1
|
Naylor-Adamson L, Price TW, Booth Z, Leonard SVL, Gallo J, Tung LD, Harvell-Smith S, Thi Kim Thanh N, Aslam Z, Allsup D, Hondow N, Chamberlain T, Schneider JE, Naseem K, Bouillard JSG, Stasiuk GJ, Calaminus SDJ. PEGylation of indium phosphide quantum dots prevents quantum dot mediated platelet activation. J Mater Chem B 2025; 13:1052-1063. [PMID: 39635869 PMCID: PMC11619005 DOI: 10.1039/d4tb01334d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Quantum dots (QDs) are semiconducting inorganic nanocrystals, that have garnered interest in biological and medical spheres due, to their potential benefits in biomedical imaging and drug-delivery systems. Indium phosphide QDs shelled with zinc sulphide (InP/ZnS) are viewed as more biocompatible than previous heavy metal based QDs. However, little is known about how InP/ZnS QDs affect a key blood cell, the platelet. Understanding how platelets interact with QDs is critical as unwanted activation can lead to pathological thrombus formation. Herein, we demonstrate PEGylation of InP/ZnS QDs coated with lipoic acid (QD-LA) or coated with penicillamine (QD-Pen) surface ligands induced markedly less platelet aggregation, platelet-QD interactions, integrin activation, alpha granule secretion and restored platelet spreading in washed platelets in comparison to their non-PEGylated counterparts. Furthermore, in whole blood, PEGylation of QDs reduced the number of QDs in the thrombus, thereby helping to minimise the chance of dysfunctional thrombus formation. Overall, we show that QD PEGylation is important to help prevent QD mediated platelet activation. In combination with the most biocompatible coating, PEGylation markedly reduced platelet activation, widening the concentrations at which QDs were viable for development as potential drug delivery or imaging agents.
Collapse
Affiliation(s)
- Leigh Naylor-Adamson
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
| | - Zoe Booth
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Sophie V L Leonard
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal
| | - Le Duc Tung
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
- Biophysics Group, Department of Physics & Astronomy University College London, Gower Street, London, WC1E 6BT, UK
| | - Stanley Harvell-Smith
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
- Biophysics Group, Department of Physics & Astronomy University College London, Gower Street, London, WC1E 6BT, UK
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
- Biophysics Group, Department of Physics & Astronomy University College London, Gower Street, London, WC1E 6BT, UK
| | - Zabeada Aslam
- Leeds Electron Microscopy and Spectroscopy Centre, LEMAS, The Bragg Centre for Materials Research, Faculty of Engineering and Physical Sciences, University of Leeds, LS2 9JT, UK
| | - David Allsup
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Nicole Hondow
- Leeds Electron Microscopy and Spectroscopy Centre, LEMAS, The Bragg Centre for Materials Research, Faculty of Engineering and Physical Sciences, University of Leeds, LS2 9JT, UK
| | - Thomas Chamberlain
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Khalid Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Jean-Sebastien G Bouillard
- Department of Physics and Mathematics, Nano3 Research grouping - Nanophotonics group, G. W. Gray Centre for Advanced Materials, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
| | - Simon D J Calaminus
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| |
Collapse
|
2
|
Naylor-Adamson L, Price TW, Booth Z, Stasiuk GJ, Calaminus SDJ. Quantum Dot Imaging Agents: Haematopoietic Cell Interactions and Biocompatibility. Cells 2024; 13:354. [PMID: 38391967 PMCID: PMC10887166 DOI: 10.3390/cells13040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Quantum dots (QDs) are semi-conducting nanoparticles that have been developed for a range of biological and non-biological functions. They can be tuned to multiple different emission wavelengths and can have significant benefits over other fluorescent systems. Many studies have utilised QDs with a cadmium-based core; however, these QDs have since been shown to have poor biological compatibility. Therefore, other QDs, such as indium phosphide QDs, have been developed. These QDs retain excellent fluorescent intensity and tunability but are thought to have elevated biological compatibility. Herein we discuss the applicability of a range of QDs to the cardiovascular system. Key disease states such as myocardial infarction and stroke are associated with cardiovascular disease (CVD), and there is an opportunity to improve clinical imaging to aide clinical outcomes for these disease states. QDs offer potential clinical benefits given their ability to perform multiple functions, such as carry an imaging agent, a therapy, and a targeting motif. Two key cell types associated with CVD are platelets and immune cells. Both cell types play key roles in establishing an inflammatory environment within CVD, and as such aid the formation of pathological thrombi. However, it is unclear at present how and with which cell types QDs interact, and if they potentially drive unwanted changes or activation of these cell types. Therefore, although QDs show great promise for boosting imaging capability, further work needs to be completed to fully understand their biological compatibility.
Collapse
Affiliation(s)
- Leigh Naylor-Adamson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Zoe Booth
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Simon D. J. Calaminus
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
3
|
Alizadeh R, Asghari A, Taghizadeh-Hesary F, Moradi S, Farhadi M, Mehdizadeh M, Simorgh S, Nourazarian A, Shademan B, Susanabadi A, Kamrava K. Intranasal delivery of stem cells labeled by nanoparticles in neurodegenerative disorders: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1915. [PMID: 37414546 DOI: 10.1002/wnan.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/05/2023] [Accepted: 06/11/2023] [Indexed: 07/08/2023]
Abstract
Neurodegenerative disorders occur through progressive loss of function or structure of neurons, with loss of sensation and cognition values. The lack of successful therapeutic approaches to solve neurologic disorders causes physical disability and paralysis and has a significant socioeconomic impact on patients. In recent years, nanocarriers and stem cells have attracted tremendous attention as a reliable approach to treating neurodegenerative disorders. In this regard, nanoparticle-based labeling combined with imaging technologies has enabled researchers to survey transplanted stem cells and fully understand their fate by monitoring their survival, migration, and differentiation. For the practical implementation of stem cell therapies in the clinical setting, it is necessary to accurately label and follow stem cells after administration. Several approaches to labeling and tracking stem cells using nanotechnology have been proposed as potential treatment strategies for neurological diseases. Considering the limitations of intravenous or direct stem cell administration, intranasal delivery of nanoparticle-labeled stem cells in neurological disorders is a new method of delivering stem cells to the central nervous system (CNS). This review describes the challenges and limitations of stem cell-based nanotechnology methods for labeling/tracking, intranasal delivery of cells, and cell fate regulation as theragnostic labeling. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salah Moradi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Susanabadi
- Department of Anesthesia and Pain Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Kamran Kamrava
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ma N, Liu Y, Chen D, Wu C, Meng Z. In Vivo Imaging of Exosomes Labeled with NIR-II Polymer Dots in Liver-Injured Mice. Biomacromolecules 2022; 23:4825-4833. [DOI: 10.1021/acs.biomac.2c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ning Ma
- Department of Hepatobiliary-Pancreatic Surgery, China−Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Ye Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Dandan Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China−Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
5
|
Sivagnanam S, Das K, Basak M, Mahata T, Stewart A, Maity B, Das P. Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones. NANOSCALE ADVANCES 2022; 4:1694-1706. [PMID: 36134376 PMCID: PMC9417502 DOI: 10.1039/d1na00885d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 06/16/2023]
Abstract
Self-assembled peptide-based nanostructures, comprised of naturally occurring amino acids, display excellent biocompatibility, biodegradability, flexible responsiveness, and synthetic feasibility and can be customized for various biomedical applications. However, the lack of inherent optical properties of peptide-based nanoparticles is a limitation on their use as imaging probes or drug delivery vehicles. To overcome this impediment, we generated Boc protected tyrosine-tryptophan dipeptide-based nanoparticles (DPNPs) with structure rigidification by Zn(ii), which shifted the peptide's intrinsic fluorescent properties from the ultraviolet to the visible range. These DPNPs are photostable, biocompatible and have visible fluorescence signals that allow for real-time monitoring of their entry into cells. We further show that two DPNPs (PS1-Zn and PS2-Zn) can encapsulate the chemotherapeutic drug doxorubicin (Dox) and facilitate intracellular drug delivery resulting in cancer cell killing actions comparable to the unencapsulated drug. Finally, we chemically modified our DPNPs with an aptamer directed toward the epithelial cell surface marker EPCAM, which improved Dox delivery to the lung cancer epithelial cell line A549. In contrast, the aptamer conjugated DPNPs failed to deliver Dox into the cardiomyocyte cell line AC16. Theoretically, this strategy could be employed in vivo to specifically deliver Dox to cancer cells while sparing the myocardium, a major source of dose-limiting adverse events in the clinic. Our work represents an important proof-of-concept exercise demonstrating that ultra-short peptide-based fluorescent nanostructures have great promise for the development of new imaging probes and targeted drug delivery vehicles.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Jupiter FL 33458 USA
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| |
Collapse
|
6
|
Liu YY, Chang Q, Sun ZX, Liu J, Deng X, Liu Y, Cao A, Wang H. Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids Surf B Biointerfaces 2021; 208:112140. [PMID: 34597939 DOI: 10.1016/j.colsurfb.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Semiconductor quantum dots (QDs) have been extensively explored for extensive bioapplications, yet their cellular fate, especially exocytosis, has not been thoroughly investigated. Herein, we systematically investigated the whole cellular process from the endocytosis, intercellular trafficking, to the exocytosis of a typical QD, core/shell CdSe/ZnS QD. Using confocal laser scanning microscopy and flow cytometry, and after carefully eliminating the effect of cell division, we found that the QDs were internalized by HeLa cells with a time-, dose-, and serum-dependent manner. The cellular uptake was inhibited by serum, but eventually peaked after 4-6 h incubation with or without serum. The primary endocytosis pathway was clathrin-mediated, and actin- and microtubule-dependent in the medium with serum, while the caveolae-mediated endocytosis and macropinocytosis were more important for the QDs in the serum-free medium. Inside cells, most QDs distributed in lysosomes, and some entered mitochondria, endoplasmic reticulum, and Golgi apparatus. The translocation of the QDs from other organelles to Golgi apparatus was observed. The exocytosis of QDs was faster than the endocytosis, reaching the maximum in about one hour after cultured in fresh culture medium, with around 60% of the internalized QDs remained undischarged. The exocytosis process was energy- and actin-dependent, and the lysosome exocytosis and endoplasmic reticulum/Golgi pathway were the main routes. This study provides a full picture of behavior and fate of QDs in cells, which may facilitate the design of ideal QDs applied in biomedical and other fields.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zao-Xia Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Wang Y, Xia K, Wang L, Wu M, Sang X, Wan K, Zhang X, Liu X, Wei G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005578. [PMID: 33448113 DOI: 10.1002/smll.202005578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Fluorescent nanomaterials have exhibited promising applications in biomedical and tissue engineering fields. To improve the properties and expand bioapplications of fluorescent nanomaterials, various functionalization and biomodification strategies have been utilized to engineer the structure and function of fluorescent nanomaterials. Due to their high biocompatibility, satisfied bioactivity, unique biomimetic function, easy structural tailoring, and controlled self-assembly ability, supramolecular peptides are widely used as versatile modification agents and nanoscale building blocks for engineering fluorescent nanomaterials. In this work, recent advance in the synthesis, structure, function, and biomedical applications of peptide-engineered fluorescent nanomaterials is presented. Firstly, the types of different fluorescent nanomaterials are introduced. Then, potential strategies for the preparation of peptide-engineered fluorescent nanomaterials via templated synthesis, bioinspired conjugation, and peptide assembly-assisted synthesis are discussed. After that, the unique structure and functions through the peptide conjugation with fluorescent nanomaterials are demonstrated. Finally, the biomedical applications of peptide-engineered fluorescent nanomaterials in bioimaging, disease diagnostics and therapy, drug delivery, tissue engineering, antimicrobial test, and biosensing are presented and discussed in detail. It is helpful for readers to understand the peptide-based conjugation and bioinspired synthesis of fluorescent nanomaterials, and to design and synthesize novel hybrid bionanomaterials with special structures and improved functions for advanced applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kai Xia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Luchen Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiujie Sang
- Department of Food and Medicine, Weifang Vocational College, Weifang, 262737, P. R. China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Faculty of Production Engineering, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
8
|
Tosat-Bitrián C, Palomo V. CdSe quantum dots evaluation in primary cellular models or tissues derived from patients. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102299. [PMID: 32931928 DOI: 10.1016/j.nano.2020.102299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
In recent years quantum dots (QDs) have risen as useful luminescent nanoparticles with multiple applications ranging from laser, image displays and biomedical applications. Here we review and discuss the studies of these nanoparticles in patient derived cellular samples or tissues, including cellular models from iPSCs from patients, biopsied and post-mortem tissue. QD-based multiplexed imaging has been proved to overcome most of the major drawbacks of conventional techniques, exhibiting higher sensitivity, reliability, accuracy and simultaneous labeling of key biomarkers. In this sense, QDs are very promising tools to be further used in clinical applications including diagnosis and therapy approaches. Analyzing the possibilities of these materials in these biological samples gives an overview of the future applications of the nanoparticles in models closer to patients and their specific disease.
Collapse
Affiliation(s)
| | - Valle Palomo
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Jabalera Y, Oltolina F, Prat M, Jimenez-Lopez C, Fernández-Sánchez JF, Choquesillo-Lazarte D, Gómez-Morales J. Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E199. [PMID: 31979272 PMCID: PMC7074876 DOI: 10.3390/nano10020199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/04/2022]
Abstract
In the field of Nanomedicine, there is an increasing demand for new inorganic nanophosphors with low cytotoxicity and efficient loading-release ability of drugs for applications in bioimaging and drug delivery. This work assesses the potentiality of matured Eu-doped citrate-coated carbonated apatite nanoparticles to be used as theranostic platforms, for bioimaging, as luminescent nanoprobes, and for drug delivery applications, using Doxorubicin as a model drug. The drug adsorption isotherm fits the Langmuir-Freundlich (LF) model, showing that the Eu:cit-cAp nanoparticles can carry a maximum of 0.29 ± 0.02 mg Doxo mg Eu:cit-cAp-1 (Qmax). The affinity constant KFL for this binding is 44 ± 2 mL mg-1, and the cooperativity coefficient r is 6 ± 1. The nanoparticle suspensions presented charge reversion from negative to positive after loading with Doxo as revealed by the ζ-potential versus pH characterization. The release of drug from the loaded nanoparticles was found to be strongly pH-dependent, being around 5 wt % at physiological pH 7.4 and 20 wt % at pH 5, in experiments lasting 24 h. Luminescence spectroscopic measurements of Doxo-loaded nanoparticles revealed the increase of luminescence with a decrease in the amount of adsorbed Doxo, due to the so-called inner filter effect. The nanoparticles free of Doxo were cytocompatible when interacted with two human cell lines derived respectively from a gastric carcinoma (GTL-16), and a hepatocarcinoma (Huh7), while Doxo-loaded nanoparticles displayed significant toxicity in a dose-dependent relationship. Therefore, the new nanoassemblies might have a dual function, as nanoprobes in bioimaging by detecting the fate of the nanoparticles in biological environments, and for monitoring the delivery of the drug in such environments, by measuring the rise of the luminescence provided by the desorption of Doxo.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Francesca Oltolina
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Concepcion Jimenez-Lopez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Jorge F. Fernández-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain;
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| |
Collapse
|
10
|
Lim S, Yoon HY, Jang HJ, Song S, Kim W, Park J, Lee KE, Jeon S, Lee S, Lim DK, Kim BS, Kim DE, Kim K. Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke. ACS NANO 2019; 13:10991-11007. [PMID: 31584257 DOI: 10.1021/acsnano.9b02173] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Noninvasive and precise stem cell tracking after transplantation in living subject is very important to monitor both stem cell destinations and their in vivo fate, which is closely related to their therapeutic efficacy. Herein, we developed bicyclo[6.1.0]nonyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-NPs) as a delivery system of dual-modal stem cell imaging probes. Near-infrared fluorescent (NIRF) dye Cy5.5 was chemically conjugated to the BCN-NPs, and then oleic acid-coated superparamagnetic iron oxide nanoparticles (OA-Fe3O4 NPs) were encapsulated into BCN-NPs, resulting in Cy5.5-labeled and OA-Fe3O4 NP-encapsulated BCN-NPs (BCN-dual-NPs). For bioorthogonal labeling of human adipose-derived mesenchymal stem cells (hMSCs), first, hMSCs were treated with tetra-acetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz) for generating azide (-N3) groups onto their surface via metabolic glycoengineering. Second, azide groups on the cell surface were successfully chemically labeled with BCN-dual-NPs via bioorthogonal click chemistry in vitro. This bioorthogonal labeling of hMSCs could greatly increase the cell labeling efficiency, safety, and imaging sensitivity, compared to only nanoparticle-derived labeling technology. The dual-modal imaging-guided precise tracking of bioorthogonally labeled hMSCs was tested in the photothrombotic stroke mouse model via intraparenchymal injection. Finally, BCN-dual-NPs-labeled hMSCs could be effectively tracked by their migration from the implanted site to the brain stroke lesion using NIRF/T2-weighted magnetic resonance (MR) dual-modal imaging for 14 days. Our observation would provide a potential application of bioorthogonally labeled stem cell imaging in regenerative medicine by providing safety and high labeling efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Seungho Lim
- Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil , Seongbuk-gu, Seoul , 02792 , Republic of Korea
- School of Chemical and Biological Engineering , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul , 08826 , Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil , Seongbuk-gu, Seoul , 02792 , Republic of Korea
| | - Hee Jeong Jang
- Molecular Imaging and Neurovascular Research Laboratory , Dongguk University College of Medicine , 27 Dongguk-ro , Ilsandong-gu, Goyang-si , 10326 , Republic of Korea
| | - Sukyung Song
- Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil , Seongbuk-gu, Seoul , 02792 , Republic of Korea
| | - Woojun Kim
- Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil , Seongbuk-gu, Seoul , 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul , 02841 , Republic of Korea
| | - Jooho Park
- Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil , Seongbuk-gu, Seoul , 02792 , Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil , Seongbuk-gu, Seoul , 02792 , Republic of Korea
| | - Sangmin Jeon
- Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil , Seongbuk-gu, Seoul , 02792 , Republic of Korea
| | - Sangmin Lee
- Department of Pharmacy, College of Pharmacy , Wonkwang University , 460 Iksan-daero , Iksan-si , 54538 , Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul , 02841 , Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul , 08826 , Republic of Korea
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory , Dongguk University College of Medicine , 27 Dongguk-ro , Ilsandong-gu, Goyang-si , 10326 , Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14-gil , Seongbuk-gu, Seoul , 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul , 02841 , Republic of Korea
| |
Collapse
|
11
|
Kundrotas G, Karabanovas V, Pleckaitis M, Juraleviciute M, Steponkiene S, Gudleviciene Z, Rotomskis R. Uptake and distribution of carboxylated quantum dots in human mesenchymal stem cells: cell growing density matters. J Nanobiotechnology 2019; 17:39. [PMID: 30866960 PMCID: PMC6417192 DOI: 10.1186/s12951-019-0470-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/26/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (MSCs) have drawn much attention in the field of regenerative medicine for their immunomodulatory and anti-inflammatory effects. MSCs possess specific tumor-oriented migration and incorporation highlighting the potential for MSCs to be used as an ideal carrier for anticancer agents. Bone marrow is the main source of MSCs for clinical applications. MSCs tracking in vivo is a critical component of the safety and efficacy evaluation of therapeutic cell products; therefore, cells must be labeled with contrast agents to enable visualization of the MSCs migration in vivo. Due to their unique properties, quantum dots (QDs) are emerging as optimal tools in long-term MSC optical imaging applications. The aim of this study was to investigate the uptake dynamics, cytotoxity, subcellular and extracellular distribution of non-targeted carboxylated quantum dots in human bone marrow MSCs at different cell growing densities. RESULTS QDs had no negative impact on MSC viability throughout the experiment and accumulated in all observed cells efficiently; however, in some MSCs QDs induced formation of lipid droplets. At low cell growing densities QDs distribute within MSCs cytoplasm already after 1 h of incubation reaching saturation after 6 h. After 24 h QDs localize mainly in the perinuclear region of the cells in endosomes. Interestingly, in more confluent culture QDs localize mostly outside MSCs. QDs abundantly mark MSC long filopodia-like structures attaching neighboring cells. At high cell density cultivation, we for the first time demonstrated that carboxylated QDs localize in human bone marrow MSC extracellular matrix. Moreover, we observed that average photoluminescence lifetime of QDs distributed in extracellular matrix are longer than lifetimes of QDs entrapped in endocytic vesicles; thus, for the first time showing the possibility to identify and distinguish localization of QDs in various extracellular and intracellular structures using fluorescence-lifetime imaging microscopy without additional staining assays. CONCLUSION Carboxylated QDs can be used as nonspecific and effective dye for staining of human bone marrow MSCs and their specific extracellular structures. These results are promising in fundamental stem cell biology as well as in cellular therapy, anticancer drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Gabrielis Kundrotas
- Biobank, National Cancer Institute, Baublio Str. 3b, 08406, Vilnius, Lithuania
- Laboratory of Immunology, National Cancer Institute, Baublio Str. 3b, 08406, Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, Baublio Str. 3b, 08406, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekis Ave. 11, 10223, Vilnius, Lithuania
| | - Marijus Pleckaitis
- Biomedical Physics Laboratory, National Cancer Institute, Baublio Str. 3b, 08406, Vilnius, Lithuania
| | - Marina Juraleviciute
- Biomedical Physics Laboratory, National Cancer Institute, Baublio Str. 3b, 08406, Vilnius, Lithuania
| | - Simona Steponkiene
- Biomedical Physics Laboratory, National Cancer Institute, Baublio Str. 3b, 08406, Vilnius, Lithuania
| | - Zivile Gudleviciene
- Biobank, National Cancer Institute, Baublio Str. 3b, 08406, Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, Baublio Str. 3b, 08406, Vilnius, Lithuania.
- Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Sauletekis Ave. 9, 10222, Vilnius, Lithuania.
| |
Collapse
|
12
|
Evaluation of alginate hydrogel encapsulated mesenchymal stem cell migration in horses. Res Vet Sci 2019; 124:38-45. [PMID: 30826587 DOI: 10.1016/j.rvsc.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis is an incapacitating disease characterized by pain and a progressive decrease in joint mobility. The implantation of mesenchymal stem cells (MSCs) has shown promising results for its treatment. The challenge remains to keep the cells longer at the site of action, increasing their therapeutic potential. The aim of this study was to evaluate the effectiveness of the Qtracker® 655 nanocrystal marking on allogeneic synovial membrane (SM) MSCs, encapsulated in alginate hydrogel, evaluating the migration of these cells. The 10 radiocarpal joints were submitted to arthroscopic surgery (D0), divided into two groups. The chondral defect was treated according to the group: GA free-labelled MSCSM and GB labelled MSCSM microcapsules. Seven days after lesion induction and implantation of labelled cells, biopsies of the lesion site were performed in two animals, and fragments of SM and joint capsule also collected, which were frozen and later processed for fluorescence microscopy. The synovial fluid of the three animals was analyzed by flow cytometry three times - 3, 7 and 21 days after application. The cellular marking with the nanocrystals allowed the visualization of the cells in cartilage, synovial membrane, synovial fluid and articular capsule, but with a predilection for the synovial membrane and the lesion site was scarce. The labelled MSCSM in microcapsules were scarce in the synovial fluid and could be related to the small quantity of MSCs leaving the pores of the microcapsules, also favorable results, as the cells release paracrine effects acting for a long period until the cellular differentiation.
Collapse
|
13
|
Grady ST, Britton L, Hinrichs K, Nixon AJ, Watts AE. Persistence of fluorescent nanoparticle-labelled bone marrow mesenchymal stem cells in vitro and after intra-articular injection. J Tissue Eng Regen Med 2019; 13:191-202. [PMID: 30536848 DOI: 10.1002/term.2781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) improve the osteoarthritis condition, but the fate of MSCs after intra-articular injection is unclear. We used fluorescent nanoparticles (quantum dots [QDs]) to track equine MSCs (QD-labelled MSCs [QD-MSCs]) in vivo after intra-articular injection into normal and osteoarthritic joints. One week after injection of QD-MSCs, unlabelled MSCs, or vehicle, we determined the presence of QD-MSCs in synovium and articular cartilage histologically. In vitro, we evaluated the persistence of QDs in MSCs and whether QDs affected proliferation, immunophenotype, or differentiation. In joints injected with QD-MSCs, labelled cells were identified on the synovial membrane and significantly less often on articular cartilage, without differences between normal and osteoarthritic joints. Joints injected with QD-MSCs and MSCs had increased synovial total nucleated cell count and protein compared with vehicle-injected joints. In vitro, QDs persisted in nonproliferating cells for up to 8 weeks (length of the study), but QD fluorescence was essentially absent from proliferating cells within two passages (approximately 3 to 5 days). QD labelling did not affect MSC differentiation into chondrocytes, adipocytes, and osteocytes. QD-MSCs had slightly different immunophenotype from control cells, but whether this was due to an effect of the QDs or to drift during culture is unknown. QD-MSCs can be visualized in histological sections 1 week after intra-articular injection and are more frequently found in the synovial membrane versus cartilage in both normal and osteoarthritic joints. QDs do not alter MSC viability and differentiation potential in vitro. However, QDs are not optimal markers for long-term tracking of MSCs, especially under proliferative conditions.
Collapse
Affiliation(s)
- Sicilia T Grady
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Lorraine Britton
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA.,Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alan J Nixon
- Clinical Sciences, Cornell University, Ithaca, New York
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Yan J, Hou S, Yu Y, Qiao Y, Xiao T, Mei Y, Zhang Z, Wang B, Huang CC, Lin CH, Suo G. The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 171:241-249. [DOI: 10.1016/j.colsurfb.2018.07.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/22/2018] [Accepted: 07/16/2018] [Indexed: 11/15/2022]
|
15
|
Chen G, Zhang Y, Li C, Huang D, Wang Q, Wang Q. Recent Advances in Tracking the Transplanted Stem Cells Using Near-Infrared Fluorescent Nanoprobes: Turning from the First to the Second Near-Infrared Window. Adv Healthc Mater 2018; 7:e1800497. [PMID: 30019509 DOI: 10.1002/adhm.201800497] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/22/2018] [Indexed: 12/29/2022]
Abstract
Stem cell-based regenerative medicine has attracted tremendous attention for its great potential to treat numerous incurable diseases. Tracking and understanding the fate and regenerative capabilities of transplanted stem cells is vital for improving the safety and therapeutic efficacy of stem cell-based therapy, therefore accelerating the clinical application of stem cells. Fluorescent nanoparticles (NPs) have been widely used for in vivo tracking of the transplanted stem cells. Among these fluorescent NPs, near-infrared (NIR) NPs have greatly improved the sensitivity, tissue penetration depth, spatial and temporal resolutions of the fluorescence imaging-based stem cell tracking technologies due to the reduced absorption, scattering, and autofluorescence of NIR fluorescence in tissues. Here, this review summarizes the recent studies regarding the tracking of transplanted stem cells using NIR NPs and emphasizes the recent advances of fluorescence imaging in the second NIR window (NIR-II, 1000-1700 nm). Furthermore, the challenges and future prospects of the NIR NP-based technologies are also discussed.
Collapse
Affiliation(s)
- Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- School of Nano Technology and Nano Bionics; University of Science and Technology of China; Hefei 230026 China
| | - Qianwu Wang
- College of Materials Sciences and Opto-Electronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- School of Nano Technology and Nano Bionics; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
16
|
Wang X, Gao J, Ouyang X, Wang J, Sun X, Lv Y. Mesenchymal stem cells loaded with paclitaxel-poly(lactic- co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomedicine 2018; 13:5231-5248. [PMID: 30237710 PMCID: PMC6136913 DOI: 10.2147/ijn.s167142] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) possess inherent tropism towards tumor cells, and so have attracted increased attention as targeted-therapy vehicles for glioma treatment. Purpose The objective of this study was to demonstrate the injection of MSCs loaded with paclitaxel (Ptx)-encapsulated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for orthotopic glioma therapy in rats. Methods Ptx-PLGA NP-loaded MSC was obtained by incubating MSCs with Ptx-PLGA NPs. The drug transfer and cytotoxicity of Ptx-PLGA NP-loaded MSC against tumor cells were investigated in the transwell system. Biodistribution and antitumor activity was evaluated in the orthotopic glioma rats after contralateral injection. Results The optimal dose of MSC-loaded Ptx-PLGA NPs (1 pg/cell Ptx) had little effect on MSC-migration capacity, cell cycle, or multilineage-differentiation potential. Compared with Ptx-primed MSCs, Ptx-PLGA NP-primed MSCs had enhanced sustained Ptx release in the form of free Ptx and Ptx NPs. Ptx transfer from MSCs to glioma cells could induce tumor cell death in vitro. As for distribution in vivo, NP-loaded fluorescent MSCs were tracked throughout the tumor mass for 2 days after therapeutic injection. Survival was significantly longer after contralateral implantation of Ptx-PLGA NP-loaded MSCs than those injected with Ptx-primed MSCs or Ptx-PLGA NPs alone. Conclusion Based on timing and sufficient Ptx transfer from the MSCs to the tumor cells, Ptx-PLGA NP-loaded MSC is effective for glioma treatment. Incorporation of chemotherapeutic drug-loaded NPs into MSCs is a promising strategy for tumor-targeted therapy.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Pharmacy, Zhejiang University City College, ;.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xumei Ouyang
- Department of Pharmacy, Zhejiang University City College, ;.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Junbo Wang
- Department of Pharmacy, Zhejiang University City College,
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College,
| | - Yuanyuan Lv
- Department of Pharmacy, Zhejiang University City College,
| |
Collapse
|
17
|
Gómez-Morales J, Verdugo-Escamilla C, Fernández-Penas R, Parra-Milla CM, Drouet C, Maube-Bosc F, Oltolina F, Prat M, Fernández-Sánchez JF. Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: physico-chemistry and cytocompatibility. RSC Adv 2018; 8:2385-2397. [PMID: 35541482 PMCID: PMC9077401 DOI: 10.1039/c7ra12536d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/24/2017] [Indexed: 11/28/2022] Open
Abstract
Nanomedicine covers the application of nanotechnologies in medicine. Of particular interest is the setup of highly-cytocompatible nanoparticles for use as drug carriers and/or for medical imaging. In this context, luminescent nanoparticles are appealing nanodevices with great potential for imaging of tumor or other targetable cells, and several strategies are under investigation. Biomimetic apatite nanoparticles represent candidates of choice in nanomedicine due to their high intrinsic biocompatibility and to the highly accommodative properties of the apatite structure, allowing many ionic substitutions. In this work, the preparation of biomimetic (bone-like) citrate-coated carbonated apatite nanoparticles doped with europium ions is explored using the citrate-based thermal decomplexing approach. The technique allows the preparation of the single apatitic phase with nanosized dimensions only at Eu3+ doping concentrations ≤0.01 M at some timepoints. The presence of the citrate coating on the particle surface (as found in bone nanoapatites) and Eu3+ substituting Ca2+ is beneficial for the preparation of stable suspensions at physiological pH, as witnessed by the ζ-potential versus pH characterizations. The sensitized luminescence features of the solid particles, as a function of the Eu3+ doping concentrations and the maturation times, have been thoroughly investigated, while those of particles in suspensions have been investigated at different pHs, ionic strengths and temperatures. Their cytocompatibility is illustrated in vitro on two selected cell types, the GTL-16 human carcinoma cells and the m17.ASC murine mesenchymal stem cells. This contribution shows the potentiality of the thermal decomplexing method for the setup of luminescent biomimetic apatite nanoprobes with controlled features for use in bioimaging.
Collapse
Affiliation(s)
- Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR) Avda. Las Palmeras, No. 4. E-18100 Armilla Granada Spain
| | - Cristóbal Verdugo-Escamilla
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR) Avda. Las Palmeras, No. 4. E-18100 Armilla Granada Spain
| | - Raquel Fernández-Penas
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR) Avda. Las Palmeras, No. 4. E-18100 Armilla Granada Spain
| | - Carmen María Parra-Milla
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR) Avda. Las Palmeras, No. 4. E-18100 Armilla Granada Spain
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, UMR CNRS/INPT/UPS 5085, Ensiacet 4 Allée Emile Monso 31030 Toulouse Cedex 4 France
| | - Françoise Maube-Bosc
- CIRIMAT, Université de Toulouse, UMR CNRS/INPT/UPS 5085, Ensiacet 4 Allée Emile Monso 31030 Toulouse Cedex 4 France
| | - Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale A. Avogadro Via Solaroli, 17 28100 Novara Italy
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale A. Avogadro Via Solaroli, 17 28100 Novara Italy
| | | |
Collapse
|
18
|
Dapkute D, Steponkiene S, Bulotiene D, Saulite L, Riekstina U, Rotomskis R. Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors. Int J Nanomedicine 2017; 12:8129-8142. [PMID: 29158674 PMCID: PMC5683786 DOI: 10.2147/ijn.s143367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors. Such characteristics enable MSCs to be used in cellular hitchhiking of nanoparticles. In this study, MSCs extracted from the skin connective tissue were investigated as transporters of semiconductor nanocrystals quantum dots (QDs). Materials and methods Cytotoxicity of carboxylated CdSe/ZnS QDs was assessed by lactate dehydrogenase cell viability assay. Quantitative uptake of QDs was determined by flow cytometry; their intracellular localization was evaluated by confocal microscopy. In vitro tumor-tropic migration of skin-derived MSCs was verified by Transwell migration assay. For in vivo migration studies of QD-loaded MSCs, human breast tumor-bearing immunodeficient mice were used. Results QDs were found to be nontoxic to MSCs in concentrations no more than 16 nM. The uptake studies showed a rapid QD endocytosis followed by saturating effects after 6 h of incubation and intracellular localization in the perinuclear region. In vitro migration of MSCs toward MDA-MB-231 breast cancer cells and their conditioned medium was up to nine times greater than the migration toward noncancerous breast epithelial cells MCF-10A. In vivo, systemically administered QD-labeled MSCs were mainly located in the tumor and metastatic tissues, evading most healthy organs with the exception being blood clearance organs (spleen, kidneys, liver). Conclusion Skin-derived MSCs demonstrate applicability in cell-mediated delivery of nanoparticles. The findings presented in this study promise further development of a cell therapy and nanotechnology-based tool for early cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Dominyka Dapkute
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania.,Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Simona Steponkiene
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania
| | - Danute Bulotiene
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania
| | - Liga Saulite
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania.,Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
19
|
Meng Z, Guo L, Li Q. Peptide-Coated Semiconductor Polymer Dots for Stem Cells Labeling and Tracking. Chemistry 2017; 23:6836-6844. [PMID: 28370830 DOI: 10.1002/chem.201700002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/13/2017] [Indexed: 01/02/2023]
Abstract
Stem cell therapy is rapidly moving toward translation to clinical application. To elucidate the therapeutic effect, a robust method that allows tracking of the stem cells over an extended period of time is required. Herein, semiconducting polymer dots (Pdots) are demonstrated for their use in bright labeling and tracking of human mesenchymal stem cells (MSCs) in vitro and in vivo. The Pdots coated with a cell-penetrating peptide (R8) showed remarkable endocytic uptake efficiency that was 15 times higher than that of carboxyl Pdots and more than 200 times than that of bare Pdots. The Pdot-labeled MSCs can be traced for 15 generations in vitro and tracked over 2 weeks in vivo after subcutaneous transplantation. The labeled MSCs administered through the tail vein were preferentially accumulated in the lung; this was distinctive from the distribution of free Pdots, which were primarily distributed in the liver. Based on the properties of bright labeling, excellent tracking capability, and great biocompatibility, the Pdots will be valuable in the applications of stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Lei Guo
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Qiong Li
- Shandong Province Key Laboratory of Detection Technology for, Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276000, P.R. China
| |
Collapse
|
20
|
Deng T, Peng Y, Zhang R, Wang J, Zhang J, Gu Y, Huang D, Deng D. Water-Solubilizing Hydrophobic ZnAgInSe/ZnS QDs with Tumor-Targeted cRGD-Sulfobetaine-PIMA-Histamine Ligands via a Self-Assembly Strategy for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11405-11414. [PMID: 28293947 DOI: 10.1021/acsami.6b16639] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Exploring the organic-to-aqueous phase transfer of quantum dots (QDs) is significant for achieving their versatile applications in biomedical fields. In this thematic issue, surface modification, size control, and biocompatibility of QDs and QDs-based nanocomposites are core problems. Herein, the new highly fluorescent tumor-targeted QDs-clusters consisting of ZnAgInSe/ZnS (ZAISe/ZnS) QDs and sulfobetaine-PIMA-histamine (SPH) polymer with the ανβ3 integrin receptor cyclic RGD (c-RGD) were developed via ligand exchange and an accompanying self-assembly process. It was found that the structure of RGD-SPH QDs-clusters was propitious to reduce the capture of reticulo-endothelial system (RES) in virtue of external stealth ligands, and benefit to selectively accumulate at the tumor site after intravenous injection via active tumor targeting cooperated with the enhanced permeability and retention (EPR) effect. In the meantime, those clusters also recognized and enriched the cell surface when cocultured with the ανβ3 integrin receptor overexpressed malignant cells (U87MG tumor). On the basis of the results, fabricating mutil-functional nanocomposites integrated with the long-term circulation and dual-targeting effects should be an interesting strategy for imaging cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Tao Deng
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Yanan Peng
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Rong Zhang
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Jie Wang
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Jie Zhang
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Yueqing Gu
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering, and ‡Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, China
| |
Collapse
|
21
|
Sugaya H, Mishima H, Gao R, Kaul SC, Wadhwa R, Aoto K, Li M, Yoshioka T, Ogawa T, Ochiai N, Yamazaki M. Fate of bone marrow mesenchymal stromal cells following autologous transplantation in a rabbit model of osteonecrosis. Cytotherapy 2016; 18:198-204. [PMID: 26794712 DOI: 10.1016/j.jcyt.2015.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Internalizing quantum dots (i-QDs) are a useful tool for tracking cells in vivo in models of tissue regeneration. We previously synthesized i-QDs by conjugating QDs with a unique internalizing antibody against a heat shock protein 70 family stress chaperone. In the present study, i-QDs were used to label rabbit mesenchymal stromal cells (MSCs) that were then transplanted into rabbits to assess differentiation potential in an osteonecrosis model. METHODS The i-QDs were taken up by bone marrow-derived MSCs collected from the iliac of 12-week-old Japanese white rabbits that were positive for cluster of differentiation (CD)81 and negative for CD34 and human leukocyte antigen DR. The average rate of i-QD internalization was 93.3%. At 4, 8, 12, and 24 weeks after transplantation, tissue repair was evaluated histologically and by epifluorescence and electron microscopy. RESULTS The i-QDs were detected at the margins of the drill holes and in the necrotized bone trabecular. There was significant colocalization of the i-QD signal in transplanted cells and markers of osteoblast and mineralization at 4, 8, and 12 weeks post-transplantation, while i-QDs were detected in areas of mineralization at 12 and 24 weeks post-transplantation. Moreover, i-QDs were observed in osteoblasts in regenerated tissue by electron microscopy, demonstrating that the tissue was derived from transplanted cells. CONCLUSION These results indicate that transplanted MSCs can differentiate into osteoblasts and induce tissue repair in an osteonecrosis model and can be tracked over the long term by i-QD labeling.
Collapse
Affiliation(s)
- Hisashi Sugaya
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Hajime Mishima
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan.
| | - Ran Gao
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Katsuya Aoto
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Meihua Li
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Tomokazu Yoshioka
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Takeshi Ogawa
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Naoyuki Ochiai
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Kim EJ, Lee H, Yeom A, Hong KS. In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
24
|
Yuan H, Gomez JA, Chien JS, Zhang L, Wilson CM, Li S, Fales AM, Liu Y, Grant GA, Mirotsou M, Dzau VJ, Vo-Dinh T. Tracking mesenchymal stromal cells using an ultra-bright TAT-functionalized plasmonic-active nanoplatform. JOURNAL OF BIOPHOTONICS 2016; 9:406-413. [PMID: 27095616 PMCID: PMC5645019 DOI: 10.1002/jbio.201500173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/11/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
High-resolution tracking of stem cells remains a challenging task. An ultra-bright contrast agent with extended intracellular retention is suitable for in vivo high-resolution tracking of stem cells following the implantation. Here, a plasmonic-active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide-functionalized gold nanostars (TAT-GNS) that emit ultra-bright two-photon photoluminescence capable of tracking MSCs under high-resolution optical imaging. In vitro experiment showed TAT-GNS-labeled MSCs retained a similar differentiability to that of non-labeled MSCs controls. Due to their star shape, TAT-GNS exhibited greater intracellular retention than that of commercial Q-Tracker. In vivo imaging of TAT-GNS-labeled MSCs five days following intra-arterial injections in mice kidneys showed possible MSCs implantation in juxta-glomerular (JG) regions, but non-specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic-active nanoplatforms may be a useful intracellular tracking tool for stem cell research. An ultra-bright intracellular contrast agent is developed using TAT peptide-functionalized gold nanostars (TAT-GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two-photon photoluminescence and superior labeling efficiency than commercial Q-Tracker. Following renal implantation, some TAT-GNS-labeled MSCs permeate blood vessels and migrate to the juxta-glomerular region.
Collapse
Affiliation(s)
- Hsiangkuo Yuan
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
| | - Jose A Gomez
- Department of Medicine, Duke University Medical Center and Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | - Jennifer S Chien
- Department of Medicine, Duke University Medical Center and Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | - Lunan Zhang
- Department of Medicine, Duke University Medical Center and Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | - Christy M Wilson
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shuqin Li
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew M Fales
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
| | - Yang Liu
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, NC 27708, USA
| | - Gerald A Grant
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Maria Mirotsou
- Department of Medicine, Duke University Medical Center and Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | - Victor J Dzau
- Department of Medicine, Duke University Medical Center and Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Chemistry, Duke University, NC 27708, USA.
| |
Collapse
|
25
|
Fan Z, Sun L, Huang Y, Wang Y, Zhang M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. NATURE NANOTECHNOLOGY 2016; 11:388-94. [PMID: 26751169 DOI: 10.1038/nnano.2015.312] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 11/27/2015] [Indexed: 05/24/2023]
Abstract
Peptide nanostructures are biodegradable and are suitable for many biomedical applications. However, to be useful imaging probes, the limited intrinsic optical properties of peptides must be overcome. Here we show the formation of tryptophan-phenylalanine dipeptide nanoparticles (DNPs) that can shift the peptide's intrinsic fluorescent signal from the ultraviolet to the visible range. The visible emission signal allows the DNPs to act as imaging and sensing probes. The peptide design is inspired by the red shift seen in the yellow fluorescent protein that results from π-π stacking and by the enhanced fluorescence intensity seen in the green fluorescent protein mutant, BFPms1, which results from the structure rigidification by Zn(II). We show that DNPs are photostable, biocompatible and have a narrow emission bandwidth and visible fluorescence properties. DNPs functionalized with the MUC1 aptamer and doxorubicin can target cancer cells and can be used to image and monitor drug release in real time.
Collapse
Affiliation(s)
- Zhen Fan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart &Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Leming Sun
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart &Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Yujian Huang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart &Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Yongzhong Wang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart &Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Mingjun Zhang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Dorothy M. Davis Heart &Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
26
|
Lost signature: progress and failures in in vivo tracking of implanted stem cells. Appl Microbiol Biotechnol 2015; 99:9907-22. [DOI: 10.1007/s00253-015-6965-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023]
|
27
|
Gao Y, Wang Y, Fu A, Shi W, Yeo D, Luo KQ, Ow H, Xu C. Tracking mesenchymal stem cell tumor-homing using fluorescent silica nanoparticles. J Mater Chem B 2015; 3:1245-1253. [DOI: 10.1039/c4tb01452a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Core–shell fluorescent silica nanoparticles for in vitro and in vivo tracking of tumor tropism of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Yu Gao
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Yaqi Wang
- Hybrid Silica Technologies
- Cambridge
- USA 02139
| | - Afu Fu
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Wei Shi
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - David Yeo
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Kathy Qian Luo
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Hooisweng Ow
- Hybrid Silica Technologies
- Cambridge
- USA 02139
- Aramco Research Center
- Boston
| | - Chenjie Xu
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| |
Collapse
|
28
|
Breger J, Delehanty JB, Medintz IL. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:131-51. [PMID: 25154379 PMCID: PMC4345423 DOI: 10.1002/wnan.1281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 01/22/2023]
Abstract
The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future.
Collapse
Affiliation(s)
- Joyce Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | | |
Collapse
|
29
|
Hossain MA, Chowdhury T, Bagul A. Imaging modalities for the in vivo surveillance of mesenchymal stromal cells. J Tissue Eng Regen Med 2014; 9:1217-24. [PMID: 24917526 DOI: 10.1002/term.1907] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/20/2014] [Accepted: 04/20/2014] [Indexed: 12/13/2022]
Abstract
Bone marrow stromal cells exist as mesenchymal stromal cells (MSCs) and have the capacity to differentiate into multiple tissue types when subjected to appropriate culture conditions. This property of MSCs creates therapeutic opportunities in regenerative medicine for the treatment of damage to neural, cardiac and musculoskeletal tissues or acute kidney injury. The prerequisite for successful cell therapy is delivery of cells to the target tissue. Assessment of therapeutic outcomes utilize traditional methods to examine cell function of MSC populations involving routine biochemical or histological analysis for cell proliferation, protein synthesis and gene expression. However, these methods do not provide sufficient spatial and temporal information. In vivo surveillance of MSC migration to the site of interest can be performed through a variety of imaging modalities such as the use of radiolabelling, fluc protein expression bioluminescence imaging and paramagnetic nanoparticle magnetic resonance imaging. This review will outline the current methods of in vivo surveillance of exogenously administered MSCs in regenerative medicine while addressing potential technological developments. Furthermore, nanoparticles and microparticles for cellular labelling have shown that migration of MSCs can be spatially and temporally monitored. In vivo surveillance therefore permits time-stratified assessment in animal models without disruption of the target organ. In vivo tracking of MSCs is non-invasive, repeatable and non-toxic. Despite the excitement that nanoparticles for tracking MSCs offer, delivery methods are difficult because of the challenges with imaging three-dimensional systems. The current advances and growth in MSC research, is likely to provide a wealth of evidence overcoming these issues.
Collapse
Affiliation(s)
| | - Tina Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Atul Bagul
- Department of Renal Transplantation, St Georges Hospital NHS Trust, London, UK
| |
Collapse
|
30
|
Hsu SH, Lin YY, Huang S, Lem KW, Nguyen DH, Lee DS. Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling. NANOTECHNOLOGY 2013; 24:475102. [PMID: 24177451 DOI: 10.1088/0957-4484/24/47/475102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Typical photoluminescent semiconductor nanoparticles, called quantum dots (QDs), have potential applications in biological labeling. When used to label stem cells, QDs may impair the differentiation capacity of the stem cells. In this study, we synthesized zinc oxide (ZnO) QDs in methanol with an average size of ∼2 nm. We then employed two different types of polyethylene glycol (PEG) molecules (SH-PEG-NH2 and NH2-PEG-NH2) to conjugate ZnO QDs and made them water-dispersible. Fourier transform infrared spectroscopy spectra indicated the attachment of PEG molecules on ZnO QDs. No obvious size alteration was observed for ZnO QDs after PEG conjugation. The water-dispersible ZnO QDs still retained the antibacterial activity and fluorescence intensity. The cytotoxicity evaluation revealed that ZnO QDs at higher concentrations decreased cell viability but were generally safe at 30 ppm or below. Cell lines of hepatocytes (HepG2), osteoblasts (MC3T3-E1) and mesenchymal stem cells (MSCs) were successfully labeled by the water-dispersible ZnO QDs at 30 ppm. The ZnO QD-labeled MSCs maintained their stemness and differentiation capacity. Therefore, we conclude that the water-dispersible ZnO QDs developed in this study have antibacterial activity, low cytotoxicity, and proper labeling efficiency, and can be used to label a variety of cells including stem cells.
Collapse
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China. Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Quantum Dots Do Not Alter the Differentiation Potential of Pancreatic Stem Cells and Are Distributed Randomly among Daughter Cells. Int J Cell Biol 2013; 2013:918242. [PMID: 23997768 PMCID: PMC3742022 DOI: 10.1155/2013/918242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023] Open
Abstract
With the increasing relevance of cell-based therapies, there is a demand for cell-labeling techniques for in vitro and in vivo studies. For the reasonable tracking of transplanted stem cells in animal models, the usage of quantum dots (QDs) for sensitive cellular imaging has major advances. QDs could be delivered to the cytoplasm of the cells providing intense and stable fluorescence. Although QDs are emerging as favourable nanoparticles for bioimaging, substantial investigations are still required to consider their application for adult stem cells. Therefore, rat pancreatic stem cells (PSCs) were labeled with different concentrations of CdSe quantum dots (Qtracker 605 nanocrystals). The QD labeled PSCs showed normal proliferation and their usual spontaneous differentiation potential in vitro. The labeling of the cell population was concentration dependent, with increasing cell load from 5 nM QDs to 20 nM QDs. With time-lapse microscopy, we observed that the transmission of the QD particles during cell divisions was random, appearing as equal or unequal transmission to daughter cells. We report here that QDs offered an efficient and nontoxic way to label pancreatic stem cells without genetic modifications. In summary, QD nanocrystals are a promising tool for stem cell labeling and facilitate tracking of transplanted cells in animal models.
Collapse
|
32
|
Zhang YS, Wang Y, Wang L, Wang Y, Cai X, Zhang C, Wang LV, Xia Y. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy. Am J Cancer Res 2013; 3:532-43. [PMID: 23946820 PMCID: PMC3741603 DOI: 10.7150/thno.5369] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/13/2012] [Indexed: 01/14/2023] Open
Abstract
Stem cell tracking is a highly important subject. Current techniques based on nanoparticle-labeling, such as magnetic resonance imaging, fluorescence microscopy, and micro-computed tomography, are plagued by limitations including relatively low sensitivity or penetration depth, involvement of ionizing irradiation, and potential cytotoxicity of the nanoparticles. Here we introduce a new class of contrast agents based on gold nanocages (AuNCs) with hollow interiors and porous walls to label human mesenchymal stem cells (hMSCs) for both in vitro and in vivo tracking using two-photon microscopy and photoacoustic microscopy. As demonstrated by the viability assay, the AuNCs showed negligible cytotoxicity under a reasonable dose, and did not alter the differentiation potential of the hMSCs into desired lineages. We were able to image the cells labeled with AuNCs in vitro for at least 28 days in culture, as well as to track the cells that homed to the tumor region in nude mice in vivo.
Collapse
|
33
|
Gheisari Y, Baharvand H, Nayernia K, Vasei M. Stem cell and tissue engineering research in the Islamic republic of Iran. Stem Cell Rev Rep 2012; 8:629-39. [PMID: 22350456 DOI: 10.1007/s12015-011-9343-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During the last few years, the Islamic republic of Iran has consistently grown in nearly all scientific fields and achieved considerable success in producing science and developing technology. The Iranian government and scientific community have jointly started programs to support the creation of new scientific opportunities and technology platforms for research in the domain of stem cell and tissue engineering. In addition, clinical translation of basic researches in the fields of stem cell and regenerative medicine has been amongst the top priorities. Interestingly, the public sector, media, and authorities are also actively monitoring these attainments. In spite of this nationwide interest, however, there is currently a dearth of analytical information on these accomplishments. To address this issue, here we introduce the key decisions made by the country's policy makers and also review some of the Iranian researchers' publications in this field.
Collapse
Affiliation(s)
- Yousof Gheisari
- SABZ Biomedicals Science-Based Company, Tehran, Islamic Republic of Iran
| | | | | | | |
Collapse
|
34
|
de Mel A, Oh JT, Ramesh B, Seifalian AM. Biofunctionalized quantum dots for live monitoring of stem cells: applications in regenerative medicine. Regen Med 2012; 7:335-47. [PMID: 22594327 DOI: 10.2217/rme.12.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM This study aimed to live monitor the degree of endothelial progenitor cell (EPC) integration onto tissue-engineering scaffolds by conjugating relevant antibodies to quantum dots (QDs). MATERIALS & METHODS Biocompatible mercaptosuccinic acid-coated QDs were functionalized with two different antibodies to EPC (CD133 with QDs of 640 nm wavelength [λ] and later-stage mature EPCs; and von Willebrand factor with QDs of λ595 and λ555 nm) using conventional carbomide and N-hydroxysuccinimide chemistry. Biofunctionalization was characterized with Fourier-transform infrared spectroscopy. Cell viability assays and gross morphology observations confirmed cytocompatibility and normal patterns of celluar growth. The antigens corresponding to each state of cell maturation were determined using a single excitation at λ488 nm. RESULTS The optimal concentrations of antibody-QD conjugates were biocompatible, hemocompatible and determined the state of EPC transformation to endothelial cells. CONCLUSION Antibody-functionalized QDs suggest new applications in tissue engineering of polymer-based implants where cell integration can potentially be monitored without requiring the sacrifice of implants.
Collapse
Affiliation(s)
- Achala de Mel
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | | | | | | |
Collapse
|
35
|
Rak-Raszewska A, Marcello M, Kenny S, Edgar D, Sée V, Murray P. Quantum dots do not affect the behaviour of mouse embryonic stem cells and kidney stem cells and are suitable for short-term tracking. PLoS One 2012; 7:e32650. [PMID: 22403689 PMCID: PMC3293847 DOI: 10.1371/journal.pone.0032650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022] Open
Abstract
Quantum dots (QDs) are small nanocrystals widely used for labelling cells in order to enable cell tracking in complex environments in vitro, ex vivo and in vivo. They present many advantages over traditional fluorescent markers as they are resistant to photobleaching and have narrow emission spectra. Although QDs have been used effectively in cell tracking applications, their suitability has been questioned by reports showing they can affect stem cell behaviour and can be transferred to neighbouring cells. Using a variety of cellular and molecular biology techniques, we have investigated the effect of QDs on the proliferation and differentiation potential of two stem cell types: mouse embryonic stem cells and tissue-specific stem cells derived from mouse kidney. We have also tested if QDs released from living or dead cells can be taken up by neighbouring cells, and we have determined if QDs affect the degree of cell-cell fusion; this information is critical in order to assess the suitability of QDs for stem cell tracking. We show here that QDs have no effect on the viability, proliferation or differentiation potential of the two stem cell types. Furthermore, we show that the extent of transfer of QDs to neighbouring cells is <4%, and that QDs do not increase the degree of cell-cell fusion. However, although the QDs have a high labelling efficiency (>85%), they are rapidly depleted from both stem cell populations. Taken together, our results suggest that QDs are effective cell labelling probes that are suitable for short-term stem cell tracking.
Collapse
|
36
|
Markova Z, Bourlinos AB, Safarova K, Polakova K, Tucek J, Medrik I, Siskova K, Petr J, Krysmann M, Giannelis EP, Zboril R. Synthesis and properties of core–shell fluorescent hybrids with distinct morphologies based on carbon dots. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33414c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Shao L, Gao Y, Yan F. Semiconductor quantum dots for biomedicial applications. SENSORS (BASEL, SWITZERLAND) 2011; 11:11736-51. [PMID: 22247690 PMCID: PMC3252007 DOI: 10.3390/s111211736] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022]
Abstract
Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed.
Collapse
Affiliation(s)
- Lijia Shao
- Jiangsu Affiliated Cancer Hospital with Nanjing Medical University, Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, China; E-Mails: (L.S.); (Y.G.)
| | - Yanfang Gao
- Jiangsu Affiliated Cancer Hospital with Nanjing Medical University, Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, China; E-Mails: (L.S.); (Y.G.)
| | - Feng Yan
- Jiangsu Affiliated Cancer Hospital with Nanjing Medical University, Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, China; E-Mails: (L.S.); (Y.G.)
| |
Collapse
|
38
|
Kuzma-Kuzniarska M, Rak-Raszewska A, Kenny S, Edgar D, Wilm B, Fuente Mora C, Davies JA, Murray P. Integration potential of mouse and human bone marrow-derived mesenchymal stem cells. Differentiation 2011; 83:128-37. [PMID: 22364880 DOI: 10.1016/j.diff.2011.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a multipotent cell population which has been described to exert renoprotective and regenerative effects in experimental models of kidney injury. Several lines of evidence indicate that MSCs also have the ability to contribute to nephrogenesis, suggesting that the cells can be employed in stem cell-based applications aimed at de novo renal tissue generation. In this study we re-evaluate the capacity of mouse and human bone marrow-derived MSCs to contribute to the development of renal tissue using a novel method of embryonic kidney culture. Although MSCs show expression of some genes involved in renal development, their contribution to nephrogenesis is very limited in comparison to other stem cell types tested. Furthermore, we found that both mouse and human MSCs have a detrimental effect on the ex vivo development of mouse embryonic kidney, this effect being mediated through a paracrine action. Stimulation with conditioned medium from a mouse renal progenitor population increases the ability of mouse MSCs to integrate into developing renal tissue and prevents the negative effects on kidney development, but does not appear to enhance their ability to undergo nephrogenesis.
Collapse
|