particles on osteogenesis through calcium channels and p-ERK signaling. J Orthop Res 2021; 39:1633-1646. [PMID: 33150984 PMCID: PMC8451839 DOI: 10.1002/jor.24905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 02/04/2023]
Abstract
Electromagnetic fields (EMFs) are widely used in a number of cell therapies and bone disorder treatments, and nanomagnetic particles (NMPs) also promote cell activity. In this study, we investigated the synergistic effects of EMFs and NMPs on the osteogenesis of the human Saos-2 osteoblast cell line and in a rat calvarial defect model. The Saos-2 cells and critical-size calvarial defects of the rats were exposed to EMF (1 mT, 45 Hz, 8 h/day) with or without Fe3 O4 NMPs. Biocompatibility was evaluated with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays. This analysis showed that NMP and EMF did not induce cell toxicity. Quantitative reverse-transcription polymerase chain reaction indicated that the osteogenesis-related markers were highly expressed in the NMP-incorporated Saos-2 cells after exposure to EMF. Also, the expression of gene-encoding proteins involved in calcium channels was activated and the calcium concentration of the NMP-incorporated + EMF-exposed group was increased compared with the control group. In particular, in the NMP-incorporated + EMF-exposed group, all osteogenic proteins were more abundantly expressed than in the control group. This indicated that the NMP incorporation + EMF exposure induced a signaling pathway through activation of p-ERK and calcium channels. Also, in vivo evaluation revealed that rat calvarial defects treated with EMFs and NMPs had good regeneration results with new bone formation and increased mineral density after 6 weeks. Altogether, these results suggest that NMP treatment or EMF exposure of Saos-2 cells can increase osteogenic activity and NMP incorporation following EMF exposure which is synergistically efficient for osteogenesis.
Collapse
Affiliation(s)
- Yu‐Mi Kim
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| | - Han‐Moi Lim
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| | - Eun‐Chul Lee
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| | - Ga‐Eun Ki
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| | - Young‐Kwon Seo
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| |
Collapse
|
27
|
Hu Y, Li D, Wei H, Zhou S, Chen W, Yan X, Cai J, Chen X, Chen B, Liao M, Chai R, Tang M. Neurite Extension and Orientation of Spiral Ganglion Neurons Can Be Directed by Superparamagnetic Iron Oxide Nanoparticles in a Magnetic Field. Int J Nanomedicine 2021; 16:4515-4526. [PMID: 34239302 PMCID: PMC8259836 DOI: 10.2147/ijn.s313673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Neuroregeneration is a major challenge in neuroscience for treating degenerative diseases and for repairing injured nerves. Numerous studies have shown the importance of physical stimulation for neuronal growth and development, and here we report an approach for the physical guidance of neuron orientation and neurite growth using superparamagnetic iron oxide (SPIO) nanoparticles and magnetic fields (MFs). Methods SPIO nanoparticles were synthesized by classic chemical co-precipitation methods and then characterized by transmission electron microscope, dynamic light scattering, and vibrating sample magnetometer. The cytotoxicity of the prepared SPIO nanoparticles and MF was determined using CCK-8 assay and LIVE/DEAD assay. The immunofluorescence images were captured by a laser scanning confocal microscopy. Cell migration was evaluated using the wound healing assay. Results The prepared SPIO nanoparticles showed a narrow size distribution, low cytotoxicity, and superparamagnetism. SPIO nanoparticles coated with poly-L-lysine could be internalized by spiral ganglion neurons (SGNs) and showed no cytotoxicity at concentrations less than 300 µg/mL. The neurite extension of SGNs was promoted after internalizing SPIO nanoparticles with or without an external MF, and this might be due to the promotion of growth cone development. It was also confirmed that SPIO can regulate cell migration and can direct neurite outgrowth in SGNs preferentially along the direction imposed by an external MF. Conclusion Our results provide a fundamental understanding of the regulation of cell behaviors under physical cues and suggest alternative treatments for sensorineural hearing loss caused by the degeneration of SGNs.
Collapse
Affiliation(s)
- Yangnan Hu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Dan Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, People's Republic of China
| | - Hao Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Shan Zhou
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xiaoqian Yan
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jaiying Cai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xiaoyan Chen
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Menghui Liao
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Mingliang Tang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.,Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, 215000, People's Republic of China
| |
Collapse
|
28
|
Soltani M, Moradi Kashkooli F, Souri M, Zare Harofte S, Harati T, Khadem A, Haeri Pour M, Raahemifar K. Enhancing Clinical Translation of Cancer Using Nanoinformatics. Cancers (Basel) 2021; 13:2481. [PMID: 34069606 PMCID: PMC8161319 DOI: 10.3390/cancers13102481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 12/14/2022] Open
Abstract
Application of drugs in high doses has been required due to the limitations of no specificity, short circulation half-lives, as well as low bioavailability and solubility. Higher toxicity is the result of high dosage administration of drug molecules that increase the side effects of the drugs. Recently, nanomedicine, that is the utilization of nanotechnology in healthcare with clinical applications, has made many advancements in the areas of cancer diagnosis and therapy. To overcome the challenge of patient-specificity as well as time- and dose-dependency of drug administration, artificial intelligence (AI) can be significantly beneficial for optimization of nanomedicine and combinatorial nanotherapy. AI has become a tool for researchers to manage complicated and big data, ranging from achieving complementary results to routine statistical analyses. AI enhances the prediction precision of treatment impact in cancer patients and specify estimation outcomes. Application of AI in nanotechnology leads to a new field of study, i.e., nanoinformatics. Besides, AI can be coupled with nanorobots, as an emerging technology, to develop targeted drug delivery systems. Furthermore, by the advancements in the nanomedicine field, AI-based combination therapy can facilitate the understanding of diagnosis and therapy of the cancer patients. The main objectives of this review are to discuss the current developments, possibilities, and future visions in naoinformatics, for providing more effective treatment for cancer patients.
Collapse
Affiliation(s)
- Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi Univesity of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Tina Harati
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Atefeh Khadem
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Mohammad Haeri Pour
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Kaamran Raahemifar
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), State College, Penn State University, Pennsylvania, PA 16801, USA
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
29
|
Antimicrobial and Wound Healing Properties of FeO Fabricated Chitosan/PVA Nanocomposite Sponge. Antibiotics (Basel) 2021; 10:antibiotics10050524. [PMID: 34063621 PMCID: PMC8147619 DOI: 10.3390/antibiotics10050524] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic and anemia-associated diabetic wounds increase the considerable morbidity and mortality in people, as reported by clinical studies. However, no anemia-associated diabetic wound dressing materials have been developed until now. Hence, this study aimed to develop a nanocomposite scaffold composed of chitosan (CS), poly (vinyl alcohol) (PVA), and phytogenic iron oxide nanoparticles (FeO NPs), for accelerated anemia-associated diabetic wound healing. The aqueous leaves extract of Pinus densiflora (PD) was utilized for the synthesis of iron oxide nanoparticles (FeO NPs). TEM and elemental analysis confirmed smaller size PD-FeO NPs (<50 nm) synthesis with the combination of iron and oxide. In addition, in vitro biological studies displayed the moderate antioxidant, antidiabetic activities, and considerable antibacterial activity of PD-FeO NPs. Further, the different concentrations of PD-FeO NPs (0.01, 0.03, and 0.05%) incorporated CS/PVA nanocomposites sponges were developed by the freeze-drying method. The porous structured morphology and the presence of PD-FeO NPs were observed under FE-SEM. Among nanocomposite sponges, PD-FeO NPs (0.01%) incorporated CS/PVA sponges were further chosen for the in vitro wound-healing assay, based on the porous and water sorption nature. Furthermore, the in vitro wound-healing assay revealed that PD-FeO NPs (0.01%) incorporated CS/PVA has significantly increased the cell proliferation in HEK293 cells. In conclusion, the CS/PVA-PD-FeO NPs (0.01%) sponge would be recommended for diabetic wound dressing after a detailed in vivo evaluation.
Collapse
|
30
|
Karimi S, Bagher Z, Najmoddin N, Simorgh S, Pezeshki-Modaress M. Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactory mucosa stem cells bioactivity for potential nerve regeneration application. Int J Biol Macromol 2020; 167:796-806. [PMID: 33278440 DOI: 10.1016/j.ijbiomac.2020.11.199] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022]
Abstract
The design of 3D hydrogel constructs to elicit highly controlled cell response is a major field of interest in developing tissue engineering. The bioactivity of encapsulated cells inside pure alginate hydrogel is limited by its relatively inertness. Combining short nanofibers within a hydrogel serves as a promising method to develop a cell friendly environment mimicking the extracellular matrix. In this paper, we fabricated alginate hydrogels incorporating different magnetic short nanofibers (M.SNFs) content for olfactory ecto-mesenchymal stem cells (OE-MSCs) encapsulation. Wet-electrospun gelatin and superparamagnetic iron oxide nanoparticles (SPIONs) nanocomposite nanofibers were chopped using sonication under optimized conditions and subsequently embedded in alginate hydrogels. The storage modulus of hydrogel without M.SNFs as well as with 1 and 5 mg/mL of M.SNFs were in the range of nerve tissue. For cell encapsulation, OE-MSCs were used as a new hope for neuronal regeneration due to their neural crest origin. Resazurin analyses and LIVE/DEAD staining confirmed that the composite hydrogels containing M.SNFs can preserve the cell viability after 7 days. Moreover, the proliferation rate was enhanced in M.SNF/hydrogels compared to alginate hydrogel. The presence of SPIONs in the short nanofibers can accelerate neural-like differentiation of OE-MSCs rather than the sample without SPIONs.
Collapse
Affiliation(s)
- Sarah Karimi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
31
|
Tran TN, Kim DG, Ko SO. Efficient removal of 17α-ethinylestradiol from secondary wastewater treatment effluent by a biofilm process incorporating biogenic manganese oxide and Pseudomonas putida strain MnB1. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122810. [PMID: 32516724 DOI: 10.1016/j.jhazmat.2020.122810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
This study proposes a biofilm process to immobilize biogenic manganese oxide (BMO) and Pseudomonas putida MnB1 (BMO-MnB1), which shows excellent synergistic effects for 17α-ethinylestradiol (EE2) from secondary wastewater treatment effluent (WWTE). Modified granular activated carbon (M-GAC) was used as the packing carrier, inoculated with Pseudomonas putida MnB1 and Mn(II) to form the BMO-MnB1 biofilm. Feasibility tests were performed to compare the EE2 removal efficiency with that of the conventional biofilm process (BAC) for heterogeneous microbial communities. Results show that in the BAC, EE2 was removed mainly by adsorption, with biodegradation contributing only slightly to the overall performance. In contrast, the BMO-MnB1 biofilter outperformed the BAC. Furthermore, less than 4% of the total EE2 removed was extracted from the biofilter medium over 150 days of operation, confirming that EE2 was biodegraded by P. putida MnB1 or chemically oxidized by BMO. Our results suggest that BMO-MnB1 biofilm processes have high potential for practical applications in removal of endocrine disrupting compounds from wastewater effluent.
Collapse
Affiliation(s)
- Thi Nhung Tran
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| | - Do-Gun Kim
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| | - Seok-Oh Ko
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
32
|
Ghane N, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Das O, Ramakrishna S. Regeneration of the peripheral nerve via multifunctional electrospun scaffolds. J Biomed Mater Res A 2020; 109:437-452. [PMID: 32856425 DOI: 10.1002/jbm.a.37092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Over the last two decades, electrospun scaffolds have proved to be advantageous in the field of nerve tissue regeneration by connecting the cavity among the proximal and distal nerve stumps growth cones and leading to functional recovery after injury. Multifunctional nanofibrous structure of these scaffolds provides enormous potential by combining the advantages of nano-scale topography, and biological science. In these structures, selecting the appropriate materials, designing an optimized structure, modifying the surface to enhance biological functions and neurotrophic factors loading, and native cell-like stem cells should be considered as the essential factors. In this systematic review paper, the fabrication methods for the preparation of aligned nanofibrous scaffolds in yarn or conduit architecture are reviewed. Subsequently, the utilized polymeric materials, including natural, synthetic and blend are presented. Finally, their surface modification techniques, as well as, the recent advances and outcomes of the scaffolds, both in vitro and in vivo, are reviewed and discussed.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Oisik Das
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, Singapore, Singapore
| |
Collapse
|
33
|
Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0008/revneuro-2020-0008.xml. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
The nervous system, which consists of a complex network of millions of neurons, is one of the most highly intricate systems in the body. This complex network is responsible for the physiological and cognitive functions of the human body. Following injuries or degenerative diseases, damage to the nervous system is overwhelming because of its complexity and its limited regeneration capacity. However, neural tissue engineering currently has some capacities for repairing nerve deficits and promoting neural regeneration, with more developments in the future. Nevertheless, controlling the guidance of stem cell proliferation and differentiation is a challenging step towards this goal. Nanomaterials have the potential for the guidance of the stem cells towards the neural lineage which can overcome the pitfalls of the classical methods since they provide a unique microenvironment that facilitates cell-matrix and cell-cell interaction, and they can manipulate the cell signaling mechanisms to control stem cells' fate. In this article, the suitable cell sources and microenvironment cues for neuronal tissue engineering were examined. Afterward, the nanomaterials that impact stem cell proliferation and differentiation towards neuronal lineage were reviewed.
Collapse
Affiliation(s)
- Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, The University of Guilan, Rasht 4199613776, Islamic Republic of Iran
| | - Hossein Jafari
- Institute for Research in Fundamental Sciences (IPM), Artesh Highway, Tehran 1956836681, Islamic Reitutionpublic of Iran
| | - Shaghayegh Askarian-Amiri
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Amin Shiralizadeh Dezfuli
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Iran Universal Scientific and Education Network (USERN), Tabriz 5165665811, Islamic Republic of Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| |
Collapse
|
34
|
Xia B, Gao J, Li S, Huang L, Zhu L, Ma T, Zhao L, Yang Y, Luo K, Shi X, Mei L, Zhang H, Zheng Y, Lu L, Luo Z, Huang J. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics 2020; 10:8974-8995. [PMID: 32802175 PMCID: PMC7415818 DOI: 10.7150/thno.44912] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peripheral nerves are unique in their remarkable elasticity. Schwann cells (SCs), important components of the peripheral nervous system (PNS), are constantly subjected to physiological and mechanical stresses from dynamic stretching and compression forces during movement. So far, it is not clear if SCs sense and respond to mechanical signals. It is also unknown whether mechanical stimuli can interfere with the intercellular communications between neurons and SCs, and what role extracellular vesicles (EVs) play in this process. The present study aimed to examine the effect of mechanical stimuli on the EV-mediated intercellular communication between neurons and SCs, explore their effect on axonal regeneration, and investigate the underlying mechanism. Methods: Purified SCs were stimulated using a magnetic force-based mechanical stimulation (MS) system and EVs were purified from mechanically stimulated SCs (MS-SCs-EVs) and non-stimulated SCs (SCs-EVs). The effect of MS-SCs-EVs on axonal elongation was examined in vitro and in vivo. High throughput miRNA sequencing was performed to compare the differential miRNA profiles between MS-SCs-EVs and SCs-EVs. The functional role of differentially expressed miRNAs on neurite extension in MS-SCs-EVs was examined. Also, the putative target genes of differentially expressed miRNAs in MS-SCs-EVs were predicted by bioinformatics tools, and the regulatory effect of those miRNAs on putative target genes was validated both in vitro and in vivo. Results: The MS-SCs-EVs showed an average size of 137.52±1.77 nm, and could be internalized by dorsal root ganglion (DRG) neurons. Compared to SCs-EVs, MS-SCs-EVs showed a stronger ability to enhance neurite outgrowth in vitro and nerve regeneration in vivo. High throughput miRNA sequencing identified a number of differentially expressed miRNAs in MS-SCs-EVs. Further analysis of those EV-miRNAs demonstrated that miR-23b-3p played a predominant role in MS-SCs-EVs since its deprivation abolished their enhanced axonal elongation. Furthermore, we identified neuropilin 1 (Nrp1) in neurons as the target gene of miR-23b-3p in MS-SCs-EVs. This observation was supported by the evidence that miR-23b-3p could decrease Nrp1-3'-UTR-WT luciferase activity in vitro and down-regulate Nrp1 expression in neurons. Conclusion: Our findings suggested that mechanical stimuli are capable of modulating the intercellular communication between neurons and SCs by altering miRNA composition in MS-SCs-EVs. Transfer of miR-23b-3p by MS-SCs-EVs from mechanically stimulated SCs to neurons decreased neuronal Nrp1 expression, which was responsible, at least in part, for the beneficial effect of MS-SCs-EVs on axonal regeneration. Our results highlighted the potential therapeutic value of MS-SCs-EVs and miR-23b-3p-enriched EVs in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianbo Gao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shengyou Li
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangliang Huang
- Department of Orthopedics, the General Hospital of Central Theater Command of People's Liberation Army, Wuhan, 430070, People's Republic of China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, People's Republic of China
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Laihe Zhao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yujie Yang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Kai Luo
- Department of Orthopedics, the 985th Hospital People's Liberation Army Joint Logistics Support Force, Taiyuan, 030000, People's Republic of China
| | - Xiaowei Shi
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangwei Mei
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, the People's Hospital of Longhua District, Shenzhen, 518109, People's Republic of China
| | - Yi Zheng
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
35
|
Rodríguez-Hernández AG, Vazquez-Duhalt R, Huerta-Saquero A. Nanoparticle-plasma Membrane Interactions: Thermodynamics, Toxicity and Cellular Response. Curr Med Chem 2020; 27:3330-3345. [DOI: 10.2174/0929867325666181112090648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022]
Abstract
Nanomaterials have become part of our daily lives, particularly nanoparticles contained
in food, water, cosmetics, additives and textiles. Nanoparticles interact with organisms
at the cellular level. The cell membrane is the first protective barrier against the potential toxic
effect of nanoparticles. This first contact, including the interaction between the cell membranes
-and associated proteins- and the nanoparticles is critically reviewed here. Nanoparticles, depending
on their toxicity, can cause cellular physiology alterations, such as a disruption in cell
signaling or changes in gene expression and they can trigger immune responses and even apoptosis.
Additionally, the fundamental thermodynamics behind the nanoparticle-membrane and
nanoparticle-proteins-membrane interactions are discussed. The analysis is intended to increase
our insight into the mechanisms involved in these interactions. Finally, consequences are reviewed
and discussed.
Collapse
Affiliation(s)
- Ana G. Rodríguez-Hernández
- CONACyT Research Fellow at Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico. Km 107, Carretera Tijuana-Ensenada, Pedregal Playitas, Ensenada 22860, B.C, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km 107 Carretera Tijuana- Ensenada, Pedregal Playitas, Ensenada 22860, B.C, Mexico
| | - Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km 107 Carretera Tijuana- Ensenada, Pedregal Playitas, Ensenada 22860, B.C, Mexico
| |
Collapse
|
36
|
Wang Y, Li B, Xu H, Du S, Liu T, Ren J, Zhang J, Zhang H, Liu Y, Lu L. Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional Fe 3O 4·Rhodamine 6G@PDA superparticles. J Nanobiotechnology 2020; 18:64. [PMID: 32334582 PMCID: PMC7183675 DOI: 10.1186/s12951-020-00621-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background The primary strategy to repair peripheral nerve injuries is to bridge the lesions by promoting axon regeneration. Thus, the ability to direct and manipulate neuronal cell axon regeneration has been one of the top priorities in the field of neuroscience. A recent innovative approach for remotely guiding neuronal regeneration is to incorporate magnetic nanoparticles (MNPs) into cells and transfer the resulting MNP-loaded cells into a magnetically sensitive environment to respond to an external magnetic field. To realize this intention, the synthesis and preparation of ideal MNPs is an important challenge to overcome. Results In this study, we designed and prepared novel fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G@polydopamine superparticles (FMSPs) as neural regeneration therapeutics. With the help of their excellent biocompatibility and ability to interact with neural cells, our in-house fabricated FMSPs can be endocytosed into cells, transported along the axons, and then aggregated in the growth cones. As a result, the mechanical forces generated by FMSPs can promote the growth and elongation of axons and stimulate gene expression associated with neuron growth under external magnetic fields. Conclusions Our work demonstrates that FMSPs can be used as a novel stimulator to promote noninvasive neural regeneration through cell magnetic actuation.![]()
Collapse
Affiliation(s)
- Yang Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Binxi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Hao Xu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Shulin Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Ting Liu
- Departments of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jingyan Ren
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jiayi Zhang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
37
|
Aptamers Increase Biocompatibility and Reduce the Toxicity of Magnetic Nanoparticles Used in Biomedicine. Biomedicines 2020; 8:biomedicines8030059. [PMID: 32183370 PMCID: PMC7148517 DOI: 10.3390/biomedicines8030059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Aptamer-based approaches are very promising tools in nanomedicine. These small single-stranded DNA or RNA molecules are often used for the effective delivery and increasing biocompatibility of various therapeutic agents. Recently, magnetic nanoparticles (MNPs) have begun to be successfully applied in various fields of biomedicine. The use of MNPs is limited by their potential toxicity, which depends on their biocompatibility. The functionalization of MNPs by ligands increases biocompatibility by changing the charge and shape of MNPs, preventing opsonization, increasing the circulation time of MNPs in the blood, thus shielding iron ions and leading to the accumulation of MNPs only in the necessary organs. Among various ligands, aptamers, which are synthetic analogs of antibodies, turned out to be the most promising for the functionalization of MNPs. This review describes the factors that determine MNPs’ biocompatibility and affect their circulation time in the bloodstream, biodistribution in organs and tissues, and biodegradation. The work also covers the role of the aptamers in increasing MNPs’ biocompatibility and reducing toxicity.
Collapse
|
38
|
Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol 2020; 50:148-176. [PMID: 32053030 DOI: 10.1080/10408444.2020.1719974] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles are ubiquitous in the environment and are widely used in medical science (e.g. bioimaging, diagnosis, and drug therapy delivery). Due to unique physicochemical properties, they are able to cross many barriers, which is not possible for traditional drugs. Nevertheless, exposure to NPs and their following interactions with organelles and macromolecules can result in negative effects on cells, especially, they can induce cytotoxicity, epigenicity, genotoxicity, and cell death. Lipid-based nanomaterials (LNPs) are one of the most important achievements in drug delivery mainly due to their superior physicochemical and biological characteristics, particularly its safety. Although they are considered as the completely safe nanocarriers in biomedicine, the lipid composition, the surfactant, emulsifier, and stabilizer used in the LNP preparation, and surface electrical charge are important factors that might influence the toxicity of LNPs. According to the author's opinion, their toxicity profile should be evaluated case-by-case regarding the intended applications. Since there is a lack of all-inclusive review on the various aspects of LNPs with an emphasis on toxicological profiles including cyto-genotoxiciy, this comprehensive and critical review is outlined.
Collapse
|
39
|
Haimov-Talmoud E, Harel Y, Schori H, Motiei M, Atkins A, Popovtzer R, Lellouche JP, Shefi O. Magnetic Targeting of mTHPC To Improve the Selectivity and Efficiency of Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45368-45380. [PMID: 31755692 DOI: 10.1021/acsami.9b14060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photodynamic therapy (PDT) is a promising recognized treatment for cancer. To date, PDT drugs are injected systemically, and the tumor area is irradiated to induce cell death. Current clinical protocols have several drawbacks, including limited accessibility to solid tumors and insufficient selectivity of drugs. Herein, we propose an alternative approach to improve PDT effectiveness by magnetic targeting of responsive carriers conjugated to the PDT drug. We coordinatively attached a meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer to Ce-doped-γ-Fe2O3 maghemite nanoparticles (MNPs). These MNPs are superparamagnetic and biocompatible, and the resulting mTHPC-MNPs nanocomposites are stable in aqueous suspensions. MDA-MB231 (human breast cancer) cells incubated with the mTHPC-MNPs showed high uptake and high death rates in cell population after PDT. The exposure to external magnetic forces during the incubation period directed the nanocomposites to selected sites enhancing drug accumulation that was double that of cells with no magnetic exposure. Next, breast cancer tumors were induced subcutaneously in mice and treated magnetically. In vivo results showed accelerated drug accumulation in tumors of mice injected with mTHPC-MNP nanocomposites, compared to the free drug. PDT irradiation led to a decrease in tumor size of both groups, whereas treatment with the focused magnetic nanocomposites led to significant tumor regression. Our results demonstrate a method to improve the current PDT treatments by applying magnetic forces to effectively direct the drug to cancerous tissue. This approach leads to a highly localized and effective PDT process, opening new directions for clinical PDT protocols.
Collapse
Affiliation(s)
- Elina Haimov-Talmoud
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) , Ramat Gan 5290002 , Israel
| | - Yifat Harel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) , Ramat Gan 5290002 , Israel
| | - Hadas Schori
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) , Ramat Gan 5290002 , Israel
| | - Menachem Motiei
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) , Ramat Gan 5290002 , Israel
| | - Ayelet Atkins
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) , Ramat Gan 5290002 , Israel
| | - Rachela Popovtzer
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) , Ramat Gan 5290002 , Israel
| | - Jean-Paul Lellouche
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) , Ramat Gan 5290002 , Israel
| | - Orit Shefi
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) , Ramat Gan 5290002 , Israel
| |
Collapse
|
40
|
Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019; 13:2077-2100. [PMID: 31350868 DOI: 10.1002/term.2945] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
42
|
Funnell JL, Balouch B, Gilbert RJ. Magnetic Composite Biomaterials for Neural Regeneration. Front Bioeng Biotechnol 2019; 7:179. [PMID: 31404143 PMCID: PMC6669379 DOI: 10.3389/fbioe.2019.00179] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Nervous system damage caused by physical trauma or degenerative diseases can result in loss of sensory and motor function for patients. Biomaterial interventions have shown promise in animal studies, providing contact guidance for extending neurites or sustained release of various drugs and growth factors; however, these approaches often target only one aspect of the regeneration process. More recent studies investigate hybrid approaches, creating complex materials that can reduce inflammation or provide neuroprotection in addition to stimulating growth and regeneration. Magnetic materials have shown promise in this field, as they can be manipulated non-invasively, are easily functionalized, and can be used to mechanically stimulate cells. By combining different types of biomaterials (hydrogels, nanoparticles, electrospun fibers) and incorporating magnetic elements, magnetic materials can provide multiple physical and chemical cues to promote regeneration. This review, for the first time, will provide an overview of design strategies for promoting regeneration after neural injury with magnetic biomaterials.
Collapse
Affiliation(s)
| | | | - Ryan J. Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
43
|
Yuan M, Wang Y, Qin YX. Engineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102052. [PMID: 31349088 DOI: 10.1016/j.nano.2019.102052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023]
Abstract
This paper reports nerve growth factor functionalized superparamagnetic iron oxide-gold core-shell nanoparticles (NGF-SPIO-Au NPs), an engineered nanomedicine for non-invasive neuron regeneration when irradiated by a low-intensity light-emitting diode (LED). NGF-SPIO-Au NPs of 20 μg/ml, were tested on PC-12 neuron-like cells, irradiated by LEDs (525 nm, 1.09, 1.44, and 1.90 mW/cm2). A remarkable Ca2+ influx was detected in differentiated PC-12 cells treated with NPs, irradiated by LED of 1.90 and 1.44 mW/cm2 with great cell viability (>84%) and proliferations. The strong heat generated through their plasmonic surface upon LED irradiation on NGF-SPIO-Au NPs was observed. For cells treated with LED (1.90 mW/cm2) and NGF-SPIO-Au NPs, a dramatic enhancement of neuronal differentiation (83%) and neurite outgrowth (51%) was found, and the upregulation of both the neural differentiation specific marker (β3-tubulin) and the cell adhesive molecule (integrin β1) was observed by the reverse transcription-polymerase chain reaction and western blot analysis.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX.
| | - Ya Wang
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX.
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
44
|
Cheng CS, Liu TP, Chien FC, Mou CY, Wu SH, Chen YP. Codelivery of Plasmid and Curcumin with Mesoporous Silica Nanoparticles for Promoting Neurite Outgrowth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15322-15331. [PMID: 30986029 DOI: 10.1021/acsami.9b02797] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress leads to neuron damage and is involved in the pathogenesis of chronic inflammation in neurodegenerative diseases (NDs), such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Researchers, therefore, are looking for antiinflammatory drugs and gene therapy approaches to slow down or even prevent neurological disorders. Combining therapeutics has shown a synergistic effect in the treatment of human diseases. Many nanocarriers could be designed for the simultaneous codelivery of drugs with genes to fight diseases. However, only a few researches have been performed in NDs. In this study, we developed a mesoporous silica nanoparticle (MSN)-based approach for neurodegenerative therapy. This MSN-based platform involved multiple designs in the targeted codelivery of (1) curcumin, a natural antioxidant product, to protect ROS-induced cell damage and (2) plasmid RhoG-DsRed, which is associated with the formation of lamellipodia and filopodia for promoting neurite outgrowth. At the same time, TAT peptide was introduced to the plasmid RhoG-DsRed via electrostatic interaction to elevate the efficiency of nonendocytic pathways and the nuclear plasmid delivery of RhoG-DsRed in cells for enhanced gene expression. Besides, such a plasmid RhoG-DsRed/TAT complex could work as a noncovalent gatekeeper. The release of curcumin inside the channel of the MSN could be triggered when the complex was dissociated from the MSN surface. Taken together, this MSN-based platform combining genetic and pharmacological manipulations of an actin cytoskeleton as well as oxidative stress provides an attractive way for ND therapy.
Collapse
Affiliation(s)
- Cheng-Shun Cheng
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Tsang-Pai Liu
- Mackay Junior College of Medicine, Nursing and Management , Taipei 112 , Taiwan
- Department of Surgery , Mackay Memorial Hospital , Taipei 104 , Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics , National Central University , Chung-Li 320 , Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | | | | |
Collapse
|
45
|
Katebi S, Esmaeili A, Ghaedi K, Zarrabi A. Superparamagnetic iron oxide nanoparticles combined with NGF and quercetin promote neuronal branching morphogenesis of PC12 cells. Int J Nanomedicine 2019; 14:2157-2169. [PMID: 30992663 PMCID: PMC6445231 DOI: 10.2147/ijn.s191878] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The investigation of agents promoting recovery of nerve regeneration following neurodegenerative diseases has been the most important issue in neuroscience. Nerve growth factor (NGF) and quercetin as potential flavonoids could possibly have therapeutic applications in the field of degenerative diseases such as Parkinson and Alzheimer. Materials and methods The MTT assay was done at 24, 48, and 72 hours to examine the cytotoxicity of superparamagnetic iron oxide nanoparticles (SPIONs) and quercetin. We combined NGF and quercetin with different concentrations of SPIONs as novel compounds to study their effect on neuronal branching morphogenesis of PC12 cells. Results Morphological analysis showed a significant growth (P<0.001) in neurite length when PC12 cells were incubated in quercetin solution. We found a significant neurite outgrowth promotion and an increase in the complexity of the neuronal branching trees after exposing PC12 cells to both quercetin and SPIONs. In addition, a higher level of β3-tubulin expression was observed in these cells when treated with both quercetin and SPIONs. Conclusion Different photographic analyses indicated that iron oxide nanoparticles function as an important factor in order to improve the efficiency of NGF through improving cell viability, cell attachment, and neurite outgrowth in the shelter of quercetin as an accelerator of these phenomena. The use of the quercetin–SPION complex as a suitable method for improving NGF efficacy and activity opens a novel window for substantial neuronal repair therapeutics.
Collapse
Affiliation(s)
- Samira Katebi
- Cell, Molecular Biology, and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Abolghasem Esmaeili
- Cell, Molecular Biology, and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Kamran Ghaedi
- Cell, Molecular Biology, and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
46
|
Asadi Shahi S, Roudbar Mohammadi S, Roudbary M, Delavari H. A new formulation of graphene oxide/fluconazole compound as a promising agent against Candida albicans. Prog Biomater 2019; 8:43-50. [PMID: 30859396 PMCID: PMC6424987 DOI: 10.1007/s40204-019-0109-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 11/29/2022] Open
Abstract
Candida albicans (C. albicans) belongs to the opportunistic fungal pathogens, which cause a wide spectrum of infections in immune-compromised patients. Graphene oxide (GO), a biocompatibility agent, has been reported to exhibit effective antimicrobial activity. In the present study, a graphene oxide/fluconazole (GO/Flu) compound was synthesized and characterized using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The antifungal activity of GO/Flu was examined against fluconazole-resistant C. albicans (ATCC 10231) compared to GO and Flu using the broth microdilution method, according to CLSI protocol. DNA fragmentation was assessed through the antifungal mechanism of GO/Flu. The release of Fluin PBS medium was measured. Moreover, the cytotoxicity effect of GO/Flu on SW480 cell line was evaluated. Indeed, adhesion ability of C. albicans-treated GO/Flu against SW480 cell line was assessed. The minimum inhibitory concentration (MIC) of GO, Flu, and GO/Flu was determined at 800 µg/mL, 16 µg/mL, and 400-9 µg/mL, respectively. Notably, GO/Flu exhibited an intense antifungal activity compared to GO and Flu. In addition, GO/Flu showed much less cell toxicity against SW480 cell line than GO and Flu (P < 0.05). The release determination of Flu in PBS (pH 7.4) medium was 72.42%. GO/Flu reduced the adhesion ability of C. albicans to SW480 cell line significantly. DNA fragmentation assay indicated that GO/Flu potentially degraded the DNA of C. albicans and caused a fungicidal influence. According to the findings, GO/Flu could enhance the antifungal activity against C.albicans through DNA fragmentation with low cytotoxicity effect.
Collapse
Affiliation(s)
- Sabrieh Asadi Shahi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Delavari
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
47
|
Marcus M, Smith A, Maswadeh A, Shemesh Z, Zak I, Motiei M, Schori H, Margel S, Sharoni A, Shefi O. Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles. NANOMATERIALS 2018; 8:nano8090707. [PMID: 30201889 PMCID: PMC6163445 DOI: 10.3390/nano8090707] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022]
Abstract
Growth factors play an important role in nerve regeneration and repair. An attractive drug delivery strategy, termed “magnetic targeting”, aims to enhance therapeutic efficiency by directing magnetic drug carriers specifically to selected cell populations that are suitable for the nervous tissues. Here, we covalently conjugated nerve growth factor to iron oxide nanoparticles (NGF-MNPs) and used controlled magnetic fields to deliver the NGF–MNP complexes to target sites. In order to actuate the magnetic fields a modular magnetic device was designed and fabricated. PC12 cells that were plated homogenously in culture were differentiated selectively only in targeted sites out of the entire dish, restricted to areas above the magnetic “hot spots”. To examine the ability to guide the NGF-MNPs towards specific targets in vivo, we examined two model systems. First, we injected and directed magnetic carriers within the sciatic nerve. Second, we injected the MNPs intravenously and showed a significant accumulation of MNPs in mouse retina while using an external magnet that was placed next to one of the eyes. We propose a novel approach to deliver drugs selectively to injured sites, thus, to promote an effective repair with minimal systemic side effects, overcoming current challenges in regenerative therapeutics.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Alexandra Smith
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Ahmad Maswadeh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Department of Neurosurgery, Sheba Medical Center, Ramat Gan 5290002, Israel.
| | - Ziv Shemesh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Idan Zak
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Menachem Motiei
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Hadas Schori
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Shlomo Margel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Amos Sharoni
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Physics, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| |
Collapse
|
48
|
Abdal Dayem A, Lee SB, Choi HY, Cho SG. Silver Nanoparticles: Two-Faced Neuronal Differentiation-Inducing Material in Neuroblastoma (SH-SY5Y) Cells. Int J Mol Sci 2018; 19:E1470. [PMID: 29762523 PMCID: PMC5983825 DOI: 10.3390/ijms19051470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022] Open
Abstract
We have previously demonstrated the potential of biologically synthesized silver nanoparticles (AgNP) in the induction of neuronal differentiation of human neuroblastoma, SH-SY5Y cells; we aimed herein to unveil its molecular mechanism in comparison to the well-known neuronal differentiation-inducing agent, all-trans-retinoic acid (RA). AgNP-treated SH-SY5Y cells showed significantly higher reactive oxygen species (ROS) generation, stronger mitochondrial membrane depolarization, lower dual-specificity phosphatase expression, higher extracellular-signal-regulated kinase (ERK) phosphorylation, lower AKT phosphorylation, and lower expression of the genes encoding the antioxidant enzymes than RA-treated cells. Notably, pretreatment with N-acetyl-l-cysteine significantly abolished AgNP-induced neuronal differentiation, but not in that induced by RA. ERK inhibition, but not AKT inhibition, suppresses neurite growth that is induced by AgNP. Taken together, our results uncover the pivotal contribution of ROS in the AgNP-induced neuronal differentiation mechanism, which is different from that of RA. However, the negative consequence of AgNP-induced neurite growth may be high ROS generation and the downregulation of the expression of the genes encoding the antioxidant enzymes, which prompts the future consideration and an in-depth study of the application of AgNP-differentiated cells in neurodegenerative disease therapy.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
49
|
Pohland M, Kobayashi Y, Glumm J. Fluorescence detection of Europium-doped very small superparamagnetic iron oxide nanoparticles in murine hippocampal slice cultures. Neural Regen Res 2018; 13:637-638. [PMID: 29722309 PMCID: PMC5950667 DOI: 10.4103/1673-5374.230284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Martin Pohland
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Yuske Kobayashi
- Department of Interventional and Diagnostic Radiology and Nuclear Medicine, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Glumm
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité -Universitätsmedizin Berlin; Department of Neurosurgery, HELIOS Klinikum Berlin Buch, Berlin, Germany
| |
Collapse
|
50
|
Wang W, Huang X, Zhang Y, Deng G, Liu X, Fan C, Xi Y, Yu J, Ye X. Se@SiO 2 nanocomposites suppress microglia-mediated reactive oxygen species during spinal cord injury in rats. RSC Adv 2018; 8:16126-16138. [PMID: 35547361 PMCID: PMC9088170 DOI: 10.1039/c8ra01906a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022] Open
Abstract
Selenium (Se) is an essential trace element with strong antioxidant activity, showing a great prospect in the treatment of spinal cord injury (SCI). However, the narrow gap between the beneficial and toxic effects has limited its further clinical application. In this experiment, we used porous Se@SiO2 nanocomposites (Se@SiO2) modified by nanotechnology as a new means of release control to investigate the anti-oxidative effect in SCI. In vitro Se@SiO2 toxicity, anti-oxidative and anti-inflammatory effects on microglia were assayed. In vivo we investigated the protective effect of Se@SiO2 to SCI rats. Neurological function was evaluated by Basso, Beattie and Bresnahan (BBB). The histopathological analysis, microglia activation, oxidative stress, inflammatory factors (TNF-α, IL-1β and IL-6) and apoptosis were detected at 3 and 14 days after SCI. The favorable biocompatibility of Se@SiO2 suppressed microglia activation, which is known to be associated with oxidative stress and inflammation in vivo and in vitro. In addition, Se@SiO2 improved the rat neurological function and reduced apoptosis via caspase-3, Bax and Bcl-2 pathways in SCI. Se@SiO2 was able to treat SCI and reduce oxidative stress, inflammation and apoptosis induced by microglia activation, which may provide a novel and safe strategy for clinical application.
Collapse
Affiliation(s)
- Weiheng Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| | - Xiaodong Huang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| | - Yongxing Zhang
- Trauma Center of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Guoying Deng
- Trauma Center of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 China
| | - Chunquan Fan
- Department of Orthopaedic Surgery, The 175th Hospital of PLA, Orthopaedics Center of PLA, Affiliated Southeast Hospital of Xiamen University Zhangzhou Fujian Province PR China
| | - Yanhai Xi
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| |
Collapse
|