1
|
Sousa JPM, Deus IA, Monteiro CF, Custódio CA, Gil J, Papadimitriou L, Ranella A, Stratakis E, Mano JF, Marques PAAP. Amniotic Membrane-Derived Multichannel Hydrogels for Neural Tissue Repair. Adv Healthc Mater 2024; 13:e2400522. [PMID: 38989725 DOI: 10.1002/adhm.202400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/27/2024] [Indexed: 07/12/2024]
Abstract
In the pursuit of advancing neural tissue regeneration, biomaterial scaffolds have emerged as promising candidates, offering potential solutions for nerve disruptions. Among these scaffolds, multichannel hydrogels, characterized by meticulously designed micrometer-scale channels, stand out as instrumental tools for guiding axonal growth and facilitating cellular interactions. This study explores the innovative application of human amniotic membranes modified with methacryloyl domains (AMMA) in neural stem cell (NSC) culture. AMMA hydrogels, possessing a tailored softness resembling the physiological environment, are prepared in the format of multichannel scaffolds to simulate native-like microarchitecture of nerve tracts. Preliminary experiments on AMMA hydrogel films showcase their potential for neural applications, demonstrating robust adhesion, proliferation, and differentiation of NSCs without the need for additional coatings. Transitioning into the 3D realm, the multichannel architecture fosters intricate neuronal networks guiding neurite extension longitudinally. Furthermore, the presence of synaptic vesicles within the cellular arrays suggests the establishment of functional synaptic connections, underscoring the physiological relevance of the developed neuronal networks. This work contributes to the ongoing efforts to find ethical, clinically translatable, and functionally relevant approaches for regenerative neuroscience.
Collapse
Affiliation(s)
- Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Inês A Deus
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Cátia F Monteiro
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina A Custódio
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
- Metatissue, PCI · Creative Science Park Aveiro Region, Via do Conhecimento, Ílhavo, 3830-352, Portugal
| | - João Gil
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- INESC-MN - INESC Microsistemas e Nanotecnologia, Rua Alves Redol 9, Lisbon, 1000-029, Portugal
| | - Lina Papadimitriou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - João F Mano
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- LASI - Intelligent Systems Associate Laboratory, Portugal
| |
Collapse
|
2
|
Sousa JPM, Stratakis E, Mano J, Marques PAAP. Anisotropic 3D scaffolds for spinal cord guided repair: Current concepts. BIOMATERIALS ADVANCES 2023; 148:213353. [PMID: 36848743 DOI: 10.1016/j.bioadv.2023.213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
A spinal cord injury (SCI) can be caused by unforeseen events such as a fall, a vehicle accident, a gunshot, or a malignant illness, which has a significant impact on the quality of life of the patient. Due to the limited regenerative potential of the central nervous system (CNS), SCI is one of the most daunting medical challenges of modern medicine. Great advances have been made in tissue engineering and regenerative medicine, which include the transition from two-dimensional (2D) to three-dimensional (3D) biomaterials. Combinatory treatments that use 3D scaffolds may significantly enhance the repair and regeneration of functional neural tissue. In an effort to mimic the chemical and physical properties of neural tissue, scientists are researching the development of the ideal scaffold made of synthetic and/or natural polymers. Moreover, in order to restore the architecture and function of neural networks, 3D scaffolds with anisotropic properties that replicate the native longitudinal orientation of spinal cord nerve fibres are being designed. In an effort to determine if scaffold anisotropy is a crucial property for neural tissue regeneration, this review focuses on the most current technological developments relevant to anisotropic scaffolds for SCI. Special consideration is given to the architectural characteristics of scaffolds containing axially oriented fibres, channels, and pores. By analysing neural cell behaviour in vitro and tissue integration and functional recovery in animal models of SCI, the therapeutic efficacy is evaluated for its successes and limitations.
Collapse
Affiliation(s)
- Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal; Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece; CICECO - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - João Mano
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| |
Collapse
|
3
|
Chen Y, Liu X, Yang M, Sun W, Mao C. Integration of genetically engineered virus nanofibers and fibrin to form injectable fibrous neuron-rich hydrogels and enable neural differentiation. J Mater Chem B 2023; 11:802-815. [PMID: 36598077 DOI: 10.1039/d2tb01712a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peripheral nerve injury (PNI) results in persistent pain, a burning sensation, tingling, or complete loss of sensation. Treating large nerve defects is a major challenge, and the use of autologous nerve grafts (ANGs) cannot overcome this challenge. Hence, substitutes for ANGs that can serve as artificial nerve fibers are urgently needed in the clinical treatment of PNI. To develop such substitutes, we genetically engineered a virus nanofiber (M13 phage) that displays a high density of RGD peptide on its sidewall, producing an RGD-displaying phage (R-phage). In the presence of neural stem cells (NSCs), the resultant negatively charged R-phage nanofibers were electrostatically bound to a complex (with a net positive charge) of negatively charged fibrin and positively charged polyethyleneimine (PEI). The biocompatible injectable fibrin gel (FG) was integrated with R-phage and seeded with NSCs, forming a hydrogel termed R-phage/FG, which is further extruded through a syringe to form a fiber. The developed fiber-shaped hydrogel exhibited the desired excellent physical-chemical properties, and controllable and appropriate mechanical properties (170-240 kPa) similar to native nerve. The R-phage/FG not only promoted NSC adhesion, infiltration, and proliferation, but also induced efficient preferential differentiation of NSCs into neurons in the hydrogels in a non-differentiating medium within only 4 days. After the NSC-seeded R-phage/FG was injected into the long-gap (10 mm) defect of a rat's sciatic nerve, a solid neuron-rich hydrogel fiber was formed as an artificial nerve fiber graft that stimulated neurogenesis in the transplanted area within 60 days for nerve regeneration. These results suggest that the R-phage/FG fiber represents a potential substitute ANG for repairing large nerve injuries. This work demonstrates a new phage-based biomaterial that can be used as a graft for treating PNI through neurogenesis.
Collapse
Affiliation(s)
- Yingfan Chen
- School of Materials Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang, P. R. China
| | - Xiangyu Liu
- School of Materials Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang, P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang, P. R. China.,Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, USA.
| |
Collapse
|
4
|
Wang J, Cheng Y, Wang H, Wang Y, Zhang K, Fan C, Wang H, Mo X. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomater 2020; 117:180-191. [PMID: 33007489 DOI: 10.1016/j.actbio.2020.09.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Development of a functional nerve conduit to replace autografts remains a significant challenge particularly considering the compositional complexity and structural hierarchy of native peripheral nerves. In the present study, a multiscale strategy was adopted to fabricate 3D biomimetic nerve conduit from Antheraea pernyi silk fibroin (ApF)/(Poly(L-lactic acid-co-caprolactone)) (PLCL)/graphene oxide (GO) (ApF/PLCL/GO) nanofibers via nanofiber dispersion, template-molding, freeze-drying and crosslinking. The resultant conduits exhibit parallel multichannels (ϕ = 125 µm) surrounded by biomimetic fibrous fragments with tailored degradation rate and improved mechanical properties in comparison with the scaffold without GO. In vitro studies showed that such 3D biomimetic nerve scaffolds had the ability to offer an effective guiding interface for neuronal cell growth. Furthermore, these conduits showed a similarity to autografts in vivo repairing sciatic nerve defects based on a series of analysis (walking track, triceps weight, morphogenesis, vascularization, axonal regrowth and myelination). The conduits almost completely degraded within 12 weeks. These findings demonstrate that the 3D hierarchical nerve guidance conduit (NGC) with fascicle-like structure have great potential for peripheral nerve repair.
Collapse
|
5
|
Yu T, Wen L, He J, Xu Y, Li T, Wang W, Ma Y, Ahmad MA, Tian X, Fan J, Wang X, Hagiwara H, Ao Q. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomater 2020; 115:235-249. [PMID: 32771587 DOI: 10.1016/j.actbio.2020.07.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Acellular nerve allografts are promising alternatives to autologous nerve grafts, but still have many drawbacks which greatly limit their curative effects. Here, we developed an optimized acellular nerve allograft with multiple axial channels by a modified decellularization method. These allografts were confirmed to preserve more extracellular matrix components and factors, and remove cellular components effectively. Meanwhile, macrochannels and microchannels were introduced to optimize internal microstructure of allografts, which increases porosity and water absorption, without significant loss of mechanical strength. The in vitro experiments demonstrated that the multichannel allografts showed superior ability of facilitating proliferation and penetration of Schwann cells. Additionally, in the in vivo experiments, the multichannel allografts were used to bridge 10 mm rat sciatic nerve defects. They exhibited better capacity to guide regenerative nerve fibers through the defective segment and restore innervation of target organs, thus achieving better recovery of muscle and motor function, in comparison with conventional acellular allografts. These findings indicate that this multichannel acellular nerve allograft has great potential for clinical application and provides a new prospective for future investigations of nerve regeneration. STATEMENT OF SIGNIFICANCE: Acellular nerve allografts, with preservation of natural extracellular matrix, are officially approved to repair peripheral nerve injury in some countries. However, bioactive component loss and compact internal structure result in variable clinical effects of conventional acellular allografts. In the present study, we fabricated an optimized acellular nerve allograft with multiple axial channels, which could both enable decellularization to be easily accomplished and reduce the amount of detergents in the preparation process. Characterization of the multichannel acellular allografts was confirmed to have better preservation of ECM bioactive molecules and regenerative factors. Efficiency evaluation showed the multichannel allografts could facilitate Schwann cells to migrate inside them in vitro, and enhance regrowth and myelination of axons as well as recovery of muscle and motor function in vivo.
Collapse
|
6
|
Hwang TI, Kim JI, Lee J, Moon JY, Lee JC, Joshi MK, Park CH, Kim CS. In Situ Biological Transmutation of Catalytic Lactic Acid Waste into Calcium Lactate in a Readily Processable Three-Dimensional Fibrillar Structure for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18197-18210. [PMID: 32153182 DOI: 10.1021/acsami.9b19997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bioinspired three-dimensional (3D) fibrous structure possesses biomimicry, valuable functionality, and performance to scaffolding in tissue engineering. In particular, an electrospun fibrous mesh has been studied as a scaffold material in various tissue regeneration applications. We produced a low-density 3D polycaprolactone/lactic acid (LA) fibrous mesh (3D-PCLS) via the novel lactic-assisted 3D electrospinning technique exploiting the catalytic properties of LA as we reported previously. In the study, we demonstrated a strategy of recycling the LA component to synthesize the osteoinductive biomolecules in situ, calcium lactate (CaL), thereby forming a 3D bioactive PCL/CaL fibrous scaffold (3D-SCaL) for bone tissue engineering. The fiber morphology of 3D-PCLS and its packing degree could have been tailored by modifying the spinning solution and the collector design. 3D-SCaL demonstrated successful conversion of CaL from LA and exhibited the significantly enhanced biomineralization capacity, cell infiltration and proliferation rate, and osteoblastic differentiation in vitro with two different cell lines, MC3T3-e1 and bone marrow stem cells. In conclusion, 3D-SCaL proves to be a highly practical and accessible strategy using a variety of polymers to produce 3D fibers as a potential candidate for future regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Tae In Hwang
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
- Department of Medical Practicing, Woori Convalescent Hospital, Jeonju, Jeonbuk 54914, South Korea
| | - Jeong In Kim
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Joshua Lee
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Joon Yeon Moon
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Jeong Chan Lee
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Mahesh Kumar Joshi
- Department of Chemistry, Tribhuvan University, Tri-Chandra Multiple Campus, Kathmandu 44605, Nepal
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| |
Collapse
|
7
|
Tuning the three-dimensional architecture of supercritical CO2 foamed PCL scaffolds by a novel mould patterning approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110518. [DOI: 10.1016/j.msec.2019.110518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/13/2019] [Accepted: 12/01/2019] [Indexed: 12/29/2022]
|
8
|
Abbasian V, Emadi R, Kharaziha M. Biomimetic Nylon 6-Baghdadite Nanocomposite Scaffold for Bone Tissue Engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110549. [DOI: 10.1016/j.msec.2019.110549] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/14/2019] [Accepted: 12/11/2019] [Indexed: 01/27/2023]
|
9
|
Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio 2020; 6:100043. [PMID: 32190832 PMCID: PMC7068131 DOI: 10.1016/j.mtbio.2020.100043] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Unlike other tissue types, the nervous tissue extends to a wide and complex environment that provides a plurality of different biochemical and topological stimuli, which in turn defines the advanced functions of that tissue. As a consequence of such complexity, the traditional transplantation therapeutic methods are quite ineffective; therefore, the restoration of peripheral and central nervous system injuries has been a continuous scientific challenge. Tissue engineering and regenerative medicine in the nervous system have provided new alternative medical approaches. These methods use external biomaterial supports, known as scaffolds, to create platforms for the cells to migrate to the injury site and repair the tissue. The challenge in neural tissue engineering (NTE) remains the fabrication of scaffolds with precisely controlled, tunable topography, biochemical cues, and surface energy, capable of directing and controlling the function of neuronal cells toward the recovery from neurological disorders and injuries. At the same time, it has been shown that NTE provides the potential to model neurological diseases in vitro, mainly via lab-on-a-chip systems, especially in cases for which it is difficult to obtain suitable animal models. As a consequence of the intense research activity in the field, a variety of synthetic approaches and 3D fabrication methods have been developed for the fabrication of NTE scaffolds, including soft lithography and self-assembly, as well as subtractive (top-down) and additive (bottom-up) manufacturing. This article aims at reviewing the existing research effort in the rapidly growing field related to the development of biomaterial scaffolds and lab-on-a-chip systems for NTE applications. Besides presenting recent advances achieved by NTE strategies, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- L. Papadimitriou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - P. Manganas
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - A. Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - E. Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
- Physics Department, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
10
|
Lacko CS, Singh I, Wall MA, Garcia AR, Porvasnik SL, Rinaldi C, Schmidt CE. Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair. J Neural Eng 2020; 17:016057. [PMID: 31577998 DOI: 10.1088/1741-2552/ab4a22] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Hydrogel scaffolds hold promise for a myriad of tissue engineering applications, but often lack tissue-mimetic architecture. Therefore, in this work, we sought to develop a new technology for the incorporation of aligned tubular architecture within hydrogel scaffolds engineered from the bottom-up. APPROACH We report a platform fabrication technology-magnetic templating-distinct from other approaches in that it uses dissolvable magnetic alginate microparticles (MAMs) to form aligned columnar structures under an applied magnetic field. Removal of the MAMs yields scaffolds with aligned tubular microarchitecture that can promote cell remodeling for a variety of applications. This approach affords control of microstructure diameter and biological modification for advanced applications. Here, we sought to replicate the microarchitecture of the native nerve basal lamina using magnetic templating of hydrogels composed of glycidyl methacrylate hyaluronic acid and collagen I. MAIN RESULTS Magnetically templated hydrogels were characterized for particle alignment and micro-porosity. Overall MAM removal efficacy was verified by 96.8% removal of iron oxide nanoparticles. Compressive mechanical properties were well-matched to peripheral nerve tissue at 0.93 kPa and 1.29 kPa, respectively. In vitro, templated hydrogels exhibited approximately 36% faster degradation over 12 h, and were found to guide axon extension from dorsal root ganglia. Finally, in a pilot in vivo study utilizing a 10 mm rat sciatic nerve defect model, magnetically templated hydrogels demonstrated promising results with qualitatively increased remodeling and axon regeneration compared to non-templated controls. SIGNIFICANCE This simple and scalable technology has the flexibility to control tubular microstructure over long length scales, and thus the potential to meet the need for engineered scaffolds for tissue regeneration, including nerve guidance scaffolds.
Collapse
Affiliation(s)
- Christopher S Lacko
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, United States of America
| | | | | | | | | | | | | |
Collapse
|
11
|
Kočí Z, Sridharan R, Hibbitts AJ, Kneafsey SL, Kearney CJ, O'Brien FJ. The Use of Genipin as an Effective, Biocompatible, Anti-Inflammatory Cross-Linking Method for Nerve Guidance Conduits. ACTA ACUST UNITED AC 2020; 4:e1900212. [PMID: 32293152 DOI: 10.1002/adbi.201900212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/06/2019] [Indexed: 11/09/2022]
Abstract
A number of natural polymer biomaterial-based nerve guidance conduits (NGCs) are developed to facilitate repair of peripheral nerve injuries. Cross-linking ensures mechanical integrity and desired degradation properties of the NGCs; however, common methods such as formaldehyde are associated with cellular toxicity. Hence, there is an unmet clinical need for alternative nontoxic cross-linking agents. In this study, collagen-based NGCs with a collagen/chondroitin sulfate luminal filler are used to study the effect of cross-linking on mechanical and structural properties, degradation, biocompatibility, and immunological response. A simplified manufacturing method of genipin cross-linking is developed, by incorporating genipin into solution prior to freeze-drying the NGCs. This leads to successful cross-linking as demonstrated by higher cross-linking degree and similar tensile strength of genipin cross-linked conduits compared to formaldehyde cross-linked conduits. Genipin cross-linking also preserves NGC macro and microstructure as observed through scanning electron microscopy and spectral analysis. Most importantly, in vitro cell studies show that genipin, unlike the formaldehyde cross-linked conduits, supports the viability of Schwann cells. Moreover, genipin cross-linked conduits direct macrophages away from a pro-inflammatory and toward a pro-repair state. Overall, genipin is demonstrated to be an effective, safe, biocompatible, and anti-inflammatory alternative to formaldehyde for cross-linking clinical grade NGCs.
Collapse
Affiliation(s)
- Zuzana Kočí
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Rukmani Sridharan
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Alan J Hibbitts
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Simone L Kneafsey
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| |
Collapse
|
12
|
Aigner T, Haynl C, Salehi S, O'Connor A, Scheibel T. Nerve guidance conduit design based on self-rolling tubes. Mater Today Bio 2020; 5:100042. [PMID: 32159159 PMCID: PMC7063334 DOI: 10.1016/j.mtbio.2020.100042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022] Open
Abstract
The current gold standard in peripheral nerve repair is nerve autografts for bridging gaps larger than a centimeter. However, autografts are associated with a low availability and the loss of function at the donor site. Nerve guidance conduits (NGCs) made of biocompatible and biodegradable materials reflect suitable alternatives. Clinically approved NGCs comprise either wraps that are rolled around the loose ends of the nerve or steady-state tubes; however, both lack internal guidance structures. Here, we established self-rolling NGCs to allow for gentle encapsulation of nerve cells together with supportive microenvironments, such as (1) an inner tube wall coating with a bioactive spider silk film, (2) an inner tube wall lining using an anisotropic spider silk non-woven mat, or (3) a luminal filler using an anisotropic collagen cryogel. Neuronal cells adhered and differentiated inside the modified tubes and formed neurites, which were oriented along the guidance structures provided by the spider silk non-woven mat or by the fibrillary structure of the collagen cryogel. Thus, our size-adaptable NGCs provide several features useful for peripheral nerve repair, and distinct combinations of the used elements might support and enhance the clinical outcome.
Collapse
Affiliation(s)
- T.B. Aigner
- University of Bayreuth, Department of Biomaterials, Prof.-Rüdiger-Bormann-Str.1, 95447, Bayreuth, Germany
| | - C. Haynl
- University of Bayreuth, Department of Biomaterials, Prof.-Rüdiger-Bormann-Str.1, 95447, Bayreuth, Germany
| | - S. Salehi
- University of Bayreuth, Department of Biomaterials, Prof.-Rüdiger-Bormann-Str.1, 95447, Bayreuth, Germany
| | - A. O'Connor
- University of Melbourne, Department of Biomedical Engineering, Melbourne, Victoria, 3010, Australia
| | - T. Scheibel
- University of Bayreuth, Department of Biomaterials, Prof.-Rüdiger-Bormann-Str.1, 95447, Bayreuth, Germany
- University of Bayreuth, Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universitätsstraße 30, 95447, Bayreuth, Germany
- University of Bayreuth, Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universitätsstraße 30, 95447, Bayreuth, Germany
- University of Bayreuth, Bayreuther Materialzentrum (BayMAT), Universitätsstraße 30, 95447, Bayreuth, Germany
- University of Bayreuth, Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
13
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [PMID: 31702754 DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell-microenvironment interactions, and solving the great issues of regenerative medicine. The introduced patterns offer topographical cues that can affect the reconstruction of the cytoskeleton or stimulate cell membrane receptors. Numerous studies have focused on these effects on cell behavior including attachment, migration, proliferation, and differentiation. In this review, five aspects of topographical patterning are discussed: (1) the process of typical micro-/nanotechniques and their advantages and limitations; (2) the effects of patterning on the mechanical properties and surface properties of substrates; (3) the influences of micro-/nanopatterns on the behavior of mesenchymal stem cells, as well as the underlying mechanisms; (4) the application of patterns to solve the issues of targeted organs (e.g., skin, nerves, blood vessels, bones, and heart). In the end, future perspectives that would help promote the efficiency of topographical patterning are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
14
|
Singh I, Lacko CS, Zhao Z, Schmidt CE, Rinaldi C. Preparation and evaluation of microfluidic magnetic alginate microparticles for magnetically templated hydrogels. J Colloid Interface Sci 2019; 561:647-658. [PMID: 31761469 DOI: 10.1016/j.jcis.2019.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Our aim is to develop a hydrogel-based scaffold containing porous microchannels that mimic complex tissue microarchitecture and provide physical cues to guide cell growth for scalable, cost-effective tissue repair. These hydrogels are patterned through the novel process of magnetic templating where magnetic alginate microparticles (MAMs) are dispersed in a hydrogel precursor and aligned in a magnetic field before hydrogel crosslinking and subsequent MAM degradation, leaving behind an aligned, porous architecture. Here, a protocol for fabricating uniform MAMs using microfluidics was developed for improved reproducibility and tunability of templated microarchitecture. Through iron quantification, we find that this approach allows control over magnetic iron oxide loading of the MAMs. Using Brownian dynamics simulations and nano-computed tomography of templated hydrogels to examine MAM chain length and alignment, we find agreement between simulated and measured areal densities of MAM chains. Oscillatory rheology and stress relaxation experiments demonstrate that magnetically templated microchannels alter bulk hydrogel mechanical properties. Finally, in vitro studies where rat Schwann cells were cultured on templated hydrogels to model peripheral nerve injury repair demonstrate their propensity for providing cell guidance along the length of the channels. Our results show promise for a micro-structured biomaterial that could aid in tissue repair applications.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Christopher S Lacko
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Zhiyuan Zhao
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Carlos Rinaldi
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Keijdener H, Konrad J, Hoffmann B, Gerardo-Nava J, Rütten S, Merkel R, Vázquez-Jiménez J, Brook GA, Jockenhoevel S, Mela P. A bench-top molding method for the production of cell-laden fibrin micro-fibers with longitudinal topography. J Biomed Mater Res B Appl Biomater 2019; 108:1198-1212. [PMID: 31408584 DOI: 10.1002/jbm.b.34469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/22/2019] [Accepted: 07/29/2019] [Indexed: 11/10/2022]
Abstract
Tissue-engineered constructs have great potential in many intervention strategies. In order for these constructs to function optimally, they should ideally mimic the cellular alignment and orientation found in the tissues to be treated. Here we present a simple and reproducible method for the production of cell-laden pure fibrin micro-fibers with longitudinal topography. The micro-fibers were produced using a molding technique and longitudinal topography was induced by a single initial stretch. Using this method, fibers up to 1 m in length and with diameters of 0.2-3 mm could be produced. The micro-fibers were generated with embedded endothelial cells, smooth muscle cell/fibroblasts or Schwann cells. Polarized light and scanning electron microscopy imaging showed that the initial stretch was sufficient to induce longitudinal topography in the fibrin gel. Cells in the unstretched control micro-fibers elongated randomly in both the floating and encapsulated environments, whereas the cells in the stretched micro-fibers responded to the introduced topography by adopting a similar orientation. Proof of concept bottom-up tissue engineering (TE) constructs are shown, all displaying various anisotropic organization of cells within. This simple, economical, versatile and scalable approach for the production of highly orientated and cell-laden micro-fibers is easily transferrable to any TE laboratory.
Collapse
Affiliation(s)
- Hans Keijdener
- Department of Biohybrid & Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Jens Konrad
- Institute of Complex Systems 7: Biomechanics, Forschungszentrum Jülich, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems 7: Biomechanics, Forschungszentrum Jülich, Jülich, Germany
| | - José Gerardo-Nava
- Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopic Facility, Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Rudolf Merkel
- Institute of Complex Systems 7: Biomechanics, Forschungszentrum Jülich, Jülich, Germany
| | | | - Gary A Brook
- Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
George J, Hsu CC, Nguyen LTB, Ye H, Cui Z. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv 2019; 42:107370. [PMID: 30902729 DOI: 10.1016/j.biotechadv.2019.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 01/27/2023]
Abstract
The development of techniques to create and use multiphase microstructured hydrogels (granular hydrogels or microgels) has enabled the generation of cultures with more biologically relevant architecture and use of structured hydrogels is especially pertinent to the development of new types of central nervous system (CNS) culture models and therapies. We review material choice and the customisation of hydrogel structure, as well as the use of hydrogels in developmental models. Combining the use of structured hydrogel techniques with developmentally relevant tissue culture approaches will enable the generation of more relevant models and treatments to repair damaged CNS tissue architecture.
Collapse
Affiliation(s)
- Julian George
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Chia-Chen Hsu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Linh Thuy Ba Nguyen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
17
|
Hu Y, Zhang F, Zhong W, Liu Y, He Q, Yang M, Chen H, Xu X, Bian K, Xu J, Li J, Shen Y, Zhang H. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury. J Mater Chem B 2019; 7:7525-7539. [PMID: 31720683 DOI: 10.1039/c9tb01929d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promote repair of spinal cord injury.
Collapse
|
18
|
Lalegül-Ülker Ö, Şeker Ş, Elçin AE, Elçin YM. Encapsulation of bone marrow-MSCs in PRP-derived fibrin microbeads and preliminary evaluation in a volumetric muscle loss injury rat model: modular muscle tissue engineering. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 47:10-21. [PMID: 30514127 DOI: 10.1080/21691401.2018.1540426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repair of volumetric muscle loss (VML) injuries is a complicated endeavour which necessitates the collaborative use of different regenerative approaches and technologies. Herein is proposed the development of fibrin-based microbeads (FMs) alone or as a bone marrow mesenchymal stem cell (MSC) encapsulation matrix for modular muscle engineering. FMs were generated through the ionotropic gelation of alginate and fibrinogen obtained from the platelet-rich plasma of whole blood, and then removing the alginate by citrate treatment. FMs were first characterized by FT-IR, SEM and water uptake tests. Then, the stability of FMs and the mitochondrial dehydrogenase activity of the MSCs encapsulated in FMs were evaluated under in vitro culture conditions. Eventually, the regenerative capacity of the cell-devoid and MSCs-encapsulated FMs was evaluated in a rat VML injury model involving 8 × 4×4 mm3-size bilateral defects in the biceps femoris muscles. The histochemical, immunohistochemical and semi-quantitative histomorphological scoring results retrieved at 30, 60 and 180 days demonstrated that the cell-devoid FMs supported muscle regeneration to a great extent. Moreover, MSCs-encapsulated FMs were more effective in shortening the regeneration period of the injured tissue of the rat VML, resulting in good myofibre orientation, while the Sham group resulted in incomplete repair with fibrotic scar tissue formations.
Collapse
Affiliation(s)
- Özge Lalegül-Ülker
- a Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory , Ankara University Faculty of Science, and Ankara University Stem Cell Institute , Ankara , Turkey
| | - Şükran Şeker
- a Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory , Ankara University Faculty of Science, and Ankara University Stem Cell Institute , Ankara , Turkey
| | - Ayşe Eser Elçin
- a Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory , Ankara University Faculty of Science, and Ankara University Stem Cell Institute , Ankara , Turkey
| | - Yaşar Murat Elçin
- a Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory , Ankara University Faculty of Science, and Ankara University Stem Cell Institute , Ankara , Turkey.,b Biovalda Health Technologies, Inc. , Ankara , Turkey
| |
Collapse
|
19
|
Xue J, Li H, Xia Y. Nanofiber-Based Multi-Tubular Conduits with a Honeycomb Structure for Potential Application in Peripheral Nerve Repair. Macromol Biosci 2018; 18:e1800090. [PMID: 29956466 PMCID: PMC6280973 DOI: 10.1002/mabi.201800090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injury is a large-scale problem and it is a great challenge to repair the long lesion in a thick nerve. The design of a multi-tubular conduit with a honeycomb structure by mimicking the anatomy of a peripheral nerve for the potential repair of large defects in thick nerves has been reported. A bilayer mat of electrospun nanofibers is rolled up to form a single tube, with the inner and outer layers comprised aligned and random nanofibers, respectively. Seven such tubes are then assembled into a hexagonal array and encased within the lumen of a larger tube to form the multi-tubular conduit. By introducing an adhesive to the regions between the tubes, the conduit is robust enough for handling during surgery. The seeded bone marrow stem cells (BMSCs) are able to proliferate in all the tubes with even circumferential and longitudinal distributions. Under chemical induction, the BMSCs are transdifferentiated into Schwann-like cells in all the tubes. While the cellular version holds great promise for peripheral nerve repair, the multi-tubular conduit can also be used to investigate the fundamental aspects involved in the development of peripheral nervous system and migration of cells.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Haoxuan Li
- The Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
Wieringa PA, Gonçalves de Pinho AR, Micera S, Wezel RJA, Moroni L. Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Adv Healthc Mater 2018; 7:e1701164. [PMID: 29349931 DOI: 10.1002/adhm.201701164] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/13/2017] [Indexed: 12/19/2022]
Abstract
Biofabrication techniques have endeavored to improve the regeneration of the peripheral nervous system (PNS), but nothing has surpassed the performance of current clinical practices. However, these current approaches have intrinsic limitations that compromise patient care. The "gold standard" autograft provides the best outcomes but requires suitable donor material, while implantable hollow nerve guide conduits (NGCs) can only repair small nerve defects. This review places emphasis on approaches that create structural cues within a hollow NGC lumen in order to match or exceed the regenerative performance of the autograft. An overview of the PNS and nerve regeneration is provided. This is followed by an assessment of reported devices, divided into three major categories: isotropic hydrogel fillers, acting as unstructured interluminal support for regenerating nerves; fibrous interluminal fillers, presenting neurites with topographical guidance within the lumen; and patterned interluminal scaffolds, providing 3D support for nerve growth via structures that mimic native PNS tissue. Also presented is a critical framework to evaluate the impact of reported outcomes. While a universal and versatile nerve repair strategy remains elusive, outlined here is a roadmap of past, present, and emerging fabrication techniques to inform and motivate new developments in the field of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paul A. Wieringa
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University Universiteitssingel 40 Maastricht 6229 ER The Netherlands
| | - Ana Rita Gonçalves de Pinho
- Tissue Regeneration DepartmentMIRA InstituteUniversity of Twente Drienerlolaan 5 Enschede 7522 NB The Netherlands
| | - Silvestro Micera
- BioRobotics InstituteScuola Superiore Sant'Anna Viale Rinaldo Piaggio 34 Pontedera 56025 Italy
- Translational Neural Engineering LaboratoryEcole Polytechnique Federale de Lausanne Ch. des Mines 9 Geneva CH‐1202 Switzerland
| | - Richard J. A. Wezel
- BiophysicsDonders Institute for BrainCognition and BehaviourRadboud University Kapittelweg 29 Nijmegen 6525 EN The Netherlands
- Biomedical Signals and SystemsMIRA InstituteUniversity of Twente Drienerlolaan 5 Enschede 7522 NB The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University Universiteitssingel 40 Maastricht 6229 ER The Netherlands
| |
Collapse
|
21
|
Liu S, Sun X, Wang T, Chen S, Zeng CG, Xie G, Zhu Q, Liu X, Quan D. Nano-fibrous and ladder-like multi-channel nerve conduits: Degradation and modification by gelatin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:130-142. [PMID: 29208270 DOI: 10.1016/j.msec.2017.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/11/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022]
Abstract
We recently fabricated multi-channel PLLA nerve conduits (NCs, conduits diameter: ~3mm, channels diameter: ~200μm) with nano-fibrous microstructure (NNCs) and ladder-like microstructure (LNCs), and found the nanofibers in the NNCs promote differentiation of nerve stem cells (NSCs) into neurons. In the present study, we evaluated the degradation profile of NNCs and LNCs, and observed that NNCs degraded too fast to implant. To delay the degradation and retain the nano-scale effect of NNCs, we used gelatin to wrap (2% w/v gelatin) or embed (8% w/v gelatin) NNCs and LNCs via vacuum infusion and chemical cross-linking with genipin. NNCs-wrapped maintained their original nano-fibrous microstructure, but NNCs-embedded presented a porous morphology without nanofibers appearing. Incorporation of gelatin did not change their compressive moduli, but increased the creep recovery ratios of LNCs and NNCs. In vitro degradation revealed that integrity was maintained and the mass loss was <5% for NNCs-wrapped after 10weeks, in comparison with 15% mass loss and collapsed structure of the pure NNCs after 4weeks. Meanwhile, there were no obvious changes in the degradation of LNCs with modification. Nerve stem cells (NSCs) were then seeded onto the six NCs represented as: NNCs, NNCs-wrapped, NNCs-embedded, LNCs, LNCs-wrapped, and LNCs-embedded. Immunocytochemistry analysis demonstrated that gelatin coating enhanced the adhesion and proliferation of NSCs, and the NNCs-wrapped scaffold promoted the differentiation proportion of NSCs into neurons from 25.8% (on pure NNCs) to 53.4% after 14days of seeding. On the other hand, only 14.3% of neurons were derived from the differentiation of the seeded NSCs on the NNCs-embedded. NNCs-wrapped would be a good choice for future studies in nerve injury repair in vivo due to its appropriate degradation rate, flexibility, and nano-scale effect.
Collapse
Affiliation(s)
- Sheng Liu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Xiumin Sun
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Wang
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shihao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Chen-Guang Zeng
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Gaoyi Xie
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qingtang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Center for Peripheral Nerve Tissue-Engineering and Technology Research, Guangzhou 510080, China
| | - Xiaolin Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Center for Peripheral Nerve Tissue-Engineering and Technology Research, Guangzhou 510080, China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; GD Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Center for Peripheral Nerve Tissue-Engineering and Technology Research, Guangzhou 510080, China.
| |
Collapse
|
22
|
Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, Sheoran S, Zarghami N. An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother 2017; 90:85-92. [DOI: 10.1016/j.biopha.2017.03.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 02/08/2023] Open
|
23
|
Scott JB, Ward CL, Corona BT, Deschenes MR, Harrison BS, Saul JM, Christ GJ. Achieving Acetylcholine Receptor Clustering in Tissue-Engineered Skeletal Muscle Constructs In vitro through a Materials-Directed Agrin Delivery Approach. Front Pharmacol 2017; 7:508. [PMID: 28123368 PMCID: PMC5225105 DOI: 10.3389/fphar.2016.00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/08/2016] [Indexed: 11/23/2022] Open
Abstract
Volumetric muscle loss (VML) can result from trauma, infection, congenital anomalies, or surgery, and produce permanent functional and cosmetic deficits. There are no effective treatment options for VML injuries, and recent advances toward development of muscle constructs lack the ability to achieve innervation necessary for long-term function. We sought to develop a proof-of-concept biomaterial construct that could achieve acetylcholine receptor (AChR) clustering on muscle-derived cells (MDCs) in vitro. The approach consisted of the presentation of neural (Z+) agrin from the surface of microspheres embedded with a fibrin hydrogel to muscle cells (C2C12 cell line or primary rat MDCs). AChR clustering was spatially restricted to areas of cell (C2C12)-microsphere contact when the microspheres were delivered in suspension or when they were incorporated into a thin (2D) fibrin hydrogel. AChR clusters were observed from 16 to 72 h after treatment when Z+ agrin was adsorbed to the microspheres, and for greater than 120 h when agrin was covalently coupled to the microspheres. Little to no AChR clustering was observed when agrin-coated microspheres were delivered from specially designed 3D fibrin constructs. However, cyclic stretch in combination with agrin-presenting microspheres led to dramatic enhancement of AChR clustering in cells cultured on these 3D fibrin constructs, suggesting a synergistic effect between mechanical strain and agrin stimulation of AChR clustering in vitro. These studies highlight a strategy for maintaining a physiological phenotype characterized by motor endplates of muscle cells used in tissue engineering strategies for muscle regeneration. As such, these observations may provide an important first step toward improving function of tissue-engineered constructs for treatment of VML injuries.
Collapse
Affiliation(s)
- John B Scott
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University Biomedical Engineering, Winston-SalemNC, USA
| | - Catherine L Ward
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; US Army Institute for Surgical Research, San AntonioTX, USA
| | - Benjamin T Corona
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; US Army Institute for Surgical Research, San AntonioTX, USA
| | - Michael R Deschenes
- Department of Neuroscience, College of William and Mary, Williamsburg VA, USA
| | - Benjamin S Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University Biomedical Engineering, Winston-SalemNC, USA
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford OH, USA
| | - George J Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Department of Biomedical Engineering and Department of Orthopaedic Surgery, University of Virginia, CharlottesvilleVA, USA
| |
Collapse
|
24
|
Huang L, Xu F, Guo B, Ma J, Zhao J. Morphological study of dynamic culture of thermosensitive collagen hydrogel in constructing tissue engineering complex. Bioengineered 2016; 7:266-73. [PMID: 27459597 DOI: 10.1080/21655979.2016.1197741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
ABSTACT The purpose of this study is to research the morphologies and functional characteristics of the cell-scaffold complex in vitro constructed under dynamic culture conditions. BMSCs were isolated from the long bones of Fischer344 rats, and performed in vitro amplification to the third generation as seed cells, together with thermosensitive collagen hydrogel (TCH) as cell adhesion matrix, and poly-L-lactic acid (PLLA) as scaffold, to construct cell-scaffold complex. The cell-scaffold complexes in the experiment group and the control group were then performed dynamic culture and static culture. After 7 d of in vitro culture, the complexes in the 2 groups were performed gross observation and SEM; meanwhile, the total DNA content in the complex was detected on D0,1,3, and 7 of culture. After cultured using these 2 ways, collagen could both wrap the PLLA scaffold, forming dense film-like structures on the PLLA surface. The total DNA contents in the cell-scaffold complex of the experiment group on D1,3, and 7 were significantly higher than the control group (P < 0.05). Compared with D0, the total DNA contents on D1,3, and 7 in both groups were gradually increased, but only the total DNA contents on D7 showed statistically significant difference than D0 (P < 0.05). TCH -PLLA fiber joint-constructed complex extracellular matrix had good biocompatibility, and dynamic culture could promote the distribution of BMSCs on the surface and inside the structure, thus promoting cell proliferation, so it could be used for the in vitro construction of tissue engineering complex.
Collapse
Affiliation(s)
- Lanfeng Huang
- a Department of Orthopedics , The Second Hospital of Jilin University , Changchun , China
| | - Feixiang Xu
- a Department of Orthopedics , The Second Hospital of Jilin University , Changchun , China
| | - Bin Guo
- a Department of Orthopedics , The Second Hospital of Jilin University , Changchun , China
| | - Jianchao Ma
- a Department of Orthopedics , The Second Hospital of Jilin University , Changchun , China
| | - Jinsong Zhao
- b Department of Ophthalmology , The Second Hospital of Jilin University , Changchun , China
| |
Collapse
|
25
|
Yao S, Liu X, Yu S, Wang X, Zhang S, Wu Q, Sun X, Mao H. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth. NANOSCALE 2016; 8:10252-65. [PMID: 27124547 DOI: 10.1039/c6nr01169a] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ∼1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.
Collapse
Affiliation(s)
- Shenglian Yao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee YS, Griffin J, Masand SN, Shreiber DI, Uhrich KE. Salicylic acid-based poly(anhydride-ester) nerve guidance conduits: Impact of localized drug release on nerve regeneration. J Biomed Mater Res A 2016; 104:975-82. [PMID: 26691691 DOI: 10.1002/jbm.a.35630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 11/10/2022]
Abstract
Nerve guidance conduits (NGCs) can serve as physical scaffolds aligning and supporting regenerating cells while preventing scar tissue formation that often interferes with the regeneration process. Numerous studies have focused on functionalizing NGCs with neurotrophic factors, for example, to support nerve regeneration over longer gaps, but few directly incorporate therapeutic agents. Herein, we fabricated NGCs from a polyanhydride comprised of salicylic acid (SA), a nonsteroidal anti-inflammatory drug, then performed in vitro and in vivo assays. In vitro studies included cytotoxicity, anti-inflammatory response, and NGC porosity measurements. To prepare for implantation, type I collagen hydrogels were used as NGC luminal fillers to further enhance the axonal regeneration process. For the in vivo studies, SA-NGCs were implanted in femoral nerves of mice for 16 weeks and evaluated for functional recovery. The SA-based NGCs functioned as both a drug delivery vehicle capable of reducing inflammation and scar tissue formation because of SA release as well as a tissue scaffold that promotes peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Yong S Lee
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Jeremy Griffin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Shirley N Masand
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Kathryn E Uhrich
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854.,Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
27
|
Ding T, Zhu C, Yin JB, Zhang T, Lu YC, Ren J, Li YQ. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Life Sci 2015; 122:92-9. [DOI: 10.1016/j.lfs.2014.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 01/28/2023]
|
28
|
Niu Y, Li L, Chen KC, Chen F, Liu X, Ye J, Li W, Xu K. Scaffolds from alternating block polyurethanes of poly(ɛ-caprolactone) and poly(ethylene glycol) with stimulation and guidance of nerve growth and better nerve repair than autograft. J Biomed Mater Res A 2014; 103:2355-64. [DOI: 10.1002/jbm.a.35372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/16/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Yuqing Niu
- Multidisciplinary Research Center, Shantou University; Daxue Lu 243 Shantou Guangdong 515063 China
| | - Linjing Li
- Multidisciplinary Research Center, Shantou University; Daxue Lu 243 Shantou Guangdong 515063 China
| | - Kevin C. Chen
- Multidisciplinary Research Center, Shantou University; Daxue Lu 243 Shantou Guangdong 515063 China
| | - Feiran Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiangyu Liu
- Multidisciplinary Research Center, Shantou University; Daxue Lu 243 Shantou Guangdong 515063 China
| | - Jianfu Ye
- Multidisciplinary Research Center, Shantou University; Daxue Lu 243 Shantou Guangdong 515063 China
| | - Wei Li
- Department of Neurosurgery; the First Affiliated Hospital, Jinan University; Guangzhou 510630 China
| | - Kaitian Xu
- Department of Materials Science and Engineering; Jinan University; Guangzhou 510632 China
| |
Collapse
|
29
|
McMurtrey RJ. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control. J Neural Eng 2014; 11:066009. [PMID: 25358624 DOI: 10.1088/1741-2560/11/6/066009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. APPROACH A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. MAIN RESULTS Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA constructs, which was a 65% relative increase in neurite tracking compared to plain PCL fibers in the same 3D HA constructs and a 213% relative increase over laminin-coated fibers on 2D laminin-coated surfaces. SIGNIFICANCE This work demonstrates the ability to create unique 3D neural tissue constructs using a combined system of hydrogel and nanofiber scaffolding. Importantly, patterned and biofunctionalized nanofiber scaffolds that can control direction and increase length of neurite outgrowth in three-dimensions hold much potential for neural tissue engineering. This approach offers advancements in the development of implantable neural tissue constructs that enable control of neural development and reproduction of neuroanatomical pathways, with the ultimate goal being the achievement of functional neural regeneration.
Collapse
Affiliation(s)
- Richard J McMurtrey
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK. Institute of Neural Regeneration and Tissue Engineering, Highland, UT 84003, US
| |
Collapse
|
30
|
Huang L, Li R, Liu W, Dai J, Du Z, Wang X, Ma J, Zhao J. Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve. Neural Regen Res 2014; 9:1371-8. [PMID: 25221594 PMCID: PMC4160868 DOI: 10.4103/1673-5374.137590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2014] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, but cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhesion stage. Moreover, seeded cells were distributed throughout the material.
Collapse
Affiliation(s)
- Lanfeng Huang
- Department of Joint Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Centre of Hand & Foot Surgery and Reparative & Reconstructive Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wanguo Liu
- Department of Orthopedics Surgery, the Third Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jin Dai
- Department of Joint Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhenwu Du
- Institute of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaonan Wang
- Department of Joint Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jianchao Ma
- Department of Joint Surgery, Orthopedics Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jinsong Zhao
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
31
|
Lee W, Frank CW, Park J. Directed axonal outgrowth using a propagating gradient of IGF-1. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4936-4940. [PMID: 24664530 DOI: 10.1002/adma.201305995] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/06/2014] [Indexed: 06/03/2023]
Abstract
The temporospatial regulation of axon outgrowth is useful for guiding de novo connectivity or re-connectivity of neurons in neurological injury or disease. Here we report the successful construction of a biocompatible guidance device, in which a linear propagation of IGF-1 gradient sequentially directs axon outgrowth. We observe the extensive in vitro axonal extension over 5 mm with a desired growth rate of ∼ 1 mm/day.
Collapse
Affiliation(s)
- Wonjae Lee
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
32
|
Niu Y, Chen KC, He T, Yu W, Huang S, Xu K. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials 2014; 35:4266-77. [PMID: 24582378 DOI: 10.1016/j.biomaterials.2014.02.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/07/2014] [Indexed: 11/30/2022]
Abstract
Nerve guide scaffolds from block polyurethanes without any additional growth factors or protein were prepared using a particle leaching method. The scaffolds of block polyurethanes (abbreviated as PUCL-ran-EG) based on poly(ɛ-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) possess highly surface-area porous for cell attachment, and can provide biochemical and topographic cues to enhance tissue regeneration. The nerve guide scaffolds have pore size 1-5 μm and porosity 88%. Mechanical tests showed that the polyurethane nerve guide scaffolds have maximum loads of 4.98 ± 0.35 N and maximum stresses of 6.372 ± 0.5 MPa. The histocompatibility efficacy of these nerve guide scaffolds was tested in a rat model for peripheral nerve injury treatment. Four types of guides including PUCL-ran-EG scaffolds, autograft, PCL scaffolds and silicone tubes were compared in the rat model. After 14 weeks, bridging of a 10 mm defect gap by the regenerated nerve was observed in all rats. The nerve regeneration was systematically characterized by sciatic function index (SFI), histological assessment including HE staining, immunohistochemistry, ammonia silver staining, Masson's trichrome staining and TEM observation. Results revealed that polyurethane nerve guide scaffolds exhibit much better regeneration behavior than PCL, silicone tube groups and comparable to autograft. Electrophysiological recovery was also seen in 36%, 76%, and 87% of rats in the PCL, PUCL-ran-EG, and autograft groups respectively, whilst 29.8% was observed in the silicone tube groups. Biodegradation in vitro and in vivo show proper degradation of the PUCL-ran-EG nerve guide scaffolds. This study has demonstrated that without further modification, plain PUCL-ran-EG nerve guide scaffolds can help peripheral nerve regeneration excellently.
Collapse
Affiliation(s)
- Yuqing Niu
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
| | - Kevin C Chen
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
| | - Tao He
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
| | - Wenying Yu
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
| | - Shuiwen Huang
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
| | - Kaitian Xu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
33
|
Jeffries EM, Wang Y. Incorporation of parallel electrospun fibers for improved topographical guidance in 3D nerve guides. Biofabrication 2013; 5:035015. [DOI: 10.1088/1758-5082/5/3/035015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Kubinová Š, Horák D, Hejčl A, Plichta Z, Kotek J, Proks V, Forostyak S, Syková E. SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair. J Tissue Eng Regen Med 2013; 9:1298-309. [DOI: 10.1002/term.1694] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Šárka Kubinová
- Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Aleš Hejčl
- Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Neurosurgery, Masaryk Hospital; Ústí nad Labem Czech Republic
| | - Zdeněk Plichta
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Jiří Kotek
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Serhiy Forostyak
- Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Eva Syková
- Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Neuroscience; 2nd Medical Faculty, Charles University; Prague Czech Republic
| |
Collapse
|
35
|
Thomas AM, Kubilius MB, Holland SJ, Seidlits SK, Boehler RM, Anderson AJ, Cummings BJ, Shea LD. Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury. Biomaterials 2013; 34:2213-20. [PMID: 23290832 DOI: 10.1016/j.biomaterials.2012.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/09/2012] [Indexed: 01/13/2023]
Abstract
Bridges implanted into the injured spinal cord function to stabilize the injury, while also supporting and directing axon growth. The architecture of the bridge is critical to its function, with pores to support cell infiltration that integrates the implant with the host and channels to direct axon elongation. Here, we developed a sucrose fiber template to create poly(lactide-co-glycolide) multiple channel bridges for implantation into a lateral hemisection that had a 3-fold increase in channel number relative to previous bridges and an overall porosity ranging from approximately 70%-90%. Following implantation into rat and mouse models, axons were observed within channels for all conditions. The axon density within the bridge increased nearly 7-fold relative to previous bridges with fewer channels. Furthermore, increasing the bridge porosity substantially increased the number of axons, which correlated with the extent of cell infiltration throughout the bridge. Analysis of these cell types identified an increased presence of mature oligodendrocytes within the bridge at higher porosities. These results demonstrate that channels and bridge porosity influence the re-growth of axons through the injury. These bridges provide a platform technology capable of being combined with the delivery of regenerative factors for the ultimate goal of achieving functional recovery.
Collapse
Affiliation(s)
- Aline M Thomas
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang M, Chen X, Schreyer DJ. Spinal Cord Repair by Means of Tissue Engineered Scaffolds. EMERGING TRENDS IN CELL AND GENE THERAPY 2013:485-547. [DOI: 10.1007/978-1-62703-417-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Wang X, He J, Wang Y, Cui FZ. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus 2012; 2:278-91. [PMID: 23741606 PMCID: PMC3363026 DOI: 10.1098/rsfs.2012.0016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/20/2012] [Indexed: 12/17/2022] Open
Abstract
Central nervous system (CNS) regeneration with central neuronal connections and restoration of synaptic connections has been a long-standing worldwide problem and, to date, no effective clinical therapies are widely accepted for CNS injuries. The limited regenerative capacity of the CNS results from the growth-inhibitory environment that impedes the regrowth of axons. Central neural tissue engineering has attracted extensive attention from multi-disciplinary scientists in recent years, and many studies have been carried out to develop cell- and regeneration-activating biomaterial scaffolds that create an artificial micro-environment suitable for axonal regeneration. Among all the biomaterials, hyaluronic acid (HA) is a promising candidate for central neural tissue engineering because of its unique physico-chemical and biological properties. This review attempts to outline current biomaterials-based strategies for CNS regeneration from a tissue engineering point of view and discusses the main progresses in research of HA-based scaffolds for central neural tissue engineering in detail.
Collapse
Affiliation(s)
- Xiumei Wang
- Institute for Regenerative Medicine and Biomimetic Materials, State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Jeffries EM, Wang Y. Biomimetic micropatterned multi-channel nerve guides by templated electrospinning. Biotechnol Bioeng 2012; 109:1571-82. [PMID: 22179932 PMCID: PMC3330138 DOI: 10.1002/bit.24412] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 12/20/2022]
Abstract
This report describes a new approach for fabricating microchannels within three-dimensional electrospun constructs. These key features serve to mimic the fascicular architecture and fibrous extracellular matrix found in native nerve. Both electrospun fibers and multi-channeled structure nerve guides have become areas of increasing interest for their beneficial roles in nerve repair. However, to the best of our knowledge, this is the first report of a guide that incorporates both. Multiple parallel channels provide a greater number of defined paths and increased surface area compared to cylindrical guides. Additionally, the fibrous nature of electrospun fibers permits better mass transport than solid-walled constructs. The flexible fabrication scheme allows tailoring of nerve guide parameters such as channel diameters ranging from 33 to 176 µm and various wall thicknesses. Channel and fiber structures were assessed by optical and electron microscope images. Geometric calculations estimated a porosity of over 85% for these guides with 16% or less from the channels. In vitro culture with Schwann cells demonstrated cellular infiltration into channels with restricted migration between fibers. Finally, cell proliferation and survival throughout the guide indicates that this design warrants future in vivo examination.
Collapse
|
39
|
The fundamental role of subcellular topography in peripheral nerve repair therapies. Biomaterials 2012; 33:4264-76. [DOI: 10.1016/j.biomaterials.2012.02.043] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/24/2012] [Indexed: 12/17/2022]
|
40
|
He J, Wang XM, Spector M, Cui FZ. Scaffolds for central nervous system tissue engineering. FRONTIERS OF MATERIALS SCIENCE 2012; 6:1-25. [DOI: 10.1007/s11706-012-0157-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
41
|
Toll EC, Seifalian AM, Birchall MA. The role of immunophilin ligands in nerve regeneration. Regen Med 2012; 6:635-52. [PMID: 21916598 DOI: 10.2217/rme.11.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tacrolimus (FK506) is a widely used immunosuppressant in organ transplantation. However, it also has neurotrophic activity that occurs independently of its immunosuppressive effects. Other neurotrophic immunophilin ligands that do not exhibit immunosuppression have subsequently been developed and studied in various models of nerve injury. This article reviews the literature on the use of tacrolimus and other immunophilin ligands in peripheral nerve, cranial nerve and spinal cord injuries. The most convincing evidence of enhanced nerve regeneration is seen with systemic administration of tacrolimus in peripheral nerve injury, although clinical use is limited due to its immunosuppressive side effects. Local tacrolimus delivery to the site of nerve repair in peripheral and cranial nerve injury is less effective but requires further investigation. Tacrolimus can enhance outcomes in nerve allograft reconstruction and accelerates reinnervation of complex functional allograft transplants. Other non-immunosuppressive immunophilins ligands such as V-10367 and FK1706 demonstrate enhanced neuroregeneration in the peripheral nervous system and CNS. Mixed results are found in the application of immunophilin ligands to treat spinal cord injury. Immunophilin ligands have great potential in the treatment of nerve injury, but further preclinical studies are necessary to permit translation into clinical trials.
Collapse
Affiliation(s)
- Edward C Toll
- Division of Surgery and Interventional Science, University College London, UK.
| | | | | |
Collapse
|