1
|
Hasan ML, Lee JR, Rahaman KA, Yang DH, Joung YK. Versatile effects of galectin-1 protein-containing lipid bilayer coating for cardiovascular applications. Bioact Mater 2024; 42:207-225. [PMID: 39285911 PMCID: PMC11403261 DOI: 10.1016/j.bioactmat.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
Modulating inflammatory cells in an implantation site leads to severe complications and still unsolved challenges for blood-contacting medical devices. Inspired by the role of galectin-1 (Gal-1) in selective functions on multiple cells and immunomodulatory processes, we prepared a biologically target-specific surface coated with the lipid bilayer containing Gal-1 (Gal-1-SLB) and investigate the proof of the biological effects. First, lipoamido-dPEG-acid was deposited on a gold-coated substrate to form a self-assembled monolayer and then conjugated dioleoylphosphatidylethanolamine (DOPE) onto that to produce a lower leaflet of the supported lipid bilayer (SLB) before fusing membrane-derived vesicles extracted from B16-F10 cells. The Gal-1-SLB showed the expected anti-fouling activity by revealing the resistance to protein adsorption and bacterial adhesion. In vitro studies showed that the Gal-1-SLB can promote endothelial function and inhibit smooth muscle cell proliferation. Moreover, Gal-1- SLB presents potential function for endothelial cell migration and angiogenic activities. In vitro macrophage culture studies showed that the Gal-1-SLB attenuated the LPS-induced inflammation and the production of macrophage-secreted inflammatory cytokines. Finally, the implanted Gal-1-SLB reduced the infiltration of immune cells at the tissue-implant interface and increased markers for M2 polarization and blood vessel formation in vivo. This straightforward surface coating with Gal-1 can be a useful strategy for modulating the vascular and immune cells around a blood-contacting device.
Collapse
Affiliation(s)
- Md Lemon Hasan
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ju Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Khandoker Asiqur Rahaman
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
- KHU-KIST Department of Conversing Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zheng C, Chen F, Yang F, Li Z, Yi W, Chen G, Li T, Yu X, Chen X. Myocardial cell mitochondria-targeted mesoporous polydopamine nanoparticles eliminate inflammatory damage in cardiovascular disease. Int J Biol Macromol 2024; 282:137141. [PMID: 39510474 DOI: 10.1016/j.ijbiomac.2024.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Excess reactive oxide species (ROS) is a direct factor in myocardial injury death, thus anti-oxidant therapy is a necessary measure to prevent rapid death of cardiomyocyte cell. Cysteine (Cys) is a potent antioxidant but easily become instability because of the hyperactivity. Therefore, in order to protect the the stability of Cys, we according to the mitochondria are the main sites of ROS production, utilized the loading and ROS scavenging capacity of mesoporous polydopamine (mPDA) constructed a nanosystem targeting mitochondria with effectively ROS elimination capability by loading cysteine (Cys-mPDA@TPP). The mesoporous structure of mPDA effectively inhibited the advance reaction and hyperactivity of Cys, thus effectively improving its stability that reached the double-collaborative treatment excess ROS. In particular, Cys-mPDA@TPP achieved directly reacting with ROS in mitochondria under the targeting of triphenylphosphine (TPP), not only enhancing the elimination efficiency of ROS, but also preventing mitochondrial dysfunction of monocyte-macrophage. Furthermore, with double-collaborative ROS elimination, Cys-mPDA@TPP effectively prevent the damage of cardiomyocyte cell through inhibiting macrophage inflammatory response. Therefore, this study provides a new therapeutic strategy for myocardial inflammatory injury.
Collapse
Affiliation(s)
- Chuping Zheng
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fajiang Chen
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fangwen Yang
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhan Li
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Yi
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Gengjia Chen
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China.
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526000, PR China.
| | - Xiyong Yu
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| |
Collapse
|
3
|
Jia Y, Zhao Y, Zhang H. Bioinspired Self-Adhesive Multifunctional Lubricated Coating for Biomedical Implant Applications. ACS APPLIED BIO MATERIALS 2024; 7:4307-4322. [PMID: 38954747 DOI: 10.1021/acsabm.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.
Collapse
Affiliation(s)
- Yiran Jia
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanlong Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongyu Zhang
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Huang X, Wu K, Li W. Biomimetic nanoporous oxygenation membranes with high hemocompatibility and fast gas transport property. J Colloid Interface Sci 2024; 674:370-378. [PMID: 38941931 DOI: 10.1016/j.jcis.2024.06.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Membrane technology holds great potential for separation applications and also finds critical needs in biomedical fields, such as blood oxygenation. However, the bottlenecks in gas permeation, plasma leakage, and especially hemocompatibility hamper the development of membrane oxygenation. It remains extremely challenging to design efficient membranes and elucidate underlying principles. In this study, we report biomimetic decoration of asymmetric nanoporous membranes by ultrathin FeIII-tannic acid metal-ligand networks to realize fast gas exchange with on plasma leakage and substantially enhance hemocompatibility. Because the intrinsic nanopores facilitate gas permeability and the FeIII-catechol layers enable superior hydrophilicity and electronegativity to original surfaces, the modified membranes exhibit high transport properties for gases and great resistances to protein adsorption, platelet activation, coagulation, thrombosis, and hemolysis. Molecular docking and density functional theory simulations indicate that more preferential adsorption of metal-ligand networks with water molecules than proteins is critical to anticoagulation. Moreover, benefiting from the better antiaging property gave by biomimetic decoration, the membranes after four-month aging present gas permeances similar to or even larger than those of pristine ones, despite the initial permeation decline. Importantly, for blood oxygenation, the designed membranes after aging show fast O2 and CO2 exchange processes with rates up to 28-17 and 97-47 mL m-2 min-1, respectively, accompanied with no detectable thrombus and plasma leakage. We envisage that the biomimetic decoration of nanoporous membranes provide a feasible route to achieve great biocompatibility and transport capability for various applications.
Collapse
Affiliation(s)
- Xinxi Huang
- School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Kaier Wu
- School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Wanbin Li
- School of Environment, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
5
|
Pan C, Xu R, Chen J, Zhang Q, Deng L, Hong Q. A CO-releasing coating based on carboxymethyl chitosan-functionalized graphene oxide for improving the anticorrosion and biocompatibility of magnesium alloy stent materials. Int J Biol Macromol 2024; 271:132487. [PMID: 38768910 DOI: 10.1016/j.ijbiomac.2024.132487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Due to its biofunctions similar to NO, the CO gas signaling molecule has gradually shown great potential in cardiovascular biomaterials for regulating the in vivo performances after the implantation and has received increasing attention. To construct a bioactive surface with CO-releasing properties on the surface of magnesium-based alloy to augment the anticorrosion and biocompatibility, graphene oxide (GO) was firstly modified using carboxymethyl chitosan (CS), and then CO-releasing molecules (CORM401) were introduced to synthesize a novel biocompatible nanomaterial (GOCS-CO) that can release CO in the physiological environments. The GOCS-CO was further immobilized on the magnesium alloy surface modified by polydopamine coating with Zn2+ (PDA/Zn) to create a bioactive surface capable of releasing CO in the physiological environment. The outcomes showed that the CO-releasing coating can not only significantly enhance the anticorrosion and abate the corrosion degradation rate of the magnesium alloy in a simulated physiological environment, but also endow it with good hydrophilicity and a certain ability to adsorb albumin selectively. Owing to the significant enhancement of anticorrosion and hydrophilicity, coupled with the bioactivity of GOCS, the modified sample not only showed excellent ability to prevent platelet adhesion and activation and reduce hemolysis rate but also can promote endothelial cell (EC) adhesion, proliferation as well as the expression of nitric oxide (NO) and vascular endothelial growth factor (VEGF). In the case of CO release, the hemocompatibility and EC growth behaviors were further significantly improved, suggesting that CO molecules released from the surface can significantly improve the hemocompatibility and EC growth. Consequently, the present study provides a novel surface modification method that can simultaneously augment the anticorrosion and biocompatibility of magnesium-based alloys, which will strongly promote the research and application of CO-releasing bioactive coatings for surface functionalization of cardiovascular biomaterials and devices.
Collapse
Affiliation(s)
- Changjiang Pan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China.
| | - Ruiting Xu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Linhong Deng
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
6
|
Das A, Mehrotra S, Kumar A. Advances in Fabrication Technologies for the Development of Next-Generation Cardiovascular Stents. J Funct Biomater 2023; 14:544. [PMID: 37998113 PMCID: PMC10672426 DOI: 10.3390/jfb14110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Coronary artery disease is the most prevalent cardiovascular disease, claiming millions of lives annually around the world. The current treatment includes surgically inserting a tubular construct, called a stent, inside arteries to restore blood flow. However, due to lack of patient-specific design, the commercial products cannot be used with different vessel anatomies. In this review, we have summarized the drawbacks in existing commercial metal stents which face problems of restenosis and inflammatory responses, owing to the development of neointimal hyperplasia. Further, we have highlighted the fabrication of stents using biodegradable polymers, which can circumvent most of the existing limitations. In this regard, we elaborated on the utilization of new fabrication methodologies based on additive manufacturing such as three-dimensional printing to design patient-specific stents. Finally, we have discussed the functionalization of these stent surfaces with suitable bioactive molecules which can prove to enhance their properties in preventing thrombosis and better healing of injured blood vessel lining.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
7
|
Zhang Y, Fardous J, Inoue Y, Doi R, Obata A, Sakai Y, Aishima S, Ijima H. Subcutaneous angiogenesis induced by transdermal delivery of gel-in-oil nanogel dispersion. BIOMATERIALS ADVANCES 2023; 154:213628. [PMID: 37769531 DOI: 10.1016/j.bioadv.2023.213628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Subcutaneous transplantation aims to enhance the growth and functionality of transplanted cells for therapeutic outcomes in tissue engineering. However, the limited subcutaneous vascular network poses a challenge. Conventional methods involve co-transplantation with endothelial cells or angiogenic scaffold implantation, but they have drawbacks like tissue inflammation, compromised endothelial cell functionality, and the risk of repeated scaffold transplantation. Effective techniques are needed to overcome these challenges. This study explores the potential of G/O-NGD, a gel-in-oil nanogel dispersion, as a transdermal carrier of proliferative factors to promote angiogenesis in subcutaneous graft beds before cell transplantation. We observed robust subcutaneous angiogenesis by delivering varying amounts of bFGF using the G/O-NGD emulsion. Quantitative analysis of several parameters confirmed the efficacy of this method for building a subcutaneous vascular network. G/O-NGD is a biodegradable material that facilitates localized transdermal delivery of bFGF while maintaining its activity. The findings of this study have significant implications in both medical and industrial fields.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jannatul Fardous
- Department of Pharmacy, Faculty of Science, Comilla University, Cumilla 3506, Bangladesh
| | - Yuuta Inoue
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryota Doi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Asami Obata
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Sakai
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinichi Aishima
- Department of Scientific Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
8
|
Liu X, Wang C, Du M, Dou J, Yang J, Shen J, Yuan J. Nitric oxide releasing poly(vinyl alcohol)/S-nitrosated keratin film as a potential vascular graft. J Biomed Mater Res B Appl Biomater 2023; 111:1015-1023. [PMID: 36462186 DOI: 10.1002/jbm.b.35210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Nitric oxide (NO) releasing vascular graft is promising due to its merits of thromboembolism reduction and endothelialization promotion. In this study, keratin-based NO donor of S-nitrosated keratin (KSNO) was blended with poly(vinyl alcohol) (PVA) and further crosslinked with sodium trimetaphosphate (STMP) to afford PVA/KSNO biocomposite films. These films could release NO sustainably for up to 10 days, resulting in the promotion of HUVECs growth and the inhibition of HUASMCs growth. In addition, these films displayed good blood compatibility and antibacterial activity. Taken together, these films have potential applications in vascular grafts.
Collapse
Affiliation(s)
- Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chenshu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Mingyu Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jinyu Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Wang Z, Ohtsu N, Tate K, Kojima Y, Saifurrahman H, Ohta M. Migration of endothelial cells on the surface of anodized Ni-Ti stent strut. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1149594. [PMID: 37092024 PMCID: PMC10113440 DOI: 10.3389/fmedt.2023.1149594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundStent is widely regarded as the main treatment for curing cardiovascular diseases such as stenosis. Previous research has revealed that the damage of endothelial cells (EC), i.e., the components of endothelium, during stent implantation, could lead to severe complications, such as restenosis. To prevent restenosis, enhancements have been made to surface biocompatibility to accelerate the stent endothelialization process. Anodization on the Ni-Ti is a simple and efficient surface modification method to improve the biocompatibility of the Ni-Ti stent surfaces by enhancing the surface hydrophilicity, leading to an increase in the EC activities. The EC activity is known to be affected by the blood flow. Flow change by stent structure may result in EC dysfunctions, thereby leading to restenosis. It is thus essential to investigate the EC activities resulting from the anodization on the Ni-Ti surface under flow conditions.ObjectiveTo study the influence of the endothelialization process on the Ni-Ti stent surface through anodization. The EC attachment and morphology on the anodized stent strut were observed under both with and without the flow conditions.MethodA parallel plate flow chamber was designed to generate a constant wall shear stress (WSS) to study the flow effect on the EC behavior. The hydrophilicity of the Ni-Ti stent strut surface was enhanced by a TiO2 layer fabricated via anodization. The EC distribution on the surface of the anodized nitinol stent strut was observed after 24 h of static (without flow) and flow exposure (with flow) experiment.ResultsUnder the static condition, the EC density on the surface of the anodized Ni-Ti stent strut was higher compared with the control. Under the flow condition, the enhancement of the EC density on the surface of the stent strut with anodization was reduced. The EC demonstrates a long and thin spindle-shaped morphology under the flow condition.ConclusionUnlike the static condition, the EC is demonstrating a long and thin morphology in response to the flow under the flow condition. By improving the surface hydrophilicity, the anodization could enhance the EC migration onto the strut surface, and subsequently, accelerate the Ni-Ti stent endothelialization process. The improvement of the surface hydrophilicity is lower under the flow conditions when compared with the static conditions.
Collapse
Affiliation(s)
- Zi Wang
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Naofumi Ohtsu
- Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
- Correspondence: Makoto Ohta Naofumi Ohtsu
| | - Kasumi Tate
- Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Yukiko Kojima
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hanif Saifurrahman
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Makoto Ohta
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Correspondence: Makoto Ohta Naofumi Ohtsu
| |
Collapse
|
10
|
Bortolan CC, Copes F, Shekargoftar M, Sales VDOF, Paternoster C, Campanelli LC, Giguère N, Mantovani D. Electrochemical and in vitro biological behaviors of a Ti-Mo-Fe alloy specifically designed for stent applications. BIOMATERIALS AND BIOSYSTEMS 2023. [DOI: 10.1016/j.bbiosy.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
11
|
Zhao Y, Wang H, Zhao W, Luo J, Zhao X, Zhang H. Bioinspired Self-Adhesive Lubricated Coating for the Surface Functionalization of Implanted Biomedical Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15178-15189. [PMID: 36468673 DOI: 10.1021/acs.langmuir.2c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lubrication property of implanted biomedical devices is of great significance as it affects the clinical performance owing to direct contact with soft tissues. In the present study, a bioinspired copolymer with dual functions of both self-adhesion and lubrication was synthesized with N-(3-aminopropyl) methacrylamide hydrochloride, gallic acid, and 3-[dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl] azaniumyl] propane-1-sulfonate by free radical polymerization and a carbodiimide coupling reaction. The copolymer was further modified on the surface of poly(vinyl chloride) (PVC) samples using a simple dip-coating method and was characterized by different evaluations including Fourier transform infrared spectroscopy, the water contact angle, X-ray photoelectron spectroscopy, optical interferometry, and atomic force microscopy. Additionally, the results of a series of tribological tests at the microscopic level demonstrated that the friction coefficient of the copolymer-coated PVC samples was significantly reduced compared to that of the bare PVC samples. Furthermore, the pull out test at the macroscopic level was performed using copolymer-coated PVC catheters on a poly(dimethylsiloxane)-based test rig, and the result showed that the copolymer-coated PVC catheters were endowed with a greatly decreased and much more stable pull out force compared with that of the bare PVC catheters. In conclusion, the bioinspired self-adhesive lubricated coating developed herein may be applied as a universal and versatile method to enhance the lubrication performance of implanted biomedical devices.
Collapse
Affiliation(s)
- Yanlong Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Haimang Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Weiwei Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Luo
- Beijing Research Institute of Automation for Machinery Industry Co., Ltd., Beijing 100120, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Wang H, Wang J, Feng J, Rao Y, Xu Z, Zu J, Wang H, Zhang Z, Chen H. Artificial Extracellular Matrix Composed of Heparin-Mimicking Polymers for Efficient Anticoagulation and Promotion of Endothelial Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50142-50151. [PMID: 36302722 DOI: 10.1021/acsami.2c13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heparin-mimicking polymers have emerged as an alternative to heparin to construct effective and safe anticoagulant surfaces. However, the present heparin-mimicking polymers are usually limited to the combinations of glucose and sulfonic acid units, and the structure origin of their anticoagulant properties remains vague. Inspired by the structure of natural heparin, we synthesized a series of novel heparin-mimicking polymers (named GSAs) composed of three units, glucose, sulfonic acid, and carboxylic acid. Then, we constructed artificial extracellular matrices composed of GSAs and two typical cationic polymers, polyethyleneimine and chitosan, to investigate the anticoagulation and endothelialization of GSAs. By changing the ratio of the three units, their functions in the matrices were studied systematically. We found that an increase in the sulfonic acid content enhanced surface anticoagulant activity, an increase in glucose and sulfonic acid content promoted the proliferation of human umbilical vein vascular endothelial cells, and an increase in the carboxylic acid content inhibited the adherence of human umbilical vein vascular smooth muscle cells. This work uncovers the important role of the GSAs structure to the anticoagulation properties, which sheds new light on the design and preparation of heparin-mimicking polymers for practical engineering applications.
Collapse
Affiliation(s)
- Huanhuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Jinghong Wang
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| | - Jian Feng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - ZiYing Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - JunYi Zu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Huaguang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| |
Collapse
|
13
|
Zhao Y, Sun Y, Hang R, Yao R, Zhang Y, Huang D, Yao X, Bai L, Hang R. Biocompatible silane adhesion layer on titanium implants improves angiogenesis and osteogenesis. BIOMATERIALS ADVANCES 2022; 139:213033. [PMID: 35882124 DOI: 10.1016/j.bioadv.2022.213033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Silane adhesion layer strategy has been widely used to covalently graft biomolecules to the titanium implant surface, thereby conferring the implant bioactivity to ameliorate osseointegration. However, few researchers pay attention to the effects of silanization parameters on biocompatibility and biofunctionality of the silane adhesion layers. Accordingly, the present study successfully fabricated the silane adhesion layers with different thickness, intactness, and surface morphologies by introducing 3-aminopropyltriethoxysilane on the alkali-treated titanium surface in time-varied processing of silanization. The regulatory effects of the silane adhesion layers on angiogenesis and osteogenesis were assessed in vitro. Results showed that the prolonged silanization processing time increased the thickness and intactness of the silane adhesion layer and significantly improved its biocompatibility. Notably, the silane adhesion layer prepared after 12 h of silanization exhibited a brain-like surface morphology and benefited the adhesion and proliferation of endothelial cells (ECs) and osteoblasts (OBs). Moreover, the layer promoted angiogenesis via stimulating vascular endothelial growth factor (VEGF) secretion and nitric oxide (NO) production of ECs. Simultaneously, it improved osteogenesis by enhancing alkaline phosphatase (ALP) activity, collagen secretion, and extracellular matrix mineralization of OBs. This work systematically investigated the biocompatibility and biofunctionality of the modified silane adhesion layers, thus providing valuable references for their application in covalently grafting biomolecules on the titanium implant surface.
Collapse
Affiliation(s)
- Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yonghua Sun
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Runhua Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444 China; Engineering Research Center for Biomedical Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
14
|
Tailoring ZE21B Alloy with Nature-Inspired Extracellular Matrix Secreted by Micro-Patterned Smooth Muscle Cells and Endothelial Cells to Promote Surface Biocompatibility. Int J Mol Sci 2022; 23:ijms23063180. [PMID: 35328601 PMCID: PMC8950948 DOI: 10.3390/ijms23063180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Delayed surface endothelialization is a bottleneck that restricts the further application of cardiovascular stents. It has been reported that the nature-inspired extracellular matrix (ECM) secreted by the hyaluronic acid (HA) micro-patterned smooth muscle cells (SMC) and endothelial cells (EC) can significantly promote surface endothelialization. However, this ECM coating obtained by decellularized method (dECM) is difficult to obtain directly on the surface of degradable magnesium (Mg) alloy. In this study, the method of obtaining bionic dECM by micro-patterning SMC/EC was further improved, and the nature-inspired ECM was prepared onto the Mg-Zn-Y-Nd (ZE21B) alloy surface by self-assembly. The results showed that the ECM coating not only improved surface endothelialization of ZE21B alloy, but also presented better blood compatibility, anti-hyperplasia, and anti-inflammation functions. The innovation and significance of the study is to overcome the disadvantage of traditional dECM coating and further expand the application of dECM coating to the surface of degradable materials and materials with different shapes.
Collapse
|
15
|
Kwack KH, Ji JY, Park B, Heo JS. Fucoidan ( Undaria pinnatifida)/Polydopamine Composite-Modified Surface Promotes Osteogenic Potential of Periodontal Ligament Stem Cells. Mar Drugs 2022; 20:181. [PMID: 35323480 PMCID: PMC8953107 DOI: 10.3390/md20030181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Fucoidan, a marine-sulfated polysaccharide derived from brown algae, has been recently spotlighted as a natural biomaterial for use in bone formation and regeneration. Current research explores the osteoinductive and osteoconductive properties of fucoidan-based composites for bone tissue engineering applications. The utility of fucoidan in a bone tissue regeneration environment necessitates a better understanding of how fucoidan regulates osteogenic processes at the molecular level. Therefore, this study designed a fucoidan and polydopamine (PDA) composite-based film for use in a culture platform for periodontal ligament stem cells (PDLSCs) and explored the prominent molecular pathways induced during osteogenic differentiation of PDLSCs through transcriptome profiling. Characterization of the fucoidan/PDA-coated culture polystyrene surface was assessed by scanning electron microscopy and X-ray photoelectron spectroscopy. The osteogenic differentiation of the PDLSCs cultured on the fucoidan/PDA composite was examined through alkaline phosphatase activity, intracellular calcium levels, matrix mineralization assay, and analysis of the mRNA and protein expression of osteogenic markers. RNA sequencing was performed to identify significantly enriched and associated molecular networks. The culture of PDLSCs on the fucoidan/PDA composite demonstrated higher osteogenic potency than that on the control surface. Differentially expressed genes (DEGs) (n = 348) were identified during fucoidan/PDA-induced osteogenic differentiation by RNA sequencing. The signaling pathways enriched in the DEGs include regulation of the actin cytoskeleton and Ras-related protein 1 and phosphatidylinositol signaling. These pathways represent cell adhesion and cytoskeleton organization functions that are significantly involved in the osteogenic process. These results suggest that a fucoidan/PDA composite promotes the osteogenic potential of PDLSCs by activation of critical molecular pathways.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, New York, NY 14214, USA;
| | - Ju Young Ji
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Korea; (J.Y.J.); (B.P.)
| | - Borami Park
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Korea; (J.Y.J.); (B.P.)
| | - Jung Sun Heo
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Korea; (J.Y.J.); (B.P.)
| |
Collapse
|
16
|
Hou K, Zhang Y, Bao M, Xin C, Wei Z, Lin G, Wang Z. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3825-3837. [PMID: 35025195 DOI: 10.1021/acsami.1c21331] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by nature, innovative devices have been made to imitate the morphology and functions of natural red blood cells (RBCs). Here, we report a red blood cell-mimetic micromotor (RBCM), which was fabricated based on a layer-by-layer assembly method and precisely controlled by an external rotating uniform magnetic field. The main framework of the RBCM was constructed by the natural protein zein and finally camouflaged with the RBC membrane. Functional cargos such as Fe3O4 nanoparticles and the chemotherapeutic agent doxorubicin were loaded within the wall part of the RBCM for tumor therapy. Due to the massive loading of Fe3O4 nanoparticles, the RBCM can be precisely navigated by an external rotating uniform magnetic field and be used as a magnetic resonance imaging contrast agent for tumor imaging. The RBCM has been proven to be biocompatible, biodegradable, magnetically manipulated, and imageable, which are key requisites to take micromotors from the chalkboard to clinics. We expect the RBC-inspired biohybrid device to achieve wide potential applications.
Collapse
Affiliation(s)
- Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Yandong Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Meili Bao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Zengyan Wei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Guochang Lin
- School of Astronautics, Harbin Institute of Technology, 150001 Harbin, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
17
|
Liu S, Zhi J, Chen Y, Song Z, Wang L, Tang C, Li S, Lai X, Xu N, Liu T. Biomimetic modification on the microporous surface of cardiovascular materials to accelerate endothelialization and regulate intimal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112666. [DOI: 10.1016/j.msec.2022.112666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
18
|
Fibronectin-Enriched Biomaterials, Biofunctionalization, and Proactivity: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern innovation in reconstructive medicine implies the proposition of material-based strategies suitable for tissue repair and regeneration. The development of such systems necessitates the design of advanced materials and the control of their interactions with their surrounding cellular and molecular microenvironments. Biomaterials must actively engage cellular matter to direct and modulate biological responses at implant sites and beyond. Indeed, it is essential that a true dialogue exists between the implanted device and the cells. Biomaterial engineering implies the knowledge and control of cell fate considering the globality of the adhesion process, from initial cell attachment to differentiation. The extracellular matrix (ECM) represents a complex microenvironment able to meet these essential needs to establish a relationship between the material and the contacting cells. The ECM exhibits specific physical, chemical, and biochemical characteristics. Considering the complexity, heterogeneity, and versatility of ECM actors, fibronectin (Fn) has emerged among the ECM protagonists as the most pertinent representative key actor. The following review focuses on and synthesizes the research supporting the potential to use Fn in biomaterial functionalization to mimic the ECM and enhance cell–material interactions.
Collapse
|
19
|
Kimicata M, Mahadik B, Fisher JP. Long-Term Sustained Drug Delivery via 3D Printed Masks for the Development of a Heparin-Loaded Interlayer in Vascular Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50812-50822. [PMID: 34670077 DOI: 10.1021/acsami.1c16938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current approaches in small-diameter vascular grafts for coronary artery bypass surgeries fail to address physiological variations along the graft that contribute to thrombus formation and ultimately graft failure. We present an innovative interlayer drug delivery system that can be utilized for the sustained delivery of heparin through a graft with a high degree of temporal and spatial control. A heparin-loaded gelatin methacrylate (gelMA) interlayer sits within a biohybrid composed of decellularized bovine pericardium (dECM) and poly(propylene fumarate) (PPF), and its UV crosslinking is controlled via three-dimensional (3D) printed shadow masks. The masks can be readily designed to modulate the incident light intensity on the graft, enabling us to control the resultant gelMA crosslinking and properties. A high heparin loading efficiency was obtained in gelMA and was independent of crosslinking. We achieved sustained heparin release over the course of 2 weeks within the biohybrid material using the 3D printed mask patterns. High doses of heparin were observed to have detrimental effects on endothelial cell function. However, when exposed to heparin in a slower, more sustained manner consistent with the masks, endothelial cells behave similarly to untreated cells. Further, slower release profiles cause significantly more release of tissue factor pathway inhibitor, an anticoagulant, than a faster release profile. The heparin-loaded gelMA interlayer we have developed is a useful tool for the temporal and spatial control of heparin release that supports endothelial function and promotes an antithrombotic environment.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
- NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Bhushan Mahadik
- NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
| | - John P Fisher
- NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Zhu Q, Ye P, Guo F, Zhu Y, Nan W, Chang Z. A heparin-functionalized covered stent prepared by plasma technology. J Biomater Appl 2021; 36:1243-1253. [PMID: 34672223 DOI: 10.1177/08853282211051871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the surface of the covered stent was treated by plasma technology to introduce amino functional groups, and glutaraldehyde and heparin were successfully grafted to prepare a heparin-functionalized covered stent (HPLCS). The preparation parameters such as plasma treatment power, plasma treatment time, concentration of glutaraldehyde and heparin, and pH of heparin solution were studied in detail. The functionalized heparin covered stent can make the titer of heparin reach 1.23 ± 0.03 IU/cm2. In animal experiments, after implantation in pigs for 6 months, the titer of heparin can still reach 0.93 ± 0.05 IU/cm2. This work provides a good method for preparing heparin covered stent.
Collapse
Affiliation(s)
- Qing Zhu
- 47863University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Ye
- 47863University of Shanghai for Science and Technology, Shanghai, China
| | - Fang Guo
- 47863University of Shanghai for Science and Technology, Shanghai, China
| | - Yimen Zhu
- 47863University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbin Nan
- 47863University of Shanghai for Science and Technology, Shanghai, China
| | - Zhaohua Chang
- 47863University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Manivasagam VK, Sabino RM, Kantam P, Popat KC. Surface modification strategies to improve titanium hemocompatibility: a comprehensive review. MATERIALS ADVANCES 2021; 2:5824-5842. [PMID: 34671743 PMCID: PMC8451052 DOI: 10.1039/d1ma00367d] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 05/31/2023]
Abstract
Titanium and its alloys are widely used in different biomaterial applications due to their remarkable mechanical properties and bio-inertness. However, titanium-based materials still face some challenges, with an emphasis on hemocompatibility. Blood-contacting devices such as stents, heart valves, and circulatory devices are prone to thrombus formation, restenosis, and inflammation due to inappropriate blood-implant surface interactions. After implantation, when blood encounters these implant surfaces, a series of reactions takes place, such as protein adsorption, platelet adhesion and activation, and white blood cell complex formation as a defense mechanism. Currently, patients are prescribed anticoagulant drugs to prevent blood clotting, but these drugs can weaken their immune system and cause profound bleeding during injury. Extensive research has been done to modify the surface properties of titanium to enhance its hemocompatibility. Results have shown that the modification of surface morphology, roughness, and chemistry has been effective in reducing thrombus formation. The main focus of this review is to analyze and understand the different modification techniques on titanium-based surfaces to enhance hemocompatibility and, consequently, recognize the unresolved challenges and propose scopes for future research.
Collapse
Affiliation(s)
| | - Roberta M Sabino
- School of Advanced Materials Discovery, Colorado State University Fort Collins CO USA
| | - Prem Kantam
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
- School of Advanced Materials Discovery, Colorado State University Fort Collins CO USA
- School of Biomedical Engineering, Colorado State University Fort Collins CO USA
| |
Collapse
|
22
|
Zhou S, Xu X, Ma N, Jung F, Lendlein A. Influence of sterilization conditions on sulfate-functionalized polyGGE. Clin Hemorheol Microcirc 2021; 79:597-608. [PMID: 34420943 DOI: 10.3233/ch-211241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sulfated biomolecules are known to influence numerous biological processes in all living organisms. Particularly, they contribute to prevent and inhibit the hypercoagulation condition. The failure of polymeric implants and blood contacting devices is often related to hypercoagulation and microbial contamination. Here, bioactive sulfated biomacromolecules are mimicked by sulfation of poly(glycerol glycidyl ether) (polyGGE) films. Autoclaving, gamma-ray irradiation and ethylene oxide (EtO) gas sterilization techniques were applied to functionalized materials. The sulfate group density and hydrophilicity of sulfated polymers were decreased while chain mobility and thermal degradation were enhanced post autoclaving when compared to those after EtO sterilization. These results suggest that a quality control after sterilization is mandatory to ensure the amount and functionality of functionalized groups are retained.
Collapse
Affiliation(s)
- Shuo Zhou
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Xun Xu
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Nan Ma
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Friedrich Jung
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Wang X, Lei X, Yu Y, Miao S, Tang J, Fu Y, Ye K, Shen Y, Shi J, Wu H, Zhu Y, Yu L, Pei G, Bi L, Ding J. Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model. Biomater Sci 2021; 9:5192-5208. [PMID: 34159966 DOI: 10.1039/d1bm00762a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Percutaneous or transcutaneous devices are important and unique, and the corresponding biological sealing at the skin-implant interface is the key to their long-term success. Herein, we investigated the surface modification to enhance biological sealing, using a metal sheet and screw bonded by biomacromolecule fibrinogen mediated via pre-deposited synthetic macromolecule polydopamine (PDA) as a demonstration. We examined the effects of a Ti-6Al-4V titanium alloy modified with fibrinogen (Ti-Fg), PDA (Ti-PDA) or their combination (Ti-PDA-Fg) on the biological sealing and integration with skin and bone tissues. Human epidermal keratinocytes (HaCaT), human foreskin fibroblasts (HFF) and preosteoblasts (MC3T3-E1), which are closely related to percutaneous implants, exhibited better adhesion and spreading on all the three modified sheets compared with the unmodified alloy. After three-week subcutaneous implantation in Sprague-Dawley (SD) rats, the Ti-PDA-Fg sheets could significantly attenuate the soft tissue response and promote angiogenesis compared with other groups. Furthermore, in the model of percutaneous tibial implantation in SD rats, the Ti-PDA-Fg screws dramatically inhibited epithelial downgrowth and promoted new bone formation. Hence, the covalent immobilization of fibrinogen through the precoating of PDA is promising for enhanced biological sealing and osseointegration of metal implants with soft and hard tissues, which is critical for an orthopedic percutaneous medical device.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xing Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China. and Department of Orthopedic Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Hao Wu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China. and Southern University of Science and Technology Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
24
|
Zhang J, Li G, Li D, Zhang X, Li Q, Liu Z, Fang Y, Zhang S, Man J. In Vivo Blood-Repellent Performance of a Controllable Facile-Generated Superhydrophobic Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29021-29033. [PMID: 34102844 DOI: 10.1021/acsami.0c21058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabrication of a blood-repellent surface is essential for implantable or interventional medical devices to avoid thrombosis which can induce several serious complications. In this research, a novel micropatterned surface was fabricated via a facile and cost-effective method, and then, the in vitro and in vivo blood-repellent performances of the controllable superhydrophobic surface were systematically evaluated. First, a facile and cost-effective strategy was proposed to fabricate a controllable superhydrophobic surface on a medically pure titanium substrate using an ultraviolet laser process, ultrasonic acid treatment, and chemical modification. Second, the superhydrophobicity, durability, stability, and corrosion resistance of the superhydrophobic surface were confirmed with advanced testing techniques, which display a high contact angle, low adhesion to water and blood, and excellent resistant element precipitation. Third, the platelet-rich plasma and whole blood were applied to evaluate the hemocompatibility of the superhydrophobic surface by means of an in vitro experiment, and no blood cell activation or aggregation was observed on the superhydrophobic surface. Finally, hollow tubes with an inner superhydrophobic surface were implanted into the left carotid artery of rabbits for 2 weeks to verify the biocompatibility in vivo. The superhydrophobic surface could effectively eliminate blood cell adhesion and thrombosis. No obvious inflammation or inordinate proliferation was found by histological analysis. This research provides a facile and cost-effective strategy to prepare a blood-repellent surface, which may have promising applications in implanted biomedical devices.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Guiling Li
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Donghai Li
- Advanced Medical Research Institute, Shandong University, Jinan 250012, P. R. China
| | - Xinrui Zhang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Quhao Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Zehui Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Yujie Fang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Song Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
25
|
Patel H. Blood biocompatibility enhancement of biomaterials by heparin immobilization: a review. Blood Coagul Fibrinolysis 2021; 32:237-247. [PMID: 33443929 DOI: 10.1097/mbc.0000000000001011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood contacting materials are concerned with biocompatibility including thrombus formation, decrease blood coagulation time, hematology, activation of complement system, platelet aggression. Interestingly, recent research suggests that biocompatibility is increasing by incorporating various materials including heparin using different methods. Basic of heparin including uses and complications was mentioned, in which burst release of heparin is major issue. To minimize the problem of biocompatibility and unpredictable heparin release, present review article potentially reviews the reported work and investigates the various immobilization methods of heparin onto biomaterials, such as polymers, metals, and alloys. Detailed explanation of different immobilization methods through different intermediates, activation, incubation method, plasma treatment, irradiations and other methods are also discussed, in which immobilization through intermediates is the most exploitable method. In addition to biocompatibility, other required properties of biomaterials like mechanical and corrosion resistance properties that increase by attachment of heparin are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Himanshu Patel
- Department of Applied Science and Humanities, Pacific School of Engineering, Surat, Gujarat
| |
Collapse
|
26
|
Ma J, Li TF, Yuan HF. Novel Copper Nanoparticles Intercalated Polyurethane Heparin/Poly-L-Lysine Chelates Coated Stents: Viability Study for Coronary Vascular Cells and Aneurysms Treatments. J Biomed Nanotechnol 2021; 17:216-229. [PMID: 33785093 DOI: 10.1166/jbn.2021.3023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Continuous delayed endothelium regeneration and continues thrombosis development designate a task for coronary artery stent rehabilitation. To progress the direct vascular cell behavior, aneurysms treatments and compatibility of cardiovascular implants novel copper intercalated polyurethane heparin/poly-L-lysine chelates treated stent has established in this report. The functional group modifications, structural characteristics, and stability of the chelates have investigated for polyurethane heparin: poly-L-lysine, copper intercalated polyurethane heparin/poly-L-lysine coated stents. The FTIR results showed the copper intercalation at 446 cmr and the Cu 2s peak at 932 eV from XPS also indicated that the successful coating of copper, polyurethane heparin, poly-L-lysine. The relative surface geomorphology of the chelates displayed the uniform Cu coating consisting of multilayer poly-L-lysine on the substrate. The stability and biocompatibility studies indicated the significantly enhanced performance with clot the APTT and TT periods as clotting and cell proliferation assessments. This type of composite proposes a stage on a stent external area for discerning track of vascular cell performance and aneurysms treatments with low side effects.
Collapse
Affiliation(s)
- Ji Ma
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 45000, PR China
| | - Teng-Fei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 45000, PR China
| | - Hui-Feng Yuan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 45000, PR China
| |
Collapse
|
27
|
Kasapgil E, Badv M, Cantú CA, Rahmani S, Erbil HY, Anac Sakir I, Weitz JI, Hosseini-Doust Z, Didar TF. Polysiloxane Nanofilaments Infused with Silicone Oil Prevent Bacterial Adhesion and Suppress Thrombosis on Intranasal Splints. ACS Biomater Sci Eng 2021; 7:541-552. [PMID: 33470781 DOI: 10.1021/acsbiomaterials.0c01487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Like all biofluid-contacting medical devices, intranasal splints are highly prone to bacterial adhesion and clot formation. Despite their widespread use and the numerous complications associated with infected splints, limited success has been achieved in advancing their safety and surface biocompatibility, and, to date, no surface-coating strategy has been proposed to simultaneously enhance the antithrombogenicity and bacterial repellency of intranasal splints. Herein, we report an efficient, highly stable lubricant-infused coating for intranasal splints to render their surfaces antithrombogenic and repellent toward bacterial cells. Lubricant-infused intranasal splints were prepared by creating superhydrophobic polysiloxane nanofilament (PSnF) coatings using surface-initiated polymerization of n-propyltrichlorosilane (n-PTCS) and further infiltrating them with a silicone oil lubricant. Compared with commercially available intranasal splints, lubricant-infused, PSnF-coated splints significantly attenuated plasma and blood clot formation and prevented bacterial adhesion and biofilm formation for up to 7 days, the typical duration for which intranasal splints are kept. We further demonstrated that the performance of our engineered biointerface is independent of the underlying substrate and could be used to enhance the hemocompatibility and repellency properties of other medical implants such as medical-grade catheters.
Collapse
Affiliation(s)
- Esra Kasapgil
- Department of Materials Science and Engineering, Gebze Technical University, TR-41400 Gebze, Kocaeli, Turkey.,School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - Maryam Badv
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Mechanical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - Claudia Alonso Cantú
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - Sara Rahmani
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - H Yildirim Erbil
- Department of Chemical Engineering, Gebze Technical University, TR-41400 Gebze, Kocaeli, Turkey
| | - Ilke Anac Sakir
- Department of Materials Science and Engineering, Gebze Technical University, TR-41400 Gebze, Kocaeli, Turkey
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Medicine, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Thrombosis & Atherosclerosis Research Institute (TaARI), 237 Barton Street East, Hamilton, Ontario, Canada L8L 2X2
| | - Zeinab Hosseini-Doust
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Institute for Infectious Disease Research (IIDR), McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Mechanical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Institute for Infectious Disease Research (IIDR), McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| |
Collapse
|
28
|
Zhang X, Liang Y, Ni C, Li Y. Anti-biofouling microfiltration membranes based on 1-vinyl-3-butylimidazolium chloride grafted PVDF with improved bactericidal properties and vitro biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111411. [PMID: 33255013 DOI: 10.1016/j.msec.2020.111411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022]
Abstract
Polyvinylidene fluoride (PVDF) porous membranes have been widely used as the filtration and separation industry. Herein, novel microfiltration membranes based on 1-vinyl-3-butylimidazolium chloride ([VBIm][Cl]) grafted PVDF (PVDF-g-[VBIm][Cl]) were prepared via the non-solvent induced phase separation method. The chemical composition and microstructure of PVDF-g-[VBIm][Cl] membranes were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Scanning electron microscopy and Water contact angle measurements. The results showed that an increasing in [VBIm][Cl] grafting content leads to the increasing hydrophilicity and wetting capacity of the PVDF-g-[VBIm][Cl] porous membranes. The anti-biofouling properties of membranes were evaluated by measuring the water flux before and after Bovine serum albumin solution treatment. It was found that the modified membranes presented a good anti-biofouling property. The degree of irreversible flux loss caused by protein adsorption dramatically reduced from 42.1% to 2.9% compared with the pristine hydrophobic PVDF membranes. Meanwhile, these PVDF-g-[VBIm][Cl] membranes also exhibited excellent bactericidal properties against both gram-positive bacteria Staphylococcus saureus and gram-negative bacteria Escherichia coli, while PVDF membranes did not show any antibacterial activity. The vitro biocompatibility of the modified membranes was studied by hemolysis analysis, the platelet adhesion observation, thromboelastography assay and cytotoxicity assay. It was found that the incorporation of [VBIm][Cl] into PVDF membranes has less effect on the hemolysis and cytotoxicity of PVDF membranes. Furthermore, both hydrophilicity and charges of the membrane surface played important role in the adhesion and activation of platelet cells, which consequently affected the clotting process of whole blood. The membrane with appropriate [VBIm][Cl] grafting ratio (2.94 wt.%) exhibited good hemocompatibility with less blood coagulation effect. As an ultrafiltration membrane, PVDF-g-[VBIm][Cl] membranes have potential applications in the biomedical field due to the improved antibacterial property and biocompatibility.
Collapse
Affiliation(s)
- Xiaowei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yuanyuan Liang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| | - Chunjun Ni
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| |
Collapse
|
29
|
The co-deposition coating of collagen IV and laminin on hyaluronic acid pattern for better biocompatibility on cardiovascular biomaterials. Colloids Surf B Biointerfaces 2020; 196:111307. [DOI: 10.1016/j.colsurfb.2020.111307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/05/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
|
30
|
Wen C, Zhang J, Li Y, Zheng W, Liu M, Zhu Y, Sui X, Zhang X, Han Q, Lin Y, Yang J, Zhang L. A zwitterionic hydrogel coated titanium surface with high-efficiency endothelial cell selectivity for rapid re-endothelialization. Biomater Sci 2020; 8:5441-5451. [PMID: 32996913 DOI: 10.1039/d0bm00671h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coronary stent implantation is an effective procedure for percutaneous coronary intervention treatment. However, its long-term safety and efficacy are still hindered by the in-stent restenosis and late thrombus formation. Herein, an anti-biofouling and endothelial cell selective zwitterionic hydrogel coating was developed to simultaneously enhance the nonspecific resistance and rapid re-endothelialization of the titanium surface. An endothelial cell selective peptide, REDV, could be simply conjugated on the zwitterionic carboxybetaine (CB) hydrogel to prepare the REDV/CB coating. It was found that the REDV/CB hydrogel layer maintained antifouling properties, which could inhibit the protein adsorption, bacterial adhesion, platelet activation and aggregation, and smooth muscle cell proliferation. More importantly, the co-culture study confirmed that the conjugated REVD peptide could specifically capture endothelial cells and promote their migration and proliferation, and simultaneously decrease the adhesion and proliferation of smooth muscle cells. Therefore, the antifouling and endothelial cell selective coating proposed in this work provides a promising strategy to develop an intravascular stent for promoted re-endothelialization and inhibited neointimal hyperplasia in clinical applications.
Collapse
Affiliation(s)
- Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zheng W, Liu M, Qi H, Wen C, Zhang C, Mi J, Zhou X, Zhang L, Fan D. Mussel-inspired triblock functional protein coating with endothelial cell selectivity for endothelialization. J Colloid Interface Sci 2020; 576:68-78. [DOI: 10.1016/j.jcis.2020.04.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
|
32
|
Badv M, Bayat F, Weitz JI, Didar TF. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020; 258:120291. [PMID: 32798745 DOI: 10.1016/j.biomaterials.2020.120291] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Device-associated clot formation and poor tissue integration are ongoing problems with permanent and temporary implantable medical devices. These complications lead to increased rates of mortality and morbidity and impose a burden on healthcare systems. In this review, we outline the current approaches for developing single and multi-functional surface coating techniques that aim to circumvent the limitations associated with existing blood-contacting medical devices. We focus on surface coatings that possess dual hemocompatibility and biofunctionality features and discuss their advantages and shortcomings to providing a biocompatible and biodynamic interface between the medical implant and blood. Lastly, we outline the newly developed surface modification techniques that use lubricant-infused coatings and discuss their unique potential and limitations in mitigating medical device-associated complications.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Thrombosis & Atherosclerosis Research Institute (TaARI), Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
33
|
Chen X, Chen D, Ai X, Hu R, Zhang H. A new method for the preparation of three-layer vascular stents: a preliminary study on the preparation of biomimetic three-layer vascular stents using a three-stage electrospun membrane. ACTA ACUST UNITED AC 2020; 15:055010. [PMID: 32392542 DOI: 10.1088/1748-605x/ab920a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is an urgent need to design a tissue-engineered vascular graft that exhibits good biocompatibility and sufficient mechanical strength to repair and facilitate regeneration of defective vascular tissue. It is generally accepted that multi-layer stents can be used to simulate the structure and function of natural blood vessels. Here, we developed a new three-layer tubular graft that is rolled from a single Poly(L-lactide-co-caprolactone) electrospun membrane. We used a new electrospinning technique to place three different structures on a single electrospun membrane such that the stent is comprised of three different layers. The inner layer is dense and suitable for endothelial cell growth, the middle layer is a parallel loose structure suitable for smooth muscle cell growth, and the outer layer is a parallel structure with sparse alternating texture suitable for both smooth muscle cell growth and structural support. The vascular stent has good tensile strength. At the same time, endothelial cells and smooth muscle cells readily proliferate on the material in vitro. In particular, smooth muscle cells grow in parallel on the middle and outer materials. In vivo, all layers of the vascular graft were infiltrated by cells within one week of subcutaneous implantation, indicative of favorable biocompatibility. After a week of subcutaneous implantation, the vascular stent was orthotopically transplanted into the abdominal aorta of Sprague Dawley rats. After ten weeks of transplantation, ultrasound imaging of the abdomen showed vascular patency. The vascular stent was endothelialized, smooth muscle cells readily proliferated, and a large amount of elastic fibers were formed. Therefore, our specially designed tri-layer vascular graft may be of significant benefit in vascular reconstruction.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | |
Collapse
|
34
|
Tailoring of cardiovascular stent material surface by immobilizing exosomes for better pro-endothelialization function. Colloids Surf B Biointerfaces 2020; 189:110831. [DOI: 10.1016/j.colsurfb.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023]
|
35
|
Characterization of carotid endothelial cell proliferation on Au, Au/GO, and Au/rGO surfaces by electrical impedance spectroscopy. Med Biol Eng Comput 2020; 58:1431-1443. [PMID: 32319031 DOI: 10.1007/s11517-020-02166-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
To the best of the authors' knowledge, testing the biocompatibility of graphene coatings can be considered as the first to demonstrate human carotid endothelial cell (HCtAEC) proliferation on Au, graphene oxide-coated Au (Au/GO), and reduced graphene oxide-coated Au (Au/rGO) surfaces. We hypothesized that stent material modified with graphene (G)-based coatings could be used as electrodes for electrical impedance spectroscopy (EIS) in monitoring cell cultures, i.e., endothelialization. Alamar Blue cell viability assay and cell staining and cell counting with optical images were performed. For EIS analysis, an EIS sensor consisting of Au surface electrodes was produced by the photolithographic technique. Surface characterizations were performed by considering scanning electron microscope (SEM) and water contact angle analyses. Results showed that GO and rGO coatings did not prevent neither the electrical measurements nor the cell proliferation and that rGO had a positive effect on HCtAEC proliferation. The rate of increase of impedance change from day 1 to day 10 was nearly fivefold for all electrode surfaces. Alamar Blue assay performed to monitor cell proliferation rates between groups, and rGO has shown the highest Alamar Blue reduction value of 43.65 ± 8.79%. Graphical abstract.
Collapse
|
36
|
Electrochemical quartz crystal microbalance with dissipation investigation of fibronectin adsorption dynamics driven by electrical stimulation onto a conducting and partially biodegradable copolymer. Biointerphases 2020; 15:021003. [PMID: 32197572 DOI: 10.1116/1.5144983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Functional surface coatings are a key option for biomedical applications, from polymeric supports for tissue engineering to smart matrices for controlled drug delivery. Therefore, the synthesis of new materials for biological applications and developments is promising. Hence, biocompatible and stimuli-responsive polymers are interesting materials, especially when they present conductive properties. PEDOT-co-PDLLA graft copolymer exhibits physicochemical and mechanical characteristics required for biomedical purposes, associated with electroactive, biocompatible, and partially biodegradable properties. Herein, the study of fibronectin (FN) adsorption onto PEDOT-co-PDLLA carried out by an electrochemical quartz crystal microbalance with dissipation is reported. The amount of FN adsorbed onto PEDOT-co-PDLLA was higher than that adsorbed onto the Au surface, with a significant increase when electrical stimulation was applied (either at +0.5 or -0.125 V). Additionally, FN binds to the copolymer interface in an unfolded conformation, which can promote better NIH-3T3 fibroblast cell adhesion and later cell development.
Collapse
|
37
|
Wang H, Qu X, Zhang Z, Lei M, Tan H, Bao C, Lin S, Zhu L, Kohn J, Liu C. Tag-Free Site-Specific BMP-2 Immobilization with Long-Acting Bioactivities via a Simple Sugar-Lectin Interaction. ACS Biomater Sci Eng 2020; 6:2219-2230. [PMID: 33455345 DOI: 10.1021/acsbiomaterials.9b01730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of a biomaterial matrix with biological properties is of great importance to developing functional materials for clinical use. However, the site-specific immobilization of growth factors to endow materials with bioactivities has been a challenge to date. Considering the wide existence of glycosylation in mammalian proteins or recombinant proteins, we establish a bioaffinity-based protein immobilization strategy (bioanchoring method) utilizing the native sugar-lectin interaction between concanavalin A (Con A) and the oligosaccharide chain on glycosylated bone morphogenetic protein-2 (GBMP-2). The interaction realizes the site-specific immobilization of GBMP-2 to a substrate modified with Con A while preserving its bioactivity in a sustained and highly efficient way, as evidenced by its enhanced ability to induce osteodifferentiation compared with that of the soluble GBMP-2. Moreover, the surface with Con A-bioanchored GBMP-2 can be reused to stimulate multiple batches of C2C12 cells to differentiate almost to the same degree. Even after 4 month storage at 4 °C in phosphate-buffered saline (PBS), the Con A-bioanchored GBMP-2 still maintains the bioactivity to stimulate the differentiation of C2C12 cells. Furthermore, the ectopic ossification test proves the in vivo bioactivity of bioanchored GBMP-2. Overall, our results demonstrate that the tag-free and site (i.e., sugar chain)-specific protein immobilization strategy represents a simple and generic alternative, which is promising to apply for other glycoprotein immobilization and application. It should be noted that although the lectin we utilized can only bind to d-mannose/d-glucose, the diversity of the lectin family assures that a specific lectin could be offered for other sugar types, thus expanding the applicable scope further.
Collapse
Affiliation(s)
| | | | - Zheng Zhang
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | - Joachim Kohn
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
38
|
Wang L, Gong T, Brown Z, Gu Y, Teng K, Ye W, Ming W. Preparation of Ascidian-Inspired Hydrogel Thin Films to Selectively Induce Vascular Endothelial Cell and Smooth Muscle Cell Growth. ACS APPLIED BIO MATERIALS 2020; 3:2068-2077. [DOI: 10.1021/acsabm.9b01190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lingren Wang
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Tao Gong
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zachary Brown
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Yelian Gu
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Kangwen Teng
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Wei Ye
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| |
Collapse
|
39
|
Liu D, Ma H, Liang Y, Zheng L. In vitro and in vivo biocompatibility and bio-tribological properties of the calcium/amorphous-C composite films for bone tissue engineering application. Colloids Surf B Biointerfaces 2020; 188:110792. [PMID: 31945628 DOI: 10.1016/j.colsurfb.2020.110792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022]
Abstract
Carbon-and diamond-like-carbon coated Ti alloys hold great promise for tissue engineering applications. Unfortunately, their strong intrinsic stress leads to the adhesion failure of the films. Herein, a series of a-C films with different Ca content were prepared on Ti6Al4V via co-sputtering deposition technology. Homogeneous spherical Ca nanoclusters, with an inner diameter of 2-6 nm, were formed in an amorphous carbon matrix. The addition of Ca induced indistinctive variation in either phase composition or topography. However, the introduction of Ca not only improved the mechanical properties of a-C film but also significantly strengthened its adhesion to osteoblasts. The bio-tribological properties of Ca/a-C films were also assessed using a tribometer in FBS solution. The Ca/a-C films exhibited a low friction coefficient of 0.083 and a low wear rate of 1.02-1.24×10-6 mm3/Nm. The low coefficient of friction (COF) of the Ca/a-C films indicates their superior mechanical properties, making them the promising target of nanocomposite films used in bio-tribological applications. Well-stretched cells and the developed actin filaments were distinctly observed on the Ca/a-C films in the osteoblast cell adhesion experiments. In addition, the Ca/a-C films promoted cell proliferation and showed high cell viability. After being implanted for 4 weeks, the Ca/a-C implant material still adhered well to the muscle tissue, without inducing hyperergic or inflammatory reactions. Collectively, our results suggest that the Ca/a-C film is an ideal mounting material for bone tissue engineering.
Collapse
Affiliation(s)
- Dongguang Liu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, China; Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230099, China; State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haoran Ma
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230099, China
| | - Yan Liang
- Center of Medical Device Adverse Events Monitoring of Anhui, Center for Adverse Drug Reaction Monitoring of Anhui, Hefei, 230031, China.
| | - Liang Zheng
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, China; National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009, China
| |
Collapse
|
40
|
Li G, Han Q, Lu P, Zhang L, Zhang Y, Chen S, Zhang P, Zhang L, Cui W, Wang H, Zhang H. Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2603048. [PMID: 32851386 PMCID: PMC7436332 DOI: 10.34133/2020/2603048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023]
Abstract
Biofunctionalization of artificial nerve implants by incorporation of specific bioactive factors has greatly enhanced the success of grafting procedures for peripheral nerve regeneration. However, most studies on novel biofunctionalized implants have emphasized the promotion of neuronal and axonal repair over vascularization, a process critical for long-term functional restoration. We constructed a dual-biofunctionalized chitosan/collagen composite scaffold with Ile-Lys-Val-Ala-Val (IKVAV) and vascular endothelial growth factor (VEGF) by combining solution blending, in situ lyophilization, and surface biomodification. Immobilization of VEGF and IKVAV on the scaffolds was confirmed both qualitatively by staining and quantitatively by ELISA. Various single- and dual-biofunctionalized scaffolds were compared for the promotion of endothelial cell (EC) and Schwann cell (SC) proliferation as well as the induction of angiogenic and neuroregeneration-associated genes by these cells in culture. The efficacy of these scaffolds for vascularization was evaluated by implantation in chicken embryos, while functional repair capacity in vivo was assessed in rats subjected to a 10 mm sciatic nerve injury. Dual-biofunctionalized scaffolds supported robust EC and SC proliferation and upregulated the expression levels of multiple genes and proteins related to neuroregeneration and vascularization. Dual-biofunctionalized scaffolds demonstrated superior vascularization induction in embryos and greater promotion of vascularization, myelination, and functional recovery in rats. These findings support the clinical potential of VEGF/IKVAV dual-biofunctionalized chitosan/collagen composite scaffolds for facilitating peripheral nerve regeneration, making it an attractive candidate for repairing critical nerve defect. The study may provide a critical experimental and theoretical basis for the development and design of new artificial nerve implants with excellent biological performance.
Collapse
Affiliation(s)
- Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Liling Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shiyu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Hongbo Zhang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
41
|
Badv M, Alonso-Cantu C, Shakeri A, Hosseinidoust Z, Weitz JI, Didar TF. Biofunctional Lubricant-Infused Vascular Grafts Functionalized with Silanized Bio-Inks Suppress Thrombin Generation and Promote Endothelialization. ACS Biomater Sci Eng 2019; 5:6485-6496. [DOI: 10.1021/acsbiomaterials.9b01062] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Jeffrey I. Weitz
- Thrombosis & Atherosclerosis Research Institute (TaARI), 237 Barton Street East, Hamilton, Ontario L8L 2X2, Canada
| | | |
Collapse
|
42
|
Immobilization of Fibronectin-Loaded Polyelectrolyte Nanoparticles on Cardiovascular Material Surface to Improve the Biocompatibility. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5478369. [PMID: 31781622 PMCID: PMC6875231 DOI: 10.1155/2019/5478369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Vascular stent interventional therapy is the main method for clinical treatment of coronary artery diseases. However, due to the insufficient biocompatibility of cardiovascular materials, the implantation of stents often leads to serious adverse cardiac events. Surface biofunctional modification to improve the biocompatibility of vascular stents has been the focus of current research. In this study, based on the structure and function of extracellular matrix on vascular injury healing, a novel fibronectin-loaded poly-l-lysine/heparin nanoparticles was constructed for stent surface modification. In vitro blood compatibility evaluation results showed that the nanoparticles-modified surface could effectively reduce platelet adhesion and activation. In vitro cellular compatibility evaluation results indicated that the nanocoating may provide adequate efficacy in promoting the adhesion and proliferation of endothelial cells and thereby accelerate endothelialization. This study provides a new approach for the surface biological function modification of vascular stents.
Collapse
|
43
|
Trent A, Van Dyke ME. Development and characterization of a biomimetic coating for percutaneous devices. Colloids Surf B Biointerfaces 2019; 182:110351. [DOI: 10.1016/j.colsurfb.2019.110351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/19/2019] [Accepted: 07/06/2019] [Indexed: 02/05/2023]
|
44
|
Wang Y, Lan H, Yin T, Zhang X, Huang J, Fu H, Huang J, McGinty S, Gao H, Wang G, Wang Z. Covalent immobilization of biomolecules on stent materials through mussel adhesive protein coating to form biofunctional films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110187. [PMID: 31753395 DOI: 10.1016/j.msec.2019.110187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 10/22/2018] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
It is widely accepted that surface biofunctional modification may be an effective approach to improve biocompatibility and confer new bioactive properties on biomaterials. In this work, mussel adhesive protein (MAP) was applied as a coating on 316 L stainless steel substrates (316 L SS) and stents, and then either immobilized VEGF or CD34 antibody were added to create biofunctional films. The properties of the MAP coating were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and a water contact angle test. Universal tensile testing showed that the MAP coating has adequate adhesion strength on a 316 L stainless steel material surface. Subsequent cytotoxicity and hemolysis rate tests showed that the MAP coatings have good biocompatibility. Moreover, using N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysulfosussinimide (EDC/NHS) chemistry, VEGF and CD34 antibody were immobilized on the MAP coatings. The amount and immobilized yield of VEGF on the MAP coatings were analyzed by enzyme-linked immuno-assays (ELISA). Finally, an endothelial cells culture showed that the VEGF biofunctional film can promote the viability and proliferation of endothelial cells. An in vitro CD34+ cells capturing test also verified the bioactive properties of the CD34 antibody coated stents. These results showed that the MAP coatings allowed effective biomolecule immobilization, providing a promising platform for vascular device modification.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Hualin Lan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China.
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Haiyang Fu
- Laboratory of Biomaterials and Tissues Engineering, National Institutes for Food and Drug Control, Beijing, China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China.
| | - Zhaoxu Wang
- Laboratory of Biomaterials and Tissues Engineering, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
45
|
Feng C, Liu C, Liu S, Wang Z, Yu K, Zeng X. Electrospun Nanofibers with Core–Shell Structure for Treatment of Bladder Regeneration. Tissue Eng Part A 2019; 25:1289-1299. [PMID: 30618336 DOI: 10.1089/ten.tea.2018.0255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunxiang Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiliang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixian Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyong Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Wang X, Xu L, Ren Z, Fan M, Zhang J, Qi H, Xu M. A novel manganese chelated macromolecular MRI contrast agent based on O-carboxymethyl chitosan derivatives. Colloids Surf B Biointerfaces 2019; 183:110452. [PMID: 31473409 DOI: 10.1016/j.colsurfb.2019.110452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Currently used Gd-based and Mn-based small molecular MRI contrast agents fail to meet the requirements for the long-term monitoring, and the potential safety risk under high administration dose or repeat dosing needs to be considered. In the present study, a biocompatible macromolecular magnetic resonance imaging (MRI) contrast agents based on O-carboxymethyl chitosan (CMCS), CMCS-(Mn-DTPA)n was designed and synthesized. The relaxivity of CMCS-(Mn-DTPA)n is approximately 3.5 and 5.5 times higher than that of Gd-DTPA and Mn-DPDP in aqueous solution, respectively. The MRI signal intensity in the kidney and liver of Sprague Dawley (SD) rats is significantly increased at a dose of 0.03 mM Mn/kg b.w. CMCS-(Mn-DTPA)n accompanied by a long effective imaging window. According to in vitro studies, CMCS-(Mn-DTPA)n exhibits good cellular and blood biocompatibility at the dose necessary for MRI imaging. Based on the results from in vivo studies, manganese (Mn) is completely excreted from SD rats within ten days after administration and does not exert a pathological effect on the liver. CMCS-(Mn-DTPA)n represents a potentially novel MRI contrast agent due to its excellent relaxivity, long effective imaging window and good biocompatibility.
Collapse
Affiliation(s)
- Xianghui Wang
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Li Xu
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanying Ren
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Hongxin Qi
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Min Xu
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
47
|
Chen M, Wu S, Tan Y, Li R, Liu Y, Huang Q. Rubidium-doped titanium surfaces with modulatory effects on MC3T3-E1 cell response and antibacterial capacity against
Staphylococcus aureus. Biomed Mater 2019; 14:045016. [DOI: 10.1088/1748-605x/ab2585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Covalent immobilization of fibroblast-derived matrix on metallic stent for expeditious re-endothelialization. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Xu WC, Dong X, Ding JL, Liu JC, Xu JJ, Tang YH, Yi YP, Lu C, Yang W, Yang JS, Gong Y, Zhou JL. Nanotubular TiO 2 regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways. Int J Nanomedicine 2019; 14:441-455. [PMID: 30666106 PMCID: PMC6330985 DOI: 10.2147/ijn.s188439] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Macrophages play important roles in the immune response to, and successful implantation of, biomaterials. Titanium nanotubes are considered promising heart valve stent materials owing to their effects on modulation of macrophage behavior. However, the effects of nanotube-regulated macrophages on endothelial cells, which are essential for stent endothelialization, are unknown. Therefore, in this study we evaluated the inflammatory responses of endothelial cells to titanium nanotubes prepared at different voltages. Methods and results In this study we used three different voltages (20, 40, and 60 V) to produce titania nanotubes with three different diameters by anodic oxidation. The state of macrophages on the samples was assessed, and the supernatants were collected as conditioned media (CM) to stimulate human umbilical vein endothelial cells (HUVECs), with pure titanium as a control group. The results indicated that titanium dioxide (TiO2) nanotubes induced macrophage polarization toward the anti-inflammatory M2 state and increased the expression of arginase-1, mannose receptor, and interleukin 10. Further mechanistic analysis revealed that M2 macrophage polarization controlled by the TiO2 nanotube surface activated the phosphatidylinositol 3-kinase/AKT and extracellular signal-regulated kinase 1/2 pathways through release of vascular endothelial growth factor to influence endothelialization. Conclusion Our findings expanded our understanding of the complex influence of nanotubes in implants and the macrophage inflammatory response. Furthermore, CM generated from culture on the TiO2 nanotube surface may represent an integrated research model for studying the interactions of two different cell types and may be a promising approach for accelerating stent endothelialization through immunoregulation.
Collapse
Affiliation(s)
- Wei-Chang Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jing-Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jian-Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yan-Hua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Ying-Ping Yi
- Department of Science and Education, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jue-Sheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jian-Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| |
Collapse
|
50
|
Li G, Chen S, Zeng M, Kong Y, Zhao F, Zhang L, Yang Y. Hierarchically aligned gradient collagen micropatterns for rapidly screening Schwann cells behavior. Colloids Surf B Biointerfaces 2019; 176:341-351. [PMID: 30654241 DOI: 10.1016/j.colsurfb.2019.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
To penetrate the effect of protein gradient micropattern on peripheral nerve regeneration, the hierarchically aligned gradient collagen micropattern was prepared by micromoulding method and the influence on Schwann cells growth behavior was studied. The morphology, wettability, stability and component variation of the micropatterns were firstly characterized. Then, Schwann cells were cultured and the related mechanism was penetrated. The results showed that the gradient collagen micropattern could be well fabricated. The surface wettability varied with the change of collagen concentration, and the prepared gradient micropattern showed a good stability after PBS immersion for 15 days. The results of Schwann cells culture and morphological index analysis displayed that the prepared gradient collagen micropatten could well regulate the orientation growth of Schwann cells, while a much better cell alignment growth was obtained on the gradient micropattern with higher collagen concentration and wider pattern size. PCR and WB showed that the micropattern structure could effectively up-regulate the key specific genes for axon regeneration and myelination process. Overall, the study provides a systematic and facile method for understanding the effect of various sized micropatterns on cell behavior, which may have a great significance for the development of artificial implants for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| | - Shiyu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China
| | - Ming Zeng
- School of Biology Science, Nantong University, 226019, Nantong, PR China
| | - Yan Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China
| | - Fei Zhao
- School of Biology Science, Nantong University, 226019, Nantong, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| |
Collapse
|